Simplicity in the Structure of QED and Gravity Amplitudes

Pierre Vanhove

Decembre 12, 2008 @ $N=4$ SUSY \& QCD Workshop
based on
围
0802.0868, $\underline{0805.3682}$ and $\underline{0806.1726}$
with N.E.J. Bjerrum-Bohr
国 0811.3405 + work in progress with N.E.J. Bjerrum-Bohr and S. Badger

Motivations

We have learned a lot about the structure of $\mathcal{N}=4$ SYM amplitude, and its dual description using the AdS/CFT correspondence

Motivations

We have learned a lot about the structure of $\mathcal{N}=4 \mathrm{SYM}$ amplitude, and its dual description using the AdS/CFT correspondence

But we still have to learn a lot about gravity

Motivations

We have learned a lot about the structure of $\mathcal{N}=4$ SYM amplitude, and its dual description using the AdS/CFT correspondence

But we still have to learn a lot about gravity

Gravity is a non-Abelian theory like SYM but because gravity has no colors many important cancellations of UV and IR divergences occur in on-shell amplitudes.
In that respect gravity is closer to QED (IR tree soft gravitons Weinberg in 1965)

Motivations

We have learned a lot about the structure of $\mathcal{N}=4$ SYM amplitude, and its dual description using the AdS/CFT correspondence

But we still have to learn a lot about gravity

Gravity is a non-Abelian theory like SYM but because gravity has no colors many important cancellations of UV and IR divergences occur in on-shell amplitudes.
In that respect gravity is closer to QED (IR tree soft gravitons Weinberg in 1965)

We will explain that new organisation formalism for gravity and QED is needed in order to reflect these tree level properties at loop order

Outline

(1) Multiloop amplitudes in $\mathcal{N}=8$ supergravity
(2) The no triangle property of $\mathcal{N}=8$ supergravity and QED amplitudes
(3) Conclusion \& Outlook

Part I

Multiloop amplitudes in $\mathcal{N}=8$ supergravity

Constraints on $\mathcal{N}=8$ supergravity amplitudes

An L-loop n-point gravity amplitude in D-dimensions has the dimension

$$
\left[\mathfrak{M}_{L}^{(D)}\right]=\operatorname{mass}^{(D-2) L+2}
$$

Duality argument from string theory motivates that the low-energy limit of

$$
\mathcal{N}=8 \text { amplitudes [Green, Russo, Vanhove] }
$$

$$
\left[\mathfrak{M}_{L}^{(D)}\right]=\operatorname{mass}^{(D-2) L-6-2 \beta_{L}} D^{2 \beta_{L}} R^{4}+\cdots
$$

Constraints on $\mathcal{N}=8$ supergravity amplitudes

An L-loop n-point gravity amplitude in D-dimensions has the dimension

$$
\left[\mathfrak{M}_{L}^{(D)}\right]=\operatorname{mass}^{(D-2) L+2}
$$

Duality argument from string theory motivates that the low-energy limit of

$$
\mathcal{N}=8 \text { amplitudes [Green,Russo, Vanhove] }
$$

$$
\left[\mathfrak{M}_{L}^{(D)}\right]=\operatorname{mass}^{(D-2) L-6-2 \beta_{L}} D^{2 \beta_{L}} R^{4}+\cdots
$$

- Critical dimension for UV divergence is

$$
D \geq D_{c}=2+\frac{6+2 \beta_{L}}{L}
$$

UV behaviour of $\mathcal{N}=8$ supergravity amplitudes

- Critical dimension for UV divergence is [Green, Russo, Vanhove]

$$
D \geq D_{c}=2+\frac{6+2 \beta_{L}}{L}
$$

- Depending on the various implementation of linearized supersymmetry

$$
6 \leq 6+2 \beta_{L} \leq 18
$$

- Which gives a possible first divergence in $D=4$

$$
3 \leq L \leq 9
$$

- $L \geq 3$ [Howe, Lindstrom, Stelle]
- $L=8$ [Kallosh]
- $L=9$ [Green,Russo, Vanhove]

Loop amplitudes in $\mathcal{N}=8$ supergravity

One loop amplitude is given by the scalar box integral with

$$
\beta_{1}=0
$$

$$
\mathfrak{M}_{1}^{(D)}=R^{4} \int_{0}^{\infty} \frac{d T}{T} T^{\frac{(8-D)}{2}} \int \prod_{i=1}^{3} d u_{i} 1 \prod_{1 \leq i<j \leq 4} e^{-\left(k^{i} \cdot k^{j}\right) G_{i j}^{(1)}}
$$

[Green,Schwarz,Brink]
At higher point the answer is as well given by boxes only (at least in four dimensions) [Bern, Bjerrum-bohr, Dunbar; Bjerrum-bohr, Dunbar, Ita, Perkins; Bjerrum-bohr, Vanhove]

Loop amplitudes in $\mathcal{N}=8$ supergravity

Two-loop amplitude is given by the sum of the planar and non-planar doublebox scalar integral

$$
\beta_{2}=2
$$

[Bern, Dunbar, Dixon, Perelstein, Rozowsky], [D'Hoker, Phong; Berkovits; Berkovits, Mafra]

$$
\mathfrak{M}_{2}^{(D)}=R^{4} \int \prod_{i=1}^{3} d L_{i} \oint \prod_{i=1}^{4} d u_{i}\left(\left(k_{i} \cdot k_{j}\right) \Delta_{i j}\right)^{2} \prod_{1 \leq i<j \leq 4} e^{-\left(k^{i} \cdot k^{j}\right) G_{i j}^{(2)}}
$$

Loop amplitudes in $\mathcal{N}=8$ supergravity

Three-loop amplitude have an integrand that satisfies the rule

$$
\beta_{3}=3
$$

[Bern, Dixon, Roiban; Bern, Carrasco, Dixon, Johansson, Kosower, Roiban] [Bern, Carrasco, Dixon, Johansson, Roiban], [Berkovits]

$$
\mathfrak{M}_{3}^{(D)}=R^{4} \int \prod_{i=1}^{6} L_{i} \prod_{i=1}^{4} \oint d u_{i}\left(\left(k^{m} \cdot k^{n}\right)\left(k^{p} \cdot \Delta_{m n p}\right)\right)^{2} \prod_{1 \leq i<j \leq 4} e^{-\left(k^{i} \cdot k^{j}\right) G_{i j}^{(3)}}
$$

The integrand has the structure predicted using Berkovits' pure spinor formalism

Non-renormalisation theorems and the $\beta_{L}=L$ rule

The $\beta_{L}=L$ rule

$$
\left[\mathfrak{M}_{L}^{(D)}\right]=\operatorname{mass}^{(D-4) L-6} D^{2 L} R^{4}
$$

- 1-loop non-renormalisation of $R^{4}: \beta_{L} \geq 2 \quad L \geq 2$

First UV divergence in 4D: $L \geq 3+\beta_{L} \geq 5$ loops

- 2-loop non-renormalisation of $D^{4} R^{4}: \beta_{L} \geq 3 \quad L \geq 3$ First UV divergence in 4D: $L \geq 3+\beta_{L} \geq 6$ loops
-3-loop non-renormalisation of $D^{6} R^{4}: \beta_{L} \geq 4 \quad L \geq 4$ First UV divergence in 4D: $L \geq 3+\beta_{L} \geq 7$ loops

Non-renormalisation theorems and the $\beta_{L}=L$ rule

The $\beta_{L}=L$ rule

$$
\left[\mathfrak{M}_{L}^{(D)}\right]=\operatorname{mass}^{(D-4) L-6} D^{2 L} R^{4}
$$

- 1-loop non-renormalisation of $R^{4}: \beta_{L} \geq 2 \quad L \geq 2$

First UV divergence in 4D: $L \geq 3+\beta_{L} \geq 5$ loops

- 2-loop non-renormalisation of $D^{4} R^{4}: \beta_{L} \geq 3 \quad L \geq 3$

First UV divergence in 4D: $L \geq 3+\beta_{L} \geq 6$ loops

- 3-loop non-renormalisation of $D^{6} R^{4}: \beta_{L} \geq 4 \quad L \geq 4$ First UV divergence in 4D: $L \geq 3+\beta_{L} \geq 7$ loops

Non-renormalisation theorems and the $\beta_{L}=L$ rule

The $\beta_{L}=L$ rule

$$
\left[\mathfrak{M}_{L}^{(D)}\right]=\operatorname{mass}^{(D-4) L-6} D^{2 L} R^{4}
$$

- 1-loop non-renormalisation of $R^{4}: \beta_{L} \geq 2 \quad L \geq 2$

First UV divergence in 4D: $L \geq 3+\beta_{L} \geq 5$ loops

- 2-loop non-renormalisation of $D^{4} R^{4}: \beta_{L} \geq 3 \quad L \geq 3$

First UV divergence in 4D: $L \geq 3+\beta_{L} \geq 6$ loops

- 3-loop non-renormalisation of $D^{6} R^{4}: \beta_{L} \geq 4 \quad L \geq 4$

$$
\text { First UV divergence in 4D: } L \geq 3+\beta_{L} \geq 7 \text { loops }
$$

The $\beta_{L}=L$ rule

When the $\beta_{L}=L$ rule is satisfied

$$
\left[\mathfrak{M}_{L}^{(D)}\right]=\operatorname{mass}^{(D-4) L-6} D^{2 L} R^{4}
$$

The $\beta_{L}=L$ rule

When the $\beta_{L}=L$ rule is satisfied

$$
\left[\mathfrak{M}_{L}^{(D)}\right]=\operatorname{mass}^{(D-4) L-6} D^{2 L} R^{4}
$$

- $D^{2 L} R^{4}$ not renormalized after L-loop
- Same critical dimension for UV divergences as $\mathcal{N}=4$ SYM

$$
D \geq D_{c}=4+\frac{6}{L}
$$

- If true to all order the theory would be perturbatively UV finite in 4D
- Up to now the linearized supersymmetry gives $\beta_{L}=12$ for $L \geq 6$ which gives a first divergence at 9-loops.

The $\beta_{L}=L$ rule

When the $\beta_{L}=L$ rule is satisfied

$$
\left[\mathfrak{M}_{L}^{(D)}\right]=\operatorname{mass}^{(D-4) L-6} D^{2 L} R^{4}
$$

- $D^{2 L} R^{4}$ not renormalized after L-loop
- Same critical dimension for UV divergences as $\mathcal{N}=4$ SYM

$$
D \geq D_{c}=4+\frac{6}{L}
$$

- If true to all order the theory would be perturbatively UV finite in 4D
- Up to now the linearized supersymmetry gives $\beta_{L}=12$ for $L \geq 6$ which gives a first divergence at 9-loops.

The $\beta_{L}=L$ rule

When the $\beta_{L}=L$ rule is satisfied

$$
\left[\mathfrak{M}_{L}^{(D)}\right]=\operatorname{mass}^{(D-4) L-6} D^{2 L} R^{4}
$$

- $D^{2 L} R^{4}$ not renormalized after L-loop
- Same critical dimension for UV divergences as $\mathcal{N}=4$ SYM

$$
D \geq D_{c}=4+\frac{6}{L}
$$

- If true to all order the theory would be perturbatively UV finite in 4D
- Up to now the linearized supersymmetry gives $\beta_{L}=12$ for $L \geq 6$ which gives a first divergence at 9-loops.

Part II

The no triangle property of one-loop amplitudes in $\mathcal{N}=8$ supergravity and massless QED

Basis of one-loop scalar integral functions

In $D=4-2 \epsilon$ one expands the amplitudes on a basis of scalar integral functions with massive external legs

$$
\mathfrak{M}_{n ; 1}^{(4-2 \epsilon)}=\sum_{i} b_{i} l_{\square}^{(i)}+\sum_{i} t_{i} l_{\triangleright}^{(i)}+\sum_{i} b_{i} l_{\circ}^{(i)}+c_{\text {rational pieces }}
$$

This basis of scalar integral functions capture the IR and UV divergences of the one-loop amplitudes

The Reduction formulas

On-shell integral are reduced to the scalar integral functions using the reduction formulas stating that one can trade powers of loop momentum to massive legs $\left(k_{i}^{2}=0\right)$

$$
\int d^{D} \ell \frac{2\left(\ell \cdot k_{1}\right)}{\ell^{2}\left(\ell-k_{1}\right)^{2}} \times(\cdots)=\int d^{D} \ell\left(\frac{1}{\left(\ell-k_{1}\right)^{2}}-\frac{1}{\ell^{2}}\right) \times(\cdots)
$$

These reduction formula are well adapted to the soft and collinear singularities of QCD / $\mathcal{N}=4$ SYM amplitudes

The no triangle property in $\mathcal{N}=8$

Since $\mathcal{N}=4$ super-Yang-Mills amplitudes have $n-4$ powers of loop momenta they are reducible to boxes only

The no triangle property in $\mathcal{N}=8$

$\mathcal{N}=8$ amplitudes $2 n-8$ powers of loop momenta should contains boxes, triangles, bubbles and rational terms

n-legs

The no triangle property in $\mathcal{N}=8$

Explicit computations by [Bjerrum-Bohr et al., Bern et al.] showed that the amplitudes reduce to scalar box integral functions like for $\mathcal{N}=4$ SYM

The no triangle property of $\mathcal{N}=8$ amplitudes

This result was unexpected because the counting was based on reduction formula that did not take into account all the cancellations occurring in Gravity.

In particular the standard reduction formula does not reflect the softer IR behaviour of gravity amplitudes

The no triangle property of $\mathcal{N}=8$ amplitudes

- Gravity does not have color factor
- summation over all the permutations at one-loop
- Sum over all the planar and nonplanar diagrams at higher loop order
- Gauge invariance $\varepsilon_{\mu \nu} \rightarrow \varepsilon_{\mu \nu}+\partial_{\mu} v_{\nu}+\partial_{\nu} v_{\mu}$

Unordered amplitudes are more than just the sum over all ordering of color ordered amplitudes.
All the various ordering have the same tensorial structure

$$
\mathfrak{M}=\sum_{r} t_{r} \int_{0}^{\infty} \frac{d T}{T} \int_{0}^{1} \prod_{i=1}^{n-1} d \nu_{i} T^{-D / 2+n} \mathcal{P}_{n}\left(\partial Q_{n}\right) \exp \left(-T \sum_{r, s}\left(k_{r} \cdot k_{s}\right) G_{r, s}^{(1)}\right)
$$

The no triangle property of $\mathcal{N}=8$ amplitudes

Loop momentum is a total derivative $k_{i} \cdot \ell \sim \partial_{\nu_{i}} Q_{n}$ which can be freely integrated

$$
\int_{0}^{\infty} \frac{d T}{T} \int_{0}^{1} d^{n-1} \nu \partial_{\nu_{i}} Q_{n}(\cdots)=-\int_{0}^{\infty} \frac{d T}{T} \int_{0}^{1} d^{n-1} \nu Q_{n} \partial_{\nu_{i}}(\cdots)
$$

$\partial_{\nu_{i}} \partial_{\nu_{j}} Q_{n} \sim\left(k_{i} \cdot k_{j}\right)\left[\delta\left(\nu_{i}-\nu_{j}\right)-1\right]$ does not contain any loop momenta
two powers of loop momentum are cancelled at each steps

The no triangle property of $\mathcal{N}=8$ amplitudes

This implies new reduction formulas for unordered integrals
[Bjerrum-Bohr, Vanhove]

- These reduction formulas reflect that the graviton amplitudes have softer IR singularities than for QCD [weinberg]
- The dimension shifted contributions cancel in the total amplitude

Gauge invariance implies that one can push all the 'triangles' into total derivative which cancel in the total amplitude (no boundary contributions) ('cancelled propagator argument')

The no triangle property of $\mathcal{N}=8$ amplitudes

For $\mathcal{N}=8$ sugra amplitude the no triangle property arises because the amplitude has $n-4$ powers of ℓ^{2}

No triangle property in massless QED

The new reduction formula applies to QED one-loop amplitudes as well

The n-photon one-loop amplitude in massless QED has the structure

- Using the ordered reduction formula the amplitude should contain all the scalar integral functions

$$
\lim _{z \rightarrow \infty} A_{e^{+} e^{-} \rightarrow n \gamma}^{\text {tree }}\left(p_{a}+z p_{b}, p_{b}-z p_{a}\right) \sim \frac{z^{s}}{z^{n-2}}
$$

No triangle property in massless QED

The new reduction formula applies to QED one-loop amplitudes as well

The n-photon one-loop amplitude in massless QED has the structure

- For $n=4$ external photons [Mahlon; Bern et al.]

$$
A_{4 \gamma}^{Q E D}=I_{\text {box }}+I_{\text {Triangle }}+I_{\text {bubble }}
$$

- For $n=6$ external photons[Bernicot, Guillet; Binoth, Heinrich, Gehrmann, Mastrolia]

$$
\begin{gathered}
A_{6 \gamma}^{Q E D}=I_{\text {box }}+I_{\text {Triangle }} \\
\lim _{z \rightarrow \infty} A_{e^{+} e^{-} \rightarrow n \gamma}^{\text {tree }}\left(p_{a}+z p_{b}, p_{b}-z p_{a}\right) \sim \frac{z^{s}}{z^{n-2}}
\end{gathered}
$$

No triangle property in massless QED

The new reduction formula applies to QED one-loop amplitudes as well

The n-photon one-loop amplitude in massless QED has the structure

- For $2 n \geq 8$ external photons

```
[Badger, Bjerrum-Bohr, Vanhove]
```

$$
A_{2 n \geq 8 \gamma}^{Q E D}=I_{b o x}
$$

This is due to the very good high-energy behaviour of the tree amplitudes

$$
\lim _{z \rightarrow \infty} A_{e^{+} e^{-} \rightarrow n \gamma}^{\text {tree }}\left(p_{a}+z p_{b}, p_{b}-z p_{a}\right) \sim \frac{z^{s}}{z^{n-2}}
$$

Summary \& Outlook

We have explained that colorless gauge theory like gravity and QED exhibit important cancellations in on-shell amplitudes.

- Cancellations are already seen at tree level which have a better high-momentum limit as naively expected
- The expansion on a basis of scalar integral functions is much simplified and constrained

Summary \& Outlook

We have explained that colorless gauge theory like gravity and QED exhibit important cancellations in on-shell amplitudes.

- Cancellations are already seen at tree level which have a better high-momentum limit as naively expected
- The expansion on a basis of scalar integral functions is much simplified and constrained
- For gravity could this help extending the rule $\beta_{L}=L$ beyond 6 loops?

Summary \& Outlook

We have explained that colorless gauge theory like gravity and QED exhibit important cancellations in on-shell amplitudes.

- Cancellations are already seen at tree level which have a better high-momentum limit as naively expected
- The expansion on a basis of scalar integral functions is much simplified and constrained
- For gravity could this help extending the rule $\beta_{L}=L$ beyond 6 loops?

Finite combination of boxes. Comparison with the dual conformal
invariant basis of

Summary \& Outlook

We have explained that colorless gauge theory like gravity and QED exhibit important cancellations in on-shell amplitudes.

- Cancellations are already seen at tree level which have a better high-momentum limit as naively expected
- The expansion on a basis of scalar integral functions is much simplified and constrained
- For gravity could this help extending the rule $\beta_{L}=L$ beyond 6 loops?
- For QED: The one-loop answer is UV and IR finite (for $n \geq 4$ photons): Finite combination of boxes. Comparison with the dual conformal invariant basis of [Drummond, Henn, Korchemsky, Sokatchev, Snirnov], [Work in progress]

