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Problems for string theory:

• spectrum of states (exact energies inλ)

• construction of vertex operators: closed and open (?) string
ones

• computation of their correlation functions (e.g., graviton scat-
tering, application to DIS in QCD ?)

• expectation values of various Wilson loops

• gluon scattering amplitudes (??)

• generalizations to simplest less supersymmetric cases

– orbifolds, exactly marginal deformations, ...

• strings at finite temperature inAdS5 × S5 ...

• solution of type 0 theory inAdS5 × S5 ...

• non-critical superstrings:AdS5 × S1, ...



AdS5 × S5

Recent remarkable progress in quantitative understanding

interpolation from weak to strong ‘t Hooft coupling

based on/checked by perturbative gauge theory (4-loop inλ)

and perturbative string theory (2-loop in1√
λ

) “data”

and assumption of exact integrability

string energies = dimensions of gauge-invariant operators

E(
√

λ, I, m, ...) = ∆(λ, I, m, ...)

I - charges ofSO(2, 4) × SO(6): S1, S2; J1, J2, J3

m - windings, folds, cusps, oscillation numbers, ...

Operators: Tr(ΦJ1

1 ΦJ2

2 ΦJ3

3 DS1

+ DS2

⊥ ...Fmn...Ψ...)

Solve susy 4-d CFT = Solve superstring in R-R background:

computeE = ∆ for anyλ (andI,m)



Perturbative expansions areopposite:

λ ≫ 1 in perturbative string theory

λ ≪ 1 in perturbative planar gauge theory

Last 6 years: remarkable progress:

“semiclassical” string states with large quantum numbers

dual to “long” gauge operators (BMN, GKP, ...)

E = ∆ – same (in some cases !) dependence onJ, m, ...

coefficients =interpolating functionsof λ

Current status:

asymptotic Bethe Ansatz (BES)

+ “phenomenological” improvement by Luscher corrections

(remarkably successful at weak coupling: Janik’s talk)

Beyond restriction to long operators or

semiclassical strings with large quantum numbers ?

Needfirst-principlesunderstanding of quantum

AdS5 × S5 superstring theory:



1. Solve string theory inAdS5 × S5 onR1,1

relativistic 2d S-matrix including dressing phase (if any);

asymptotic BA for the spectrum

2. Generalize to finite-energy closed strings – solve onR × S1

→ TBA as for standard sigma models (?)

Little progress so far ...

reformulation in terms of current variables

(“Pohlmeyer reduction”) seems most promising approach

In the meantime study in detail semiclassical string states

for various values of parameters includingα′ ∼ 1√
λ

corrections



Problems:

1. subleading terms in large-spin expansion?

compare to gauge theory – also partially controlled by

functional relation and reciprocity?

(cf. Basso, Korchemsky; talk by Forini)

2. dependence on spin parameter is same (i.e. coefficients are

interpolating functions as in cusp anomaly case) or we

do need to resum also the spin dependence to compare?

3. formal small-spin limit – may shed light on dimensions of short

operators at strong coupling if (!) limits commute

Principles of comparison: gauge states vs string states

1. look at states with same globalSO(2, 4) × SO(6) charges

e.g.,(S, J) – “SL(2) sector” –Tr(DS
+ΦJ)

J=twist=spin-chain length

2. assume no “level crosing” while changingλ

e.g. minimal/maximal energy states for given(S, J)

should be in correspondence



Gauge theory:

∆ ≡ E = S + J + γ(S, J, m, λ) , γ =
∑∞

k=1 λkγk(S, J, m)

m stands for other conserved charges labelling states

(e.g., winding inS1 ⊂ S5 or number of spikes inAdS5)

fix S, J, ... and expand inλ; may then expand in large/smallS, J, ...

String theory:

E = S+J+γ(S,J , m,
√

λ) , γ =
∑∞

k=−1
1

(
√

λ)k
γ̃k(S,J , m)

S = S√
λ

, J = J√
λ

, m

- semiclassical parametersfixed in the 1√
λ

expansion

Various possible limits:

(i) BMN-like “fast-string” limit – “locally-BPS” long oprators

G: J ≫ 1, S
J =fixed,m=fixed

S:J ≫ 1, S
J =fixed,m=fixed



direct agreement of first few orders in1J
(including 1- and 2-loop string corrections)

to 1- and 2-loop gauge theory spin chain results

including1/J and1/J2 finite size corrections

(Frolov, AT 03; Beisert, Minahan, Staudacher, Zarembo 03; ...)

“non-renormalization” due to susy (and structure)

no interpolation functions ofλ, no need to resumJ dependence

E = S + J + λ
J

[
h1(

S
J , m) + 1

J h2(
S
J , m) + ...

]
+ ...

captured by effective Landau-Lifshitz model

on both string and spin chain side

need interpolation functions at higher orders (dressing phase)

(ii) “Slow Long strings” – long non-BPS operators likeTr(ΦDS
+Φ)

G: lnS ≫ J ≫ 1

S: lnS ≫ J , J = 0 orJ =fixed

E = S + f(λ) lnS + ...



S dependence is same but need an interpolatig function

f(λ ≫ 1) = a1

√
λ + ... , f(λ ≪ 1) = c1λ + ...

(iii) “Fast Long strings”

G: S ≫ J ≫ 1, j ≡ J
ln S =fixed

S:S ≫ J ≫ 1, ℓ ≡ J
lnS =fixed = j√

λ

G: E = S + f(j, λ) lnS + ...

f = a1(λ)j + a2(λ)j3 + ...

S:E = S + f(ℓ,
√

λ) lnS + ...

f =
√

λ
√

1 + ℓ2 +(c1 +c2ℓ
2 ln ℓ+ ...)+ 1√

λ
(c3ℓ

2 ln2 ℓ+ ...)+ ...

[Belitsky, Gorsky, Korchemsky 06; Frolov, Tirziu, AT 06;

Alday, Maldacena 07, Freyhult, Rej, Staudacher 07;

Roiban, AT 07; Kostov, Serban, Volin 08; Basso, Korchemsky 08;

Gromov 08, Fioravanti et al 08, ...]

need a resummation in bothλ andℓ (or j) to match

general situation – G and S limits do not commute



String Theory inAdS5 × S5

bosonic cosetSO(2,4)
SO(1,4) ×

SO(6)
SO(5)

generalized to supercosetPSU(2,2|4)
SO(1,4)×SO(5) (Metsaev, AT 98)

S = T

∫
d2σ

[
Gmn(x)∂xm∂xn + θ̄(D + F5)θ∂x

+ θ̄θθ̄θ∂x∂x + ...
]

tensionT = R2

2πα′
=

√
λ

2π

Conformal invariance: βmn = Rmn − (F5)
2
mn = 0

Classical integrability of cosetσ-model (Luscher-Pohlmeyer 76)

also forAdS5 × S5 superstring (Bena, Polchinski, Roiban 02)

Progress in understanding of implications of (semi)classical

integrability (Kazakov, Marshakov, Minahan, Zarembo 04,...)

Computation of 1-loopquantumsuperstring corrections

(Frolov, AT; Park, Tirziu, AT, 02-04, ...)

results were used as input for 1-loop term



in strong-coupling expansion of the phaseθ in BA

(Beisert, AT05; Hernandez, Lopez 06)

Tree-level S-matrix of BMN states fromAdS5 × S5 GS string

agrees with limit of elementary magnon S-matrix

(Klose, McLoughlin, Roiban, Zarembo 06)

2-loop string corrections (Roiban, Tirziu, AT; Roiban, AT 07)

2-loop check of finiteness of the GS superstring;

agreement with BA

– implicit check of integrability of quantum string theory

– non-trivial confirmation of BES exact phase in BA

(Basso, Korchemsky, Kotansky 07; Basso’s talk)



Key example of weak-strong coupling interpolation:

Spinning string inAdS5

Folded spinning string inflat space:

X1 = ǫ sinσ cos τ, X2 = ǫ sinσ sin τ

ds2 = −dt2 + dρ2 + ρ2dφ2 = −dt2 + dXidXi

t = ǫτ , ρ = ǫ sinσ , φ = τ

If tensionT = 1
2πα′

≡
√

λ
2π

energyE = ǫ
√

λ and spinS = ǫ2

2

√
λ satisfy Regge relation:

E = λ1/4
√

2S

Absence of quantum correction from GS action:

bosonic quadratic fluctuation Lagrangian

L̃B = ˙̃t
2

− t̃′2 − ˙̃ρ
2

+ ρ̃′2 − ρ̃2 − ρ̄2( ˙̃ϕ
2
− ϕ̃′2) − 4ρ̄ρ̃

˙̃
φ

after rotation

ρ̃ = η1 cos τ + η2 sin τ, ϕ̃ = −η1 sin τ + η2 cos τ,



becomes the Lagrangian for free massless bosons

L̃B = −∂at̃∂at̃ + ∂aη1∂
aη1 + ∂aη2∂

aη2

GS superstring action in flat space in general coordinates

LF = (
√
−ggabδIJ − ǫabsIJ)θ̄I̺aDbθ

J

̺a = ΓAEA
µ ∂aXµ, Da = ∂a + 1

4∂aXMωAB
M ΓAB

κ-symmetry gaugeθ1 = θ2 = θ

After rotation of fermions

θ̃ = e−
1

2
αΓ0Γ2θ, sinhα = tanσ ,

D̃F = iǫ
(
− Γ0 cos σ ∂0 + Γ1 cos σ ∂1 − 1

2Γ1 sinσ
)

rescaling̃θ = 1√
ǫ cos σ

ϑ

end up with free massless Dirac operatorDF = i(−Γ0∂0 +Γ1∂1)

1-loop correction cancels out



Folded spinning string inAdS5:

(de Vega, Egusquiza 96; Gubser, Klebanov, Polyakov 02)

ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ dφ2

t = κτ, φ = wτ, ρ = ρ(σ)

ρ′2 = κ2 cosh2 ρ − w2 sinh2 ρ, 0 < ρ < ρmax

coth ρmax =
w

κ
≡

√
1 +

1

ǫ2

ǫ measures length of the string

sinh ρ = ǫ sn(κǫ−1σ, −ǫ2)

periodicity in0 6σ < 2π

κ = ǫ 2F1(
1

2
,
1

2
; 1;−ǫ2)

classical energyE0 =
√

λE0 and spinS =
√

λS

E0 = ǫ 2F1(−
1

2
,
1

2
; 1;−ǫ2), S =

ǫ2
√

1 + ǫ2

2
2F1(

1

2
,
3

2
; 2;−ǫ2)



solve forǫ as in flat space – get analog of Regge relation

E0 = E0(S) , E0 =
√

λ E0(
S√
λ

)

Flat space – AdS interpolation:

E0 ∼
√
S atS ≪ 1 , E0 ∼ S atS ≫ 1

Novel AdS “Long string” limit: ǫ ≫ 1, i.e. S ≫ 1

E0 = S +
1

π
lnS + ...

S → ∞: ends of string reach the boundary (ρ = ∞)

solution drastically simplifies

t = κτ, φ ≈ κτ, ρ ≈ κσ , κ ∼ ǫ ∼ lnS → ∞

string length is infinite,R × R effective world sheet

E = S from massless end points at AdS boundary (null geodesic)



E − S =
√

λ
π lnS from tension/stretching of the string

ρ = κσ + ..., S ∼ e2κ,

κ ∼ lnS=length of the string:
1
Sn ∼ enκ – finite size corrections

ForS → ∞ can compute quantum superstring corrections toE

remarkably, they respect theS + lnS structure:

string solution is homogeneous→ const coeffs

κ ∼ lnS → ∞ is “volume factor”



Subleading terms in largeS expansion

(Beccaria, Forini, Tirziu, AT 08)

string has large but finite length: does not reach boundary

E0 =
√

λ E(S): expand in largeS

E0(S ≫ 1) = S + a0 lnS + a1 +
1

S (a2 lnS + a3)

+
1

S2
(a4 ln2 S + a5 lnS + a6) + O(

ln3 S
S3

)

a0 =
√

λ
π , a1 =

√
λ

π ln(8π) − 1, ....

Coefficients ofln
k S
Sk terms happen to be related

to coefficient oflnS as suggested by

“functional relation” (Basso, Korchemsky 06)

E − S = f(E + S) = a0 ln(S +
1

2
a0 lnS + ...) + ...

a2 =
1

2
a2
0, a4 = −1

8
a3
0, ...



Why that happens? Simple explanation:

look at near boundary limit where for largeS
string end moves moves along nearly null line at the boundary:

pp-wave limit: cusp anomaly as “pp-wave” anomaly

(Kruczenski, AT 08)

ds2 =
1

z2

[
2dx+dx− − µ2(z2 + x2

i )dx2
+ + dxidxi + dz2

]

locally still AdS5 in “rotated” coordinates

boundary: Penrose limitR × S3 → 4d pp-wave

string moving in pp-waveσ1 < z < R → ∞
x+ = τ, x− = vτ, z = σ , σ1 =

√
2v
µ

v = 0 when string touches the boundary:S = ∞ limit

conserved momenta (µ = 1, T =
√

λ
π ):

(Ishizeki, Kruczenski, Titziu, AT 08)

P+ = T
2

(
ln 4R2

σ2

1

− 1
)

, P− = − T
µσ2

1

P+ = a0 lnP− + a1 , P+ = E − S, P− = E + S



E − S = a0 ln[S + 1
2 (E − S)] + ...

pp-wave limit effectively establishes contact with

collinear conformal group in the boundary theory

What about quantum string corrections?

What controls subleading coefficients?

Express in terms ofS =
√

λS:

E = S + f lnS + fc +
1

S
[f11 lnS + f10]

+
1

S2
[f22 ln2 S + f21 lnS + f20] + O(

ln3 S

S3
)

equivalently

E = S + f ln(S/f̃c) +
1

S
[f11 ln(S/f̃c) + f ′

10]

+
1

S2
[f22 ln2(S/f̃c) + f ′

21 ln(S/f̃c) + f ′
20] + O(

ln3 S

S3
)



string tree plus 1-loop level:

f =

√
λ

π

[
1 − 3 ln 2√

λ
+ O(

1

λ
)
]

f̃c =
e
√

λ

8π

[
1 +

1√
λ

(3 ln 2 − c) + O(
1

λ
)
]

f11 =
λ

2π2

[
1 − 6 ln 2√

λ
+ O(

1

λ
)
]

f ′
10 =

λ

2π2

[
0 − 0√

λ
+ O(

1

λ
)
]

= 0

thusf11 = 1
2f2 as at tree level



equivalently

fc = −f ln f̃c =

√
λ

π

[
ln

8π√
λ
− 1

+
1√
λ

(
− 3 ln 2 ln

8π√
λ

+ c
)

+ O(
1

λ
)
]

f10 = f ′
10 − f11 ln f̃c = f ′

10 +
fc

f
f11

=
λ

2π2

[
ln

8π√
λ
− 1

+
1√
λ

(
− 6 ln 2

[
ln

8π√
λ
− 1

2
] + c

)
+ O(

1

λ
)
]

vanishing off ′
10 is consequence off10 − fc

f f11 = 0

sincef11 = 1
2f2, equivalent tof10 − 1

2fcf = 0

and is actually consequences of reciprocity at strong coupling

thus expectf ′
10 = 0 to be true toall orders

in strong coupling expansion→ importance of functioñfc



undeterminedc is sensitive to turning point contributions

an independent way of evaluating the 1-loop correction

using algebraic curve to compute fluctuation frequencies

leads toc = 6 ln 2 + π (N. Gromov 08)

What one finds on gauge theory side?

structurally same expansion

E − S =

∞∑

m=0

em(λ, lnS)

Sm

em(λ, lnS) =
∑

k

fmk(λ) lnk S

suggests existence of new “interpolating functions”

Clarification:

at weak couplingk > 0 for twist J = 2, 3 minimal dimension

for J > 3 one finds also Jk

lnm S : leading term inE − S − J is

e0 = k1(J) + k2(J)
ln2 S

+ ...



k1 = k11J + k10, k2 = k23J
3 + k22J

2 + k21J + k20

visible in 1-loop approximation inSL(2) sector

(Belitsky, Gorsky, Korchemsky 06)

whenJ, S ≫ 1 with j ≡ J
ln S fixed and small

e0 = (k11j + k23j
3 + ...) lnS

but should be true for finiteJ too (A. Rej)

Does not contradict strong-coupling expansion:

in string semiclassical expansion one cannot distinguish

between finite values ofJ with J = J√
λ
≈ 0 andJ = 0

for largeJ, S with ℓ ≡ J√
λ ln S

= J
ln S =fixed

e0 = (n1ℓ
2 + n2ℓ

4 + ...) lnS = n1
J 2

lnS + n1
J 4

ln3 S
+ ...

dependence on arbitraryJ andS is differentatλ < 1 andλ ≫ 1

to relate the two expansions one needs a resummation



rather than just simple interpolation functions ofλ:

e.g., largeS andλ limits do not commutebeyondlnS term

Reciprocity at strong coupling

(Basso, Korchemsky 06)

“functional relation” forE = S + J + γ(S, J)

γ(S, J) = f(s; J) = f
[
S + 1

2J + 1
2γ(S, J); J

]
, s = 1

2 (E + S)

if f is “simple”, e.g.,f(S) = f lnS + ...

subleading (ln
k S

Sm , k < m) coefficients are

partially controlled by special properties off

“parity invariance” or “reciprocity” (for twist 2):

largeS expansion off(S) should run in inverseeven powers of

quadratic Casimir of the collinearSL(2, R) (for scalar operators)

f(S) =

∞∑

n=0

an(lnC)

C2n
, C2 = (S + 1

2J)(S + 1
2J − 1)



then get constraints on some of coefficients of subleading terms

f10 = 1
2f (fc − 1 + J)

f32 = 1
16f [f3 − 2f2(fc − 1 + J) − 16f21] , ...

at weak coupling: relations betweenfmk(λ) as series inλ

at strong coupling:

f ≡
√

λ f̄ , f̄ = a0 +
b0√
λ

+
c0

(
√

λ)2
+ ...

fc ≡
√

λ f̄c , f̄c = ac +
bc√
λ

+
cc

(
√

λ)2
+ ...

fmk ≡ (
√

λ)m+1 f̄mk , f̄mk = amk +
bmk√

λ
+

cmk

(
√

λ)2
+ ...

relations between series in1√
λ

finite J = 2, 3, ... not distinguished from formal case ofJ = 0



if J = J√
λ

= 0 , S = S√
λ

=finite C2 → S2 and thus

f̄10 =
1

2
f̄ f̄c

f̄32 =
1

16
f (f̄3 − 2f̄2 f̄c − 16f̄21) , ...

explicitly

b11 = a0b0, b10 =
1

2
(a0bc + ac b0), b22 = −3

8
a2
0 b0, ...

We verified that relations forb11 andb10

are respected by tree-leveland1-loop string results!



Implications?

which coefficients in largeS expansion at strong coupling

are reproduced by asymptotic BA

and which require wrapping contributions?

on string side forJ = 0 finite size corrections are controlled by
1
S = e− ln S ∼ e−string length

lnk S
Sk coefficients are related tolnS coefficients and thus

should not receive wrapping contributions at strong coupling

but they do at weak coupling ? (Janik and Forini talks)

Another limit: short folded string

E(λ ≫ 1) = λ1/4
√

2S
[
c1(λ) + c2(λ)S + c3(λ)S2 + ...

]

E(λ ≪ 1) = a1(λ)S + a2(λ)S2 + ...

Generalization to higher (non-minimal) states:

multi-spike strings with(S, J)


