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Motivation & Introduction

Calculating high loop order amplitudes in
N = 4 SYM

Unitarity & Maximal cuts
Dual conformal integrals & 5-loop planar N=4

3-loop non-planar N=4

 Hidden relations in N = 4 SYM cuts

A surprising new identity at tree level (QCD)
New relations between partial amplitudes

Beautiful map to gravity amplitudes (~KLT)

Outlook & Summary

Outline
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IntroductionMotivation - simplicity in amplitudes

Physical theories - gravity and gauge theories - have surprisingly
simple on-shell scattering amplitudes

Feynman rules are much more complex

Even QCD & QED have simpler structure than the Feynman rules
suggest - in particular at tree-level and one loop

Adding SUSY increases complexity of Lagrangian & Feynman
rules - yet scattering amplitudes becomes simpler

Maximal susy N  = 4  SYM - perhaps solvable (in ‘t Hooft limit) ?

Studying simpler theories will teach us how to ‘solve’ QCD
(better understand)

see Vanhove’s talk
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N = 4 SYM & pure QCD

 N  = 4 maximal susy extension to QCD

 QCD classically scale-invariant

 N  = 4 quantum scale-invariant ! = 0

 N  = 4 has remarkably simple on-shell
amplitudes

At tree level QCD ! N = 4

QCD loop amplitudes more complex
- but contains pieces that can be attributed
to N  = 4

Particles in adjoint group SU(N
c
)
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Unitarity

Optical theorem:

Cutting rules by Cutkosky

Unitarity method reverses “cutting” avoiding dispersion relations Bern, Dixon, Dunbar
 and Kosower (1994)

 " efficient perturbative quantization of gauge and gravity theories

see Kosower’s talk
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Unitarity Method

generalized unitarity

optical theorem

unitarity method
T
I

M
E

on-shell 3-vertex

quadruple cut
(leading singularity) maximal cut

Bern, Dixon, Dunbar and Kosower (1994)

Bern, Dixon and Kosower

Britto, Cachazo, Feng;

Buchbinder, Cachazo (2004)

Cachazo and Skinner

Cachazo, Spradlin, Volovich

(2008)

Bern, Carrasco, HJ

and Kosower (2007)
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Maximal cuts - a systematic approach for any theory

on-shell

3pt tree amplitudes

• put maximum number of propagator on-shell # simplifies calculation

• systematically release cut conditions #  great control of missing terms

5pt tree

Bern, Carrasco, HJ

and Kosower (2007)

Reconstructs the amplitude piece-by-piece (or term-by-term) 
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Maximal cuts - details

two types of on-shell 
3-pt amplitudes

purely gluonic
N=4 cut

quadruple 
cut

hepta-cut

purely gluonic
Full N =4 multiplet

complex loop momentum
# phase space splits into
different branches

for ‘singlets’ only gluons
are allowed

#N=4 cuts same as QCD

Britto, Cachazo, Feng 

Buchbinder, Cachazo
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One-loop example

+  Rational

quadruple cut triple cut double cut

D = 4 - 2"

Maximal cut in D $ 4 systematic release of cut conditions

A well-known example of the maximal-cut strategy is modern
one-loop calculations:

One loop Integral basis well known:

    Having an integral basis is not necessary - but convenient

see Vanhove’s talk
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Dual Conformal Integrals

Dual diagram

Bern, Czakon, Dixon, Kosower, Smirnov

Drummond, Henn, Smirnov, Sokatchev

Planar N = 4 SYM has a dual conformal symmetry

In d % 4 integrals are pseudo-conformal

At 4pt contributing integrals enter with ±1 coefficients

Conformal integrals makes cut calculations very easy

Dual integral

Basis integrals for planar N =4 SYM see Kosower’s talk
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1 through 4 loops

One-, two- and three-loop integrals: 

Four-loop integrals: Bern, Czakon, Dixon, Kosower, Smirnov (2006)

Green, Schwarz,

Brink (1982)
Bern, Dixon, Dunbar, Perelstein and Rozowsky (1998)

& &

 Dual conformal symmetry discovered

see Kosower’s talk
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5 loops

59 integrals; 34 contributing
Integrating them remains a
challengeBern, Carrasco, HJ, Kosower (2007)
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Full 3-loop N =4 amplitude

Bern, Carrasco, Dixon, 
HJ, Kosower, Roiban,   
Bern, Carrasco, Dixon, 
HJ, Roiban  

Non-planar N=4 more complicated

No established guiding principle for
writing down integrals

Heuristic rules for some pieces are
known: rung rule, etc.

Again integration is challenging

To learn more we may need to
push to higher loops since structure
not always apparent at low orders
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A Hidden Structure Disclosed at 4-Loops

Studying near-maximal cut at 4-loops reveals that the
diagrams (numerators) entering the cut are not independent

1

2 3

4 44

33 22

11

= &
4 loops
N=4 SYM 4pt blob

with off-shell
internal 
momenta

In fact it is the 4pt tree amplitude that have new structure # insight into QCD

3 loops
N=4 SYM

Same relation appears at lover loops after closer inspection
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Gauge theory at tree-level (QCD)
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Y-M Color decomposition

• Alternative decomposition, 4pt example

• Modern decomposition

gauge invariant

•Map

color structures

kinematic structures

color factors

kinematic numerators 

absorbs 4-pt contact terms 
-- but gauge dependent!
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A Jacobi-like 4pt identity

• Jacobi identity for color

color factors

• And a Jacobi identity for kinematics

• Kinematic numerators gauge dependent - but 4pt identity is gauge invariant

 ' gauge parameter
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Similar identity at higher points

• Kinematic Jacobi identity holds…

• Equivalent to partial amplitudes

• Decomposing 5pt amplitude in terms of 15 cubic diagrams

propagators

kinematic
numerator
color factor

etc...

(

…but is no longer gauge invariant! 
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not gauge invariant…yet physical

• In a general theory we can solve the 15 n
i
’s at 5 pts

• 9 independent kinematic Jacobi identities

• plus 2 constraints:

• " 4 undetermined n
i
’s   (pure gauge transformations)

• Any 5pt tree is a linear combination of two basis amplitudes

etc…

true for any external states and in D-dimensions

#5(. . . . .)  =  ) #5(1,2,3,4,5)  + ! #5(1,4,3,2,5)
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Tree level n-points _ a  conjecture

• A gauge theory tree amplitude can be expanded in purely cubic diagrams

   …as long as gauge invariance is enforced for (n - 3)! partial amplitudes

• Jacobi identity true for both color and kinematics…

full amplitude

partial amplitude

color factors

" only (n - 3)! linearly independent partial amplitudes
    - (down from (n - 2)! for the Kleiss-Kuijf relations)

(

Checked through 8 pts!
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All-n formula -- partial amplitude relations

•General relations for gauge theory partial amplitudes

where

and

and

and t
k
 is the position of leg k in the set {$}

#n(……) =  )1 #n(1,2,..,n) + )2 #n(2,1,..,n) + … + )(n-3)! #n(3,2,..,n)

Very non-trivial statement !
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Example relations

4 points:

5 points: 

Relations quite simple at low orders

(n-2)!-(n-3)!=(n-3)(n-3)! previously unknown relations

sij..= (ki+kj+…)2
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Implications for gravity
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Kawai-Lewellen-Tye Relations

gravity states are direct products of gauge theory states

Field theory limit   "  gravity theory ~ (gauge theory) * (gauge theory)

Originally string theory
tree level identity:

closed string ' (left open string) * (right open string)

From Lagrangian point of view relations are very obscure

|1+grav = |1+gauge , |1+gauge
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New identity + KLT

Compare to gauge theory…

Feeding the new identity

through KLT

gives

… a beautiful “numerator squaring” relationship

Unlike KLT this “squaring” relationship is between local objects n
i

and is manifestly crossing (Bose) symmetric

gauge theory

* color

gravity

2

=
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Holds at all-n tree level

gravity

• At 5 points

• At n points

true given that n
i
 and ñ

i
 satisfy

kinematic Jacobi identities

Checked trough 
8 points !

gauge theory

* color

=

2
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Outlook - beyond on-shell & tree-level ?

Generalization to loop-level kinematic Jacobi-like identity ?

Find special gauge where Feynman rules manifestly obeys the 
identity - if no such gauge, find rules for generating the numerators

Very simple Gravity Feynman rules in sight ?

Gravity Feynman rules = (gauge theory Feynman rules)2

Lagrangian understanding highly desirable - to connect to standard
language, and for possible off-shell and non-perturbative physics

Might finally clarify the KLT relations in terms of Lagrangians
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Summary

Studying simple theories, N=4 SYM etc., will increase our under-

standing of QFT and QCD - since one can probe much deeper

High loop orders (or high n) often necessary for finding new structure

Dual conformal symmetry (found at 3-4 loops) and the new Jacobi-like
identity for gauge theory tree diagrams (found at 4-loops)

The Jacobi-like identity imply new relations for gauge invariant partial
tree amplitudes (QCD) - proof of validity

Combine with KLT to uncover a new local, manifestly crossing (Bose)
symmetric and beautiful “squaring” relationship between gravity and
gauge theories - hints that uncovered structure is important


