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1. On SYM amplitudes at strong
coupling -- beyond the MHV case

2. On marginal deformation of N=4

3. On amplitudes in N=2 SQCD




1. SYM amplitudes at strong coupling

« Alday and Maldacena (0705.0303) gave a

string theory prescription for computing planar
amplitudes N=4 SYM at strong coupling using
AdS/CFT.

« Amplitudes are determined by a classical string
solution and contain a universal exponential
factor -- the action of the classical string.
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* In gauge theory the only amplitudes which are
(almost) under control at strong coupling are
expressions for MHV amplitudes:

via the exponential ansatz of Bern-Dixon-Smirnov
augmented in the exponent by the

conformally-invarinat Reminder function
Drummond-Henn-Korchemsky-Sokatcheyv;
Bern-Dixon-Kosower-Roiban-Spradlin-Vergu-Volovich ‘08

« Still Open Question -- non-MHV: examine the
amplitudes dependence on helicities and
particle-types of external states.



(Abel-Forste-VVK 0705.2113):

* Argue/conjecture:

the prefactor K at strong coupling should be ~
tree-level SYM amplitude for the same process.

« => non-MHYV scattering amplitudes in N=4 SYM
simplify dramatically in the strong coupling limit.

(at weak coupling one wouldn’t expect exponentiation of
non-MHV’s)

e At strong coupling:
all (MHV and non-MHV) n-point amplitudes are

given by the (known) tree-level Yang-Mills result
times the universal exponential.



Scattering of 4 open strings ending on N coincident D3-branes.
A,b,C,d are the Chan-Paton indices labeling the branes on which strings end.

External states: strings with one end on the Nth brane, b=d=N,
and the other end on the remaining N-1 branes, A,C=1... N-1.



N D3-brane is separated from the stack of N -1 branes and placed at Z=7..

This implements an IR regularisation for the amplitudes where all the external
states are in the (massive) bifundamental of SU(N-1) x U(1)

D3-brane at Z;p

N — 1 D3-branes

Scattering of open strings stretched between the separated IR brane
and the stack of N-1 D3-branes.



In the Maldacena near-horizon limit the N -1 stack dissolves into the
AdS; x S° geometry and the IR brane is the only brane remaining.

The stretched strings worldsheet becomes the open string worldsheet
curved into the AdS bulk.

D3-brane at Z;p

approaches the AdSs boundary as X* — oo

XH — oo

String worldsheet bending into the AdSs bulk



Vertex operators describing external states are located
on the Dirichlet IR brane: the only brane remaining.

External states, being the states of the boundary
conformal SYM theory, should live on the boundary of
the AdS; space, and this is where the boundary of the
open string worldsheet must be.

In terms of Poincare coordinates (X*,Z) the AdS.

boundary is spanned by X* and is usually placed at the
radial coordinate Z — 0.

But the boundary of AdS; is not only described by Z — 0,
butalso by Z = Z, — oo at large values of X*.



e Asymptotic external states live on the boundary of AdSe,

which (up to a constant rescaling by Z ) is the 4-dim
Minkowski space.

« Use standard flat space definition of vertex operators V.

For a gluon state of momentum p; and helicity h;=4

T parameterises the boundary of the worldsheet (t,0)
Xk = XK (1, 0=0) Is taken at the boundary

(with the radial coordinate Z=7 )

and ... indicate the supersymmetric completion
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n-point open string amplitude:
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In the limit

VA — oo keeping pt’ and Zp fixed
from -1 Sboundary( 7;,p;) we pick up the poles
contrlbutlon of the tree-level Veneziano ampli-
tude in flat space, which is precisely the tree-
level Yang-Mills amplitude.

VASPUK(p,) gives the universal exponent:
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o |f this factorised proposal is correct for general
non-MHV amplitudes at strong coupling:

It Is certainly not expected to hold at weak

coupling where factorisation appears to be lost

Bern-Del Duca-Dixon-Kosower 0410224
Britto-Cachazo-Feng 0412103

But...note recent results of
Drummond-Henn-Korchemsky-Sokatchev 0807.1095



 Drummond-Henn-Korchemsky-Sokatchev 0807.1095

In perturbation theory NMHV amplitudes can be recast in

the form:
ANMHYV _ AMHV [RNMHV | ()]
‘T Tt Lt I~ \</1

« R NMHVig a factor of Grassmann degree-four

 |ts perturtbative expansion in A starts from tree-level ~ A9
plus loop corrections

e Itis a Lorentz scalar of vanishing helicity
 Itis a dual-superconformal invariant.

ANMHV (\y _, AMHV tree pNMHV (\y ;ivASa
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At strong coupling can it be RTJXMHV(O) ?




Conclusions for Partl:

H@O JA.I.[L X 1_Lntree Z\/_SCI

If this factorised proposal is correct for general
non-MHV amplitudes at strong coupling:

non-MHV scattering amplitudes in N=4 SYM must
simplify dramatically in the strong coupling limit
There is much to learn about dual conformal
Invariance (esp in non-MHV context)

...and about non-MHV amplitudes in general.



2. Amplitudes and marginal
deformations of N=4 SYM

Following VVK hep-th/0512194

« Marginal deformations of N=4 SYM keep
conformal invariance of the theory but reduce
supersymmetry to N=1 (or even N=0).

 There Is a continuous family of marginal
deformations, and the original N=4 SYM Is just a
point on a moduli space of these theories.

 For simplicity concentrate here on the so-called
real-beta deformations. Will show:

=> Planar amplitudes in these theories are
identical to those in N=4 (up to an overall factor).



This is the deformation of the N=4 superpotential (preserves N=1 susy):
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Figure 2: 3,-independent ¢* color-ordered vertices.



« Total phase factor associated with any given
planar amplitude is entirely determined by the
external lines and does not depend on
topologies and types of internal (loop)
Interactions.

* |In other words, any planar loop amplitude in the
beta-deformed theory is equal to the
corresponding amplitude in the original N=4
SYM times an overall external phase factor.

 |In particular, this universal phase factor can be
read off the corresponding tree-level amplitude

(or even better from the star-products...see below)
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Example of a 2-loop diagram:
Red dots denote two beta-dependent Yukawa vertices. Their phases
cancel and the total contribution is beta-independent.
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Two examples of Next-to-MHV amplitudes with
Six external scalars. The amplitude on the left,

A(Cbl, CTDQ, CD3, CT>1, CDQ, <T>3, ) ~ €—6i7r/3" and the

amplitude on the right

A(¢17 527 637 P, Po, P3, ) ~ =P,




troduced into the N=4 Lagrangian
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the other end of the internal propagator.
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Fr has opposite Q)-charges to the F; field on
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plies that none of the lines can intersect. Con-
tractions can be removed without affectina the

B-phase. Reduced diagram has the same (-
phase as the original Feynman diagram.

= Planar amplitudes in real-beta-deformed theories are
identical to those in N=4 (up to an overall factor).



3. MHV amplitudes in N=2 SQCD

Following Glover-VVK-Williams 0805.4190

One cannot hope for miracles, but what about the N=2
SQCD? Conformal invariance can be switched on and
off — does it play a role? If so, is it sufficient?

Calculated at 1-loop in N=2 SQCD:

In N=2 SQCD already MHV amplitudes differ from N=4
for general values of N; and N..

However, for N.=2N_ where the N=2 SQCD Is conformal,
all 1-loop amplitudes (with all external particles in the
adjoint representation) are identical to the N=4 results.
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With these substitutions:

* The list of N=2 MHV amplitudes is the same

* The tree-level expressions for MHV’s are the
same

* This is no longer the case at one-loop level (N=4
IS reduced to N=2).

e But when N;=2N_ 1-loop MHYV results in N=2 are
the same as in N=4

[when all external particles are in the adjoint]



MHYV diagrams at 1-loop

(i + 1)+ i

In (a) only gluons circulate in the loop
in (b) there are loop contributions from gluons,
fermions and scalars.



A N=4 cartoon
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N=2 cartoon

A
ol 0
YA /—\
A g -
=7} -l
/ \ Q\ﬂ/@
Q o

a ) h)

But when N.=2N_ the sum over N;
INn the loop gives the same result as in N=4 !



However the agreement is lost for fundamental
external legs...even in the superconformal case

N=2 cartoon



This diagram is needed to match
to N=, but it is non-planar !

also thanks to Dixon, Kosower, Vergu: private communication



What if it did work at 1-loop level?

MHYV amplitudes form a closed class: to construct higher loop
MHYV amplitudes using MHV rules one does not need non-MHVs.

Thus if MHV’s did match at tree-level and at 1-loop level one could
hope that all higher-loop MHV amplitudes will also mathc between
Superconformal N=2 and N=4 theories.

Alas....it doesn’t look good.

=} - | + g + =1 + +
>> g | 2 \( - + N\, m -
/_I._\Tl‘ee [ 1 I-.()Qpl o 1 Loop Tree :
2 ST By @ @ -

+ -+ + + e +

] 1

However note that at 2-loops the lightlike Wilson loops are clearly identical
In N=2 and N=4 (and the highest transcendentality is satisfied in both cases...)
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