# $\mathcal{N}$ = 4 SYM and new insights into QCD tree-level amplitudes



N = 4 SUSY and QCD workshop LPTHE, Jussieu, Paris Dec 12, 2008

Henrik Johansson, UCLA

Bern, Carrasco, HJ, Kosower arXiv:0705.1864 [hep-th]

Bern, Carrasco, HJ arXiv:0805.3993 [hep-ph]

Bern, Carrasco, Dixon, HJ, Kosower, Roiban hep-th/0702112

# Outline

- Motivation & Introduction
- Calculating high loop order amplitudes in *N* = 4 SYM
  - Unitarity & Maximal cuts
  - Dual conformal integrals & 5-loop planar N=4

- Hidden relations in *N* = 4 SYM cuts
- A surprising new identity at tree level (QCD)
  - New relations between partial amplitudes
  - Beautiful map to gravity amplitudes (~KLT)
- Outlook & Summary

### Motivation - simplicity in amplitudes

- Physical theories gravity and gauge theories have surprisingly simple on-shell scattering amplitudes
- Feynman rules are much more complex
- Even QCD & QED have simpler structure than the Feynman rules suggest - in particular at tree-level and one loop

see Vanhove's talk

- Adding SUSY increases complexity of Lagrangian & Feynman rules yet scattering amplitudes becomes simpler
- Maximal susy  $\mathcal{N} = 4$  SYM perhaps solvable (in 't Hooft limit) ?
- Studying simpler theories will teach us how to 'solve' QCD (better understand)

# $\mathcal{N}$ = 4 SYM & pure QCD

$${\cal L}_{
m YM}=-rac{1}{4g^2}F^a_{\mu
u}F^{a\ \mu
u}$$

Particles in adjoint group  $SU(N_c)$ 





- $\mathcal{N} = 4$  maximal susy extension to QCD
- QCD classically scale-invariant
- $\mathcal{N} = 4$  quantum scale-invariant  $\beta = 0$
- Solution N = 4 has remarkably simple on-shell amplitudes
- At tree level  $QCD \subset \mathcal{N} = 4$
- QCD loop amplitudes more complex
   but contains pieces that can be attributed to N = 4



# Unitarity

**Optical theorem:** 

 $1 = S^{\dagger}S = (1 - iT^{\dagger})(1 + iT)$   $2 \operatorname{Im} T = T^{\dagger}T$ see Kosower's talk  $2 \operatorname{Im} = \int_{d \operatorname{LIPS}} \bigvee_{\text{on-shell}}$ 

Cutting rules by Cutkosky



Unitarity method reverses "cutting" avoiding dispersion relations and Kosower (1994)

⇒ efficient perturbative quantization of gauge and gravity theories

# **Unitarity Method**

optical theorem

# unitarity method

Bern, Dixon, Dunbar and Kosower (1994)



#### generalized unitarity

Bern, Dixon and Kosower



#### on-shell 3-vertex

#### quadruple cut (leading singularity)

Britto, Cachazo, Feng; Buchbinder, Cachazo (2004)

Cachazo and Skinner Cachazo, Spradlin, Volovich (2008)



#### maximal cut

Bern, Carrasco, HJ and Kosower (2007)



6

Paris Dec 12 Henrik Johansson

T I M E

#### Maximal cuts - a systematic approach for any theory

Bern, Carrasco, HJ and Kosower (2007)

• put maximum number of propagator on-shell → simplifies calculation



• systematically release cut conditions → great control of missing terms



Reconstructs the amplitude piece-by-piece (or term-by-term)

#### Maximal cuts - details





Paris Dec 12 Henrik Johansson

## One-loop example

A well-known example of the maximal-cut strategy is modern one-loop calculations:

One loop Integral basis well known:

see Vanhove's talk



Having an integral basis is not necessary - but convenient

# **Dual Conformal Integrals**



Drummond, Henn, Smirnov, Sokatchev Bern, Czakon, Dixon, Kosower, Smirnov



- Planar  $\mathcal{N} = 4$  SYM has a dual conformal symmetry
- In d ≠ 4 integrals are pseudo-conformal
- At 4pt contributing integrals enter with ±1 coefficients
- Conformal integrals makes cut calculations very easy

### 1 through 4 loops

see Kosower's talk

One-, two- and three-loop integrals:









Green, Schwarz, Brink (1982)

Bern, Dixon, Dunbar, Perelstein and Rozowsky (1998)

Dual conformal symmetry discovered



Paris Dec 12 Henrik Johansson

11

# 5 loops

6,

 $(I_{10})$ 

 $(I_{14})$ 

 $(I_{18})$ 

 $(I_{22})$ 

5



Bern, Carrasco, HJ, Kosower (2007)













59 integrals; 34 contributing Integrating them remains a challenge

## Full 3-loop $\mathcal{N}=4$ amplitude



Non-planar  $\mathcal{N}=4$  more complicated

No established guiding principle for writing down integrals

Heuristic rules for some pieces are known: rung rule, etc.

Again integration is challenging

To learn more we may need to push to higher loops since structure not always apparent at low orders

 $s_{ij} = (k_i + k_j)^2 \ au_{ij} = 2k_i \cdot l_j$ 

Bern, Carrasco, Dixon, HJ, Kosower, Roiban, Bern, Carrasco, Dixon, HJ, Roiban

Paris Dec 12 Henrik Johansson

### A Hidden Structure Disclosed at 4-Loops

Studying near-maximal cut at 4-loops reveals that the diagrams (numerators) entering the cut are not independent



In fact it is the 4pt tree amplitude that have new structure  $\rightarrow$  insight into QCD

# Gauge theory at tree-level (QCD)

### Y-M Color decomposition

• Modern decomposition

$$\mathcal{A}_n^{\text{tree}}(1,2,\ldots,n) = g^{n-2} \sum_{\mathcal{P}(2,\ldots,n)} \text{Tr}[T^{a_1}T^{a_2}\cdots T^{a_n}] A_n^{\text{tree}}(1,2,\ldots,n)$$

• Alternative decomposition, 4pt example

$$\mathcal{A}_4^{ ext{tree}}(1,2,3,4) = g^2 \Big(rac{n_s c_s}{s} + rac{n_t c_t}{t} + rac{n_u c_u}{u}\Big)$$

#### • Map

$$egin{array}{ll} \widetilde{f}^{abc} \equiv i\sqrt{2}f^{abc} = \operatorname{Tr}([T^a,T^b]T^c) & ext{color structures} \ A^{ ext{tree}}_4(1,2,3,4) \equiv rac{n_s}{s} + rac{n_t}{t}, \ A^{ ext{tree}}_4(1,3,4,2) \equiv -rac{n_u}{u} - rac{n_s}{s} & ext{kinematic structures} \ A^{ ext{tree}}_4(1,4,2,3) \equiv -rac{n_t}{t} + rac{n_u}{u} & ext{inematic structures} \end{array}$$

color factors  

$$c_u \equiv \tilde{f}^{a_4 a_2 b} \tilde{f}^{b a_3 a_1}$$
  
 $c_s \equiv \tilde{f}^{a_1 a_2 b} \tilde{f}^{b a_3 a_4}$   
 $c_t \equiv \tilde{f}^{a_2 a_3 b} \tilde{f}^{b a_4 a_1}$   
kinematic numerators  
 $n_s, n_t, n_u$   
absorbs 4-pt contact terms  
– but gauge dependent!

### A Jacobi-like 4pt identity

$$\mathcal{A}_4^{ ext{tree}}(1,2,3,4) = g^2 \Big( rac{n_s c_s}{s} + rac{n_t c_t}{t} + rac{n_u c_u}{u} \Big)$$

• Jacobi identity for color

$$c_u = c_s - c_t$$

• And a Jacobi identity for kinematics



Kinematic numerators gauge dependent - but 4pt identity is gauge invariant

$$-n'_s+n'_t+n'_u=-n_s+n_t+n_u-lpha(k_i,arepsilon_i)(s+t+u)=0$$
 auge parameter  $\sim$  gauge parameter

Paris Dec 12 Henrik Johansson

 $egin{aligned} \mathbf{color factors} \ c_u &\equiv \widetilde{f}^{a_4 a_2 b} \widetilde{f}^{b a_3 a_1} \ c_s &\equiv \widetilde{f}^{a_1 a_2 b} \widetilde{f}^{b a_3 a_4} \ c_t &\equiv \widetilde{f}^{a_2 a_3 b} \widetilde{f}^{b a_4 a_1} \end{aligned}$ 

#### Similar identity at higher points



• Equivalent to partial amplitudes

$$A_5^{\rm tree}(1,2,3,4,5) \equiv \frac{n_1}{s_{12}s_{45}} + \frac{n_2}{s_{23}s_{51}} + \frac{n_3}{s_{34}s_{12}} + \frac{n_4}{s_{45}s_{23}} + \frac{n_5}{s_{51}s_{34}} \qquad {\rm etc...}$$

• Kinematic Jacobi identity holds...



...but is no longer gauge invariant!

Paris Dec 12 Henrik Johansson

#### not gauge invariant...yet physical

- In a general theory we can solve the 15  $n_i$ 's at 5 pts
  - 9 independent kinematic Jacobi identities
  - plus 2 constraints:

$$n_{5} \equiv s_{51}s_{34} \left( A_{5}^{\text{tree}}(1,2,3,4,5) - \frac{n_{1}}{s_{12}s_{45}} - \frac{n_{2}}{s_{23}s_{51}} - \frac{n_{3}}{s_{34}s_{12}} - \frac{n_{4}}{s_{45}s_{23}} \right)$$

$$n_{6} \equiv s_{14}s_{25} \left( A_{5}^{\text{tree}}(1,4,3,2,5) - \frac{n_{5}}{s_{43}s_{51}} - \frac{n_{7}}{s_{32}s_{14}} - \frac{n_{8}}{s_{25}s_{43}} - \frac{n_{2}}{s_{51}s_{32}} \right)$$

$$\bullet \Rightarrow \textbf{4} \text{ undetermined } n_{i}' \textbf{s} \quad (\textbf{pure gauge transformations})$$

$$A_{5}^{\text{tree}}(1,3,4,2,5) = \frac{-s_{12}s_{45}A_{5}^{\text{tree}}(1,2,3,4,5) + s_{14}(s_{24}+s_{25})A_{5}^{\text{tree}}(1,4,3,2,5)}{s_{13}s_{24}}$$

$$etc...$$

$$A_{5}^{\text{tree}}(1,2,4,3,5) = \frac{-s_{14}s_{25}A_{5}^{\text{tree}}(1,4,3,2,5) + s_{45}(s_{12}+s_{24})A_{5}^{\text{tree}}(1,2,3,4,5)}{s_{24}s_{35}} \quad \text{etc...}$$

• Any 5pt tree is a linear combination of two basis amplitudes  $A_5(\ldots) = \alpha A_5(1,2,3,4,5) + \beta A_5(1,4,3,2,5)$ true for any external states and in D-dimensions

#### Tree level *n*-points – a conjecture

• A gauge theory tree amplitude can be expanded in purely cubic diagrams full amplitude  $\mathcal{A}_n^{ ext{tree}}(1,2,3,\ldots,n) = g^{n-2}\sum_i rac{n_i c_i}{(\prod_j p_j^2)_i}$ 

 $\begin{array}{ll} \text{partial amplitude } A_n^{\text{tree}}(1,2,3,\ldots,n) = \sum_j \frac{n_j}{(\prod_m p_m^2)_j} \\ \text{color factors} \qquad c_i = \widetilde{f}^{abc} \widetilde{f}^{cde} \ldots \widetilde{f}^{xyz} \end{array}$ 

• Jacobi identity true for both color and kinematics...

$$c_lpha = c_eta - c_\gamma ~~ \Leftrightarrow ~~ n_lpha = n_eta - n_\gamma$$

... as long as gauge invariance is enforced for (n - 3)! partial amplitudes

$$A_n^{ ext{tree}}(\mathcal{P}_i\{1,2,3,\dots,n\}) \,=\, \left[\sum_j rac{n_j}{(\prod_m p_m^2)_j}
ight]_i$$

Checked through 8 pts!

 $\Rightarrow$  only (n - 3)! linearly independent partial amplitudes - (down from (n - 2)! for the Kleiss-Kuijf relations)

### All-*n* formula – partial amplitude relations

#### • General relations for gauge theory partial amplitudes

$$A_n^{\text{tree}}(1, 2, \{\alpha\}, 3, \{\beta\}) = \sum_{\{\sigma\}_j \in \text{POP}(\{\alpha\}, \{\beta\})} A_n^{\text{tree}}(1, 2, 3, \{\sigma\}_j) \prod_{k=4}^m \frac{\mathcal{F}(3, \{\sigma\}_j, 1|k)}{s_{2,4,\dots,k}}$$
  
where

$$\{lpha\} \equiv \{4,5,\ldots,m-1,m\}, \qquad \{eta\} \equiv \{m+1,m+2,\ldots,n-1,n\}$$

and  

$$\mathcal{F}(3,\sigma_1,\sigma_2,\ldots,\sigma_{n-3},1|k) \equiv \mathcal{F}(\{\rho\}|k) = \begin{cases} \sum_{l=t_k}^{n-1} \mathcal{G}(k,\rho_l) & \text{if } t_{k-1} < t_k \\ -\sum_{l=1}^{t_k} \mathcal{G}(k,\rho_l) & \text{if } t_{k-1} > t_k \end{cases} + \begin{cases} s_{2,4,\ldots,k} & \text{if } t_{k-1} < t_k < t_{k+1} \\ -s_{2,4,\ldots,k} & \text{if } t_{k-1} > t_k > t_{k+1} \\ 0 & \text{else} \end{cases}$$

$$\mathcal{G}(i,j) = \begin{cases} s_{i,j} & \text{if } i < j \text{ or } j = 1, 3 \\ 0 & \text{else} \end{cases} \text{ and } t_k \text{ is the position of leg } k \text{ in the set } \{\rho\}$$

$$A_{n}(....) = \alpha_{1} A_{n}(1,2,..,n) + \alpha_{2} A_{n}(2,1,..,n) + ... + \alpha_{(n-3)!} A_{n}(3,2,..,n)$$
  
Very non-trivial statement !

### **Example relations**

**4 points:** 
$$A_4^{\text{tree}}(1, 2, \{4\}, 3) = \frac{A_4^{\text{tree}}(1, 2, 3, 4)s_{14}}{s_{24}}$$
  $s_{ij..} = (k_i + k_j + ...)^2$ 

#### 5 points:

$$egin{aligned} A_5^{ ext{tree}}(1,2,\{4\},3,\{5\}) &= rac{A_5^{ ext{tree}}(1,2,3,4,5)(s_{14}+s_{45})+A_5^{ ext{tree}}(1,2,3,5,4)s_{14}}{s_{24}}, \ &s_{24} \end{aligned}, \ &s_{24} \end{aligned}$$

#### Relations quite simple at low orders

(n-2)!-(n-3)!=(n-3)(n-3)! previously unknown relations

# Implications for gravity

### Kawai-Lewellen-Tye Relations

Originally string theory tree level identity: closed string ~ (left open string) × (right open string)

Field theory limit  $\Rightarrow$  gravity theory ~ (gauge theory) × (gauge theory)



gravity states are direct products of gauge theory states  $|1\rangle_{\text{grav}} = |1\rangle_{\text{gauge}} \otimes |1\rangle_{\text{gauge}}$ 

#### From Lagrangian point of view relations are very obscure

### New identity + KLT

Feeding the new identity 
$$n_u = n_s - n_t$$
  
through KLT  $M_4^{\text{tree}}(1,2,3,4) = -is_{12}A_4^{\text{tree}}(1,2,3,4) \widetilde{A}_4^{\text{tree}}(1,2,4)$   
gives  $-iM_4^{\text{tree}}(1,2,3,4) = \frac{n_s \widetilde{n}_s}{s} + \frac{n_t \widetilde{n}_t}{t} + \frac{n_u \widetilde{n}_u}{u}$ 

... a beautiful "numerator squaring" relationship

Compare to gauge theory...

$$rac{1}{g^2}\mathcal{A}_4^{ ext{tree}}(1,2,3,4) = rac{n_sc_s}{s} + rac{n_tc_t}{t} + rac{n_uc_u}{u}$$

Unlike KLT this "squaring" relationship is between local objects  $n_i$  and is manifestly crossing (Bose) symmetric



#### Holds at all-n tree level

true given that  $n_i$  and  $\tilde{n}_i$  satisfy At 5 points kinematic Jacobi identities  $\mathcal{A}_5^{ ext{tree}} = g^3 igg( rac{n_1 c_1}{s_{12} s_{45}} + rac{n_2 c_2}{s_{23} s_{51}} + rac{n_3 c_3}{s_{34} s_{12}} + rac{n_4 c_4}{s_{45} s_{23}} + rac{n_5 c_5}{s_{51} s_{34}} + rac{n_6 c_6}{s_{14} s_{25}} igg)$ gauge theory  $+\frac{n_7c_7}{s_{32}s_{14}}+\frac{n_8c_8}{s_{25}s_{43}}+\frac{n_9c_9}{s_{13}s_{25}}+\frac{n_{10}c_{10}}{s_{42}s_{13}}+\frac{n_{11}c_{11}}{s_{51}s_{42}}+\frac{n_{12}c_{12}}{s_{12}s_{35}}$ × color  $+ \, rac{n_{13} c_{13}}{s_{35} s_{24}} + rac{n_{14} c_{14}}{s_{14} s_{35}} + rac{n_{15} c_{15}}{s_{13} s_{45}} ig) \, ,$  $\mathcal{M}_5^{ ext{tree}} = \, i \left(rac{\kappa}{2}
ight)^3 \left(rac{n_1 \widetilde{n}_1}{s_{12} s_{45}} + rac{n_2 \widetilde{n}_2}{s_{23} s_{51}} + rac{n_3 \widetilde{n}_3}{s_{34} s_{12}} + rac{n_4 \widetilde{n}_4}{s_{45} s_{23}} + rac{n_5 \widetilde{n}_5}{s_{51} s_{34}} + rac{n_6 \widetilde{n}_6}{s_{14} s_{25}}$ gravity  $+\frac{n_7 \widetilde{n}_7}{s_{32} s_{14}}+\frac{n_8 \widetilde{n}_8}{s_{25} s_{43}}+\frac{n_9 \widetilde{n}_9}{s_{13} s_{25}}+\frac{n_{10} \widetilde{n}_{10}}{s_{42} s_{13}}+\frac{n_{11} \widetilde{n}_{11}}{s_{51} s_{42}}+\frac{n_{12} \widetilde{n}_{12}}{s_{12} s_{35}}$  $= \left( \right)^{2}$  $+ rac{n_{13}\widetilde{n}_{13}}{\widetilde{n}_{13}} + rac{n_{14}\widetilde{n}_{14}}{\widetilde{n}_{14}} + rac{n_{15}\widetilde{n}_{15}}{\widetilde{n}_{15}} \Big) \, ,$  $s_{35}s_{24}$   $s_{14}s_{35}$   $s_{13}s_{4}$ • At n points  $\mathcal{A}_n^{\text{tree}}(1,2,3,\ldots,n) = g^{n-2} \sum_i \frac{n_i c_i}{(\prod_i p_i^2)_i}$ Checked trough 8 points !  $\mathcal{M}_n^{ ext{tree}}(1,2,3,\ldots,n) = i \left(rac{\kappa}{2}
ight)^{n-2} \sum_i rac{n_i \widetilde{n}_i}{(\prod_i p_i^2)_i}$ 

### Outlook - beyond on-shell & tree-level ?

- Generalization to loop-level kinematic Jacobi-like identity ?
- Find special gauge where Feynman rules manifestly obeys the identity if no such gauge, find rules for generating the numerators
- Very simple Gravity Feynman rules in sight ?
  Gravity Feynman rules = (gauge theory Feynman rules)<sup>2</sup>
- Lagrangian understanding highly desirable to connect to standard language, and for possible off-shell and non-perturbative physics
- Might finally clarify the KLT relations in terms of Lagrangians

### Summary

- Studying simple theories, N=4 SYM etc., will increase our understanding of QFT and QCD - since one can probe much deeper
- High loop orders (or high n) often necessary for finding new structure
- Dual conformal symmetry (found at 3-4 loops) and the new Jacobi-like identity for gauge theory tree diagrams (found at 4-loops)
- The Jacobi-like identity imply new relations for gauge invariant partial tree amplitudes (QCD) proof of validity
- Combine with KLT to uncover a new local, manifestly crossing (Bose) symmetric and beautiful "squaring" relationship between gravity and gauge theories hints that uncovered structure is important