$\mathcal{N}=4 S Y M$ and new insights into QCD tree-level amplitudes

$\mathcal{N}=4$ SUSY and QCD workshop
LPTHE, Jussieu, Paris Dec 12, 2008

Henrik Johansson, UCLA
Bern, Carrasco, HJ, Kosower arXiv:0705.1864 [hep-th]

Bern, Carrasco, HJ arXiv:0805.3993 [hep-ph]
Bern, Carrasco, Dixon, HJ, Kosower, Roiban hep-th/0702112

Outline

- Motivation \& Introduction
- Calculating high loop order amplitudes in $\mathcal{N}=4 \mathrm{SYM}$
- Unitarity \& Maximal cuts
- Dual conformal integrals \& 5-loop planar $\mathcal{N}=4$
- 3-loop non-planar $\mathcal{N}=4$
- Hidden relations in $\mathcal{N}=4 \mathrm{SYM}$ cuts
- A surprising new identity at tree level (QCD)
- New relations between partial amplitudes
- Beautiful map to gravity amplitudes (\sim KLT)
- Outlook \& Summary

Motivation - simplicity in amplitudes

- Physical theories - gravity and gauge theories - have surprisingly simple on-shell scattering amplitudes
- Feynman rules are much more complex
- Even QCD \& QED have simpler structure than the Feynman rules suggest - in particular at tree-level and one loop
- Adding SUSY increases complexity of Lagrangian \& Feynman rules - yet scattering amplitudes becomes simpler
- Maximal susy $\mathcal{N}=4$ SYM - perhaps solvable (in 't Hooft limit) ?
- Studying simpler theories will teach us how to 'solve' QCD
\longrightarrow (better understand)

$\mathcal{N}=4$ SYM \& pure QCD

$$
\mathcal{L}_{\mathrm{YM}}=-\frac{1}{4 g^{2}} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

Particles in adjoint group $\mathrm{SU}\left(N_{c}\right)$

$$
\begin{aligned}
& 1 \xrightarrow[0000]{4} \begin{array}{l}
1 \\
4 \\
6
\end{array}+---
\end{aligned}
$$

- $\mathcal{N}=4$ maximal susy extension to QCD
- QCD classically scale-invariant
- $\mathcal{N}=4$ quantum scale-invariant $\beta=0$
- $\mathcal{N}=4$ has remarkably simple on-shell amplitudes
- At tree level $\mathrm{QCD} \subset \mathcal{N}=4$
- QCD loop amplitudes more complex
- but contains pieces that can be attributed to $\mathcal{N}=4$

Unitarity

Optical theorem:

$$
\begin{aligned}
& 1=S^{\dagger} S=\left(1-i T^{\dagger}\right)(1+i T) \\
& 2 \operatorname{Im} T=T^{\dagger} T \\
& 2 \operatorname{Im}=\int_{a \mathrm{LIPP}}^{\text {see Kosower's talk }}
\end{aligned}
$$

Cutting rules by Cutkosky

$$
\frac{i}{p^{2}} \quad \Longrightarrow \quad 2 \pi i \delta\left(p^{2}\right)
$$

Unitarity method reverses "cutting" avoiding dispersion relations
\Rightarrow efficient perturbative quantization of gauge and gravity theories
Paris Dec 12 Henrik Johansson

Unitarity Method

Maximal cuts - a systematic approach for any theory

Bern, Carrasco, HJ and Kosower (2007)

- put maximum number of propagator on-shell \rightarrow simplifies calculation
on-shell

- systematically release cut conditions \rightarrow great control of missing terms

Reconstructs the amplitude piece-by-piece (or term-by-term)

Maximal cuts - details

hepta-cut
Buchbinder, Cachazo

Full $\mathcal{N}=4$ multiplet

One-loop example

A well-known example of the maximal-cut strategy is modern one-loop calculations:

One loop Integral basis well known:
$A_{n}^{1-\text { IOOP }}=\sum_{i} d_{i} I_{4}^{(i)}+\sum_{i} c_{i} I_{3}^{(i)}+\sum_{i} b_{i} I_{2}^{(i)}+$ Rational
$D=4-2 \varepsilon$

quadruple cut

Maximal cut in $D \approx 4$

triple cut

double cut

Having an integral basis is not necessary - but convenient

Dual Conformal Integrals

Basis integrals for planar $\mathcal{N}=4$ SYM

Drummond, Henn, Smirnov, Sokatchev
Bern, Czakon, Dixon, Kosower, Smirnov

$$
x_{24}^{4} x_{13}^{2} \int \frac{d^{4} x_{5} d^{4} x_{6}}{x_{45}^{2} x_{15}^{2} x_{25}^{2} x_{46}^{2} x_{36}^{2} x_{62}^{2} x_{56}^{2}} \quad \text { Dual integral }
$$

- Planar $\mathcal{N}=4$ SYM has a dual conformal symmetry
- $\ln d \neq 4$ integrals are pseudo-conformal
- At 4 pt contributing integrals enter with ± 1 coefficients
- Conformal integrals makes cut calculations very easy

1 through 4 loops

One-, two- and three-loop integrals:

Green, Schwarz, Brink (1982)

Bern, Dixon, Dunbar, Perelstein and Rozowsky (1998)

Dual conformal symmetry discovered

Four-loop integrals: Bern, Czakon, Dixon, Kosower, Smirnov (2006)

Paris Dec 12 Henrik Johansson

5 loops

(\dot{I}_{6})

$\left(I_{19}\right)$

$\left(I_{2}\right)$

(I_{8})

(I_{4})

(

$\left(I_{31}\right)$

(I_{32})

(I_{30})

(I_{34})

59 integrals; 34 contributing Integrating them remains a challenge

Bern, Carrasco, HJ, Kosower (2007)

Full 3-loop $\mathfrak{N}=4$ amplitude

(d)

$s_{12}\left(\tau_{26}+\tau_{36}\right)+s_{23}\left(\tau_{15}+\tau_{25}\right)+s_{12} s_{23}$

$s_{12} s_{45}-s_{23} s_{46}-\frac{1}{3}\left(s_{12}-s_{23}\right) l_{7}^{2}$

Non-planar $\mathcal{N}=4$ more complicated
No established guiding principle for writing down integrals

Heuristic rules for some pieces are known: rung rule, etc.

Again integration is challenging
To learn more we may need to push to higher loops since structure not always apparent at low orders

$$
\begin{array}{ll}
s_{i j}=\left(k_{i}+k_{j}\right)^{2} & \text { Bern, Carrasco, Dixon, } \\
\tau_{i j}=2 k_{i} \cdot l_{j} & \text { HJ, Kosower, Roiban, } \\
& \text { Bern, Carrasco, Dixon, } \\
& \text { HJ, Roiban }
\end{array}
$$

Paris Dec 12 Henrik Johansson

A Hidden Structure Disclosed at 4-Loops

Studying near-maximal cut at 4-loops reveals that the diagrams (numerators) entering the cut are not independent

4 loops

 $\mathrm{N}=4 \mathrm{SYM}$

4pt blob with off-shell internal
momenta
Same relation appears at lover loops after closer inspection

3 loops $\mathrm{N}=4 \mathrm{SYM}$

In fact it is the 4 pt tree amplitude that have new structure \rightarrow insight into QCD

Gauge theory at tree-level (QCD)

Y-M Color decomposition

- Modern decomposition

$$
\mathcal{A}_{n}^{\text {tree }}(1,2, \ldots, n)=g^{n-2} \sum_{\mathcal{P}(2, \ldots, n)} \operatorname{Tr}\left[T^{a_{1}} T^{a_{2}} \cdots T^{a_{n}}\right] A_{n}^{\text {tree }}(1,2, \ldots, n)
$$

- Alternative decomposition, 4 pt example

$$
\mathcal{A}_{4}^{\text {tree }}(1,2,3,4)=g^{2}\left(\frac{n_{s} c_{s}}{s}+\frac{n_{t} c_{t}}{t}+\frac{n_{u} c_{u}}{u}\right)
$$

- Map

$$
\begin{array}{ll}
\tilde{f}^{a b c} \equiv i \sqrt{2} f^{a b c}=\operatorname{Tr}\left(\left[T^{a}, T^{b}\right] T^{c}\right) \quad \text { color structures } \\
A_{4}^{\text {tree }}(1,2,3,4) \equiv \frac{n_{s}}{s}+\frac{n_{t}}{t} \\
A_{4}^{\text {tree }}(1,3,4,2) \equiv-\frac{n_{u}}{u}-\frac{n_{s}}{s} \quad \text { kinematic structures } \\
A_{4}^{\text {tree }}(1,4,2,3) \equiv-\frac{n_{t}}{t}+\frac{n_{u}}{u} &
\end{array}
$$

color factors

$$
\begin{aligned}
c_{u} & \equiv \tilde{f}^{a_{4} a_{2} b} \tilde{f}^{b a_{3} a_{1}} \\
c_{s} & \equiv \tilde{f}^{a_{1} a_{2} b} \tilde{f}^{b a_{3} a_{4}} \\
c_{t} & \equiv \tilde{f}^{a_{2} a_{3} b} \tilde{f}^{b a_{4} a_{1}}
\end{aligned}
$$

kinematic numerators

$$
n_{s}, n_{t}, n_{u}
$$

absorbs 4-pt contact terms - but gauge dependent!

A Jacobi-like 4pt identily

$$
\mathcal{A}_{4}^{\mathrm{tree}}(1,2,3,4)=g^{2}\left(\frac{n_{s} c_{s}}{s}+\frac{n_{t} c_{t}}{t}+\frac{n_{u} c_{u}}{u}\right)
$$

- Jacobi identity for color

$$
c_{u}=c_{s}-c_{t}
$$

color factors
$c_{u} \equiv \tilde{f}^{a_{4} a_{2} b} \tilde{f}^{b_{3} a_{1}}$
$c_{s} \equiv \tilde{f}^{a_{1} a_{2} b} \tilde{f}^{b a_{3} a_{4}}$
$c_{t} \equiv \tilde{f}^{a_{2} a_{3}} \tilde{f}^{b a_{4} a_{1}}$

- And a Jacobi identity for kinematics

$$
n_{u}=n_{s}-n_{t}
$$

- Kinematic numerators gauge dependent - but 4 pt identity is gauge invariant

$$
-n_{s}^{\prime}+n_{t}^{\prime}+n_{u}^{\prime}=-n_{s}+n_{t}+n_{u}-\alpha\left(k_{i}, \varepsilon_{i}\right)(s+t+u)=0
$$

Similar identity at higher points

- Decomposing 5 pt amplitude in terms of 15 cubic diagrams kinematic

$$
\begin{aligned}
& \mathcal{A}_{5}^{\text {tree }}=g^{3}\left(\frac{n_{1} c_{1}}{s_{12} s_{45}}+\frac{n_{2} c_{2}}{s_{23} s_{51}}+\frac{n_{3} c_{3}}{s_{34} s_{12}}+\frac{n_{4} c_{4}}{s_{45} s_{23}}+\frac{n_{5} c_{5}}{s_{51} s_{34}}+\frac{n_{6} c_{6}}{s_{14} s_{25}} \quad \begin{array}{c}
\text { numerator } \\
\text { color factor }
\end{array}\right. \\
&+\frac{n_{7} c_{7}}{s_{32} s_{14}}+\frac{n_{8} c_{8}}{s_{25} s_{43}}+\frac{n_{9} c_{9}}{s_{13} s_{25}}+\frac{n_{10} c_{10}}{s_{42} s_{13}}+\frac{n_{11} c_{11}}{s_{51} s_{42}}+\frac{n_{12} c_{12}}{s_{12} s_{35}} \\
&\left.+\frac{n_{13} c_{13}}{s_{35} s_{24}}+\frac{n_{14} c_{14}}{s_{14} s_{35}}+\frac{n_{15} c_{15}}{s_{13} s_{45}}\right)
\end{aligned}
$$

- Equivalent to partial amplitudes

$$
A_{5}^{\text {tree }}(1,2,3,4,5) \equiv \frac{n_{1}}{s_{12} s_{45}}+\frac{n_{2}}{s_{23} s_{51}}+\frac{n_{3}}{s_{34} s_{12}}+\frac{n_{4}}{s_{45} s_{23}}+\frac{n_{5}}{s_{51} s_{34}} \quad \text { etc... }
$$

- Kinematic Jacobi identity holds...

$$
n_{3}-n_{5}+n_{8}=0 \quad \Leftrightarrow \quad c_{3}-c_{5}+c_{8}=0
$$

...but is no longer gauge invariant!

noł gauge invariant...yet physical

- In a general theory we can solve the $15 n_{i}{ }^{\prime}$ s at 5 pts
- 9 independent kinematic Jacobi identities
- plus 2 constraints:

$$
\begin{aligned}
& n_{5} \equiv s_{51} s_{34}\left(A_{5}^{\text {tree }}(1,2,3,4,5)-\frac{n_{1}}{s_{12} s_{45}}-\frac{n_{2}}{s_{23} s_{51}}-\frac{n_{3}}{s_{34} s_{12}}-\frac{n_{4}}{s_{45} s_{23}}\right) \\
& n_{6} \equiv s_{14} s_{25}\left(A_{5}^{\text {tree }}(1,4,3,2,5)-\frac{n_{5}}{s_{43} s_{51}}-\frac{n_{7}}{s_{32} s_{14}}-\frac{n_{8}}{s_{25} s_{43}}-\frac{n_{2}}{s_{51} s_{32}}\right)
\end{aligned}
$$

- $\Rightarrow 4$ undetermined n_{i}^{\prime} s (pure gauge transformations)

$$
\begin{aligned}
& A_{5}^{\text {tree }}(1,3,4,2,5)=\frac{-s_{12} s_{45} A_{5}^{\text {tree }}(1,2,3,4,5)+s_{14}\left(s_{24}+s_{25}\right) A_{5}^{\text {tree }}(1,4,3,2,5)}{s_{13} s_{24}} \\
& A_{5}^{\text {tree }}(1,2,4,3,5)=\frac{-s_{14} s_{25} A_{5}^{\text {tree }}(1,4,3,2,5)+s_{45}\left(s_{12}+s_{24}\right) A_{5}^{\text {tree }}(1,2,3,4,5)}{s_{24} s_{35}}
\end{aligned} \quad \text { CHC... }
$$

- Any 5 pt tree is a linear combination of two basis amplitudes

$$
A_{5}(\ldots)=\alpha A_{5}(1,2,3,4,5)+\beta A_{5}(1,4,3,2,5)
$$

true for any external states and in D-dimensions

Tree level n-points - a conjecture

- A gauge theory tree amplitude can be expanded in purely cubic diagrams full amplitude $\quad \mathcal{A}_{n}^{\text {tree }}(1,2,3, \ldots, n)=g^{n-2} \sum_{i} \frac{n_{i} c_{i}}{\left(\Pi_{j} p_{j}^{2}\right)_{i}}$
partial amplitude $A_{n}^{\text {tree }}(1,2,3, \ldots, n)=\sum_{j} \frac{n_{j}}{\left(\prod_{m} p_{m}^{2}\right)_{j}}$ color factors $\quad c_{i}=\tilde{f}^{\text {abc }} \tilde{f}^{c d e} \ldots \tilde{f}^{x y z}$
- Jacobi identity true for both color and kinematics...

$$
c_{\alpha}=c_{\beta}-c_{\gamma} \quad \Leftrightarrow \quad n_{\alpha}=n_{\beta}-n_{\gamma}
$$

...as long as gauge invariance is enforced for ($n-3$)! partial amplitudes

$$
A_{n}^{\mathrm{tree}}\left(\mathcal{P}_{i}\{1,2,3, \ldots, n\}\right)=\left[\sum_{j} \frac{n_{j}}{\left(\Pi_{m} p_{m}^{2}\right)_{j}}\right]_{i}
$$

\Rightarrow only ($n-3$)! linearly independent partial amplitudes

- (down from ($n-2$)! for the Kleiss-Kuiif relations)

All-n formula - partial amplitude relations

- General relations for gauge theory partial amplitudes

$$
A_{n}^{\text {tree }}(1,2,\{\alpha\}, 3,\{\beta\})=\sum_{\{\sigma\}_{j} \in \operatorname{POP}(\{\alpha\},\{\beta\})} A_{n}^{\text {tree }}\left(1,2,3,\{\sigma\}_{j}\right) \prod_{k=4}^{m} \frac{\mathcal{F}\left(3,\{\sigma\}_{j}, 1 \mid k\right)}{s_{2,4, \ldots, k}}
$$

where

$$
\{\alpha\} \equiv\{4,5, \ldots, m-1, m\}, \quad\{\beta\} \equiv\{m+1, m+2, \ldots, n-1, n\}
$$

and
and

$$
\mathcal{F}\left(3, \sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-3}, 1 \mid k\right) \equiv \mathcal{F}(\{\rho\} \mid k)=\left\{\begin{array}{ll}
\sum_{l=t_{k}}^{n-1} \mathcal{G}\left(k, \rho_{l}\right) & \text { if } t_{k-1}<t_{k} \\
-\sum_{l=1}^{t_{k}} \mathcal{G}\left(k, \rho_{l}\right) & \text { if } t_{k-1}>t_{k}
\end{array}\right\}+\left\{\begin{array}{ll}
s_{2,4, \ldots, k} & \text { if } t_{k-1}<t_{k}<t_{k+1} \\
-s_{2,4, \ldots, k} & \text { if } t_{k-1}>t_{k}>t_{k+1} \\
0 & \text { else }
\end{array}\right\}
$$

$$
\mathcal{G}(i, j)=\left\{\begin{array}{ll}
s_{i, j} & \text { if } i<j \text { or } j=1,3 \\
0 & \text { else }
\end{array}\right\}
$$ and t_{k} is the position of leg k in the set $\{\rho\}$

$$
A_{\mathrm{n}}(\ldots \ldots)=\alpha_{1} A_{n}(1,2, \ldots, n)+\alpha_{2} A_{n}(2,1, . ., n)+\ldots+\alpha_{(n-3)!} A_{n}(3,2, \ldots, n)
$$

Very non-trivial statement !

Example relations

4 points: $\quad \boldsymbol{A}_{4}^{\text {tree }}(1,2,\{4\}, 3)=\frac{\boldsymbol{A}_{4}^{\text {tree }}(1,2,3,4) \boldsymbol{s}_{14}}{\boldsymbol{s}_{24}} \quad s_{i j .}=\left(k_{i}+k_{j}+\ldots\right)^{2}$

5 points:

$$
\begin{aligned}
A_{5}^{\text {tree }}(1,2,\{4\}, 3,\{5\}) & =\frac{A_{5}^{\text {tree }}(1,2,3,4,5)\left(s_{14}+s_{45}\right)+A_{5}^{\text {tree }}(1,2,3,5,4) s_{14}}{s_{24}}, \\
A_{5}^{\text {tree }}(1,2,\{4,5\}, 3) & =\frac{-A_{5}^{\text {tree }}(1,2,3,4,5) s_{34} s_{15}-A_{5}^{\text {tree }}(1,2,3,5,4) s_{14}\left(s_{245}+s_{35}\right)}{s_{24} s_{245}}
\end{aligned}
$$

Relations quite simple at low orders $(n-2)!-(n-3)!=(n-3)(n-3)!$ previously unknown relations

Implications for gravity

Kawai-Lewellen-Tye Relations

Originally string theory tree level identity:

Field theory limit \Rightarrow gravity theory \sim (gauge theory) \times (gauge theory)

$$
\begin{aligned}
M_{4}^{\text {tree }}(1,2,3,4)= & -i s_{12} A_{4}^{\text {tree }}(1,2,3,4) \widetilde{A}_{4}^{\text {tree }}(1,2,4,3) \\
M_{5}^{\text {tree }}(1,2,3,4,5)= & i s_{12} s_{34} A_{5}^{\text {tree }}(1,2,3,4,5) \widetilde{A}_{5}^{\text {tree }}(2,1,4,3,5) \\
& +i s_{13} s_{24} A_{5}^{\text {tree }}(1,3,2,4,5) \widetilde{A}_{5}^{\text {tree }}(3,1,4,2,5)
\end{aligned}
$$

gravity states are direct products of gauge theory states

$$
|1\rangle_{\text {grav }}=|1\rangle_{\text {gauge }} \otimes|1\rangle_{\text {gauge }}
$$

From Lagrangian point of view relations are very obscure

New identity + KLT

Feeding the new identity $n_{u}=n_{s}-n_{t}$
through KLT $M_{4}^{\text {tree }}(1,2,3,4)=-i s_{12} A_{4}^{\text {tree }}(1,2,3,4) \widetilde{A}_{4}^{\text {tree }}(1,2,4,3)$
gives $-i M_{4}^{\text {tree }}(1,2,3,4)=\frac{n_{s} \tilde{n}_{s}}{s}+\frac{n_{t} \tilde{n}_{t}}{t}+\frac{n_{u} \tilde{n}_{u}}{u}$
... a beautiful "numerator squaring" relationship
Compare to gauge theory...

$$
\frac{1}{g^{2}} \mathcal{A}_{4}^{\text {tree }}(1,2,3,4)=\frac{n_{s} c_{s}}{s}+\frac{n_{t} c_{t}}{t}+\frac{n_{u} c_{u}}{u}
$$

Unlike KLT this "squaring" relationship is between local objects $\boldsymbol{n}_{\boldsymbol{i}}$ and is manifestly crossing (Bose) symmetric

Holds at all-n tree level

- At 5 points

true given that n_{i} and \tilde{n}_{i} satisfy kinematic Jacobi identities
gauge theory

$$
\begin{aligned}
\mathcal{A}_{5}^{\text {tree }}= & g^{3}\left(\frac{n_{1} c_{1}}{s_{12} s_{45}}+\frac{n_{2} c_{2}}{s_{23} s_{51}}+\frac{n_{3} c_{3}}{s_{34} s_{12}}+\frac{n_{4} c_{4}}{s_{45} s_{23}}+\frac{n_{5} c_{5}}{s_{51} s_{34}}+\frac{n_{6} c_{6}}{s_{14} s_{25}}\right. \\
& +\frac{n_{7} c_{7}}{s_{32} s_{14}}+\frac{n_{8} c_{8}}{s_{25} s_{43}}+\frac{n_{9} c_{9}}{s_{13} s_{25}}+\frac{n_{10} c_{10}}{s_{42} s_{13}}+\frac{n_{11} c_{11}}{s_{51} s_{42}}+\frac{n_{12} c_{12}}{s_{12} s_{35}} \\
& \left.+\frac{n_{13} c_{13}}{s_{35} s_{24}}+\frac{n_{14} c_{14}}{s_{14} s_{35}}+\frac{n_{15} c_{15}}{s_{13} s_{45}}\right)
\end{aligned}
$$

$$
\mathcal{M}_{5}^{\text {tree }}=i\left(\frac{\kappa}{2}\right)^{3}\left(\frac{n_{1} \tilde{n}_{1}}{s_{12} s_{45}}+\frac{n_{2} \tilde{n}_{2}}{s_{23} s_{51}}+\frac{n_{3} \tilde{n}_{3}}{s_{34} s_{12}}+\frac{n_{4} \tilde{n}_{4}}{s_{45} s_{23}}+\frac{n_{5} \tilde{n}_{5}}{s_{51} s_{34}}+\frac{n_{6} \tilde{n}_{6}}{s_{14} s_{25}}\right.
$$

$$
+\frac{n_{7} \tilde{n}_{7}}{s_{32} s_{\sim}}+\frac{n_{8} \tilde{n}_{8}}{s_{25} s_{43}}+\frac{n_{9} \tilde{n}_{9}}{s_{13} s_{25}}+\frac{n_{10} \tilde{n}_{10}}{s_{42} s_{13}}+\frac{n_{11} \tilde{n}_{11}}{s_{51} s_{42}}+\frac{n_{12} \tilde{n}_{12}}{s_{12} s_{35}}
$$

$$
\left.+\frac{n_{13} \tilde{n}_{13}}{s_{35} s_{24}}+\frac{n_{14} \tilde{n}_{14}}{s_{14} s_{35}}+\frac{n_{15} \tilde{n}_{15}}{s_{13} s_{45}}\right)
$$

- At n points $\mathcal{A}_{n}^{\text {tree }}(1,2,3, \ldots, n)=g^{n-2} \sum_{i} \frac{n_{i} c_{i}}{\left(\prod_{j} p_{j}^{2}\right)_{i}}$

$$
\mathcal{M}_{n}^{\text {tree }}(1,2,3, \ldots, n)=i\left(\frac{\kappa}{2}\right)^{n-2} \sum_{i} \frac{n_{i} \tilde{n}_{i}}{\left(\prod_{j} p_{j}^{2}\right)_{i}}
$$

Checked trough 8 points!

Outlook - beyond on-shell \& tree-level ?

- Generalization to loop-level kinematic Jacobi-like identity ?
- Find special gauge where Feynman rules manifestly obeys the identity - if no such gauge, find rules for generating the numerators
- Very simple Gravity Feynman rules in sight ? Gravity Feynman rules $=(\text { gauge theory Feynman rules })^{2}$
- Lagrangian understanding highly desirable - to connect to standard language, and for possible off-shell and non-perturbative physics
- Might finally clarify the KLT relations in terms of Lagrangians

Summary

- Studying simple theories, $\mathcal{N}=4$ SYM etc., will increase our understanding of QFT and QCD - since one can probe much deeper
- High loop orders (or high n) often necessary for finding new structure
- Dual conformal symmetry (found at 3-4 loops) and the new Jacobi-like identity for gauge theory tree diagrams (found at 4-loops)
- The Jacobi-like identity imply new relations for gauge invariant partial tree amplitudes (QCD) - proof of validity
- Combine with KLT to uncover a new local, manifestly crossing (Bose) symmetric and beautiful "squaring" relationship between gravity and gauge theories - hints that uncovered structure is important

