Gravity, twistors and the MHV formalism

Graviton scattering on anti-self-dual backgrounds with ideas from twistor-string theory

L.J.Mason

The Mathematical Institute, Oxford
lmason@maths.ox.ac.uk
LPTHE Jussieu Meeting
Paris, December 132008

Based on hep-th/0808.3907, joint work with Dave Skinner (also 0706.1941 joint with Martin Wolf).

Gravitational perturbation theory

Consider $\left(\mathscr{M}^{4}, g\right)$ with Einstein Hilbert action $\int_{\mathscr{M}^{4}} R \mathrm{~d} \mu_{g}$.
Feynman diagrams for gravity are very complicated.

- non-polynomial action $\leadsto \infty$ vertices, gauge freedom/fixing \leadsto many many diagrams.
- DeWitt's 4 particle tree-level amplitude was a computational tour-de-force.

Gravitational perturbation theory

Consider $\left(\mathscr{M}^{4}, g\right)$ with Einstein Hilbert action $\int_{\mathscr{M}^{4}} R \mathrm{~d} \mu_{g}$.
Feynman diagrams for gravity are very complicated.

- non-polynomial action $\leadsto \infty$ vertices, gauge freedom/fixing \leadsto many many diagrams.
- DeWitt's 4 particle tree-level amplitude was a computational tour-de-force.
But recently, hidden structures have been found:
- Cachazo, Svrcek \& Witten used Twistor-string theory \sim MHV diagram formalism for Yang-Mills \& conformal gravity.
- Boels, M. \& Skinner constructed twistor actions for YM and conformal gravity (cf also Gorsky, Rosly, Selivanov, Mansfield).
Is there a similar story for Einstein Gravity?
Long term aim: reverse engineer twistor-string theory for gravity (Abou-Zeid, Hull \& M hep-th/0606272, probably self-dual, Nair).
- For YM and conformal gravity can write action as

$$
S_{\mathrm{Full}}=S_{\mathrm{ASD}}+S_{\mathrm{MHV}}
$$

$S_{\text {ASD }}$ contains kinetic terms \& interactions of ASD sector, $S_{\text {MHV }}$ contains remaining interactions of full theory.

- We reformulate on twistor space where ASD sector is of Chern-Simons type (reflecting complete integrability).

Two special gauges

1. leads directly to space-time formulation,
2. leads to MHV formalism as Feynman rules.

- axial on twistor space, not accessible from space-time.
- It linearizes the ASD sector, reducing $S_{\text {ASD }}$ to kinetic terms; realizes complete integrability of ASD sector.
- $S_{\mathrm{MHV}}=$ generating function for MHV amplitudes.

Spinor helicity formalism

- Momentum eigenstates have $P^{2}=0$. In spinors \sim

$$
p^{A A^{\prime}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
P^{0}+P^{3} & P^{1}+i P^{2} \\
P^{1}-i P^{2} & P^{0}-P^{3}
\end{array}\right) \quad A=0,1, A^{\prime}=0^{\prime}, 1^{\prime}
$$

$$
P_{a} P^{a}=\operatorname{det} P^{A A^{\prime}} \text { so } P^{2}=0 \text { gives } P^{A A^{\prime}}=p^{A} p^{A^{\prime}}
$$

- Linear gravity represented by Weyl tensor decomposes Weyl $=$ Weyl $^{+} \oplus$ Weyl $^{-}=(+)$helicity $\oplus(-)$ helicity.
- Polarization information \leftrightarrow phase of p^{A} i.e. $(-)$ helicity Weyl spinor:

$$
\Psi_{A B C D}(x)=\mathrm{e}^{i P \cdot x} p_{A} p_{B} p_{C} p_{D}
$$

- Scattering amplitudes are functions of incoming/outgoing momentum spinors.

Maximal Helicity Violating (MHV) amplitudes for gravity

- If all particles in a scattering process are - helicity, or just one is + , the tree-level amplitudes vanish.
- The first nontrivial MHV amplitudes is $++--\cdots-$:

$$
\begin{aligned}
& M\left(1^{+}, 2^{-}, 3^{-}, \ldots, n-1^{-}, n^{+}\right)=\delta^{4}\left(\sum_{i} P_{i}\right) \frac{[1 n]^{8}}{[1 n-1][n-1 n][n 1]} \\
& \left\{\frac{1}{\Pi_{i=1}^{n}[i i+1]} \prod_{k=2}^{n-1} \frac{\left.\langle k| P_{k+1}+\cdots+P_{n-1} \mid n\right]}{[k n]}+\Pi_{(2, \ldots, n-2)}\right\}
\end{aligned}
$$

where $\left.\langle 12\rangle:=p_{1 A} p_{2}^{A},[12]:=p_{1 A^{\prime}} p_{2}^{A^{\prime}},\langle 1| 2 \mid 3\right]=p_{1 A} P_{2}^{A A^{\prime}} p_{3 A^{\prime}}$.

- Berends, Giele \& Kuijf (1988) using Kawai Llewellyn Tye string theory relations between gravity and Yang-Mills.

MHV formalism

Bjerrum-Bohr et. al. (2006) argue that all gravity amplitudes are generated by MHV vertices and scalar propagators.

- Uses recursion relations and asymptotic properties of amplitudes.
- Dramatic simplification; impossible to see from space-time action.
- Proof is controversial \& breaks down at 12 points, Elvang \& Freedman.

Objective of this talk: To show how this structure might arise from a twistor formulation of gravity. (Work with D.Skinner).

A space-time approach to MHV amplitudes

ASD gravity: Complexify space-time, and consider equations

$$
\text { Ric }=\text { Weyl }^{+}=0, \quad \text { Weyl }^{-} \neq 0 .
$$

- Nonlinear version of - helicity field, Nonlinear graviton.
- Newman, Penrose, Plebanski showed these equations to be completely integrable using twistor theory and H -space.
- Complete integrability of ASD eqs \leadsto vanishing of $-\ldots$. . amplitude and + - - ... - amplitude.
- Can we expand full theory about its ASD sector?

Chiral action for expansion about ASD sector Abou-Zeid, Hull hep-th/0511189

Use Plebanski-Palatini formulation with variables (on \mathscr{M}^{4}):

- $e^{A A^{\prime}}$, tetrad of 1 -forms s.t.

$$
\mathrm{d} s^{2}=e^{A A^{\prime}} \odot e^{B B^{\prime}} \varepsilon_{A B^{\prime}} \varepsilon_{A^{\prime} B^{\prime}}, \quad \varepsilon_{A B}=-\varepsilon_{B A}, \varepsilon_{01}=1 .
$$

- $\Gamma_{A^{\prime} B^{\prime}}=\Gamma_{\left(A^{\prime} B^{\prime}\right)}$ the + spin connection 1-forms.
- Action

$$
S=\int_{\mathscr{M}} \sum^{A^{\prime} B^{\prime}}\left(d \Gamma_{A^{\prime} B^{\prime}}+\kappa^{2} \Gamma_{A^{\prime}}^{C^{\prime}} \wedge \Gamma_{B^{\prime} C^{\prime}}\right),
$$

where $\Sigma^{A^{\prime} B^{\prime}}=e_{A}^{\left(A^{\prime}\right.} \wedge e^{\left.B^{\prime}\right) A}$.

- Field equations

$$
\mathrm{d} \Sigma^{A^{\prime} B^{\prime}}+2 \kappa^{2} \Gamma_{C^{\prime}}^{\left(A^{\prime}\right.} \wedge \Sigma^{\left.B^{\prime}\right) C^{\prime}}=0,\left(\mathrm{~d} \Gamma_{A^{\prime} B^{\prime}}+\kappa^{2} \Gamma_{\left(A^{\prime}\right.}^{C^{\prime}}, \Gamma_{\left.B^{\prime}\right) C^{\prime}}\right) \wedge \mathrm{e}^{A A^{\prime}}=0 .
$$

$\Leftrightarrow \kappa^{2} \Gamma_{A^{\prime} B^{\prime}}=$ primed spin connection 1-form, Ricci=0.

The ASD sector and perturbations around it

ASD sector: Set $\kappa=0 \sim$ field equations

$$
\begin{gathered}
\mathrm{d} \Sigma^{A^{\prime} B^{\prime}}=0 \Rightarrow \text { metric is ASD. and } \\
\mathrm{d} \Gamma_{A^{\prime} B^{\prime}} \wedge \mathrm{e}^{A A^{\prime}}=0 \Rightarrow \mathrm{~d} \Gamma_{A^{\prime} B^{\prime}}=\psi_{A^{\prime} B^{\prime} C^{\prime} D^{\prime} \Sigma^{C^{\prime} D^{\prime}}}
\end{gathered}
$$

and $\psi_{A^{\prime} B^{\prime} C^{\prime} D^{\prime}}$ is linearized SD Weyl spinor on ASD background.
Linearized gravitational perturbations:
For $\delta e^{A A^{\prime}}=h^{A A^{\prime}}$ on the ASD background, define $\gamma_{A^{\prime} B^{\prime}}(h)$ by

and then $\gamma_{A^{\prime} B^{\prime}}$ satisfies $d \gamma_{A^{\prime} B^{\prime}} \wedge e^{A B^{\prime}}=0$.

The ASD sector and perturbations around it

ASD sector: Set $\kappa=0 \sim$ field equations

$$
\begin{gathered}
\mathrm{d} \Sigma^{A^{\prime} B^{\prime}}=0 \Rightarrow \text { metric is ASD. and } \\
\mathrm{d} \Gamma_{A^{\prime} B^{\prime}} \wedge \mathrm{e}^{A A^{\prime}}=0 \Rightarrow \mathrm{~d} \Gamma_{A^{\prime} B^{\prime}}=\psi_{A^{\prime} B^{\prime} C^{\prime} D^{\prime} \Sigma^{C^{\prime} D^{\prime}}}
\end{gathered}
$$

and $\psi_{A^{\prime} B^{\prime} C^{\prime} D^{\prime}}$ is linearized SD Weyl spinor on ASD background.
Linearized gravitational perturbations:
For $\delta e^{A A^{\prime}}=h^{A A^{\prime}}$ on the ASD background, define $\gamma_{A^{\prime} B^{\prime}}(h)$ by

$$
\mathrm{d}\left(h^{A\left(A^{\prime}\right.} \wedge e_{A}^{\left.B^{\prime}\right)}\right)+2 \gamma_{C^{\prime}}^{\left(A^{\prime}\right.} \Sigma^{\left.B^{\prime}\right) C^{\prime}}=0
$$

and then $\gamma_{A^{\prime} B^{\prime}}$ satisfies $\mathrm{d} \gamma_{A^{\prime} B^{\prime}} \wedge e^{A B^{\prime}}=0$.

Background field formula for MHV amplitudes

- Define ASD metric perturbations to be:

$$
V^{-}=\left\{h^{A A^{\prime}} \mid \gamma_{A^{\prime} B^{\prime}}(h)=0\right\} .
$$

- SD perturbations are not well-defined as $\delta \psi_{A B C D}=0$ is not diffeomorphism invariant, but, can define

$$
V^{+}=\left\{\gamma_{A^{\prime} B^{\prime}} \mid \mathrm{d} \gamma_{A^{\prime} B^{\prime}} \wedge e^{A A^{\prime}}=0\right\} .
$$

- So the space V of gravitational perturbations decomposes

$$
0 \rightarrow V^{-} \rightarrow V \rightarrow V^{+} \rightarrow 0 .
$$

- MHV scattering arises from extra term in full action

$$
M\left(1+, 2+, e^{-}\right)=\int_{\mathscr{M}} \Sigma^{A^{\prime} B^{\prime}} \wedge \gamma_{1 A^{\prime} C^{\prime}} \wedge \gamma_{2 B^{\prime}}^{C^{\prime}} .
$$

and obstruct the splitting $V=V^{+} \oplus V^{-}$.

- Normal MHV amplitude arises from ASD nonlinear superposition of plane waves $\left\{\mathscr{M}, e^{A A^{\prime}}\right\}$, background coupled plane waves γ_{1} and γ_{2} evaluated in integral.

Twistor theory \& the nonlinear graviton

Flat correspondence:

- Complex space-time $\mathbb{M}=\mathbb{C}^{4}$, coords $x^{A A^{\prime}}$,
- Twistor space $\mathbb{T}=\mathbb{C}^{4}$, coords $Z^{\alpha}=\left(\omega^{A}, \pi_{A^{\prime}}\right), \alpha=\left(A, A^{\prime}\right)$. Projective twistors: $\mathbb{P T}=\{\mathbb{T}-0\} /\left\{Z \sim \lambda Z, \lambda \in \mathbb{C}^{*}\right\}=\mathbb{C} \mathbb{P}^{3}$. $\mathbb{P}^{\prime}=\left\{Z \in \mathbb{P} \mathbb{T} \mid \pi_{A^{\prime}} \neq 0\right\}$, for finite space-time.
- Incidence relation

$$
\omega^{A}=i x^{A A^{\prime}} \pi_{A^{\prime}}
$$

$\{$ Point $x \in \mathbb{M}\} \longleftrightarrow\left\{L_{x}=\mathbb{C} \mathbb{P}^{1} \subset \mathbb{P T}\right\}$, hgs coords $\pi_{A^{\prime}}$.

For Ricci-flat $g \in[g], \mathscr{P} \mathscr{T}$ must have fibration p

Twistor theory \& the nonlinear graviton

Flat correspondence:

- Complex space-time $\mathbb{M}=\mathbb{C}^{4}$, coords $x^{A A^{\prime}}$,
- Twistor space $\mathbb{T}=\mathbb{C}^{4}$, coords $Z^{\alpha}=\left(\omega^{A}, \pi_{A^{\prime}}\right), \alpha=\left(A, A^{\prime}\right)$.

Projective twistors: $\mathbb{P T}=\{\mathbb{T}-0\} /\left\{Z \sim \lambda Z, \lambda \in \mathbb{C}^{*}\right\}=\mathbb{C P}^{3}$. $\mathbb{P T}^{\prime}=\left\{Z \in \mathbb{P T} \mid \pi_{A^{\prime}} \neq 0\right\}$, for finite space-time.

- Incidence relation

$$
\omega^{A}=i X^{A A^{\prime}} \pi_{A^{\prime}}
$$

$\{$ Point $x \in \mathbb{M}\} \longleftrightarrow\left\{L_{x}=\mathbb{C} \mathbb{P}^{1} \subset \mathbb{P} \mathbb{T}\right\}$, hgs coords $\pi_{A^{\prime}}$.
Theorem (Penrose, 1976)
$\left\{\begin{array}{l}\text { Deformations of complex } \\ \text { structure, } \mathbb{P T} \mathbb{T}^{\prime} \leadsto \mathscr{P} \mathscr{T}\end{array}\right\} \stackrel{1-1}{\longleftrightarrow}\left\{\begin{array}{l}\text { anti-self-dual deforma- } \\ \text { tions of conformal struc- } \\ \text { ture }(\mathbb{M}, \eta) \leadsto(M,[g]) .\end{array}\right\}$

Twistor theory \& the nonlinear graviton

Flat correspondence:

- Complex space-time $\mathbb{M}=\mathbb{C}^{4}$, coords $x^{A A^{\prime}}$,
- Twistor space $\mathbb{T}=\mathbb{C}^{4}$, coords $Z^{\alpha}=\left(\omega^{A}, \pi_{A^{\prime}}\right), \alpha=\left(A, A^{\prime}\right)$.

Projective twistors: $\mathbb{P T}=\{\mathbb{T}-0\} /\left\{Z \sim \lambda Z, \lambda \in \mathbb{C}^{*}\right\}=\mathbb{C P}^{3}$. $\mathbb{P T}^{\prime}=\left\{Z \in \mathbb{P T} \mid \pi_{A^{\prime}} \neq 0\right\}$, for finite space-time.

- Incidence relation

$$
\omega^{A}=i X^{A A^{\prime}} \pi_{A^{\prime}}
$$

$\{$ Point $x \in \mathbb{M}\} \longleftrightarrow\left\{L_{x}=\mathbb{C P} \mathbb{P}^{1} \subset \mathbb{P T}\right\}$, hgs coords $\pi_{A^{\prime}}$.
Theorem (Penrose, 1976)
$\left\{\begin{array}{l}\text { Deformations of complex } \\ \text { structure, } \mathbb{P T}^{\prime} \leadsto \mathscr{P} \mathscr{T}\end{array}\right\} \stackrel{1-1}{\longleftrightarrow}\left\{\begin{array}{l}\text { anti-self-dual deforma- } \\ \text { tions of conformal struc- } \\ \text { ture }(\mathbb{M}, \eta) \leadsto(M,[g]) .\end{array}\right\}$
For Ricci-flat $g \in[g], \mathscr{P} \mathscr{T}$ must have fibration $p: \mathscr{P} \mathscr{T} \rightarrow \mathbb{C P}^{1}$ and holomorphic symplectic form on fibres valued in $p^{*} \mathcal{O}(2)$.

Main ideas

- Ricci-flat deformation: choose $h \in \Omega_{\mathbb{P} \mathbb{T}}^{0,1}(2) \&$ define almost \mathbb{C}-structure

$$
\Omega_{\mathscr{P} \mathscr{T}}^{1,0}=\left\{\mathrm{d} \omega^{A}+\varepsilon^{A B} \frac{\partial h}{\partial \omega^{B}}, \mathrm{~d} \pi_{A^{\prime}}\right\} .
$$

- Almost complex structure is integrable iff

- Satisfied when $h=\sigma(\omega, \pi, \bar{\pi}) \bar{\pi}^{A} \mathrm{~d} \bar{\pi}_{A}$ (Newman's H-space).
- Space-time $M=$ holomorphic sections of p a section $\omega^{A}=F^{A}(x, \pi)$ is holomorphic if

$$
\bar{\partial} F^{A}=\varepsilon^{A B} \frac{\partial h}{\partial \omega^{B}}(F, \pi, \bar{\pi}) .
$$

- Full 4-parameter family survives small deformations.
- $x, y \in M$ on light ray \Leftrightarrow incidence $\mathbb{C P}_{x}^{1} \cap \mathbb{C P}_{y}^{1} \neq \emptyset$.
$\bullet \sim$ conformal structure with Weyl ${ }^{+}=0$ on M
(and metric with Ricci= 0 with more work),

Main ideas

- Ricci-flat deformation: choose $h \in \Omega_{\mathbb{P} \mathbb{T}}^{0,1}(2) \&$ define almost \mathbb{C}-structure

$$
\Omega_{\mathscr{P} \mathscr{T}}^{1,0}=\left\{\mathrm{d} \omega^{A}+\varepsilon^{A B} \frac{\partial h}{\partial \omega^{B}}, \mathrm{~d} \pi_{A^{\prime}}\right\} .
$$

- Almost complex structure is integrable iff

$$
\bar{\partial} h+\varepsilon^{A B} \frac{\partial h}{\partial \omega^{A}} \wedge \frac{\partial h}{\partial \omega^{B}}=0
$$

- Satisfied when $h=\sigma(\omega, \pi, \bar{\pi}) \bar{\pi}^{A} \mathrm{~d} \bar{\pi}_{A}$ (Newman's H-space).
- Space-time $M=$ holomorphic sections of p
a section $\omega^{A}=F^{A}(x, \pi)$ is holomorphic if
- Full 4-parameter family survives small deformations. - $x, y \in M$ on light ray \Leftrightarrow incidence $\mathbb{C P}_{x}^{1} \cap \mathbb{C P}_{y}^{1} \neq \emptyset$.
\square

Main ideas

- Ricci-flat deformation:
choose $h \in \Omega_{\mathbb{P} T}^{0,1}(2) \&$ define almost \mathbb{C}-structure

$$
\Omega_{\mathscr{P} \mathscr{T}}^{1,0}=\left\{\mathrm{d} \omega^{A}+\varepsilon^{A B} \frac{\partial h}{\partial \omega^{B}}, \mathrm{~d} \pi_{A^{\prime}}\right\} .
$$

- Almost complex structure is integrable iff

$$
\bar{\partial} h+\varepsilon^{A B} \frac{\partial h}{\partial \omega^{A}} \wedge \frac{\partial h}{\partial \omega^{B}}=0 .
$$

- Satisfied when $h=\sigma(\omega, \pi, \bar{\pi}) \bar{\pi}^{A} \mathrm{~d} \bar{\pi}_{A}$ (Newman's H-space).
- Space-time $M=$ holomorphic sections of $p: \mathscr{P} \mathscr{T} \rightarrow \mathbb{C P}^{1}$:
a section $\omega^{A}=F^{A}(x, \pi)$ is holomorphic if

$$
\bar{\partial} F^{A}=\varepsilon^{A B} \frac{\partial h}{\partial \omega^{B}}(F, \pi, \bar{\pi}) .
$$

- Full 4-parameter family survives small deformations.
- $x, y \in M$ on light ray \Leftrightarrow incidence $\mathbb{C P}_{x}^{1} \cap \mathbb{C P}_{y}^{1} \neq \emptyset$.
- \leadsto conformal structure with Weyl ${ }^{+}=0$ on M (and metric with Ricci= 0 with more work).

Background coupled fields

Linear fields $\left\{\gamma_{B^{\prime} C^{\prime}}=\gamma_{A A^{\prime} B^{\prime} C^{\prime}} e^{A A^{\prime}} \mid \mathrm{d} \gamma_{B^{\prime} C^{\prime}} \wedge e^{C C^{\prime}}=0\right\}$ on \mathscr{M} are obtained from $B_{A} \in H^{1}\left(\mathscr{P} \mathscr{T}, \Omega_{p}^{1}(-5)\right)$ by

$$
\gamma_{A A^{\prime} B^{\prime} C^{\prime}}(x)=\int_{\omega^{A}=F^{A}(x, \pi)} \pi_{A^{\prime}} \pi_{B^{\prime}} \pi_{C^{\prime}} \Lambda_{A}^{B} B_{B}(F, \pi, \bar{\pi}) \pi^{E^{\prime}} \mathrm{d} \pi_{E^{\prime}}
$$

where $\mathrm{d} F^{A}=\pi_{B^{\prime}} \Lambda_{B}^{A} e^{B B^{\prime}}$.

- Eigenstates of momentum $P^{A A^{\prime}}=p^{A} p^{A^{\prime}}$ are obtained as

$$
B_{A}=\beta_{A} \mathrm{e}^{\langle\omega| P \mid \alpha] /[\alpha \pi]} \bar{\delta}_{-5}([\pi p]), \quad \bar{\delta}_{n}([\pi p])=\frac{[\alpha \pi]^{n+1}}{[\alpha p]^{n+1}} \bar{\partial} \frac{1}{[\pi p]}
$$

- Since 'asymptotic twistors' are attached to $\mathscr{I}^{ \pm}$, these classes give asymptotic momentum eigenstates.

The MHV calculation

Background coupled fields inserted into MHV formula give

$$
\left.M(1+, 2+, e-)=\int_{\mathscr{M} \times \mathbb{C P}_{x}^{1} \times \mathbb{C P}_{x}^{1}} \underset{\mathrm{~d}^{4}}{ } \times\left[\pi_{1} \mathrm{~d} \pi_{1}\right]\left[\pi_{2} \mathrm{~d} \pi_{2}\right]\left[\pi_{1} \pi_{2}\right]^{3}\left\langle B_{1}\right| \Lambda_{1}\left|\Lambda_{2}\right| B_{2}\right\rangle
$$

where on $\mathbb{C P}_{x}^{1}, \omega_{1}^{A}=F^{A}\left(x, \pi_{1}, \bar{\pi}_{1}\right)$ etc.. Rewrite as

$$
\left.M(1+, 2+, e-)=\int_{\mathscr{M} \times \mathbb{C P}_{x}^{1} \times \mathbb{C P}_{x}^{1}} \underset{\mathrm{~d}^{4}}{ } \times \pi_{1} \mathrm{~d} \pi_{1}\right] B_{1 C} \Lambda_{1}^{A C} \bar{\partial}^{-1}\left(\left[\pi_{1} \pi_{2}\right]^{4} \Lambda_{2 A}^{B} B_{2 B}\right)
$$

with $\bar{\partial}^{-1} f=\int_{\mathbb{C P}^{1}} \frac{f}{\left[\pi_{1} \pi_{2}\right]}\left[\pi_{2} \mathrm{~d} \pi_{2}\right]$.

- To eliminate $F^{A}(x, \pi)$ use π dependent diffeomorphism

$$
y^{A A^{\prime}}=\frac{F^{A}(x, \pi) \alpha^{A^{\prime}}-F^{A}(x, \alpha) \pi^{A^{\prime}}}{\langle\pi \alpha\rangle} \quad F^{A}=y^{A A^{\prime}} \pi_{A^{\prime}} .
$$

- Under this diffeo $\bar{\partial} \rightarrow \bar{\partial}-V$ where

$$
V=\bar{\partial} y^{A A^{\prime}} \frac{\partial}{\partial y^{A A^{\prime}}}=\frac{\partial h}{\partial \omega_{A}} \alpha^{A^{\prime}} \frac{\partial}{\partial y^{A A^{\prime}}} .
$$

- Lippman-Schwinger expansion of $(\bar{\partial}-V)^{-1}$ gives

$$
\begin{aligned}
& M(1+, 2+, e-) \\
&=\int_{\mathscr{M} \times \mathbb{C P}_{y}^{1} \times \mathbb{C P} P_{y}^{1}} \mathrm{~d}^{4} y\left[\pi_{1} \mathrm{~d} \pi_{1}\right] B_{1 C} \Lambda_{1}^{A C}(\bar{\partial}-V)^{-1}\left(\left[\pi_{1} \pi_{2}\right]^{4} \Lambda_{2 A}^{B} B_{2 B}\right) \\
&=\sum_{i} \int_{\mathscr{M} \times \mathbb{C P}_{y}^{1} \times \mathbb{C P} P_{y}^{1}} \mathrm{~d}^{4} y\left[\pi_{1} \mathrm{~d} \pi_{1}\right] B_{1 C} \Lambda_{1}^{A C} \bar{\partial}^{-1}\left(V \bar{\partial}^{-1}\right)^{i}\left(\left[\pi_{1} \pi_{2}\right]^{4} \Lambda_{2 A}^{B} B_{2 B}\right)
\end{aligned}
$$

- Choose momentum eigenstates for $B_{i A}, i=1,2$ and

$$
h=\sum_{i=3}^{n} \epsilon_{i} e^{\left.\langle\omega| P_{i} \mid \alpha\right] /[\alpha \pi]} \bar{\delta}_{2}([\pi i]) .
$$

- Pick out term in $\Pi_{i=3}^{n} \epsilon_{i}$ and integrate out delta-functions \leadsto BGK MHV formula.
- Gives self-contained derivation from first principles.

Twistor action for ASD gravity

M. \& Wolf hep-th/0706.1941

For a twistor gravity action, we first need one for ASD sector:

- Action

$$
S^{-}\left[h, B_{A}\right]=\int_{\mathbb{P T}} B^{A} \frac{\partial}{\partial \omega^{A}}(\bar{\partial} h+\{h, h\}) \wedge \mathrm{d}^{3} Z
$$

- with field equations

$$
\frac{\partial}{\partial \omega^{A}}(\bar{\partial} h+\{h, h\})=0, \quad \bar{\partial}_{h}\left(\frac{\partial}{\partial \omega^{A}} B^{A}\right)=0 .
$$

- \Rightarrow integrability of almost \mathbb{C} structure $\bar{\partial}_{h}=\bar{\partial}+\varepsilon^{A B} \frac{\partial h}{\partial \omega^{A}} \frac{\partial}{\partial \omega^{B}}$ and $B_{A} \in H^{1}\left(\mathscr{P} \mathscr{T}, \Omega_{V}^{1,0}(-5)\right)$.
- Complete integrability: \exists coordinates ('axial gauge’) such that $B^{A} \wedge \partial\{h, h\} / \partial \omega^{A}=0$ so equations become linear.

MHV Twistor action for gravity

- This formulation of anti-self-dual gravity works 'off-shell' and can include interactions of full gravity etc..
- The MHV vertices are all generated as above by

$$
\left.\left.S_{M H V}\left[B_{A}, h\right]=\int_{\mathscr{M} \times \mathbb{C P}_{x}^{1} \times \mathbb{C P}_{x}^{1}} \underset{d^{4}}{\pi_{1}} \mathrm{~d} \pi_{1}\right]\left[\pi_{2} \mathrm{~d} \pi_{2}\right]\left[\pi_{1} \pi_{2}\right]^{3}\left\langle B_{1}\right| \Lambda_{1}\left|\Lambda_{2}\right| B_{2}\right\rangle
$$

- Set

$$
S_{F u l l}\left[B_{A}, h\right]=S^{-}\left[B_{A}, h\right]+S_{M H V}\left[B_{A}, h\right]
$$

\leadsto an action that gives the MHV formalism perturbatively.

- $N=4$ sugra extension is easy. $N=8$ possible, but more gauge dependent.

Summary and outlook

Summary

- Self-contained proof of the BGK MHV gravity amplitudes.
- Twistor gravity action that yields Gravity MHV formalism.
- Off-shell, but gauge fixed, so does not express full symmetries.
- Does not yet give self-contained proof of MHV formalism; if MHV formalism for gravity is incomplete, then so is this action.
Outlook
- Twistor actions for Yang-Mills and conformal gravity are not gauge fixed and do give self-contained proof of MHV formalism for Yang-Mills and conformal gravity;
- suggests full gauge invariant twistor action should exist; if MHV formalism is incomplete, it would give completion.

