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Gravitational perturbation theory

Consider (M 4,g) with Einstein Hilbert action
∫
M 4 Rdµg .

Feynman diagrams for gravity are very complicated.
• non-polynomial action ; ∞ vertices, gauge

freedom/fixing ; many many diagrams.
• DeWitt’s 4 particle tree-level amplitude was a

computational tour-de-force.
But recently, hidden structures have been found:
• Cachazo, Svrcek & Witten used Twistor-string theory ;

MHV diagram formalism for Yang-Mills & conformal gravity.
• Boels, M. & Skinner constructed twistor actions for YM and

conformal gravity (cf also Gorsky, Rosly, Selivanov,
Mansfield).

Is there a similar story for Einstein Gravity?
Long term aim: reverse engineer twistor-string theory for gravity
(Abou-Zeid, Hull & M hep-th/0606272, probably self-dual, Nair).
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Twistor actions
hep-th/0507269, 0604040, 0702035

• For YM and conformal gravity can write action as

SFull = SASD + SMHV

SASD contains kinetic terms & interactions of ASD sector,
SMHV contains remaining interactions of full theory.

• We reformulate on twistor space where ASD sector is of
Chern-Simons type (reflecting complete integrability).

Two special gauges
1. leads directly to space-time formulation,
2. leads to MHV formalism as Feynman rules.

• axial on twistor space, not accessible from space-time.
• It linearizes the ASD sector, reducing SASD to kinetic terms;

realizes complete integrability of ASD sector.
• SMHV = generating function for MHV amplitudes.



Spinor helicity formalism

• Momentum eigenstates have P2 = 0. In spinors ;

pAA′
=

1√
2

(
P0 + P3 P1 + iP2

P1 − iP2 P0 − P3

)
A=0,1, A′=0′,1′

PaPa = det PAA′
so P2 = 0 gives PAA′

= pApA′
.

• Linear gravity represented by Weyl tensor decomposes
Weyl = Weyl+⊕Weyl− = (+) helicity ⊕(−) helicity.

• Polarization information↔ phase of pA i.e. (−) helicity
Weyl spinor:

ΨABCD(x) = eiP·xpApBpCpD .

• Scattering amplitudes are functions of incoming/outgoing
momentum spinors.



Maximal Helicity Violating (MHV) amplitudes for gravity

• If all particles in a scattering process are − helicity, or just
one is +, the tree-level amplitudes vanish.

• The first nontrivial MHV amplitudes is + +−− · · ·−:

M(1+,2−,3−, . . . ,n−1−,n+) = δ4(
∑

i

Pi)
[1n]8

[1 n − 1][n − 1 n][n 1]{
1

Πn
i=1[i i + 1]

n−1∏
k=2

〈k |Pk+1 + · · ·+ Pn−1|n]

[kn]
+ Π(2,...,n−2)

}
.

where 〈1 2〉 := p1ApA
2 , [1 2] := p1A′pA′

2 , 〈1|2|3] = p1APAA′

2 p3A′ .

• Berends, Giele & Kuijf (1988) using Kawai Llewellyn Tye
string theory relations between gravity and Yang-Mills.



MHV formalism

Bjerrum-Bohr et. al. (2006) argue that all gravity amplitudes are
generated by MHV vertices and scalar propagators.

• Uses recursion relations and asymptotic properties of
amplitudes.

• Dramatic simplification; impossible to see from space-time
action.

• Proof is controversial & breaks down at 12 points, Elvang &
Freedman.

Objective of this talk: To show how this structure might arise
from a twistor formulation of gravity.
(Work with D.Skinner).



A space-time approach to MHV amplitudes

ASD gravity: Complexify space-time, and consider equations

Ric = Weyl+ = 0 , Weyl− 6= 0 .

• Nonlinear version of − helicity field, Nonlinear graviton.
• Newman, Penrose, Plebanski showed these equations to

be completely integrable using twistor theory and H-space.
• Complete integrability of ASD eqs ; vanishing of −− . . .−

amplitude and +−− . . .− amplitude.
• Can we expand full theory about its ASD sector?



Chiral action for expansion about ASD sector
Abou-Zeid, Hull hep-th/0511189

Use Plebanski-Palatini formulation with variables (on M 4):
• eAA′

, tetrad of 1-forms s.t.

ds2 = eAA′ � eBB′
εABεA′B′ , εAB = −εBA , ε01 = 1 .

• ΓA′B′ = Γ(A′B′) the + spin connection 1-forms.
• Action

S =

∫
M

ΣA′B′
(

dΓA′B′ + κ2 ΓC′

A′ ∧ ΓB′C′

)
,

where ΣA′B′
= e(A′

A ∧ eB′)A.
• Field equations

dΣA′B′
+2κ2Γ

(A′

C′ ∧ΣB′)C′
= 0,

(
dΓA′B′ + κ2ΓC′

(A′ΓB′)C′

)
∧eAA′

= 0.

⇔ κ2ΓA′B′ = primed spin connection 1-form, Ricci= 0.



The ASD sector and perturbations around it

ASD sector: Set κ = 0 ; field equations

dΣA′B′
= 0⇒ metric is ASD. and

dΓA′B′ ∧ eAA′
= 0 ,⇒ dΓA′B′ = ψA′B′C′D′ΣC′D′

and ψA′B′C′D′ is linearized SD Weyl spinor on ASD background.

Linearized gravitational perturbations:
For δeAA′

= hAA′
on the ASD background, define γA′B′(h) by

d(hA(A′ ∧ eB′)
A ) + 2γ(A′

C′ ΣB′)C′
= 0

and then γA′B′ satisfies dγA′B′ ∧ eAB′
= 0.
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Background field formula for MHV amplitudes

• Define ASD metric perturbations to be:

V− = {hAA′ |γA′B′(h) = 0}.
• SD perturbations are not well-defined as δψABCD = 0 is not

diffeomorphism invariant, but, can define

V+ = {γA′B′ | dγA′B′ ∧ eAA′
= 0}.

• So the space V of gravitational perturbations decomposes

0→ V− → V → V+ → 0 .

• MHV scattering arises from extra term in full action

M(1+,2+,e−) =

∫
M

ΣA′B′ ∧ γ1A′C′ ∧ γC′

2B′ .

and obstruct the splitting V = V+ ⊕ V−.
• Normal MHV amplitude arises from ASD nonlinear

superposition of plane waves {M ,eAA′}, background
coupled plane waves γ1 and γ2 evaluated in integral.



Twistor theory & the nonlinear graviton

Flat correspondence:
• Complex space-time M = C4, coords xAA′

,
• Twistor space T = C4, coords Zα = (ωA, πA′), α=(A,A′).

Projective twistors: PT = {T− 0}/{Z ∼ λZ , λ∈C∗} = CP3.
PT′ = {Z ∈ PT|πA′ 6= 0}, for finite space-time.

• Incidence relation
ωA = ixAA′

πA′ .

{Point x ∈M} ←→ {Lx = CP1 ⊂ PT}, hgs coords πA′ .

Theorem (Penrose, 1976){
Deformations of complex
structure, PT′ ; PT

}
1−1←→


anti-self-dual deforma-
tions of conformal struc-
ture (M, η) ; (M, [g]).


For Ricci-flat g ∈ [g], PT must have fibration p : PT → CP1

and holomorphic symplectic form on fibres valued in p∗O(2).
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Main ideas
• Ricci-flat deformation:

choose h ∈ Ω0,1
PT (2) & define almost C-structure

Ω1,0
PT = {dωA + εAB ∂h

∂ωB , dπA′} .

• Almost complex structure is integrable iff

∂̄h + εAB ∂h
∂ωA ∧

∂h
∂ωB = 0 .

• Satisfied when h = σ(ω, π, π̄)π̄Adπ̄A (Newman’s H-space).
• Space-time M = holomorphic sections of p : PT → CP1:

a section ωA = F A(x , π) is holomorphic if

∂̄F A = εAB ∂h
∂ωB (F , π, π̄) .

• Full 4-parameter family survives small deformations.
• x , y ∈ M on light ray⇔ incidence CP1

x ∩ CP1
y 6= ∅.

• ; conformal structure with Weyl+ = 0 on M
(and metric with Ricci= 0 with more work).
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Background coupled fields

Linear fields {γB′C′ = γAA′B′C′eAA′ | dγB′C′ ∧ eCC′
= 0} on M

are obtained from BA ∈ H1(PT ,Ω1
p(−5)) by

γAA′B′C′(x) =

∫
ωA=F A(x ,π)

πA′πB′πC′ ΛB
A BB(F , π, π̄)πE ′

dπE ′ .

where dF A = πB′ΛA
BeBB′

.

• Eigenstates of momentum PAA′
= pApA′

are obtained as

BA = βAe〈ω|P|α]/[α π]δ̄−5([π p]) , δ̄n([π p]) =
[απ]n+1

[α p]n+1 ∂̄
1

[π p]

• Since ‘asymptotic twistors’ are attached to I ±, these
classes give asymptotic momentum eigenstates.



The MHV calculation

Background coupled fields inserted into MHV formula give

M(1+,2+,e−) =

∫
M×CP1

x×CP1
x

d4x [π1 dπ1][π2 dπ2][π1 π2]
3〈B1|Λ1|Λ2|B2〉

where on CP1
x , ωA

1 = F A(x , π1, π̄1) etc.. Rewrite as

M(1+,2+,e−) =

∫
M×CP1

x×CP1
x

d4x [π1 dπ1]B1CΛAC
1 ∂̄−1

(
[π1 π2]

4ΛB
2AB2B

)
with ∂̄−1f =

∫
CP1

f
[π1 π2]

[π2 dπ2].

• To eliminate F A(x , π) use π dependent diffeomorphism

yAA′
=

F A(x , π)αA′ − F A(x , α)πA′

〈π α〉
; F A = yAA′

πA′ .

• Under this diffeo ∂̄ → ∂̄ − V where

V = ∂̄yAA′ ∂

∂yAA′ =
∂h
∂ωA

αA′ ∂

∂yAA′ .



• Lippman-Schwinger expansion of (∂̄ − V )−1 gives

M(1+,2+,e−)

=

∫
M×CP1

y×CP1
y

d4y [π1 dπ1]B1CΛAC
1 (∂̄ − V )−1

(
[π1 π2]

4ΛB
2AB2B

)
=

∑
i

∫
M×CP1

y×CP1
y

d4y [π1 dπ1]B1CΛAC
1 ∂̄−1(V ∂̄−1)i

(
[π1 π2]

4ΛB
2AB2B

)
• Choose momentum eigenstates for BiA, i = 1,2 and

h =
n∑

i=3

εie〈ω|Pi |α]/[α π]δ̄2([π i]) .

• Pick out term in Πn
i=3εi and integrate out delta-functions ;

BGK MHV formula.
• Gives self-contained derivation from first principles.



Twistor action for ASD gravity
M. & Wolf hep-th/0706.1941

For a twistor gravity action, we first need one for ASD sector:
• Action

S−[h,BA] =

∫
PT

BA ∂

∂ωA

(
∂̄h + {h,h}

)
∧ d3Z

• with field equations

∂

∂ωA

(
∂̄h + {h,h}

)
= 0 , ∂̄h

(
∂

∂ωA BA
)

= 0 .

• ⇒ integrability of almost C structure ∂̄h = ∂̄ + εAB ∂h
∂ωA

∂
∂ωB

and BA ∈ H1(PT ,Ω1,0
V (−5)).

• Complete integrability: ∃ coordinates (‘axial gauge’) such
that BA ∧ ∂{h,h}/∂ωA = 0 so equations become linear.



MHV Twistor action for gravity

• This formulation of anti-self-dual gravity works ‘off-shell’
and can include interactions of full gravity etc..

• The MHV vertices are all generated as above by

SMHV [BA,h] =

∫
M×CP1

x×CP1
x

d4x [π1 dπ1][π2 dπ2][π1 π2]
3〈B1|Λ1|Λ2|B2〉

• Set
SFull [BA,h] = S−[BA,h] + SMHV [BA,h]

; an action that gives the MHV formalism perturbatively.
• N = 4 sugra extension is easy. N = 8 possible, but more

gauge dependent.



Summary and outlook

Summary
• Self-contained proof of the BGK MHV gravity amplitudes.
• Twistor gravity action that yields Gravity MHV formalism.
• Off-shell, but gauge fixed, so does not express full

symmetries.
• Does not yet give self-contained proof of MHV formalism;

if MHV formalism for gravity is incomplete, then so is this
action.

Outlook
• Twistor actions for Yang-Mills and conformal gravity are not

gauge fixed and do give self-contained proof of MHV
formalism for Yang-Mills and conformal gravity;

• suggests full gauge invariant twistor action should exist;
if MHV formalism is incomplete, it would give completion.


