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Abstract

We write the discrete Painlev�e I equation as a polynomial map in projective space and follow the development of the singularity and

the fate of the other initial value. Most of the time the initial value is at the next to leading term and we can recover it (and con®ne the

singularity) at the �3m� 1�th iteration by imposing a condition on the de-autonomization. For m � 1 one gets the usual d-PI . Ó 1999
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The integrability of a dynamical system is a strong property with many implications on its evolution,
including regularity and long time predictability. When one is faced with a new dynamical system it is
therefore of interest to ®nd out whether the system is integrable or not. First indications can be obtained
numerically, but usually such indications are negative: the only thing one can say that is if one can see
numerical chaos the system is probably not integrable. It is in fact a demanding task to actually prove that a
system is integrable, so much so that before starting the job one would like to have some hint that the
system might be integrable.

For continuous systems there is the ``Painlev�e test'' [1], which is algorithmic and very accurate (although
known to fail in some cases). For discrete systems an analogous test was proposed in [2] and it has since
then been used productively to identify integrable maps (see, e.g, [3]). In this singularity con®nement test one
again analyses behavior around a movable singularity of the map. But what is a singularity in this case? As
has been stressed by Kruskal in many occasions, in®nity itself is not a singularity (and this will be obvious if
one uses projective variables, as will be done below). The singularities one is faced with in discrete systems,
are ambiguous quantities like1ÿ1, 0 � 1. If the map in question leads to such an ambiguity, one should
next study the behavior around the singularity, and if the map can be continued in a way which allows one
to exit from the singularity, after a ®nite number of steps and without loss of information, then the system is
said to pass the test.

Here we will show that for d-PI type equations one can control when one exits the singularity by the type
of nonautonomity. However, it turns out that if the nonautonomity does not allow the exit at the ®rst
opportunity then the map is not integrable, although it passes the test.

(After this conference we have studied the problem further and we have found an example which is
autonomous and passes the test, but nevertheless shows numerical chaos [4]).
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Let us consider a discrete version of Painlev�e's ®rst equation, the d-PI [3]. One version is

xn�1 � xn � xnÿ1 � an

xn
� b: �1�

Question: For which function(s) an does the equation pass the singularity con®nement test?
In order to answer this question we ®rst write the system as a polynomial map in the projective space P3.

We start by writing (1) as a ®rst order system

xn�1 � ÿxn ÿ yn � an

xn
� b;

yn�1 � xn;
�2�

and then homogenizing by substituting xn � un=fn; yn � vn=fn (and using the least common multiplier of the
denominators of the right-hand side for de®ning the map for f) we get the polynomial map

un�1 � ÿun�un � vn� � fn�anfn � bun�;
vn�1 � u2

n;

fn�1 � fnun:

�3�

The inverse map is

unÿ1 � v2
n;

vnÿ1 � ÿvn�vn � un� � fn�anÿ1fn � bvn�;
fnÿ1 � fnvn:

�4�

For the original map (1) the sequence that leads to a singularity is

xÿ1 � x; x0 � 0; x1 � 1; x2 � 1ÿ1 � ? �5�
where the initial value x is free. The corresponding sequence in projective space P3 is

0
x
1

0@ 1A! 1
0
0

0@ 1A! 1
ÿ1
0

0@ 1A! 0
1
0

0@ 1A! 0
0
0

0@ 1A; �6�

where the last term is a true singularity, since it is not in P3. Note that here an in®nite value of xn corre-
sponds to a zero in the third component of the vector. The ambiguity appears later in (6) than in (5), and
manifests itself by taking us outside P3.

To study in detail the character of the singularity let us start with xÿ1 � x; x0 � �, which means the initial
con®guration

u0

v0

f0

0@ 1A � �
x
1

0@ 1A:
During computations it is necessary to keep terms up to order �6 although we display only the leading term
or two.

u1

v1

f1

0@ 1A � a0 � �ÿx� b��� � � �
�2

�

0@ 1A
Note how the information about the initial value has already moved into the non-leading term.

u2

v2

f2

0@ 1A � ÿa2
0 � �a0�2xÿ b� � � � �

a2
0 � 2�a0�ÿx� b� � � � �
�a0 � �2�ÿx� b� � � � �

0@ 1A
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u3

v3

f3

0@ 1A � �2a2
0�ÿa0 � a1 � a2� � � � �

a4
0 � 2�a3

0�ÿ2x� b� � � �
ÿ�a3

0 � �2a2
0�3xÿ 2b� � � � �

0@ 1A:
Next we ®nally reach the potential singularity �0; 0; 0�:

u4

v4

f4

0@ 1A � �2a6
0A3 � �3a5

0�b�4A3 � a0 ÿ a2� ÿ x�6A3 � a0�� � � � �
�4a4

0A2
2 � � � �

ÿ�3a5
0A2 � � � �

0@ 1A; �7�

where we have used the shorthand notation A2 � a2 � a1 ÿ a0 and A3 � a0 ÿ a1 ÿ a2 � a3:
This is the crucial point of singularity con®nement. We can see from (7), that if A3 � 0; A2 6� 0 then �3 is

a common factor and can be divided out. Then we can take the �! 0 limit and get (after factoring out ÿa5
0)

u4

v4

f4

0@ 1A � �a0�xÿ b� � a2b�
0
a3

0@ 1A:
Thus we have emerged from the singularity and in particular recovered the initial data x. The condition
A3 � 0 means

an�3 ÿ an�2 ÿ an�1 � an � 0;

which has the solution

an � a� bn� c�ÿ1�n: �8�
However, it is not necessary that we exit from the singularity at the fourth iteration. If we assume that

A3 6� 0 we may still divide out �2a4
0 and iterate further. We get fairly complicated intermediate expressions

and then at the seventh iteration there is another possibility of con®ning the singularity, we get ®rst

u7

v7

f7

0@ 1A � �2A14
0 A2

2A6
3A6 � �3A13

0 A2A5
3�bM � xN � A6�. . .�� � � � �

�4A12
0 A4

2A4
3A2

5 � � � �
�3A13

0 A3
2A5

3A5 � � � �

0@ 1A;
where
M � ÿ4A2A2

3 � A2
2A5 ÿ A2

2A4 ÿ A2
2A3 � 2A1A2

3 � A1A2A3 � 2A0A2
3 � A0A2A3; N � A3�4A2A3 ÿ 2A0A3 ÿ A0A2�:

If now A6 � 0 we can divide out �3 and again con®ne the singularity. The condition is

A6 � a6 ÿ a5 ÿ a4 � a3 ÿ a2 ÿ a1 � a0 � 0; �9�
and it can be solved by assuming an � a0X n which leads to the characteristic equation

X 6 ÿ X 5 ÿ X 4 � X 3 ÿ X 2 ÿ X � 1 � 0:

Note that 1 is not a root of this equation.
This can be generalized, the singularity can be con®ned at any �3k � 1�th step, and the con®nement

condition leads to the characteristic equation

X 3k ÿ X 3kÿ1 ÿ X 3kÿ2 � � � � � X 3 ÿ X 2 ÿ X � 1 � 0:

Unfortunately it turns out that the non-autonomous systems that con®ne later are in fact not integrable.
For these systems the degree of the map grows exponentially (as opposed to polynomially with con®nement
at the ®rst possibility).

Notice also that the solution an of (9) cannot be considered as a discretization of continuous Painlev�e
equation, since it does not have a continuum limit.

If we analyze the degree growth and de®ne the ``algebraic entropy'' along the lines described in [4,5], we
get for the two ®rst solutions (8) and (9) the following sequences of degrees, respectively:
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r1 � 1; 2; 4; 8; 13; 20; 28; 38; 49; 62; 76; . . .

r2 � 1; 2; 4; 8; 14; 24; 40; 65; 104; 164; 258; 404; 632; 986; 1537; 2394; 3728; 5804; 9034; . . .

Sequence r1 corresponds to a polynomial growth of the degree: dn � 1
8
�6n2 � 9ÿ �ÿ1�n�, and vanishing

entropy (integrable case). On the contrary, sequence r2 has a generating functional

1� 2z3 � 2z6

1ÿ z� � 1ÿ zÿ z2 � z3 ÿ z4 ÿ z5 � z6� � : �10�

It has non-vanishing entropy E � limn!1 1=n log�dn� � log�aÿ1�, where a is the root of the denominator of
(10) with the smallest modulus. [In this case we have, approximately, � � 0:44214 . . ., i.e.,
dn � �1:55603 . . .�n.]

Thus the singularity con®nement test does impose conditions on discrete maps, but these examples (and
further results in [4]) show that it is not restrictive enough. We propose the degree growth of the system as a
better indication of integrability: If the growth is polynomial then the system is likely to be integrable.
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