MHV and (non)-MHV amplitudes in $\mathrm{N}=4, \mathrm{~N}=2$ and marginal deforms

Valya Khoze
Durham University

1. On SYM amplitudes at strong

 coupling -- beyond the MHV case2. On marginal deformation of $\mathrm{N}=4$
3. On amplitudes in $\mathrm{N}=2$ SQCD

1. SYM amplitudes at strong coupling

- Alday and Maldacena (0705.0303) gave a string theory prescription for computing planar amplitudes $\mathrm{N}=4$ SYM at strong coupling using AdS/CFT.
- Amplitudes are determined by a classical string solution and contain a universal exponential factor -- the action of the classical string.

$$
\begin{aligned}
A_{n}\left(p_{i}, h_{i}\right)= & K e^{i \sqrt{\lambda} S_{c l}} \\
& =K e^{-\frac{\sqrt{\lambda}}{2 \pi}} \text { Area }_{c l}
\end{aligned}
$$

- In gauge theory the only amplitudes which are (almost) under control at strong coupling are expressions for MHV amplitudes:
via the exponential ansatz of Bern-Dixon-Smirnov augmented in the exponent by the
conformally-invarinat Reminder function
Drummond-Henn-Korchemsky-Sokatchev;
Bern-Dixon-Kosower-Roiban-Spradlin-Vergu-Volovich ‘08
- Still Open Question -- non-MHV: examine the amplitudes dependence on helicities and particle-types of external states.
(Abel-Forste-VVK 0705.2113):
- Argue/conjecture:
the prefactor K at strong coupling should be \sim to tree-level SYM amplitude for the same process.
- => non-MHV scattering amplitudes in N=4 SYM simplify dramatically in the strong coupling limit. (at weak coupling one wouldn't expect exponentiation of non-MHV's)
- At strong coupling:
all (MHV and non-MHV) n-point amplitudes are given by the (known) tree-level Yang-Mills result times the universal exponential.

Scattering of 4 open strings ending on N coincident D3-branes.
A,b,C,d are the Chan-Paton indices labeling the branes on which strings end.
External states: strings with one end on the Nth brane, $b=d=N$, and the other end on the remaining $\mathrm{N}-1$ branes, $\mathrm{A}, \mathrm{C}=1 \ldots \mathrm{~N}-1$.
$N^{\text {th }} \mathrm{D} 3$-brane is separated from the stack of $\mathrm{N}-1$ branes and placed at $\mathrm{Z}=\mathrm{Z}_{\mathrm{IR}}$.
This implements an IR regularisation for the amplitudes where all the external states are in the (massive) bifundamental of $\mathrm{SU}(\mathrm{N}-1) \times \mathrm{U}(1)$

Scattering of open strings stretched between the separated IR brane and the stack of N-1 D3-branes.

In the Maldacena near-horizon limit the $\mathrm{N}-1$ stack dissolves into the $A d S_{5} \times S^{5}$ geometry and the IR brane is the only brane remaining.

The stretched strings worldsheet becomes the open string worldsheet curved into the AdS bulk.

String worldsheet bending into the $A d S_{5}$ bulk

- Vertex operators describing external states are located on the Dirichlet IR brane: the only brane remaining.
- External states, being the states of the boundary conformal SYM theory, should live on the boundary of the AdS_{5} space, and this is where the boundary of the open string worldsheet must be.
- In terms of Poincare coordinates $\left(X^{\mu}, Z\right)$ the $A d S_{5}$ boundary is spanned by X^{μ} and is usually placed at the radial coordinate $\mathrm{Z} \rightarrow 0$.
- But the boundary of AdS_{5} is not only described by $\mathrm{Z} \rightarrow 0$, but also by $Z=Z_{\mathbb{R}} \rightarrow \infty$ at large values of X^{μ}.
- Asymptotic external states live on the boundary of AdS_{5}, which (up to a constant rescaling by Z_{IR}) is the 4-dim Minkowski space.
- Use standard flat space definition of vertex operators V:

For a gluon state of momentum p_{i} and helicity $h_{i}= \pm$

$$
V\left(p_{i}\right)=\int d \tau e^{i p_{i}^{\mu} X_{\mu}(\tau)} \varepsilon_{\mu}^{ \pm}\left(p_{i}\right)\left(\partial_{\tau} X^{\mu}(\tau)+\ldots\right)
$$

τ parameterises the boundary of the worldsheet (τ, σ)
$X^{\mu}=X^{\mu}(\tau, \sigma=0)$ is taken at the boundary
(with the radial coordinate $Z=Z_{I R}$)
and ... indicate the supersymmetric completion
n-point open string amplitude:

$$
A_{n}=\int D X V\left(p_{1}\right) \ldots V\left(p_{n}\right) e^{i \sqrt{\lambda} S[X]}
$$

or

$$
\begin{gathered}
A_{n}=\prod_{i} \int d \tau_{i} \epsilon_{\mu}^{ \pm}\left(p_{i}\right) \frac{\delta}{\delta J_{\mu}\left(\tau_{i}\right)} e^{i W[J]} \\
e^{i W[J]}=\int D X D Z \exp i S_{\mathrm{eff}}
\end{gathered}
$$

where

$$
i S_{\text {eff }}:=i \sqrt{\lambda} S[X, Z]+\sum_{i} i p_{i}^{\mu} X^{\mu}\left(\tau_{i}\right)+\int d \tau J_{\mu}(\tau) \partial_{\tau} X_{\mu}
$$

Strong coupling limit amounts to a semicalssical regime where we extremise the effective action

$$
i S_{\mathrm{eff}}=i \sqrt{\lambda} S[X, Z]+\sum_{i} i p_{i}^{\mu} X^{\mu}\left(\tau_{i}\right)+\int d \tau J_{\mu}(\tau) \partial_{\tau} X_{\mu}
$$

The bosonic action on the $A d S_{5}$ is

$$
S[X, Z]=\int d \tau d \sigma\left(\partial_{\alpha} X^{\mu} \frac{1}{Z^{2}} \partial^{\alpha} X_{\mu}+\partial_{\alpha} Z \frac{1}{Z^{2}} \partial^{\alpha} Z\right)
$$

The total effective action can be decomposed as

$$
\sqrt{\lambda} S_{\mathrm{Cl}}^{\mathrm{bulk}}\left(p_{i}\right)+\frac{1}{\sqrt{\lambda}} S_{\mathrm{Cl}}^{\text {boundary }}\left(\tau_{i}, p_{i}\right)
$$

$\sqrt{\lambda} S_{\mathrm{Cl}}^{\mathrm{bulk}}\left(p_{i}\right)$ is the Alday-Maldacena action. It does not depend on emission points τ_{i} and is a homogenous function of external momenta.
$\frac{1}{\sqrt{\lambda}} S_{\mathrm{cl}}^{\text {boundary }}\left(\tau_{i}, p_{i}\right)$ is the generating functional for the tree-level amplitudes in flat 4D space at $Z=Z_{I R}=$ const.

In the limit
$\sqrt{\lambda} \rightarrow \infty$ keeping p_{i}^{μ} and $Z_{I R}$ fixed
from $\frac{1}{\sqrt{\lambda}} S_{\mathrm{Cl}}^{\text {boundary }}\left(\tau_{i}, p_{i}\right)$ we pick up the poles contribution of the tree-level Veneziano amplitude in flat space, which is precisely the treelevel Yang-Mills amplitude.
$\sqrt{\lambda} S_{\mathrm{Cl}}^{\text {bulk }}\left(p_{i}\right)$ gives the universal exponent:

$$
\lambda \rightarrow \infty: \quad A_{n}=A_{n}^{\text {tree }} e^{i \sqrt{\lambda} S_{\mathrm{cl}}^{\mathrm{bulk}}-S_{0}}
$$

$$
\lambda \rightarrow \infty: \quad A_{n} \propto A_{n}^{\text {tree }} e^{i \sqrt{\lambda} S_{\mathrm{cl}}}
$$

- If this factorised proposal is correct for general non-MHV amplitudes at strong coupling:
it is certainly not expected to hold at weak coupling where factorisation appears to be lost

Bern-Del Duca-Dixon-Kosower 0410224
Britto-Cachazo-Feng 0412103

But...note recent results of
Drummond-Henn-Korchemsky-Sokatchev 0807.1095

- Drummond-Henn-Korchemsky-Sokatchev 0807.1095

In perturbation theory NMHV amplitudes can be recast in the form:

$$
A_{n}^{N M H V}=A_{n}^{M H V} \times\left[R_{n}^{N M H V}+\mathcal{O}(\varepsilon)\right]
$$

- $\mathrm{R}_{\mathrm{n}}{ }^{\mathrm{NMHV}}$ is a factor of Grassmann degree-four
- Its perturtbative expansion in λ starts from tree-level $\sim \lambda^{0}$ plus loop corrections
- It is a Lorentz scalar of vanishing helicity
- It is a dual-superconformal invariant.
$A_{n}^{N M H V}(\lambda) \rightarrow A_{n}^{M H V \text { tree }} R_{n}^{N M H V}(\lambda) e^{i \sqrt{\lambda} S_{\mathrm{Cl}}}$
At strong coupling can it be $R_{n}^{N M H V}$ (0) ?

Conclusions for Part1:

$$
\lambda \rightarrow \infty: \quad A_{n} \propto A_{n}^{\text {tree }} e^{i \sqrt{\lambda} S_{\mathrm{cl}}}
$$

- If this factorised proposal is correct for general non-MHV amplitudes at strong coupling:
- non-MHV scattering amplitudes in N=4 SYM must simplify dramatically in the strong coupling limit
- There is much to learn about dual conformal invariance (esp in non-MHV context)
- ...and about non-MHV amplitudes in general.

2. Amplitudes and marginal deformations of $\mathrm{N}=4 \mathrm{SYM}$

Following VVK hep-th/0512194

- Marginal deformations of N=4 SYM keep conformal invariance of the theory but reduce supersymmetry to $N=1$ (or even $N=0$).
- There is a continuous family of marginal deformations, and the original $\mathrm{N}=4$ SYM is just a point on a moduli space of these theories.
- For simplicity concentrate here on the so-called real-beta deformations. Will show:
=> Planar amplitudes in these theories are identical to those in $\mathrm{N}=4$ (up to an overall factor).

This is the deformation of the $\mathrm{N}=4$ superpotential (preserves $\mathrm{N}=1$ susy):

$$
\operatorname{Tr}\left(\Phi_{1} * \Phi_{2} * \Phi_{3}-\Phi_{1} * \Phi_{3} * \Phi_{2}\right)=\operatorname{Tr}\left(e^{i \pi \beta} \Phi_{1} \Phi_{2} \Phi_{3}-e^{-i \pi \beta} \Phi_{1} \Phi_{3} \Phi_{2}\right)
$$

Component Lagrangian:

$$
\begin{aligned}
& \mathcal{L}=\operatorname{Tr}\left(\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+\left(D^{\mu} \bar{\Phi}^{i}\right)\left(D_{\mu} \Phi_{i}\right)-\frac{g^{2}}{2}\left[\Phi_{i}, \Phi_{j}\right]_{\beta_{i j}} \bar{\Phi}^{i}, \bar{\Phi}^{j}\right]_{\beta_{i j}}+\frac{g^{2}}{4}\left[\Phi_{i}, \bar{\Phi}^{i}\right]\left[\Phi_{j}, \bar{\Phi}^{j}\right] \\
& \left.+\lambda_{A} \sigma^{\mu} D_{\mu} \bar{\lambda}^{A}-i g\left(\left[\lambda_{4}, \lambda_{i}\right] \bar{\Phi}^{i}+\left[\bar{\lambda}^{4}, \bar{\lambda}^{i}\right] \Phi_{i}\right)+\frac{i g}{2}\left(\epsilon^{i j k}\left[\lambda_{i}, \lambda_{j}\right]_{\beta_{i j}} \Phi_{k}+\epsilon_{i j k}\left[\bar{\lambda}^{i}, \bar{\lambda}^{j}\right]_{\beta_{i j}} \bar{\Phi}^{k}\right)\right)
\end{aligned}
$$

Where I introduced beta-deformed commutators:

$$
\begin{gathered}
{\left[f_{i}, g_{j}\right]_{\beta_{i j}}:=e^{i \pi \beta_{i j}} f_{i} g_{j}-e^{-i \pi \beta_{i j}} g_{j} f_{i}} \\
\beta_{i j}=-\beta_{j i}, \quad \beta_{12}=-\beta_{13}=\beta_{23}:=\beta
\end{gathered}
$$

All β_{R}-dependent Feynman vertices in color-ordered perturbation theory.

Figure 2: β_{R}-independent ϕ^{4} color-ordered vertices.

- Total phase factor associated with any given planar amplitude is entirely determined by the external lines and does not depend on topologies and types of internal (loop) interactions.
- In other words, any planar loop amplitude in the beta-deformed theory is equal to the corresponding amplitude in the original $\mathrm{N}=4$ SYM times an overall external phase factor.
- In particular, this universal phase factor can be read off the corresponding tree-level amplitude
(or even better from the star-products...see below)

Example of a 2-loop diagram:
Red dots denote two beta-dependent Yukawa vertices. Their phases cancel and the total contribution is beta-independent.

Two examples of contributions to amplitudes with 4 external scalars. The first diagram is β dependent, $A_{4}\left(\Phi_{1}, \Phi_{2}, \Phi_{1}, \Phi_{2}\right) \sim e^{2 i \pi \beta}$. In the second amplitude, $A_{4}\left(\Phi_{1}, \Phi_{2}, \Phi_{2}, \Phi_{1}\right) \sim 1$, the phases cancel.

Two examples of Next-to-MHV amplitudes with six external scalars. The amplitude on the left, $A\left(\Phi_{1}, \Phi_{2}, \Phi_{3}, \Phi_{1}, \Phi_{2}, \Phi_{3},\right) \sim e^{-6 i \pi \beta}$, and the amplitude on the right $A\left(\Phi_{1}, \bar{\Phi}_{2}, \Phi_{3}, \Phi_{1}, \Phi_{2}, \Phi_{3},\right) \sim e^{2 i \pi \beta}$.

Real beta-deformations can be represented in terms of star-products (Lunin-Maldacena) introduced into the $N=4$ Lagrangian

$$
\begin{gathered}
\operatorname{Tr}\left(\Phi_{1} * \Phi_{2} * \Phi_{3}-\Phi_{1} * \Phi_{3} * \Phi_{2}\right) \\
=\operatorname{Tr}\left(e^{i \pi \beta} \Phi_{1} \Phi_{2} \Phi_{3}-e^{-i \pi \beta} \Phi_{1} \Phi_{3} \Phi_{2}\right) \\
f * g \equiv e^{i \pi \beta\left(Q_{1}^{f} Q_{2}^{g}-Q_{2}^{f} Q_{1}^{g}\right)} f g
\end{gathered}
$$

(Q_{1}, Q_{2}) are the $U(1)_{1} \times U(1)_{2}$ charges of the fields

$$
\begin{array}{cl}
\Phi_{1}: & \left(Q_{1}, Q_{2}\right)=(0,-1) \\
\Phi_{2}: & \left(Q_{1}, Q_{2}\right)=(1,1) \\
\Phi_{3}: & \left(Q_{1}, Q_{2}\right)=(-1,0) \\
V: & \left(Q_{1}, Q_{2}\right)=(0,0)
\end{array}
$$

At tree level all vertices can be joined together into an effective vertex without changing the total β-phase of the diagram.
\bar{F}_{I} has opposite Q-charges to the F_{I} field on the other end of the internal propagator.

Reduced planar loop diagram. Planarity implies that none of the lines can intersect. Contractions can be removed without affecting the β-phase. Reduced diagram has the same β phase as the original Feynman diagram.
\Rightarrow Planar amplitudes in real-beta-deformed theories are identical to those in $N=4$ (up to an overall factor).

3. MHV amplitudes in $\mathrm{N}=2$ SQCD

Following Glover-VVK-Williams 0805.4190

- One cannot hope for miracles, but what about the $\mathrm{N}=2$ SQCD? Conformal invariance can be switched on and off - does it play a role? If so, is it sufficient?
- Calculated at 1-loop in N=2 SQCD:
- In N=2 SQCD already MHV amplitudes differ from $\mathrm{N}=4$ for general values of N_{f} and N_{c}.
- However, for $\mathrm{N}_{\mathrm{f}}=2 \mathrm{~N}_{\mathrm{c}}$ where the $\mathrm{N}=2$ SQCD is conformal, all 1-loop amplitudes (with all external particles in the adjoint representation) are identical to the $\mathrm{N}=4$ results.

The full set of n-point MHV amplitudes in $N=4$ SYM is formed by all $N=4$ superpartners of $A_{n}\left(g^{-}, g^{-}\right)$

$$
\begin{aligned}
& A_{n}\left(g^{-}, g^{-}\right), \quad A_{n}\left(g^{-}, \lambda_{A}^{-}, \lambda^{A+}\right), \quad A_{n}\left(\lambda_{A}^{-}, \lambda_{B}^{-}, \lambda^{A+}, \lambda^{B+}\right) \\
& A_{n}\left(g^{-}, \lambda^{1+}, \lambda^{2+}, \lambda^{3+}, \lambda^{4+}\right), \quad A_{n}\left(\lambda_{A}^{-}, \lambda^{A+}, \lambda^{1+}, \lambda^{2+}, \lambda^{3+}, \lambda^{4+}\right) \\
& A_{n}\left(\lambda^{1+}, \lambda^{2+}, \lambda^{3+}, \lambda^{4+}, \lambda^{1+}, \lambda^{2+}, \lambda^{3+}, \lambda^{4+}\right) \\
& \quad A_{n}\left(\bar{\phi}_{A B}, \lambda^{A+}, \lambda^{B+}, \lambda^{1+}, \lambda^{2+}, \lambda^{3+}, \lambda^{4+}\right), \\
& A_{n}\left(g^{-}, \bar{\phi}_{A B}, \phi^{A B}\right), \quad A_{n}\left(g^{-}, \bar{\phi}_{A B}, \lambda^{A+}, \lambda^{B+}\right), \quad A_{n}\left(\lambda_{A}^{-}, \lambda_{B}^{-}, \phi^{A B}\right) \\
& A_{n}\left(\lambda_{A}^{-}, \phi^{B C}, \bar{\phi}_{B C}, \lambda^{A+}\right), \quad A_{n}\left(\lambda_{A}^{-}, \phi^{A B}, \bar{\phi}_{B C}, \lambda^{C+}\right), \quad A_{n}\left(\lambda_{A}^{-}, \bar{\phi}_{B C}, \lambda^{A+}, \lambda^{B+}, \lambda^{C+}\right), \\
& A_{n}(\bar{\phi}, \phi, \bar{\phi}, \phi), \quad A_{n}\left(\bar{\phi}, \phi, \bar{\phi}, \lambda^{+}, \lambda^{+}\right), \quad A_{n}\left(\bar{\phi}, \bar{\phi}, \lambda^{+}, \lambda^{+}, \lambda^{+}, \lambda^{+}\right)
\end{aligned}
$$

where we used the $S U(4)_{R}$ labelling conventions for scalars,

$$
\bar{\phi}_{\wedge B}=1 / 2 \epsilon_{\wedge B C D} \phi^{C D}=\left(\phi^{A B}\right)^{\dagger}
$$

To switch from $N=4$ SYM:

$$
\mathcal{W}_{\mathcal{N}=4}=i g \operatorname{Tr}\left(\Phi_{1} \Phi_{2} \Phi_{3}-\Phi_{1} \Phi_{3} \Phi_{2}\right)
$$

to $N=2$ SQCD with N_{f} fundamental flavours:

$$
\mathcal{W}_{\mathcal{N}=2}=g \sum_{f=1}^{N_{f}} \widetilde{Q}_{f} \Phi Q_{f}
$$

make the substitution

$$
\begin{aligned}
& V \leftrightarrow V=\left(g^{ \pm}, \lambda_{1}^{ \pm}\right), \quad \Phi \leftrightarrow \Phi_{1}=\left(\phi^{12}, \lambda_{2}^{ \pm}\right) \\
& Q_{f} \leftrightarrow \Phi_{2}=\left(\phi^{31}, \lambda_{3}^{ \pm}\right), \quad \widetilde{Q}_{f} \leftrightarrow \Phi_{3}=\left(\phi^{23}, \lambda_{4}^{ \pm}\right)
\end{aligned}
$$

With these substitutions:

- The list of $\mathrm{N}=2 \mathrm{MHV}$ amplitudes is the same
- The tree-level expressions for MHV's are the same
- This is no longer the case at one-loop level ($\mathrm{N}=4$ is reduced to $\mathrm{N}=2$).
- But when $\mathrm{N}_{\mathrm{f}}=2 \mathrm{~N}_{\mathrm{c}}$ 1-loop MHV results in $\mathrm{N}=2$ are the same as in $\mathrm{N}=4$
[when all external particles are in the adjoint]

MHV diagrams at 1-loop

In (a) only gluons circulate in the loop in (b) there are loop contributions from gluons, fermions and scalars.

$\mathrm{N}=2$ cartoon

But when $\mathrm{N}_{\mathrm{f}}=2 \mathrm{~N}_{\mathrm{c}}$ the sum over N_{f} in the loop gives the same result as in $\mathrm{N}=4$!

However the agreement is lost for fundamental external legs...even in the superconformal case
$\mathrm{N}=2$ cartoon

This diagram is needed to match to $N=$, but it is non-planar !

also thanks to Dixon, Kosower, Vergu: private communication

What if it did work at 1-loop level?

MHV amplitudes form a closed class: to construct higher loop MHV amplitudes using MHV rules one does not need non-MHVs.

Thus if MHV's did match at tree-level and at 1-loop level one could hope that all higher-loop MHV amplitudes will also mathc between Superconformal $\mathrm{N}=2$ and $\mathrm{N}=4$ theories.

Alas....it doesn't look good.

However note that at 2-loops the lightlike Wilson loops are clearly identical in $\mathrm{N}=2$ and $\mathrm{N}=4$ (and the highest transcendentality is satisfied in both cases...)

1. On SYM amplitudes at strong

 coupling -- beyond the MHV case2. On marginal deformation of $\mathrm{N}=4$
3. On MHV amplitudes in $\mathrm{N}=2$
