Digital UNIX

Assembly Language Programmer’s Guide

Order Number: AA-PS31D-TE

March 1996
Product Version: Digital UNIX Version 4.0 or higher

This manual describes the assembly language supported by the Digital
UNIX Alpha compiler system, its syntax rules, and how to write some
assembly programs.

Digital Equipment Corporation
Maynard, Massachusetts

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor
do the descriptions contained in this publication imply the granting of licenses to make, use,
or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sublicensor.

O Digital Equipment Corporation 1996. All rights reserved.

Portions of this document O MIPS Computer Systems, Inc., 1990.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1, Alpha AXP, AlphaGeneration, AlphaServer, AlphaStation, AXP, Bookreader,
CDA, DDIS, DEC, DEC Ada, DEC Fortran, DEC FUSE, DECnet, DECstation, DECsystem,
DECterm, DECUS, DECwindows, DTIF, MASSBUS, MicroVAX, OpenVMS,

POLY CENTER, Q-bus, StorageWorks, TruCluster, TURBOchannel, ULTRIX, ULTRIX Mail
Connection, ULTRIX Worksystem Software, UNIBUS, VAX, VAXstation, VMS, XUI, and
the DIGITAL logo.

UNIX is aregistered trademark in the United States and other countries licensed exclusively
through X/Open Company Ltd.

All other trademarks and registered trademarks are the property of their respective holders.

About This Manual

U T [T o PN
New and Changed FEaIUrES cooiiiiiiiiiiiee e
OFQaniZaLION ...eevueie ettt e e et et e e e e e e e e e eeee
Related DOCUMENTS iiiiiiecii e e e e e e e e e eaens
Reader’ S COMMENES ...ciiiii e e e e e e e e e eaens
(0010177 01110 1S

1 Architecture-Based Considerations

L1 REJISIEIS oottt
111 Integer Registerscoovvvviivieeneenns
1.1.2 Floating-Point Registers —..............

1.2 Bitand Byte Orderingcccccceceenieenenns

1.3 AdAresSiNg coooeeovereeiiiiiiiiieeeeceeii e
1.3.1 Aligned Data Operations
1.3.2 Unaligned Data Operations —...........

14 EXCEPLONS oovviiiieiiiiiiiii e
141 Main Processor Exceptions —...........

1.4.2 Floating-Point Processor Exceptions

Contents

Xiii
Xiv
Xiv
XV
XV

XVi

11
11
1-2
12
14
14
14
15

15
15

2 Lexical Conventions

2.1 Blank and Tab CharaCtersooooovieiiiiiiieiieiiiii e 2-1
2.2 COMMENES oottt ettt e et e e e e e e e e eaan s 2-1
2.3 1AENIIErS oo 2-1
24 CONSANES ooeeieiiie e 2-2
241 Scalar CONSLANLS ..cccevvveiiiieeeeiiiiin e e et e e e eeees 2-2
2.4.2 Foating-Point CoNStantS cccvvieveiiiieeeiiiee e e 2-2
24.3 StNG CONSANS .ovuuieiiiieiiee e e e 2-3
25 Multiple Lines Per Physical Lineccoocvvviiiieiiiiieeiiec e, 2-5
2.6 SAEMENIS oo 2-5
2.6.1 LaDES 2-5
2.6.2 NUll SIAEMENES ... 26
2.6.3 Keyword Statements coveveviiiiiiie e 2-6
2.6.4 Reocation Operandsoccoeviiieiiiii i 2-6
2.7 EXPrESSIONS oouiiiiiiiiciiii e e e 2-8
2.7.1 EXpression OPEratorS ccceeeveveeviviiieeeiiieeieiiieeeseieeeeennnnns 2-9
2.7.2 Expression Operator Precedence Rules cccoeevvvveevennnnnn. 2-9
2.7.3 Da@TYPES coriiiiiiiiiieiiie et 2-10
2.7.4 Type Propagation in EXPressions ccoovevevveieeviinieeeennnnnn. 2-11
2.8 AdAressS FOMMELS .ooovviniieiiiiiiiie et 2-12

3 Main Instruction Set

3.1 Load and Store INSITUCLIONS ...vueeeeeiieiiiiie e 32
311 Load Instruction DesCriptionsccooveevvviiiiieeiiiiiiiinneeeeens 33
3.1.2 Store Instruction DesCriptions cceeviveiiiiiiieeiiiieeeeiiieeens 3-8

3.2 Arthmetic INSIrUCLIONS ...cooviiiiiiie e 39

3.3 Logical and Shift INSIrUCtIONS uveviiiiiciic e, 3-17

34 Relational INSITUCLIONS ...ooovviiiiieee e 3-20

iv Contents

35
3.6
3.7
3.8

4.1

4.2
43
44
45
4.6
4.7

6.1
6.2
6.3

MOVE INSIFUCTIONS .ot 322
Control INSIIUCLIONS ... 3-23
Byte-Manipulation INStruCtionS oveiiiiiieeiii e 3-26
Special-Purpose INSITUCHIONS eciiieeii e 331
Floating-Point Instruction Set
Background Information on Floating-Point Operations —................... 4-2
411 Foating-Point Data TYPES ..uveveeiieieeiiie e 4-2
4.1.2 Foating-Point Control Register —.......ccooovviiiiiiiiieeeeee, 4-3
4.1.3 Floating-Point EXCEPLIONS oeieviieiiiiieee e, 4-5
414 Floating-Point Rounding Modes cooiiiieiiiiiiiiiineeeeens 4-5
415 Foating-Point Instruction Qualifiersccceeiiiviiieenennn. 47
Floating-Point Load and Store Instructions ccoeiveiiiiieneennnnn. 4-9
Floating-Point Arithmetic Instructionscccooiviviineiiiiieeenn. 4-10
Floating-Point Relational INStructions ccoeoiviviiiiieiiiieeeeeenn, 4-14
Floating-Point Move INStruCtions ooovviieeiiieeeee e 4-15
Floating-Point Control INStructions covvvveiiiiiiiie e 4-17
Floating-Point Special-Purpose Instructions —ccoooveviiiiieneennnnn. 4-17
Assembler Directives
Programming Considerations
Caling CoONVENLIONS ...ceeieiie e 6-1
Program Model ... 62
General Coding CONCEINS ...cveveiiiiiiiieeeeie e e e e e e 62
6.3.1 REQISEr USE ..o 6-3
6.3.2 Using Directives to Control Sections and Location Counters . 64
6.33 TheStack Frame ... 66
6.3.4 EXAMPIES oo 6-10

Contents v

6.4

6.5

7.1
7.2

7.3

7.4
7.5
7.6

8.1
8.2

Developing Code for Procedure Calls — ...oooeveiieiiiiiieeieceeeeeee 6-13
6.4.1 Calling aHigh-Level Language Procedure ccceveneeee. 6-14
6.4.2 Calling an Assembly-Language Procedurecccceeeeee 6-15

Memory ATOCELION eeee e 6-17
Object Files

Object File OVEIVIBW ..o 7-1
Object File SECHIONS ..eeeeiieee e -4
721 FileHeader ... -4
7.22 Optional Header ... 7-5
7.23 SeCtioN HEAdEIS ...eeiiiii e -7
724 SECHON DEA ..ooveeeiieieii e 7-10
7.25 Section Relocation Information ccooeiviiiiiiiiiii 7-12
7.25.1 Relocation Table Entry ..o, 7-12
7.25.2 Assembler and Linker Processing of Relocation
= 7-15
Object-File Formats (OMAGIC, NMAGIC, ZMAGIC) ..cccceeeeennnn. 7-20
7.3.1 Impure Format (OMAGIC) Files ...ccooviiiiiiiiiiiei e 7-21
7.3.2 Shared Text (NMAGIC) Files ..o 7-22
7.3.3 Demand Paged (ZMAGIC) Files ... 7-24
7.34 Ucode ODJECES ..ieeieieee e 7-26
Loading Object FileS ... 7-26
ArChiVE FIlES e 27
Linker Defined SymbolS ooiiiii e 727
Symbol Table

Symbol Table OVerview ..o 8-1
Format of Symbol Table Entriesoovviiiiiieiiiiiiiece e, 88
8.21 Symbolic Headerooiiiiiiiiiiii 88

vi Contents

822 LineNumber Table .o 89

8.2.3 Procedure Descriptor Table oooviiviiiiie e 8-13
8.24 Loca Symbol Table ... 8-14

8.24.1 Symbol Type (st) Constants ccooevvevieeeiiineenennn. 8-16

8.24.2 Storage Class (sC) ConstantS c.eveveeenneeeeinneenennn. 8-17
8.25 Auxiliary Symbol Tableccoooiiiiiiii 8-18
8.2.6 File Descriptor Tableooooviiiiiie e 8-21
8.2.7 Externa Symbol Tablecccooiiiiiiii 8-22

Program Loading and Dynamic Linking

Object File ConSiderationS cooeeuiiiiiiiieeei e 91
911 SIUCIUIES oo 9-1
9.1.2 Base ACAIESSES ...cciiiiiiiiie e 9-2
9.1.3 Segment AcCCess PErMISSIONS c.uveveiinniiiiiiieeeeii e eeaiees 9-2
9.1.4 Segment COMENES ...oiieiiiiii e 92
Program Loading ..oeeeenieieiii e 9-3
DynamicC LinKiNG ..ooeeenieieiie e e 94
9.31 DynamiCc Loaderoooiiiiiiiiiieii e 94
9.3.2 Dynamic Section (.dynamiC) coeeveeiiiiiiiiiieeiiieeeeieees 95

9.3.21 Shared Object Dependencies ccoeveevveveeiiieenennn. 9-12
9.3.3 Global Offset Table (.gOot) ..ooevvvviiiieeeiee e 9-13

9.3.3.1 Resolving Calls to Position-Independent Functions ... 9-15
9.3.4 Dynamic Symbol Section (.dynsym) —......cccooeeeiiiiiiiiiiieenennns 9-16
9.3.5 Dynamic Relocation Section (.rel.dyn)ocovviiiiiiiieiinnnns 9-19
9.3.6 Msym Section (MSYM) ...oooiiiiiiiiie e 920
9.3.7 Hash Table Section (.hash)oeeiiiiiii s 9-21
9.3.8 Dynamic String Section (.dynstr) cooeviiiiiieiiiii e 9-22
9.3.9 Initidization and Termination FUNCtiONS c.oviiieeennnnns 9-22
9.3.10 QUICKSIAIT ..eeeeeeiieeiie e 9-22

9.3.10.1 Shared Object List (.liblist)coooeeveiiiiiiieeiiiiiiien, 9-23

9.3.10.2 Conflict Section (.conflict) —.........ccovvrriiiiiiiiiiiiinnn. 924

9.3.10.3 Ordering of SECtIONS cevvvvviiiiiieeieeii e 924

Contents vii

A Instruction Summaries

B 32-Bit Considerations

B.1 Canonical FOM ..o
B.2 Longword INSLIUCLIONS ccveviiciiii e
B.3 Quadword Instructions for Longword Operationsc.cceeeeeeen.
B.4 Logica Shift INSIrUCtioNS coovviiiei e,
B.5 Conversionsto QUadwordcooveiiiiiiiiieiiiieie e
B.6 Conversionsto LONgWOrdcooviieiiiiiieiiiie e

C Basic Machine Definition

C.1 Implicit Register Use
C.2 Addressesocooeeevviiiiiiiiiiiinnn,
C.3 Immediate Values
C.4 Load and Store Instructions

C.5 Integer Arithmetic Instructions

C.6 Floating-Point Load Immediate InsStructions cccoeevvviveeennnnnn.

C.7 One-to-One Instruction Mappings

D PALcode Instruction Summ

aries

D.1 Unprivileged PALcode INStructions cccoevevviiiiieeiiieeeeeeeeeeen,

D.2 Privileged PALcode Instructions

Index

viii Contents

B-1
B-1
B2
B-3
B-3
B-3

c-2
c-3
C-3
c-4
c-4
c-4

D-1
D-2

Examples

6-1:
6-2:
6-3:

Nonleaf Procedure oouuiiiiiiiiiiiiii e
Leaf Procedure Without Stack Space for Local Variables
Leaf Procedure With Stack Space for Local Variables

Figures

1-1:
4-1:
4-2:
6-1:
6-2:
6-3:
7-1:
7-2:
7-3:
7-4:
7-5:
7-6:
7-7.
8-1:
8-2:
8-3:

8-4:
8-5:

8-6:

BYte Ordering ..ooovvveiiiiie e
Floating-Point Data FOrmatS —.........ccccevviiiiiiiiiiece e,
Floating-Point Control Registercocveiiiiiiiiiiieei e,
Sections and Location Counters for Nonshared Object Files
Stack Organization oceeeieiecie e
Default Layout of Memory (User Program View)ccccoceevnenn...
Object File FOrmat ccoveiiiiiie e
Organization of Section Data cccevvvieiiiiiiieiii e
Relocation Table Entry for Undefined External Symbols
Relocation Table Entry for a Local Relocation Entry —...................
Layout of OMAGIC Filesin Virtual Memory —c.ccooviieiennnnnn..
Layout of NMAGIC Filesin Virtual Memory —ccooviieiinnnnnn..
Layout of ZMAGIC FIIES .oovviiiiiiii e,
Symbol Table OVErVIEW ...,
Functional Overview of the Symbolic Header ocoes

Logical Relationship Between the File Descriptor Table and Local

SYMDBOIS oo

Physical Relationship of a File Descriptor Entry to Other Tables
Logical Relationship Between the File Descriptor Table and Other

TADIES o
Layout of Line Number ENtrieS ooovviiiiiiiiiiceie e

Contents ix

8-7
9-1:
9-2:
9-3:

Layout of Extended Line Number Entries
Text and Data Segments of Object Files
Relationship Between .dynsym and .got

Hash Table Section ooovvvevinieiiiinenn,

Tables

2-1:
2-2:
2-3
2-4:
2-5:
31
3-2:
3-3
3-4.
35
3-6:
37
3-8
3-9:

3-10:
3-11:
3-12:
3-13:
3-14:
3-15:
3-16:

Backslash Conventions cccceeeee
Expression Operators —ccccoeveveennnnnn.
Operator Precedence cccoeevevveeeennnn.
DaAaTYPES .eieeieeiieeee e
Address FOrmats oooevvvvviiiiieeiiennnns
Load and Store Formats —cc......
Load Instruction Descriptions —...............
Store Instruction Descriptions —..............
Arithmetic Instruction Formats —.............
Arithmetic Instruction Descriptions
Logical and Shift Instruction Formats ...

Logical and Shift Instruction Descriptions

Relational Instruction Formats
Relational Instruction Descriptions —
Move Instruction Formats —..................
Move Instruction Descriptions —............
Control Instruction Formats —...............
Control Instruction Descriptions —.........

Byte-Manipulation Instruction Formats

Byte-Manipulation Instruction DesCriptions ccccvvviiiiieeeeennns

Special-Purpose Instruction Formats ...

x Contents

8-11

9-3
9-19
9-21

24
2-9
2-10
2-10
2-12
32

3-10
3-11
3-18
3-18
321
321
322
3-23
324
3-25
327
3-28
332

3-17: Specia-Purpose Instruction DesCriptions c.ccovveveviiieieiiiieeeeennnn.
4-1: Qualifier Combinations for Floating-Point Instructions
4-2: Load and Store Instruction FOrmats —ccocevviiiiieiiimriiiinneeeeeeennnnnn
4-3: Load and Store Instruction DeSCriptionS ovvveeiieriiinieeeeeeennenn.
4-4: Arithmetic INStruction FOrmMatSoviieeiiiiiiiii e,
4-5: Arithmetic Instruction DesCriptionS cccovvviiiiiieiiieiiiiee e,
4-6: Relational Instruction FOrmMatsSuoviieiiiiiiiiiiieeeeeeei e
4-7: Relational Instruction DESCriptioNS cccevvvriiiieeiieeiiiee e
4-8: Move INStruction FOrMBEES coovvveriiieeeeeeii e
4-9: Move Instruction DeSCriptionS cvvuiieeiiiiiiiii e
4-10: Control INStruction FOrMBELS —ccovvvuiiieiiiiiiii e
4-11: Control Instruction DesCriptionS covvviiiiiiiiieeeie e
4-12: Specia-Purpose Instruction FOrmats coocoiiiiiiiiiiiiiiiieeeees
4-13: Control Register Instruction DesCriptions ccooevvivveeeinieeeinnens
5-1: Summary of Assembler DireCtives oooviviiiiiiiieieee e
B-1: INteger REQISIEIS oooiiiiiiiii e
6-2: Floating-Point REJISIENS ...cooiiiiiiii e
6-3: Argument LOCALIONS coeeiieiiiiieeeeeeeii e e e et e e e e e eenes
7-1: File Header FOrmMat coooviiiiiiiiiiiiiii e
7-2: File Header Magic NUMbDEIS ...
7-3: File Header FIagsooviiiiiiiiiie e
7-4: Optional Header DefiNitioNS ccoovviiiiiiiieecieii e
7-5: Optional Header Magic NUMDEIS oooviiiiiiiiiiiiii e
7-6: Section Header FOrmat ovviiiiiiiiiiii e
7-7: Section Header Constants for Section Names —cccccvviiieeeinennns
7-8: Format of s flags Section Header Entry ..o
7-9: Format of a Relocation Table Entry oeiiiiiiiii e
7-10: Section Numbers for Local Relocation Entries —cccccceeiieeeennnns

6-10

Contents xi

7-11: RelOCAON TYPES i e e e 7-13

7-12: Literal USage TYPES covniiiiiiieeeie e e 7-15
7-13: Linker Defined SymbolS —ooiiiiii e 727
8-1: Format of the Symbolic Headercccooiieiiiiiiiiii e 88
8-2: Format of aLine Number Entry coooviiiiiiiiiiiiii e 89
8-3: Format of a Procedure Descriptor Table Entry cooeeveviiiiiiiiieeeeens 8-13
8-4: Format of aLocal Symbol Table Entry —coovviiiiiiiiiiiiiii e 8-14
8-5: Index and Value as a Function of Symbol Type and Storage Class 8-15
8-6: Symbol Type (St) CONSLANLS uvieeeieiriiie e 8-16
8-7: Storage Class CONSIANTS covvviiieiiiiiiiiee e 8-17
8-8: Auxiliary Symbol Table Entriesooiiiiiiiiiiieeeee e 8-18
8-9: Format of a Type Information Record Entry ooooiiiiiiiiiiinennnn. 8-19
8-10: Basic Type (bt) CONStANS oieeeeieieiii e 820
8-11: Type Quadlifier (tg) CoNStaNtS oeveveniiiiiie e 821
8-12: Format of File Descriptor ENtry ooovveiiiieiiiie e 8-21
8-13: External Symbol Table Entriesoovviiiiiiiiiiiieeeeee e 822
9-1: Segment ACCESS PEMISSIONS .ooeviieiiiiie e 92
9-2: Dynamic Array Tags (d_ta0) .oeeeenieeeeiieeeei e 96
9-3: Processor-Specific Dynamic Array Tags (d_tag) covvvvviiieeennnns 9-10
A-1: Main Instruction Set SUMMANY ...ooevviiiieeiiiii e A2
A-2: Floating-Point Instruction Set SUMMary ccoooevvveviiinieeeeeeennnnn. A—7
A-3: Rounding and Trapping MOOES ooviiiiiiiiiiieeeeeee e A-9
D-1: Unprivileged PALCOJE INSIrUCtIONS ...coovvviiiiieeiiieiii e D-1
D-2: Privileged PALCOdE INSIrUCLIONS oeeiiiiiiie e D-2

Xii Contents

About This Manual

This book describes the assembly language supported by the Digital UNIXO
compiler system, its syntax rules, and how to write some assembly programs.
For information about assembling and linking a program written in assembly
language, see the as(1) and | d(1) reference pages.

The assembler converts assembly language statements into machine code. In
most assembly languages, each instruction corresponds to a single machine
instruction; however, in the assembly language for the Digital UNIX
compiler system, some instructions correspond to multiple machine
instructions.

The assembler’s primary purpose is to produce object modules from the
assembly instructions generated by some high-level language compilers. As a
result, the assembler lacks many functions that are normally present in
assemblers designed to produce object modules from source programs coded
in assembly language. It aso includes some functions that are not found in
such assemblers because of special requirements associated with the high-
level language compilers.

Digital has changed the name of its UNIX operating system from DEC
OSF/1 to Digital UNIX. The new name reflects Digital’s commitment to
UNIX and its conformance to UNIX standards.

Audience

This manual assumes that you are an experienced assembly language
programmer.

It is recommended that you use the assembler only when you need to perform
programming tasks such as the following:

» Maximize the efficiency of aroutine — for example, alow-level 1/0O driver
— in away that might not be possible in C, Fortran-77, Pascal, or another
high-level language.

» Access machine functions unavailable from high-level languages or
satisfy special constraints such as restricted register usage.

» Change the operating system.
» Change the compiler system.

New and Changed Features

Many minor literary and technical changes have been made throughout this
manual for the Version 4.0 release of Digital UNIX. The mgor technical
changes to the manual are as follows:

» Chapter 2 — Added information on support for relocation operands. (See
Section 2.6.4.)

» Chapter 3 — Added information about the sext b and sext winstructions
(see Section 3.2) and the amask and i npl ver instructions (see Section

3.9).

» Chapter 5 — Added descriptions of the following directives. . 1it 4,

it8,

Organization

.arch,andt une.

This manual is organized as follows:

Chapter 1

Chapter 2
Chapter 3

Chapter 4
Chapter 5
Chapter 6

Chapter 7

Chapter 8

Chapter 9

Appendix A
Appendix B
Appendix C

Xxiv About This Manual

Describes the format for the general registers, the specia registers,
and the floating-point registers. It aso describes how addressing
works and the exceptions you might encounter with assembly
programs.

Describes the lexical conventions that the assembler follows.

Describes the main processor’ s instruction set, including notation, load
and store instructions, computational instructions, and jump and
branch instructions.

Describes the floating-point instruction set.
Describes the assembler directives.

Describes calling conventions for all supported high-level languages.
It also discusses memory allocation and register use.

Provides an overview of the components of the object file and
describes the headers and sections of the object file.

Describes the purpose of the symbol table and the format of entriesin
the table. This chapter also lists the symbol table routines that are
supplied.

Describes the object file structures that relate to program execution
and dynamic linking, and also describes how the processimage is
created from these files.

Summarizes all assembler instructions.
Describes issues relating to processing 32-bit data.

Describes instructions that generate more than one machine
instruction.

Appendix D Describes the PALcode (privileged architecture library code)
instructions required to support an Alpha system.

Related Documents

The following manuals provide additional information on many of the topics
addressed in this manual:

Programmer’s Guide

The Alpha Architecture Reference Manual, 2nd Edition (Butterworth-
Hinemann Press, | SBN:1-55558-145-5)

Calling Standard for Alpha Systems

The printed version of the Digital UNIX documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from Digital.) This color coding is
reinforced with the use of an icon on the spines of books. The following list
describes this convention:

Audience Icon Color Code
General users G Blue

System and network administrators S Red
Programmers P Purple
Device driver writers D Orange
Reference page users R Green

Some books in the documentation set help meet the needs of severa
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview, Glossary, and Master Index provides
information on all of the books in the Digital UNIX documentation set.

Reader's Comments

Digital welcomes any comments and suggestions you have on this and other
Digital UNIX manuals.

Y ou can send your comments in the following ways:
» Fax: 603-881-0120 Attn: UEG Publications, ZK03-3/Y 32

About This Manual xv

Internet electronic mail: r eaders_conment @k3. dec. com

A Reader’s Comment form is located on your system in the following
location:

/usr/ doc/ readers_conment . t xt
Mail:

Digital Equipment Corporation
UEG Publications Manager
ZKO03-3/Y 32

110 Spit Brook Road
Nashua, NH 03062-9987

A Reader’s Comment form is located in the back of each printed manual.
The form is postage paid if you mail it in the United States.

Please include the following information along with your comments:

The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

The section numbers and page numbers of the information on which you
are commenting.

The version of Digital UNIX that you are using.

If known, the type of processor that is running the Digital UNIX
software.

The Digital UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate Digital technical support office.
Information provided with the software media explains how to send problem
reports to Digital.

Conventions

file Italic (slanted) type indicates variable values and instruction
operands.

[1] In syntax definitions, brackets indicate items that are optional and

{1} braces indicate items that are required. Vertical bars separating

items inside brackets or braces indicate that you choose one item
from among those listed.

In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated one or more times.

xvi About This Manual

cat (1) A cross-reference to a reference page includes the appropriate
section number in parentheses. For example, cat (1) indicates
that you can find information on the cat command in Section 1
of the reference pages.

About This Manual xvii

Architecture-Based Considerations 1

This chapter describes programming considerations that are determined by
the Alpha system architecture. It addresses the following topics:

* Registers (Section 1.1)

» Bit and byte ordering (Section 1.2)
* Addressing (Section 1.3)

» Exceptions (Section 1.4)

1.1 Registers

111

This section discusses the registers that are available on Alpha systems and
describes how memory organization affects them. Refer to Section 6.3 for
information on register use and linkage.

Alpha systems have the following types of registers:

* Integer registers

* Floating-point registers

You must use integer registers where the assembly instructions expect integer

registers and floating-point registers where the assembly instructions expect
floating-point registers. If you confuse the two, the assembler issues an error

message.
The assembler reserves al register names (see Section 6.3.1). All register

names start with a dollar sign ($) and all alphabetic charactersin register
names are lowercase.

Integer Registers

Alpha systems have 32 integer registers, each of which is 64 bits wide.
Integer registers are sometimes referred to as general registersin other
system architectures.

The integer registers have the names $0 to $31.

By including the file r egdef . h (use#i ncl ude <al pha/regdef. h>)
in your assembly language program, you can use the software names of all of
the integer registers, except for $28, $29, and $30. The operating system

1.1.2

and the assembler use the integer registers $28, $29, and $30 for specific
pUrposes.

Note

If you need to use the registers reserved for the operating system
and the assembler, you must specify their alias namesin your
program, not their regular names. The alias names for $28,
$29, and $30 are $at , $gp, and $sp, respectively. To prevent
you from using these registers unknowingly and thereby
producing potentially unexpected results, the assembler issues
warning messages if you specify their regular names in your
program.

The $gp register (integer register $29) is available as a general
register on some non-Alpha compiler systems when the- G 0
compilation option is specified. It is not available as a general
register on Alpha systems under any circumstances.

Integer register $31 aways contains the value 0. All other integer registers
can be used interchangeably, except for integer register $30, which is
assumed to be the stack pointer by certain PALcode. See Table 6-1 for a
description of integer register assignments. See Appendix D and the Alpha
Architecture Handbook for information on PALcode (Privileged Architecture
Library code).

Floating-Point Registers

Alpha systems have 32 floating-point registers, each of which is 64 bits wide.
Each register can hold one single-precision (32-bit) value or one double-
precision (64-bit) value.

The floating-point registers have the names $f 0 to $f 31.

Floating-point register $f 31 always contains the value 0.0. All other
floating-point registers can be used interchangeably. See Table 6-2 for a
description of floating-point register assignments.

1.2 Bit and Byte Ordering

A system’s byte-ordering scheme, or endian scheme, affects memory
organization and defines the relationship between address and byte position
of datain memory:

» Big-endian systems store the sign bit in the lowest address byte.
» Little-endian systems store the sign bit in the highest address byte.

1-2 Architecture-Based Considerations

Figure 1-1: Byte Ordering

Quadword
Bit: 63..56 55..48 47..40 39..32 31..24 23..16 15..8 7..0
| byte 7 | byte 6 | byte 5 | byte 4 | byte 3 | byte 2 | byte 1 | byte 0 |

sign and most
significant bits

Longword
Bitt 31..24 23..16 15..8 7.0

| byte 3 | byte 2 | byte 1 | byte 0 |

sign and most
significant bits

Word
Bit: 15...8 7..0

| byte 1 | byte 0 |

sign and most
significant bits

most least
significant bit significant bit

ZK-0732U-R

Alpha systems use the little-endian scheme. Byte-ordering is as follows:

* The bytes of a quadword are numbered from 7 to 0. Byte 7 holds the
sign and most significant bits.

» The bytes of alongword are numbered from 3 to 0. Byte 3 holds the
sign and most significant bits.

* The bytes of aword are numbered from 1 to 0. Byte 1 holds the sign and
most significant bits.

The bits of each byte are numbered from 7 to O, using the format shown in
Figure 1-1. (Bit numbering is a software convention; no assembler
instructions depend on it.)

Architecture-Based Considerations 1-3

1.3 Addressing

13.1

1.3.2

This section describes the byte-addressing schemes for load and store
instructions. (Section 2.8 describes the formats in which you can specify
addresses.)

Aligned Data Operations

All Alpha systems use the following byte-addressing scheme for aligned
data:

» Accessto words requires aignment on byte boundaries that are evenly
divisible by two.

» Accessto longwords requires alignment on byte boundaries that are
evenly divisible by four.

» Accessto quadwords requires alignment on byte boundaries that are
evenly divisible by eight.

Any attempt to address a data item that does not have the proper alignment
causes an alignment exception.

The following instructions load or store aligned data:
* Load quadword (I dq)

e Store quadword (st q)

* Load longword (I dl)

» Storelongword (st 1)

e Load word (I dw)

» Storeword (st w)

* Load word unsigned (I dwu)

Unaligned Data Operations

The assembler’s unaligned load and store instructions operate on arbitrary
byte boundaries. They all generate multiple machine-code instructions. They
do not raise alignment exceptions.

The following instructions load and store unaligned data:
» Unaligned load quadword (ul dq)
» Unaligned store quadword (ust q)
e Unaligned load longword (ul dl)
» Unaligned store longword (ust |)

1-4 Architecture-Based Considerations

» Unaligned load word (ul dw)

* Unaligned store word (ust w)

» Unaligned load word unsigned (ul dwu)
* Load byte (I db)

» Store byte (st b)

* Load byte unsigned (I dbu)

1.4 Exceptions

The Alpha system detects some exceptions directly, and other exceptions are
signaled as aresult of specific tests that are inserted by the assembler.

The following sections describe exceptions that you may encounter during
the execution of assembly programs. Only those exceptions that occur most
frequently are described.

141

1.4.2

Main Processor Exceptions
The following exceptions are the most common to the main processor:

» Address error exceptions occur when an address is invalid for the
executing process or, in most instances, when a referenceis made to a
data item that is not properly aligned.

» Overflow exceptions occur when arithmetic operations compute signed
values and the destination lacks the precision to store the result.

» Bus exceptions occur when an address is invalid for the executing
process.

» Divide-by-zero exceptions occur when a divisor is zero.

Floating-Point Processor Exceptions
The following exceptions are the most common floating-point exceptions:
* Invalid operation exceptions include the following:

Magnitude subtraction of infinities, for example, (+) - (+c0).
Multiplication of O by o, with any signs.
Division of 0 by 0 or « by o, with any signs.

Conversion of a binary floating-point number to an integer format,
that is, only in those cases in which the conversion produces an
overflow or an operand value of infinity or NaN. (Thecvttq
instruction converts floating-point numbers to integer formats.)

Architecture-Based Considerations 1-5

— Comparison of predicates that have unordered operands and involve
Less Than or Less Than or Equal.

— Any operation on asignaling NaN. (See the introduction of Chapter
4 for a description of NaN symbols.)

» Divide-by-zero exceptions occur when a divisor is zero.

* Overflow exceptions occur when a rounded floating-point result exceeds
the destination format’s largest finite number.

* Underflow exceptions occur when a result has lost accuracy and aso
when a nonzero result is between +-2™" (plus or minus 2 to the
minimum expressible exponent).

* Inexact exceptions occur if the infinitely precise result differs from the
rounded result.

For additional information on floating-point exceptions, see Section 4.1.3.

1-6 Architecture-Based Considerations

Lexical Conventions 2

_This chapter describes lexical conventions associated with the following
items:

» Blank and tab characters (Section 2.1)

* Comments (Section 2.2)

* Identifiers (Section 2.3)

» Constants (Section 2.4)

» Physical lines (Section 2.5)

» Statements (Section 2.6)

» Expressions (Section 2.7)

* Address formats (Section 2.8)

2.1 Blank and Tab Characters

Y ou can use blank and tab characters anywhere between operators,
identifiers, and constants. Adjacent identifiers or constants that are not
otherwise separated must be separated by a blank or tab.

These characters can aso be used within character constants; however, they
are not allowed within operators and identifiers.

2.2 Comments

The number sign character (#) introduces a comment. Comments that start
with a number sign extend through the end of the line on which they appear.
You can also use C language notation (/ *. . . */) to delimit comments.

Do not start a comment with a number sign in column one; the assembler
uses cpp (the C language preprocessor) to preprocess assembler code and
cpp interprets number signs in the first column as preprocessor directives.

2.3 ldentifiers

An identifier consists of a case-sensitive sequence of aphanumeric characters
(A-Z, az, 0-9) and the following special characters:

e . (period)
* _ (underscore)
e $ (dollar sign)

Identifiers can be up to 31 characterslong, and the first character cannot be
numeric (0-9).

If an undefined identifier is referenced, the assembler assumes that the
identifier is an external symbol. The assembler treats the identifier like a
name specified by a. gl obl directive (see Chapter 5).

If the identifier is defined to the assembler and the identifier has not been
specified as global, the assembler assumes that the identifier is alocal
symbol.

2.4 Constants

241

24.2

The assembler supports the following constants:
e Scalar constants

* Floating-point constants

e String constants

Scalar Constants

The assembler interprets all scalar constants as twos complement numbers.
Scalar constants can be any of the digits 0123456789abcdef ABCDEF-.

Scalar constants can be either decimal, hexadecimal, or octal constants:

» Decimal constants consist of a sequence of decimal digits (0-9) without a
leading zero.

* Hexadecimal constants consist of the characters Ox (or 0X) followed by a
sequence of hexadecimal digits (0-9abcdef ABCDEF).

» Octa constants consist of aleading zero followed by a sequence of octal
digits (0-7).

Floating-Point Constants

Floating-point constants can appear only in floating-point directives (see
Chapter 5) and in the floating-point load immediate instructions (see
Section 4.2). Floating-point constants have the following format:

2-2 Lexical Conventions

2.4.3

+d1[. d2] [e| E+d3]

di
is written as a decimal integer and denotes the integral part of the
floating-point value.

dz
is written as a decimal integer and denotes the fractional part of the
floating-point value.

a3
is written as a decimal integer and denotes a power of 10.

The'‘+" symbol (plus sign) is optional.

For example, the number .02173 can be represented as follows:

21. 73E-3

The floating-point directives, such as. f | oat and . doubl e, may
optionally use hexadecimal floating-point constants instead of decimal

constants. A hexadecimal floating-point constant consists of the following
elements:

[+] -]10x[1] 0] . <hex- di gi t s>hOx<hex- di gi t s>

The assembler places the first set of hexadecimal digits (excluding the O or 1
preceding the decimal point) in the mantissa field of the floating-point format
without attempting to normalizeit. It stores the second set of hexadecimal
digits in the exponent field without biasing them. If the mantissa appears to
be denormalized, it checks to determine whether the exponent is appropriate.
Hexadecimal floating-point constants are useful for generating |EEE special
symbols and for writing hardware diagnostics.

For example, either of the following directives generates the single-precision
number 1.0:

.float 1.0e+0
.float Ox1.0hOx7f

The assembler uses normal (nearest) rounding mode to convert floating-point
constants.

String Constants

All characters except the newline character are allowed in string constants.
String constants begin and end with double quotation marks ().

The assembler observes most of the backslash conventions used by the C

Lexical Conventions 2—-3

language. Table 2-1 shows the assembler’s backslash conventions.

Table 2-1: Backslash Conventions

Convention

\a

\b

\f

\n

\r

\t

\v

\\

\

v
\nnn
\Xnn

Meaning

Alert (0x07)
Backspace (0x08)
Form feed (0xOc)
Newline (0x0a)
Carriage return (0x0d)
Horizontal tab (0x09)
Vertical feed (0xOb)
Backdlash (0x5c)
Quotation mark (0x22)
Single quote (0x27)
Character whose octal value is nnn (where n is 0-7)

Character whose hexadecimal value is nn (where n
is 0-9, af, or A-F)

Deviations from C conventions are as follows:

» The assembler does not recognize ‘‘\?".

» The assembler does not recognize the prefix ‘L'’ (wide character

constant).

* The assembler limits hexadecimal constants to two characters.

» The assembler allows the leading *‘x’’ character in a hexadecimal
constants to be either uppercase or lowercase; that is, both \xnn and
\Xnn are alowed.

For octal notation, the backslash conventions require three characters when
the next character could be confused with the octal number.

For hexadecimal notation, the backslash conventions require two characters
when the next character could be confused with the hexadecimal number.
Insert a 0 (zero) as the first character of the single-character hexadecimal
number when this condition occurs.

2—4 Lexical Conventions

2.5 Multiple Lines Per Physical Line

Y ou can include multiple statements on the same line by separating the
statements with semicolons. Note, however, that the assembler does not
recognize semicolons as separators when they follow comment symbols (# or
/*).

2.6 Statements

26.1

The assembler supports the following types of statements:
* Null statements
» Keyword statements

Each keyword statement can include an optional label, an operation code
(mnemonic or directive), and zero or more operands (with an optional
comment following the last operand on the statement):

[label:] opcode operand[; opcode operand, ...] [# comment]

Some keyword statements also support relocation operands (see Section
2.6.4).

Labels
Labels can consist of 1abel definitions or numeric values.

» A label definition consists of an identifier followed by a colon. (See
Section 2.3 for the rules governing identifiers.) Label definitions assign
the current value and type of the location counter to the name. An error
results when the name is already defined.

Label definitions always end with a colon. You can put alabel definition
on aline by itself.

* A numeric label is a single numeric value (1-255). Unlike label
definitions, the value of a numeric label can be applied to any number of
statements in a program. To reference a numeric label, put an f
(forward) or ab (backward) immediately after the referencing digit in an
instruction, for example, br 7f (which is aforward branch to numeric
label 7). The reference directs the assembler to look for the nearest
numeric label that corresponds to the specified number in the lexically
forward or backward direction.

Lexical Conventions 2-5

2.6.2

2.6.3

26.4

Null Statements

A null statement is an empty statement that the assembler ignores. Null
statements can have label definitions. For example, the following line has
three null statementsin it:

| abel :

Keyword Statements

A keyword statement contains a predefined keyword. The syntax for the rest
of the statement depends on the keyword. Keywords are either assembler
instructions (mnemonics) or directives.

Assembler instructions in the main instruction set and the floating-point
instruction set are described in Chapter 3 and Chapter 4, respectively.
Assembler directives are described in Chapter 5.

Relocation Operands
Relocation operands are generally useful in only two situations:

* In application programs in which the programmer needs precise control
over scheduling

* In source code written for compiler development

Some macro instructions (for example, | dgp) require special coordination
between the machine-code instructions and the relocation sequences given to
the linker. By using the macro instructions, the assembler programmer relies
on the assembler to generate the appropriate rel ocation sequences.

In some instances, the use of macro instructions may be undesirable. For
example, a compiler that supports the generation of assembly language files
may not want to defer instruction scheduling to the assembler. Such a
compiler will want to schedule some or al of the machine-code instructions.
To do this, the compiler must have a mechanism for emitting an object file's
relocation sequences without using macro instructions. The mechanism for
establishing these sequences is the relocation operand.

A relocation operand can be placed after the normal operand on an assembly
language statement:

opcode operand relocation_operand

The syntax of the r el ocat i on_oper and is as follows:
Irelocation_type! sequence _number

rel ocation_type
Any one of the following relocation types can be specified:

2—6 Lexical Conventions

literal
lituse_base
lituse_bytoff
lituse_jsr
gpdi sp
gpr el hi gh
gprell ow

The relocation types must be enclosed within a pair of exclamation
points (!) and are not case sensitive. See Table 7-11 for descriptions of
the different types of relocation operations.

sequence_numnber

The sequence number is a numeric constant with a value range of 1 to
2147483647. The constant can be base 8, 10, or 16. Bases other than
10 require a prefix (see Section 2.4.1).

The following examples contain rel ocation operands in the source code:

Example 1: Referencing multiple | i t use_base relocations

Equival ent C statenent:
synl += syn2 (Both external)

Assenbly statenents containing nmacro instructions
ldg $1, synl

ldg $2, syn?

addq $1, $2, $3

stqg $3, synl

Assenbly statenments containing nmachi ne-code instructions
requiring rel ocation operandss:

ldg $1, symi($gp)!literal!ll

ldg $2, synR($gp)!literal!2

ldg $3, syml($1)!lituse_base!l

ldg $4, syn2($1)!lituse_base!?2

addq $3, $4, $3

stq $3, synml($1)!lituse_base!l

The assembler stores the syl and syn® address constants in the
.1ita section.

In this example, the code with relocation operands provides better
performance than the other code because it saves on register usage and on
the length of machine-code instruction sequences.

Lexical Conventions 2—7

» Example 2: Referencing an | dgp sequence that is scheduled inside a
lituse_ base relocation
Assenbly statenents containing nmacro instructions
beg $2, L
stg $31, sym
I dgp $gp, 0($27)

Assenbly statements containing machi ne-code instructions that
require rel ocation operandss:

ldg $at, sym($gp)!literal!l

beq $2, L # crosses basic bl ock boundary

| dah $gp, 0($27)!gpdisp!?2

stq $31, synm($at)!lituse_base!l

Ida $gp, 0($gp)! gpdisp!2

In this example, the programmer has elected to schedule the load of the
address of symbefore the conditional branch.

* Example 3: A routine call
Assenbly statenents containing nmacro instructions
jsr symil
I dgp $gp, 0($ra)

.extern syml
. text

Assenbly statements containing nmachi ne-code instructions that
require rel ocation operandss:

ldg $27, synil($gp)!literal!l

jsr $26, ($27), symi!lituse_jsr!l

asl puts in an R HNT for the jsr instruction

| dah $gp, O($ra)!gpdisp!?2

Ida $gp, 0($gp)! gpdisp!2

In this example, the code with relocation operands does not provide any
significant gains over the other code. This example is only provided to
show the different coding methods.

2.7 EXpressions

An expression is a sequence of symbols that represents avalue. Each
expression and its result have data types. The assembler does arithmetic in
twos complement integers with 64 bits of precision. Expressions follow
precedence rules and consist of the following elements:

e Operators
e ldentifiers
e Constants

2-8 Lexical Conventions

Y ou can also use a single character string in place of an integer within an
expression. For example, the following two pairs of statements are
equivalent:

.byte "a" ; .word "a"+0x19
.byte 0x61 ; .word Ox7a

2.7.1 Expression Operators

The assembler supports the operators shown in Table 2-2.

Table 2-2: Expression Operators

Operator Meaning

+ Addition
- Subtraction
* Multiplication
/ Division
% Remainder
<< Shift left
>> Shift right (sign is not extended)
n Bitwise EXCLUSIVE OR
& Bitwise AND
| Bitwise OR
- Minus (unary)
+ Identity (unary)
~ Complement

2.7.2 Expression Operator Precedence Rules

For the order of operator evaluation within expressions, you can rely on the
precedence rules or you can group expressions with parentheses. Unless
parentheses enforce precedence, the assembler evaluates all operators of the
same precedence strictly from left to right. Because parentheses also
designate index registers, ambiguity can arise from parenthesesin
expressions. To resolve this ambiguity, put aunary + in front of parentheses
in expressions.

The assembler has three precedence levels. The following table lists the
precedence rules from lowest to highest:

Lexical Conventions 2—-9

Table 2-3: Operator Precedence

Precedence Operators

Least binding, lowest precedence Binary +, -
Binary *, /, %, <<, >>,/, &, |

Most binding, highest precedence Unary -, +, ~

Note
The assembler’ s precedence scheme differs from that of the C
language.

2.7.3 Data Types

Each symbol you reference or define in an assembly program belongs to one
of the type categories shown in Table 2-4.

Table 2-4: Data Types

Type Description

undefined Any symbol that is referenced but not defined becomes global
undefined. (Declaring such asymbol in a. gl obl directive
merely makes its status clearer.)

absolute A constant defined in an assignment (=) expression.
text Any symbol defined while the . t ext directiveisin effect belongs

to the text section. The text section contains the program’s
instructions, which are not modifiable during execution.

data Any symbol defined while the . dat a directive isin effect belongs
to the data section. The data section contains memory that the
linker can initialize to nonzero values before your program begins
to execute.

sdata The type sdatais similar to the type data, except that defining a
symbol whilethe . sdat a (‘*small data’’) directive is in effect
causes the linker to place it within the small data section. This
increases the chance that the linker will be able to optimize
memory references to the item by using gp-relative addressing.

2-10 Lexical Conventions

274

Table 2-4:

Type

rdata and
rconst

bss and sbss

(continued)

Description

Any symbol defined whilethe . rdat a or . r const directives
are in effect belongs to this category. The only difference between
the types rdata and rconst is that the former is allowed to have
dynamic relocations and the latter is not. (The types rdata and
rconst are also similar to the type data but, unlike data, cannot be
modified during execution.)

Any symbol defined ina. conmor . | conmdirective belongs to
these sections, except that a . dat a, . sdat a, . r dat a, or

. rconst directive can override a. commdirective. The. bss
and . sbss sections consist of memory that the kernel loader
initializes to zero before your program begins to execute.

If asymbol’'s size is less than the number of bytes specified by the
- G compilation option (which defaults to eight), it belongs to

. shss section (small bss section), and the linker places it within
the small data section. This increases the chance that the linker
will be able to optimize memory references to the item by using
gp-relative addressing.

Local symbolsin the. bss or . sbss sections defined by

. | commdirectives are alocated memory by the assembler, global
symbols are allocated memory by the linker, and symbols defined
by . commdirectives are overlaid upon like-named symbols (in the
fashion of Fortran COMMON blocks) by the linker.

Symboals in the undefined category are always global; that is, they are visible
to the linker and can be shared with other modules of your program.
Symboals in the absolute, text, data, sdata, rdata, rconst, bss, and sbss type
categories are local unless declaredin a. gl obl directive.

Type Propagation in Expressions

For any expression, the result’s type depends on the types of the operands
and the operator. The following type propagation rules are used in

expressions:

* If an operand is undefined, the result is undefined.

» If both operands are absolute, the result is absolute.

» |f the operator is a plus sign (+) and the first operand refersto an
undefined external symbol or a relocatable symbol ina. t ext section,
. dat a section, or . bss section, the result has the first operand’ s type
and the other operand must be absolute.

Lexical Conventions 2-11

* |If the operator is a minus sign (-) and the first operand refersto a
relocatable symbol ina. t ext section, . dat a section, or . bss section,
the type propagation rules can vary:

— The second operand can be absolute (if it was previously defined) and
the result has the first operand’s type.

— The second operand can have the same type as the first operand and
the result is absolute.

— If thefirst operand is external undefined, the second operand must be

absolute.

* Theoperators*,/, % <<, >>, ~, "~ & and| apply only to absolute

symbols.

2.8 Address Formats

The assembler accepts addresses expressed in the formats described in Table

2-5.

Table 2-5: Address Formats

Format

(base-regi ster)

expressi on

Address Description

Specifies an indexed address, which assumes a zero
offset. The base register’s contents specify the address.

Specifies an absolute address. The assembler generates
the most locally efficient code for referencing the value
at the specified address.

expressi on(base—regi st er)

rel ocat abl e-synbol

2-12 Lexical Conventions

Specifies a based address. To get the address, the
value of the expression is added to the contents of the
base register. The assembler generates the most locally
efficient code for referencing the value at the specified
address.

Specifies arelocatable address. The assembler
generates the necessary instructions to address the item
and generates relocation information for the linker.

Table 2-5: (continued)

Format Address Description

rel ocat abl e—-synbol texpressi on
Specifies arelocatable address. To get the address, the
value of the expression, which has an absolute value, is
added or subtracted from the relocatable symbol. The
assembler generates the necessary instructions to
address the item and generates rel ocation information
for the linker. 1f the symbol name does not appear as a
label anywhere in the assembly, the assembler assumes
that the symbol is external.

rel ocat abl e-synbol (i ndex—regi st er)
Specifies an indexed relocatable address. To get the
address, the index register is added to the relocatable
symbol’s address. The assembler generates the
necessary instructions to address the item and generates
relocation information for the linker. If the symbol
name does not appear as a label anywhere in the
assembly, the assembler assumes that the symbol is
external.

rel ocat abl e-synbol texpressi on(i ndex—r egi st er)
Specifies an indexed relocatable address. To get the
address, the assembler adds or subtracts the relocatable
symbol, the expression, and the contents of index
register. The assembler generates the necessary
instructions to address the item and generates
relocation information for the link editor. If the
symbol name does not appear as a label anywherein
the assembly, the assembler assumes that the symbol is
external.

Lexical Conventions 2—-13

Main Instruction Set 3

The assembler’ s instruction set consists of a main instruction set and a
floating-point instruction set. This chapter describes the main instruction set;
Chapter 4 describes the floating-point instruction set. For details on the
instruction set beyond the scope of this manual, refer to the Alpha
Architecture Reference Manual.

The assembler’s main instruction set contains the following classes of
instructions:

* Load and store instructions (Section 3.1)

» Arithmetic instructions (Section 3.2)

* Logica and shift instructions (Section 3.3)
* Relationa instructions (Section 3.4)

* Move instructions (Section 3.5)

» Control instructions (Section 3.6)

* Byte-manipulation instructions (Section 3.7)
» Specia-purpose instructions (Section 3.8)

Tables in this chapter show the format of each instruction in the main
instruction set. The tables list the instruction names and the forms of
operands that can be used with each instruction. The specifiers used in the
tables to identify operands have the following meanings:

Operand Specifier Description

addr ess A symbolic expression whose effective value is used as an
address.
b_reg Base register. An integer register containing a base address

to which is added an offset (or displacement) value to
produce an effective address.

d_reg Destination register. An integer register that receives a
value as a result of an operation.
d reg/s reg One integer register that is used as both a destination

register and a source register.
I abel A label that identifies a location in a program.

Operand Specifier

no_oper ands
of fset

pal code

s_reg,
s _reg2

s regl,

val _expr
val _i nmed
J hi nt

r hi nt

Description

No operands are specified.

An immediate value that is added to the contents of a base
register to calculate an effective address.

A value that determines the operation performed by a
PAL code instruction.

Source registers whose contents are to be used in an
operation.

An expression whose value is used as an absolute value.
An immediate value that is to be used in an operation.

An address operand that provides a hint of where aj np or
j sr instruction will transfer control.

An immediate operand that provides software with a hint
about how aret orj sr_corouti ne instruction is used.

3.1 Load and Store Instructions

Load and store instructions load immediate values and move data between
memory and general registers. This section describes the general-purpose
load and store instructions supported by the assembler.

Table 3-1 lists the mnemonics and operands for instructions that perform load
and store operations. The table is divided into groups of instructions. The
operands specified within a particular group apply to al of the instructions
contained in that group.

Table 3-1: Load and Store Formats

Instruction

3—-2 Main Instruction Set

Mnemonic Operands

Table 3-1: (continued)

Instruction Mnemonic Operands

Load Address | da? d reg, address
Load Byte I db

Load Byte Unsigned | dbu

Load Word | dw

Load Word Unsigned | dwu

Load Sign Extended Longword Id@

Load Sign Extended Longword Locked ldl 12

Load Quadword | dg@

Load Quadword L ocked ldg_I2&

Load Quadword Unaligned I dg_u

Unaligned Load Word ul dw

Unaligned Load Word Unsigned ul dwu

Unaligned Load Word Unsigned ul di

Unaligned Load Longword ul dq

Load Address High | dah? d reg, offset(b_reg)
Load Global Pointer | dgp

Load Immediate Longword I dil d_reg, val_expr
Load Immediate Quadword I diqg

Store Byte stb Ss_reg, address
Store Word stw

Store Longword stl@

Store Longword Conditional stl _c?@

Store Quadword st @

Store Quadword Conditional stq_c?

Store Quadword Unaligned stq_u?

Unaligned Store Word ustw

Unaligned Store Longword ust |

Unaligned Store Quadword ustq

Table Notes:

a. In addition to the normal operands that can be specified with this
instruction, relocation operands can also be specified (see Section 2.6.4).

Section 3.1.1 describes the operations performed by load instructions and
Section 3.1.2 describes the operations performed by store instructions.

3.1.1 Load Instruction Descriptions

Load instructions move values (addresses, values of expressions, or contents
of memory locations) into registers. For all load instructions, the effective
address is the 64-bit twos-complement sum of the contents of the index
register and the sign-extended offset.

Main Instruction Set 3-3

Instructions whose address operands contain symbolic labels imply an index
register, which the assembler determines. Some assembler load instructions
can produce multiple machine-code instructions (see Section C.4).

Note

Load instructions can generate many code sequences for which
the linker must fix the address by resolving external data items.

Table 3-2 describes the operations performed by load instructions.

Table 3-2: Load Instruction Descriptions

Instruction

Load Address (I da)

Load Byte (I db)

Load Byte Unsigned
(I dbu)

Load Word (I dw)

3—4 Main Instruction Set

Description

L oads the destination register with the effective
address of the specified data item.

L oads the least significant byte of the destination
register with the contents of the byte specified by the
effective address. Because the loaded byteis a
signed value, its sign bit is replicated to fill the other
bytes in the destination register. (The assembler
uses temporary registers AT and t 9 for this
instruction.)

L oads the least significant byte of the destination
register with the contents of the byte specified by the
effective address. Because the loaded byte is an
unsigned value, the other bytes of the destination
register are cleared to zeros. (The assembler uses
temporary registers AT and t 9 for this instruction —
unless the setting of the . ar ch directive or the

—ar ch flag on the cc or as command line causes
the assembler to generate a single machine
instruction in response to the | dbu command.)

L oads the two least significant bytes of the
destination register with the contents of the word
specified by the effective address. Because the
loaded word is a signed value, its sign bit is
replicated to fill the other bytes in the destination
register.

If the effective address is not evenly divisible by
two, a data-alignment exception may be signaled.
(The assembler uses temporary registers AT and t 9
for this instruction.)

Table 3-2: (continued)

Instruction

Load Word Unsigned
(I dwu)

Load Sign Extended
Longword (I dI')

Load Sign Extended
Longword L ocked

(dl 1)

Description

L oads the two least significant bytes of the
destination register with the contents of the word
specified by the effective address. Because the
loaded word is an unsigned value, the other bytes of
the destination register are cleared to zeros.

If the effective address is not evenly divisible by
two, a data alignment exception may be signaled.
(The assembler uses temporary registers AT and t 9
for this instruction — unless the setting of the . ar ch
directive or the—ar ch flag onthecc or as
command line causes the assembler to generate a
single machine instruction in response to the | dwu
command.)

L oads the four least significant bytes of the
destination register with the contents of the
longword specified by the effective address.
Because the loaded longword is a signed value, its
sign hit is replicated to fill the other bytesin the
destination register.

If the effective address is not evenly divisible by
four, a data-alignment exception is signaled.

Loads the four least significant bytes of the
destination register with the contents of the
longword specified by the effective address.
Because the loaded longword is a signed value, its
sign bit is replicated to fill the other bytesin the
destination register.

If the effective address is not evenly divisible by
four, a data-alignment exception is signaled.

If anl dl _| instruction executes without generating
an exception, the processor records the target

physical addressin a per-processor |ocked-physical-
address register and sets the per-processor lock flag.

If the per-processor lock flag is still set when a
st | _c instruction is executed, the store occurs;
otherwise, it does not occur.

Main Instruction Set 3-5

Table 3-2: (continued)

Instruction

Load Quadword (I dq)

Load Quadword L ocked
(Idg_l1)

Load Quadword
Unaligned (1 dg_u)

Unaligned Load Word
(ul dw)

3—6 Main Instruction Set

Description

L oads the destination register with the contents of
the quadword specified by the effective address. All
bytes of the register are replaced with the contents of
the loaded quadword.

If the effective address is not evenly divisible by
eight, a data-alignment exception is signaled.

If aliteral relocation typeis specified in the

| dg instruction, one machine instruction is
generated and the symbol and offset is stored in the

. I'i t a section. Other relocation types generate a
seguence of instructions and the symbol and offset is
stored in that sequence.

L oads the destination register with the contents of
the quadword specified by the effective address. All
bytes of the register are replaced with the contents of
the loaded quadword.

If the effective address is not evenly divisible by
eight, a data-alignment exception is signaled.

If anl dg_| instruction executes without generating
an exception, the processor records the target

physical address in a per-processor |ocked-physical-
address register and sets the per-processor lock flag.

If the per-processor lock flag is still set when a
st g_c instruction is executed, the store occurs;
otherwise, it does not occur.

L oads the destination register with the contents of
the quadword specified by the effective address
(with the three low-order bits cleared). The address
does not have to be aligned on an 8-byte boundary;
it can be any byte address.

L oads the two least significant bytes of the
destination register with the word at the specified
address. The address does not have to be aligned on
a 2-byte boundary; it can be any byte address.
Because the loaded word is a signed value, its sign
bit is replicated to fill the other bytes in the
destination register. (The assembler uses temporary
registers AT, t 9, and t 10 for this instruction.)

Table 3-2: (continued)

Instruction

Unaligned Load Word

Unsigned (ul dwu)

Unaligned L oad
Longword (ul dl)

Unaligned L oad
Quadword (ul dq)

Load Address High
(I dah)

Load Global Pointer
(I dgp)

Load Immediate
Longword (I di |)

Load |mmediate
Quadword (I di q)

Description

L oads the two least significant bytes of the
destination register with the word at the specified
address. The address does not have to be aligned on
a 2-byte boundary; it can be any byte address.
Because the loaded word is an unsigned value, the
other bytes of the destination register are cleared to
zeros. (The assembler uses temporary registers AT,
t 9, and t 10 for this instruction.)

L oads the four least significant bytes of the
destination register with the longword at the
specified address. The address does not have to be
aligned on a 4-byte boundary; it can be any byte
address in memory. (The assembler uses temporary
registers AT, t 9, and t 10 for this instruction.)

L oads the destination register with the quadword at
the specified address. The address does not have to
be aligned on an 8-byte boundary; it can be any byte
address in memory. (The assembler uses temporary
registers AT, t 9, and t 10 for thisinstruction.)

L oads the destination register with the effective
address of the specified dataitem. In computing the
effective address, the signed constant offset is
multiplied by 65536 before adding to the base
register. The signed constant must be in the range
-32768 to 32767.

L oads the destination register with the global pointer
value for the procedure. The sum of the base register
and the sign-extended offset specifies the address of
the | dgp instruction.

L oads the destination register with the value of an
expression that can be computed at assembly time.
The value is converted to canonical longword form
before being stored in the destination register; bit 31
is replicated in bits 32 though 63 of the destination
register. (See Appendix B for additional information
on canonical forms.)

L oads the destination register with the value of an
expression that can be computed at assembly time.

Main Instruction Set 3—7

3.1.2 Store Instruction Descriptions

For al store instructions, the effective address is the 64-bit twos-complement
sum of the contents of the index register and the sign-extended 16-bit offset.

Instructions whose address operands contain symbolic labels imply an index
register, which the assembler determines. Some assembler store instructions
can produce multiple machine-code instructions (see Section C.4).

Table 3-3 describes the operations performed by store instructions.

Table 3-3: Store Instruction Descriptions

Instruction Description

Store Byte (st b) Stores the least significant byte of the source register
in the memory location specified by the effective
address. (The assembler uses temporary registers
AT, 19, and t 10 for this instruction — unless the
setting of the . ar ch directive or the —ar ch flag on
the cc or as command line causes the assembler to
generate a single machine instruction in response to
the st b command.)

Store Word (st w) Stores the two least significant bytes of the source
register in the memory location specified by the
effective address.

If the effective address is not evenly divisible by
two, a data-alignment exception may be signaled.
(The assembler uses temporary registers AT, t 9, and
t 10 for this instruction — unless the setting of the

. arch directive or the —ar ch flag onthecc or as
command line causes the assembler to generate a
single machine instruction in response to the st w
command.)

Store Longword (st 1) Stores the four least significant bytes of the source
register in the memory location specified by the
effective address.

If the effective address is not evenly divisible by
four, a data-alignment exception is signaled.

Store Longword Stores the four least significant bytes of the source

Conditional (st _c) register in the memory location specified by the
effective address, if the lock flag is set. The lock
flag is returned in the source register and is then set
to zero.

If the effective address is not evenly divisible by
four, a data-alignment exception is signaled.

3-8 Main Instruction Set

Table 3-3: (continued)

Instruction

Store Quadword (st q)

Store Quadword
Conditional (st q_c)

Store Quadword
Unaligned (st g_u)

Unaligned Store Word
(ustw)

Unaligned Store
Longword (ust)

Unaligned Store
Quadword (ust q)

Description

Stores the contents of the source register in the
memory location specified by the effective address.

If the effective address is not evenly divisible by
eight, a data-alignment exception is signaled.

Stores the contents of the source register in the
memory location specified by the effective address,
if the lock flag is set. Thelock flag is returned in
the source register and is then set to zero.

If the effective address is not evenly divisible by
eight, a data-alignment exception is signaled.

Stores the contents of the source register in the
memory location specified by the effective address
(with the three low-order bits cleared).

Stores the two least significant bytes of the source
register in the memory location specified by the
effective address. The address does not have to be
aligned on a 2-byte boundary; it can be any byte
address. (The assembler uses temporary registers
AT,t19,t10,t11, andt 12 for thisinstruction.)

Stores the four least significant bytes of the source
register in the memory location specified by the
effective address. The address does not have to be
aligned on a 4-byte boundary; it can be any byte
address. (The assembler uses temporary registers
AT,t9,t10,t11,and t 12 for this instruction.)

Stores the contents of the source register in a
memory location specified by the effective address.
The address does not have to be aligned on an 8-
byte boundary; it can be any byte address. (The
assembler uses temporary registers AT, t 9,t 10,
t11,andt 12 for thisinstruction.)

3.2 Arithmetic Instructions

Arithmetic instructions perform arithmetic operations on values in registers.
(Floating-point arithmetic instructions are described in Section 4.3.)

Table 3-4 lists the mnemonics and operands for instructions that perform
arithmetic operations. The table is divided into groups of instructions. The
operands specified within a particular group apply to all of the instructions

Main Instruction Set 3-9

contained in that group.

Table 3-4: Arithmetic Instruction Formats

Instruction Mnemonic Operands

Clear clr d_reg

Absolute Value Longword absl

Absolute Value Quadword absq Ds reg, d_reg O

Negate Longword (without overflow) negl B d_r eg/s_r E

Negate Longword (with overflow) negl v - = & 0

Negate Quadword (without overflow) negq EIVaI_'mTEd: d_reg

Negate Quadword (with overflow) negqv

Sign-Extension Byte sextb

Sign-Extension Longword sext |

Sign-Extension Word sextw

Add Longword (without overflow) addl 0 0
Add Longword (with overflow) addl v s.regl,sreg2, d reg [
Add Quadword (without overflow) addq Od_reg/s regl, s reg2 O
Add Quadword (with overflow) addqv O o oml i O
Scaled Longword Add by 4 s4addl pereol, val_immed, d_reg
Scaled Quadword Add by 4 s4addq Od_reg/s regl, val_immed [J
Scaled Longword Add by 8 s8addl 0 u
Scaled Quadword Add by 8 s8addq

Multiply Longword (without overflow) mul |

Multiply Longword (with overflow) mul | v

Multiply Quadword (without overflow) nmul q

Multiply Quadword (with overflow) mul gqv

Subtract Longword (without overflow) subl

Subtract Longword (with overflow) subl v

Subtract Quadword (without overflow) subq

Subtract Quadword (with overflow) subqv

Scaled Longword Subtract by 4 s4subl

Scaled Quadword Subtract by 4 s4subq

Scaled Longword Subtract by 8 s8subl

Scaled Quadword Subtract by 8 s8subq

Unsigned Quadword Multiply High urmul h

Divide Longword di vl

Divide Longword Unsigned divliu

Divide Quadword di vq

Divide Quadword Unsigned di vqu

Longword Remainder rem

Longword Remainder Unsigned remu

Quadword Remainder renq

Quadword Remainder Unsigned remgu

Table 3-5 describes the operations performed by arithmetic instructions.

3-10 Main Instruction Set

Table 3-5: Arithmetic Instruction Descriptions

Instruction

Clear (clr)

Absolute Value
Longword (absl)

Absolute Value
Quadword (absq)

Negate L ongword
(without overflow)

(negl)

Negate Longword (with
overflow) (negl v)

Negate Quadword
(without overflow)

(negq)

Negate Quadword (with
overflow) (negqv)

Sign-Extension Byte
(sextb)

Sign-Extension Word
(sextw)

Description

Sets the contents of the destination register to zero.

Computes the absolute value of the contents of the
source register and places the result in the
destination register. If the value in the source
register is -2147483648, an overflow exception is
signaled.

Computes the absolute value of the contents of the
source register and places the result in the
destination register. If the value in the source
register is -9223372036854775808, an overflow
exception is signaled.

Negates the integer contents of the four least
significant bytes in the source register and places the
result in the destination register. An overflow
occurs if the value in the source register is
-2147483648, but the overflow exception is not
signaled.

Negates the integer contents of the four least
significant bytes in the source register and places the
result in the destination register. If the value in the
source register is -2147483648, an overflow
exception is signaled.

Negates the integer contents of the source register
and places the result in the destination register. An
overflow occurs if the value in the source register is
-2147483648, but the overflow exception is not
signaled.

Negates the integer contents of the source register
and places the result in the destination register. An
overflow exception is signaled if the value in the
source register is -9223372036854775808.

Moves the least significant byte of the source
register into the least significant byte of the
destination register. Because the moved byteis a
signed value, its sign bit is replicated to fill the other
bytes in the destination register.

Moves the two least significant bytes of the source
register into the two least significant bytes of the
destination register. Because the moved word is a
signed value, its sign bit is replicated to fill the other
bytes in the destination register.

Main Instruction Set 3-11

Table 3-5:

Instruction

Sign-Extension
Longword (sext 1)

Add Longword (without
overflow) (addl)

Add Longword (with
overflow) (addl v)

Add Quadword (without
overflow) (addq)

Add Quadword (with
overflow) (addqv)

Scaled Longword Add
by 4 (s4addl)

Scaled Quadword Add
by 4 (s4addq)

3—-12 Main Instruction Set

(continued)

Description

Moves the four least significant bytes of the source
register into the four least significant bytes of the
destination register. Because the moved longword is
a signed value, its sign bit is replicated to fill the
other bytes in the destination register.

Computes the sum of two signed 32-bit values. This
instruction adds the contents of s_r eg1 to the
contents of s_r eg2 or the immediate value and
then places the result in the destination register.
Overflow exceptions never occur.

Computes the sum of two signed 32-bit values. This
instruction adds the contents of s_r eg1 to the
contents of s_r eg2 or the immediate value and
then places the result in the destination register. If
the result cannot be represented as a signed 32-bit
number, an overflow exception is signaled.

Computes the sum of two signed 64-bit values. This
instruction adds the contents of s_r eg1 to the
contents of s_r eg2 or the immediate value and
then places the result in the destination register.
Overflow exceptions never occur.

Computes the sum of two signed 64-bit values. This
instruction adds the contents of s_r eg1 to the
contents of s_r eg2 or the immediate value and
then places the result in the destination register. If
the result cannot be represented as a signed 64-bit
number, an overflow exception is signaled.

Computes the sum of two signed 32-bit values. This
instruction scales (multiplies) the contents of
s_regl by four and then adds the contents of
s_reg?2 or theimmediate value. The result is
stored in the destination register. Overflow
exceptions never occur.

Computes the sum of two signed 64-bit values. This
instruction scales (multiplies) the contents of
s_regl by four and then adds the contents of
s_reg?2 or theimmediate value. The result is
stored in the destination register. Overflow
exceptions never occur.

Table 3-5:

Instruction

Scaled Longword Add
by 8 (s8addl)

Scaled Quadword Add
by 8 (s8addq)

Multiply Longword
(without overflow)
(mul 1)

Multiply Longword
(with overflow) (rul I v)

Multiply Quadword
(without overflow)

(mul q)

Multiply Quadword
(with overflow) (rmul gqv)

Subtract Longword
(without overflow)
(subl)

Subtract Longword
(with overflow) (subl v)

(continued)

Description

Computes the sum of two signed 32-bit values. This
instruction scales (multiplies) the contents of
s_regl by eight and then adds the contents of
s_reg?2 or theimmediate value. The result is
stored in the destination register. Overflow
exceptions never occur.

Computes the sum of two signed 64-bit values. This
instruction scales (multiplies) the contents of
s_regl by eight and then adds the contents of
s_reg?2 or theimmediate value. The result is
stored in the destination register. Overflow
exceptions never occur.

Computes the product of two signed 32-bit values.
This instruction places either the 32-bit product of

s _reglands_reg2 or theimmediate value in the
destination register. Overflows are not reported.

Computes the product of two signed 32-bit values.
This instruction places either the 32-bit product of
s_regland s_reg?2 or the immediate value in the
destination register. If an overflow occurs, an
overflow exception is signaled.

Computes the product of two signed 64-bit values.
This instruction places either the 64-bit product of

s _reglands_reg2 or theimmediate value in the
destination register. Overflow is not reported.

Computes the product of two signed 64-bit values.
This instruction places either the 64-bit product of

s _reglands_reg?2 or theimmediate value in the
destination register. If an overflow occurs, an
overflow exception is signaled.

Computes the difference of two signed 32-bit values.
This instruction subtracts either the contents of
s_reg?2 or an immediate value from the contents of
s_regl and then places the result in the destination
register. Overflow exceptions never happen.

Computes the difference of two signed 32-bit values.
This instruction subtracts either the contents of
s_reg?2 or an immediate value from the contents of
s_regl and then places the result in the destination
register. If the true result’s sign differs from the
destination register’s sign, an overflow exception is
signaled.

Main Instruction Set 3-13

Table 3-5: (continued)

Instruction

Table 3-5: (continued)

Instruction

Subtract Quadword
(without overflow)

(subq)

Subtract Quadword
(with overflow) (subqv)

Scaled L ongword
Subtract by 4 (s4subl)

Scaled Quadword
Subtract by 4 (s4subq)

Scaled L ongword
Subtract by 8 (s8subl)

Scaled Quadword
Subtract by 8 (s8subq)

Unsigned Quadword
Multiply High (urmul h)

3—-14 Main Instruction Set

Description

Description

Computes the difference of two signed 64-bit values.
This instruction subtracts the contents of s_reg?2 or
an immediate value from the contentsof s_reg1
and then places the result in the destination register.
Overflow exceptions never occur.

Computes the difference of two signed 64-bit values.
This instruction subtracts the contents of s_reg2 or
an immediate value from the contentsof s_reg1
and then places the result in the destination register.
If the true result’s sign differs from the destination
register’s sign, an overflow exception is signaled.

Computes the difference of two signed 32-bit values.
This instruction subtracts the contents of s_r eg2 or
the immediate value from the scaled (by 4) contents
of s regl. Theresult is stored in the destination
register. Overflow exceptions never occur.

Computes the difference of two signed 64-bit values.
This instruction subtracts the contents of s_reg2 or
the immediate value from the scaled (by 4) contents
of s_regl. Theresultis stored in the destination
register. Overflow exceptions never occur.

Computes the difference of two signed 32-bit values.
This instruction subtracts the contents of s_r eg2 or
the immediate value from the scaled (by 8) contents
of s regl. Theresult is stored in the destination
register. Overflow exceptions never occur.

Computes the difference of two signed 64-bit values.
This instruction subtracts the contents of s_reg2 or
the immediate value from the scaled (by 8) contents
of s_regl. Theresultis stored in the destination
register. Overflow exceptions never occur.

Computes the product of two unsigned 64-bit values.
This instruction multiplies the contents of s_r eg1
by the contents of s_r eg2 or the immediate value
and then places the high-order 64 bits of the 128-hit
product in the destination register.

Table 3-5: (continued)

Instruction

Divide Longword
(divl)

Divide Longword
Unsigned (di vl u)

Divide Quadword
(di vq)

Divide Quadword
Unsigned (di vqu)

Description

Computes the quotient of two signed 32-bit values.
This instruction divides the contents of s_reg1 by
the contents of s_r eg2 or the immediate value and
then places the quotient in the destination register.

Thedi vl instruction rounds toward zero. If the
divisor is zero, an error is signaled. Overflow is
signaled when dividing -2147483648 by -1. A
cal I _pal PAL_gent r ap instruction may be
issued for divide-by-zero and overflow exceptions.

Computes the quotient of two unsigned 32-bit
values. This instruction divides the contents of
s_regl by the contentsof s _reg2 or the
immediate value and then places the quotient in the
destination register.

If the divisor is zero, an exception is signaled and a
cal | _pal PAL_gentr ap instruction may be
issued. Overflow exceptions never occur. (The
assembler uses temporary registers AT, t 9, t 10,

t 11, andt 12 for the di vl u instruction.)

Computes the quotient of two signed 64-bit values.
This instruction divides the contents of s_reg1 by
the contents of s_r eg2 or the immediate value and
then places the quotient in the destination register.

The di vq instruction rounds toward zero. If the
divisor is zero, an error is signaled. Overflow is
signaled when dividing -9223372036854775808 by
-1. Acall _pal PAL_gentrap instruction may
be issued for divide-by-zero and overflow
exceptions. (The assembler uses temporary registers
AT,t19,t10,t11,and t 12 for thedi vq
instruction.)

Computes the quotient of two unsigned 64-bit
values. Thisinstruction divides the contents of
s_regl by the contentsof s_reg2 or the
immediate value and then places the quotient in the
destination register.

If the divisor is zero, an exception is signaled and a
cal I _pal PAL_gentr ap instruction may be
issued. Overflow exceptions never occur. (The
assembler uses temporary registers AT, t 9, t 10,

t 11, andt 12 for the di vqu instruction.)

Main Instruction Set 3-15

Table 3-5: (continued)

Instruction

Longword Remainder
(rem)

Longword Remainder
Unsigned (ren u)

Quadword Remainder
(remg)

3—-16 Main Instruction Set

Description

Computes the remainder of the division of two
signed 32-bit values. Theremainderrem (i, j) is
defined asi - (j *divl (i,j)),wherej != 0.
This instruction divides the contents of s_reg1 by
the contents of s_r eg2 or by the immediate value
and then places the remainder in the destination
register.

Ther em instruction rounds toward zero, for
example, di vl (5,-3)=-1andrem (5, - 3) =2.

For divide-by-zero, an error is signaled and a

cal | _pal PAL_gentr ap instruction may be
issued. (The assembler uses temporary registers AT,
t9,t10,t11,andt 12 for ther em instruction.)

Computes the remainder of the division of two
unsigned 32-bit values. The remainder
remu(i,j) isdefinedasi-(j*divliu(i,j)),
wherej !'= 0. Thisinstruction divides the
contents of s_r eg1 by the contents of s_reg2 or
the immediate value and then places the remainder
in the destination register.

For divide-by-zero, an error is signaled and a

cal | _pal PAL_gentr ap instruction may be
issued. (The assembler uses temporary registers AT,
t9,t10,t11,andt 12 for ther em u instruction.)

Computes the remainder of the division of two
signed 64-bit values. The remainder remg(i,j) is
defined asi - (j *di vq(i,j)) wherej != 0.
This instruction divides the contents of s_reg1 by
the contents of s_r eg2 or the immediate value and
then places the remainder in the destination register.

The r eny instruction rounds toward zero, for
example, di vg(5, -3)=-1andrenqg(5, - 3) =2.

For divide-by-zero, an error is signaled and a

cal | _pal PAL_gentr ap instruction may be
issued. (The assembler uses temporary registers AT,
t9,t10,t11, andt 12 for the r eng instruction.)

Table 3-5: (continued)

Instruction Description

Quadword Remainder Computes the remainder of the division of two

Unsigned (r enqu) unsigned 64-bit values. The remainder
remgu(i,j) isdefinedasi-(j*divqu(i,j))
wherej !'= 0. Thisinstruction divides the

contents of s_r egl by the contents of s_reg2 or
the immediate value and then places the remainder
in the destination register.

For divide-by-zero, an error is signaled and a

cal | _pal PAL_gentr ap instruction may be
issued. (The assembler uses temporary registers AT,
t9,t10,t11,andt 12 for ther enqu instruction.)

3.3 Logical and Shift Instructions
Logical and shift instructions perform logical operations and shifts on values
in registers.

Table 3-6 lists the mnemonics and operands for instructions that perform
logical and shift operations. The table is divided into groups of instructions.
The operands specified within a particular group apply to al of the
instructions contained in that group.

Main Instruction Set 3-17

Table 3-6: Logical and Shift Instruction Formats

Instruction Mnemonic Operands
Logical Complement — NOT not O 0
S_reg, d_reg 0
Od_reg/s reg ad
; 0
Bvaj_lmmed, d_regD
Logical Product — AND and 0 0
Logical Sum —OR bi s sregl,sreg2,dreg
LOgical Sum - OR or Dd reg/s regl, S r%z O
Logical Difference — XOR xor O q oml i O
Logical Product with Comple- bi ¢ Ds_regl, val_lmmed., d_regD
ment — ANDNOT 0d_reg/s regl, val_immed [
Logical Product with Comple- andnot 0 u
ment — ANDNOT or not
Logical Sum with Comple- eqv
ment — ORNOT XOr not
Logical Equivalence — XORNOT sl |
Logical Equivalence — XORNOT srl
Shift Left LOglca| sra

Shift Right Logical
Shift Right Arithmetic

Table 3-7 describes the operations performed by logical and shift
instructions.

Table 3-7: Logical and Shift Instruction Descriptions

Instruction Description
Logical Complement — Computes the Logical NOT of avalue. This
NOT (not) instruction performs a complement operation on the

contents of s_r egl1 and places the result in the
destination register.

Logical Product — AND Computes the Logical AND of two values. This

(and) instruction performs an AND operation between the
contents of s_r eg1 and either the contents of
s_reg?2 or the immediate value and then places the
result in the destination register.

3-18 Main Instruction Set

Table 3-7:

Instruction

Logical Sum — OR (bi s)

Logical Sum — OR (or)

Logical Difference —
XOR (xor)

Logical Product with
Complement —
ANDNOT (bi c)

Logical Product with
Complement —
ANDNOT (andnot)

Logical Sum with
Complement — ORNOT
(ornot)

Logical Equivalence —
XORNOT (eqv)

Logical Equivalence —
XORNOT (xor not)

(continued)

Description

Computes the Logical OR of two values. This
instruction performs an OR operation between the
contents of s_r egl and either the contents of
s_reg2 or the immediate value and then places the
result in the destination register.

Synonym for bi s.

Computes the XOR of two values. This instruction
performs an XOR operation between the contents of
s_regl and either the contents of s_r eg2 or the
immediate value and then places the result in the
destination register.

Computes the Logical AND of two values. This
instruction performs an AND operation between the
contents of s_r eg1 and the ones complement of
either the contents of s_r eg2 or the immediate
value and then places the result in the destination
register.

Synonym for bi c.

Computes the logical OR of two values. This
instruction performs an OR operation between the
contents of s_r egl1 and the ones complement of
either the contents of s_r eg2 or the immediate
value and then places the result in the destination
register.

Computes the logical XOR of two values. This
instruction performs an XOR operation between the
contents of s_r eg1 and the ones complement of
either the contents of s_r eg2 or the immediate
value and then places the result in the destination
register.

Synonym for eqv.

Main Instruction Set 3—-19

Table 3-7: (continued)

Instruction

Shift Left Logical (s 1)

Shift Right Logical
(srl)

Shift Right Arithmetic
(sra)

Description

Shifts the contents of a register left (toward the sign
bit) and inserts zeros in the vacated bit positions.
Register s_r eg1 contains the value to be shifted,
and either the contents of s_r eg2 or the immediate
value specifies the shift count. If s_reg2 or the
immediate value is greater than 63 or less than zero,
s_reg1 shifts by the result of the following AND
operation: s_reg2 AND 63.

Shifts the contents of a register to the right (toward
the least significant bit) and inserts zeros in the
vacated bit positions. Register s_r egl contains the
value to be shifted, and either the contents of
s_reg?2 or the immediate value specifies the shift
count. If s_reg2 or the immediate value is greater
than 63 or less than zero, s_r eg1 shifts by the
result of the result of the following AND operation:
s_reg2 AND 63.

Shifts the contents of a register to the right (toward
the least significant bit) and inserts the sign hit in
the vacated bit position. Register s _r eg1 contains
the value to be shifted, and either the contents of
Ss_reg2 or the immediate value specifies the shift
count. If s_reg?2 or the immediate value is greater
than 63 or less than zero, s_r eg1 shifts by the
result of the following AND operation: s _reg2
AND 63.

3.4 Relational Instructions
Relational instructions compare values in registers.

Table 3-8 lists the mnemonics and operands for instructions that perform
relational operations. Each of the instructions listed in the table can take an
operand in any of the forms shown.

3-20 Main Instruction Set

Table 3-8: Relational Instruction Formats

Instruction Mnemonic Operands
Compare Signed Quadword Equal cnpeq 0 0
Compare Signed Quadword Less enol s regl, s reg2, d reg
mpl t
Than ermol e Od reg/s regl, s reg2 O
Compare Signed Quadword Less nmp Ds_r egl, val_immed, d_r egD
Than or Equal crpul t 0 _ O
Compare Unsigned Quadword [d_reg/s regl, val_immed [J
Less Than cnpul e 0 O

Compare Unsigned Quadword

Less Than or Equal

Table 3-9 describes the operations performed by relational instructions.

Table 3-9: Relational Instruction Descriptions

Instruction

Compare Signed
Quadword Equal
(cnpeq)

Compare Signed
Quadword Less Than
(cnpl t)

Compare Signed
Quadword Less Than or
Equal (cnpl e)

Compare Unsigned
Quadword Less Than

(cnpul t)

Description

Compares two 64-bit values. If the valuein
s_regl equasthevauein s_reg2 or the
immediate value, this instruction sets the destination
register to one; otherwise, it sets the destination
register to zero.

Compares two signed 64-bit values. If the value in
s_reglislessthan thevaluein s_reg2 or the
immediate value, this instruction sets the destination
register to one; otherwise, it sets the destination
register to zero.

Compares two signed 64-bit values. If the valuein
s_reglislessthan or equal to the valuein
s_reg?2 or the immediate value, this instruction
sets the destination register to one; otherwise, it sets
the destination register to zero.

Compares two unsigned 64-bit values. If the value
ins_reglislessthan either thevaluein s_reg2
or the immediate value, this instruction sets the
destination register to one; otherwise, it sets the
destination register to zero.

Main Instruction Set 3-21

Table 3-9: (continued)

Instruction Description

Compare Unsigned Compares two unsigned 64-bit values. If the value
Quadword Less Than or ins_reglislessthan or equal to either the value
Equal (crmpul e) ins_reg2 or the immediate value, this instruction

sets the destination register to one; otherwise, it sets
the destination register to zero.

3.5 Move Instructions
Move instructions move data between registers.

Table 3-10 lists the mnemonics and operands for instructions that perform
move operations. The table is divided into groups of instructions. The
operands specified within a particular group apply to all of the instructions

contained in that group.

Table 3-10: Move Instruction Formats

Instruction Mnemonic
Move nmv
Move if Equal to Zero cnoveq
Move if Not Equal to Zero cnovne
Move if Less Than Zero cnovl t
I\/It(c))vze elrfoL& Than or Equal cmovl e
Move if Greater Than Zero cmovgt
Move if Greater Than or Equal cnovge

to Zero cnovl bc
Move if Low Bit Clear cnovl bs

Move if Low Bit Set

Operands

Us reg, d_reg 0
Bva]_i mmed, d_regg

Bs_regl, s reg2, d_reg
Od_reg/s regl, s reg2
Bs_regl, val_immed, d_regD
d_reg/s regl, val_immed [
O O

[

Table 3-11 describes the operations performed by move instructions.

3—-22 Main Instruction Set

Table 3-11: Move Instruction Descriptions

Instruction Description

Move (mov) Moves the contents of the source register or the
immediate value to the destination register.

Move if Equal to Zero Moves the contents of s_r eg2 or the immediate

(cnoveq) value to the destination register if the contents of
s_reglisequa to zero.

Move if Not Equal to Moves the contents of s_r eg2 or the immediate

Zero (cnovne) value to the destination register if the contents of
s_reglisnot equd to zero.

Moveif Less Than Zero Moves the contents of s_r eg2 or the immediate

(cnovl t) value to the destination register if the contents of
s_regl islessthan zero.

Move if Less Than or Moves the contents of s_r eg2 or the immediate

Equal to Zero (crovl e) value to the destination register if the contents of
s_reglislessthan or equal to zero.

Move if Greater Than Moves the contents of s_r eg2 or the immediate

Zero (crmovgt) value to the destination register if the contents of
s_regl is greater than zero.

Move if Greater Than or Moves the contents of s_r eg2 or the immediate

Equal to Zero (cnovge) value to the destination register if the contents of
Ss_regl isgreater than or equal to zero.

Move if Low Bit Clear Moves the contents of s_r eg2 or the immediate

(cnovl be) value to the destination register if the low-order bit
of s_reglisequa to zero.

Move if Low Bit Set Moves the contents of s_r eg2 or the immediate

(cnovl bs) value to the destination register if the low-order bit

of s _reglisnot equa to zero.

3.6 Control Instructions

Control instructions change the control flow of an assembly program. They
affect the sequence in which instructions are executed by transferring control
from one location in a program to another.

Table 3-12 lists the mnemonics and operands for instructions that perform
control operations. The table is divided into groups of instructions. The
operands specified within a particular group apply to all of the instructions
contained in that group.

Main Instruction Set 3—-23

Table 3-12: Control Instruction Formats

Instruction Mnemonic Operands
Branch if Equal to Zero beq s _reg, |abel
Branch if Not Equal to Zero bne
Branch if Less Than Zero bl t
Branch if Less Than or Equal
bl e
to Zero bgt
Branch if Greater Than Zero
Branch if Greater Than or bge
Equal to Zero bl bc
Branch if Low Bit is Clear bl bs
Branch if Low Bit is Set
Branch br 0d label
Branch to Subroutine bsr 5 ;t:;g
O O
Jump j np? 0 s
Jump to Subroutine jsra Dd_reg, (s reg),]h'mg
d_reg, (s reg) 0
B(s_r €g), jhint g
(sreg) :
(d_reg, address O
Uadd 0
Da ress 0
Return from Subroutine ret 0d reg, (s _reg), rhint]
Jump to Subroutine Return jsr_ Dd_r g (s_r eq) 0
coroutine? Og-— 2% O
d_reg, rhint 0
i
D(s_reg), rhint 0
(s reg) O
Oy hint g
[no_operands 0

Table Notes:

a. In addition to the normal operands that can be specified with this
instruction, relocation operands can also be specified (see Section 2.6.4).

Table 3-13 describes the operations performed by control instructions. For
all branch instructions described in the table, the branch destinations must be

3—-24 Main Instruction Set

defined in the source being assembled, not in an external source file.

Table 3-13: Control Instruction Descriptions

Instruction

Branch if Equal to Zero
(beq)

Branch if Not Equal to
Zero (bne)

Branch if Less Than
Zero (bl t)

Branch if Less Than or
Equal to Zero (bl e)

Branch if Greater Than
Zero (bgt)

Branch if Greater Than
or Equal to Zero (bge)

Branch if Low Bit is
Clear (bl bc)

Branch if Low Bit is Set
(bl bs)

Branch (br)

Branch to Subroutine
(bsr)

Jump (j np)

Description

Branches to the specified label if the contents of the
source register is equa to zero.

Branches to the specified label if the contents of the
source register is not equal to zero.

Branches to the specified label if the contents of the
source register is less than zero. The comparison
treats the source register as a signed 64-hit value.

Branches to the specified label if the contents of the
source register is less than or equal to zero. The
comparison treats the source register as a signed 64-
bit value.

Branches to the specified label if the contents of the
source register is greater than zero. The comparison
treats the source register as a signed 64-hit value.

Branches to the specified label if the contents of the
source register is greater than or equal to zero. The
comparison treats the source register as a signed 64-
bit value.

Branches to the specified label if the low-order bit of
the source register is equal to zero.

Branches to the specified label if the low-order bit of
the source register is not equal to zero.

Branches unconditionally to the specified label. If a
destination register is specified, the address of the
instruction following the br instruction is stored in
that register.

Branches unconditionally to the specified label and
stores the return address in the destination register.
If adestination register is not specified, register $26
(ra) is used.

Unconditionally jumps to a specified location. A
symbolic address or the source register specifies the
target location. If a destination register is specified,
the address of the instruction following the j np
instruction is stored in the specified register.

Main Instruction Set 3—-25

Table 3-13: (continued)

Instruction Description
Jump to Subroutine Unconditionally jumps to a specified location and
(sr) stores the return address in the destination register.

If a destination register is not specified, register $26
(ra) isused. A symbolic address or the source
register specifies the target location. The instruction
j sr procnane transfersto pr ocnane and saves
the return address in register $26.

Return from Subroutine Unconditionally returns from a subroutine. If a

(ret) destination register is specified, the address of the
instruction following ther et instruction is stored in
the specified register. The source register contains
the return address. If the source register is not
specified, register $26 (r a) isused. If ahint is not
specified, a hint value of one is used.

Jump to Subroutine Unconditionally returns from a subroutine and stores
Return the return address in the destination register. If a
(j sr_coroutine) destination register is not specified, register $26

(ra) isused. The source register contains the target
address. If the source register is not specified,
register $26 (r a) is used.

All jump instructions (j np, jsr, ret, jsr_coroutine) peform
identical operations. They differ only in hints to possible branch-prediction
logic. See the Alpha Architecture Reference Manual for information about
branch-prediction logic.

3.7 Byte-Manipulation Instructions
Byte-manipulation instructions perform byte operations on values in registers.

Table 3-14 lists the mnemonics and operands for instructions that perform
byte-manipulation operations. Each of the instructions listed in the table can
take an operand in any of the forms shown.

3—-26 Main Instruction Set

Table 3-14: Byte-Manipulation Instruction Formats

Instruction

Compare Byte

Extract Byte Low
Extract Word Low
Extract Longword Low
Extract Quadword Low
Extract Word High

Extract Longword High
Extract Quadword High

Insert Byte Low
Insert Word Low
Insert Longword Low
Insert Quadword Low
Insert Word High
Insert Longword High
Insert Quadword High
Mask Byte Low
Mask Word Low
Mask Longword Low
Mask Quadword Low
Mask Word High
Mask Longword High
Mask Quadword High
Zero Bytes

Zero Bytes NOT

Mnemonic Operands

cnpbge 0

ext bl s_regl, s reg2, d reg
extw Od_reg/s regl, s reg2
extl | Dsr 1, val_immed, d_r
ext ql g>-'eg Vel » I
ext wh Od_reg/s regl, val_immed [
ext!h 0 O
ext gh

i nsbl

nsw

nsl |

nsql

nswh

nsl h

nsgh

nskbl

mskwl

nskl |

nmskql

mskwh

nskl h

nskgh

zap

zapnot

[

Table 3-15 describes the operations performed by byte-manipulation

instructions.

Main Instruction Set 3-27

Table 3-15: Byte-Manipulation Instruction Descriptions

Instruction

Compare Byte (cnpbge)

Extract Byte L ow
(ext bl)

Extract Word Low
(extw)

Extract Longword Low
(extl1)

Extract Quadword L ow
(extql)

3—-28 Main Instruction Set

Description

Performs eight parallel unsigned byte comparisons
between corresponding bytes of register s_regl
and s_reg?2 or the immediate value. A bitissetin
the destination register if abyteins _reglis
greater than or equal to the corresponding byte in
s_reg2 or theimmediate value.

The results of the comparisons are stored in the
eight low-order bits of the destination register; bit 0
of the destination register corresponds to byte 0 and
so forth. The 56 high-order bits of the destination
register are cleared.

Shifts the register s_r eg1 right by 0-7 bytes,
inserts zeros into the vacated bit positions, and then
extracts the low-order byte into the destination
register. The seven high-order bytes of the
destination register are cleared to zeros. Bits 0-2 of
register s_r eg2 or the immediate value specify the
shift count.

Shifts the register s_r eg1 right by 0-7 bytes,
inserts zeros into the vacated bit positions, and then
extracts the two low-order bytes and stores them in
the destination register. The six high-order bytes of
the destination register are cleared to zeros. Bits 0-2
of register s_r eg2 or the immediate value specify
the shift count.

Shifts the register s_r eg1 right by 0-7 bytes,
inserts zeros into the vacated bit positions, and then
extracts the four low-order bytes and stores them in
the destination register. The four high-order bytes
of the destination register are cleared to zeros. Bits
0-2 of register s_r eg2 or the immediate value
specify the shift count.

Shifts the register s_r eg1 right by 0-7 bytes,
inserts zeros into the vacated bit positions, and then
extracts al eight bytes and stores them in the
destination register. Bits 0-2 of register s_reg2 or
the immediate value specify the shift count.

Table 3-15:

Instruction

Extract Word High
(ext wh)

Extract Longword High
(extl h)

Extract Quadword High
(ext gh)

Insert Byte Low
(i nsbl)

Insert Word Low
(i nsw)

Insert Longword Low
(insll)

Insert Quadword L ow
(insql)

(continued)

Description

Shifts the register s_r eg1 left by 0-7 bytes, inserts
zeros into the vacated hit positions, and then extracts
the two low-order bytes and stores them in the
destination register. The six high-order bytes of the
destination register are cleared to zeros. Bits 0-2 of
register s_r eg2 or the immediate value specify the
shift count.

Shifts the register s_r eg1 left by 0-7 bytes, inserts
zeros into the vacated bit positions, and then extracts
the four low-order bytes and stores them in the
destination register. The four high-order bytes of
the destination register are cleared to zeros. Bits 0-2
of register s_r eg2 or the immediate value specify
the shift count.

Shifts the register s_r eg1 left by 0-7 bytes, inserts
zeros into the vacated bit positions, and then extracts
all eight bytes and stores them in the destination
register. Bits 0-2 of register s_r eg2 or the
immediate value specify the shift count.

Shiftsthe register s_r eg1 left by 0-7 bytes, inserts
the byte into afield of zeros, and then places the
result in the destination register. Bits 0-2 of register
s_reg2 or the immediate value specify the shift
count.

Shifts the register s_r eg1 left by 0-7 bytes, inserts
the word into afield of zeros, and then places the
result in the destination register. Bits 0-2 of register
s_reg?2 or the immediate value specify the shift
count.

Shifts the register s_r eg1 left by 0-7 bytes, inserts
the longword into a field of zeros, and then places
the result in the destination register. Bits 0-2 of
register s_r eg2 or the immediate value specify the
shift count.

Shifts the register s_r eg1 left by 0-7 bytes, inserts
the quadword into a field of zeros, and then places
the result in the destination register. Bits 0-2 of
register s_r eg2 or the immediate value specify the
shift count.

Main Instruction Set 3—-29

Table 3-15:

Instruction

Insert Quadword Low
(insql)

Insert Word High
(i nswh)

Insert Longword High
(i nsl h)

Insert Quadword High
(i nsgh)

Mask Byte Low (nmskbl)

Mask Word Low
(mskw)

Mask Longword L ow
(mskl 1)

Mask Quadword L ow
(mskal)

Mask Word High
(mskwh)

3-30 Main Instruction Set

(continued)

Description

Shifts the register s_r eg1 left by 0-7 bytes, inserts
the quadword into a field of zeros, and then places
the result in the destination register. Bits 0-2 of
register s_r eg2 or the immediate value specify the
shift count.

Shifts the register s_r eg1 right by 0-7 bytes,
inserts the word into afield of zeros, and then places
the result in the destination register. Bits 0-2 of
register s_r eg2 or the immediate value specify the
shift count.

Shifts the register s_r eg1 right by 0-7 bytes,
inserts the longword into afield of zeros, and then
places the result in the destination register. Bits 0-2
of register s_r eg2 or the immediate value specify
the shift count.

Shifts the register s_r eg1 right by 0-7 bytes,
inserts the quadword into a field of zeros, and then
places the result in the destination register. Bits 0-2
of register s_r eg2 or the immediate value specify
the shift count.

Sets abytein register s_r eg1 to zero and stores
the result in the destination register. Bits 0-2 of
register s_r eg2 or the immediate value specify the
offset of the byte.

Setsaword in register s_r eg1 to zero and stores
the result in the destination register. Bits 0-2 of
register s_r eg2 or the immediate value specify the
offset of the word.

Sets alongword in register s_regl to zero and
stores the result in the destination register. Bits 0-2
of register s_r eg2 or the immediate value specify
the offset of the longword.

Sets a quadword in register s_r eg1 to zero and
stores the result in the destination register. Bits 0-2
of register s_r eg2 or the immediate value specify
the offset of the quadword.

Setsaword in register s_r eg1 to zero and stores
the result in the destination register. Bits 0-2 of
register s_r eg2 or the immediate value specify the
offset of the word.

Table 3-15: (continued)

Instruction Description
Mask Longword High Sets alongword in register s_r eg1 to zero and
(mskl h) stores the result in the destination register. Bits 0-2

of register s_r eg2 or the immediate value specify
the offset of the longword.

Mask Quadword High Sets a quadword in register s_r eg1 to zero and

(mskgh) stores the result in the destination register. Bits 0-2
of register s_r eg2 or the immediate value specify
the offset of the quadword.

Zero Bytes (zap) Sets selected bytes of register s_regl to zero and
places the result in the destination register. Bits 0-7
of register s_r eg2 or an immediate value specify
the bytes to be cleared to zeros. Each bit
corresponds to one byte in register s_r eg1; for
example, bit O corresponds to byte 0. A bit with a
value of one indicates its corresponding byte should
be cleared to zeros.

Zero BytesNOT Sets selected bytes of register s_regl to zero and

(zapnot) places the result in the destination register. Bits 0-7
of register s_r eg2 or an immediate value specify
the bytes to be cleared to zeros. Each bit
corresponds to one byte in register s_r eg1; for
example, bit O corresponds to byte 0. A bit with a
value of zero indicates its corresponding byte should
be cleared to zeros.

3.8 Special-Purpose Instructions
Special-purpose instructions perform miscellaneous tasks.

Table 3-16 lists the mnemonics and operands for instructions that perform
special operations. Thetable is divided into groups of instructions. The
operands specified within a particular group apply to al of the instructions
contained in that group.

Main Instruction Set 3-31

Table 3-16: Special-Purpose Instruction Formats

Instruction Mnemonic Operands

Call Privileged Architecture Library cal | _pal pal code

Architecture Mask amask Os reg, d_reg 0
—) 1 — D

0 al_immed, d_regD

Prefetch Data fetch offset(b_reg)

Prefetch Data, Modify Intent fetch_m

Read Process Cycle Counter rpcc d reg

Implementation Version i mpl ver

No Operation nop no_oper ands

Universal No Operation unop

Trap Barrier trapb

Exception Barrier exch

Memory Barrier nb

Write Memory Barrier wnb

Table 3-17 describes the operations performed by special-purpose
instructions.

Table 3-17: Special-Purpose Instruction Descriptions

Instruction Description

Call Privileged Unconditionally transfers control to the exception
ArchitectureLibrary handler. The pal code operand is interpreted by
(call _pal) software conventions.

Architecture Mask The value of the contents of s_r eg or the
(amask) immediate value represent a mask of architectural

extensions that are being requested. Bits are cleared
if they correspond to architectural extensions that are
present, and the result is placed in the destination
register.

Prefetch Data (f et ch) Indicates that the 512-byte block of data specified by
the effective address should be moved to a faster-
access part of the memory hierarchy.

3—-32 Main Instruction Set

Table 3-17:

Instruction

Prefetch Data, M odify
Intent (fetch_m

Read Process Cycle
Counter (r pcc)

Implementation Version
(i npl ver)

No Operation (nop)

Universal No Operation
(unop)
Trap Barrier (t r apb)

Exception Barrier
(exch)

Memory Barrier (nmb)

Write Memory Barrier
(wnb)

(continued)

Description

Indicates that the 512-byte block of data specified by
the effective address should be moved to a faster-
access part of the memory hierarchy. In addition,
this instruction is a hint that part or al of the data
may be modified.

Returns the contents of the process cycle counter in
the destination register.

A small integer is placed in the destination register.
This integer specifies the major implementation
version of the processor on which it is executed.
This information can be used to make code-
scheduling or tuning decisions. The returned small
integer can have the values 0 or 1. 1 indicates an
EV5 Alpha chip (21164). 0 indicates EV4, EV45,
LCA, and LCA-45 Alpha chips (that is, 21064,
21064A, 21066, 21068, and 21066A, respectively).

Has no effect on the machine state.
Has no effect on the machine state.

Guarantees that all previous arithmetic instructions
are completed, without incurring any arithmetic
traps, before any instructions after the t r apb
instruction are issued.

Guarantees that all previous instructions complete
any exception-related behavior or rounding-mode
behavior before any instructions after the excb
instruction are issued.

Used to serialize access to memory. See the Alpha
Architecture Reference Manual for addition
information on memory barriers.

Guarantees that all previous store instructions access
memory before any store instructions issued after the
wirb instruction.

Main Instruction Set 3—33

Floating-Point Instruction Set 4

This chapter describes the assembler’s floating-point instructions. See
Chapter 3 for a description of the integer instructions. For details on the
instruction set beyond the scope of this manual, refer to the Alpha
Architecture Reference Manual.

The assembler’ s floating-point instruction set contains the following classes
of instructions:

* Load and store instructions (Section 4.2)
» Arithmetic instructions. (Section 4.3)

* Relationa instructions (Section 4.4)

* Move instructions (Section 4.5)

» Control instructions (Section 4.6)

» Specia-purpose instructions (Section 4.7)

A particular floating-point instruction may be implemented in hardware,
software, or a combination of hardware and software.

Tables in this chapter show the format for each instruction in the floating-
point instruction set. The tables list the instruction names and the forms of
operands that can be used with each instruction. The specifiers used in the
tables to identify operands have the following meanings:

Operand Specifier Description

addr ess A symbolic expression whose effective value is
used as an address.

d reg Destination register. A floating-point register that
receives a value as a result of an operation.

2d regl s_reg One floating-point register that is used as both a
destination register and a source register.

| abel A label that identifies alocation in a program.

s reg,s regl, s reg2 Source registers. Floating-point registers whose
contents are to be used in an operation.

val _expr An expression whose value is a floating-point

constant.

The following terms are used to discuss floating-point operations:

Term Meaning

Infinite A value of +oo or —.

Infinity A symbolic entity that represents values with magnitudes greater
than the largest magnitude for a particular format.

Ordered The usual result from a comparison, namely: less than (<), equal (=),
or greater than (>).

NaN Symbolic entities that represent values not otherwise available in
floating-point formats. (NaN is an acronym for not-a-number.)

Unordered The condition that results from a floating-point comparison when

one or both operands are NaNs.

There are two kinds of NaNs:
* Quiet NaNs represent unknown or uninitialized values.

» Signaling NaNs represent symbolic values and values that are too big or
too precise for the format. Signaling NaNs raise an invalid-operation
exception whenever an operation is attempted on them.

4.1 Background Information on Floating-Point
Operations
Topics addressed in the following sections include:
* Foating-point data types (Section 4.1.1)
* Thefloating-point control register (Section 4.1.2)
* Foating-point exceptions (Section 4.1.3)
* Foating-point rounding modes (Section 4.1.4)
» Floating-point instruction qualifiers (Section 4.1.5)

4.1.1 Floating-Point Data Types
Floating-point instructions operate on the following data types:
» D floating (VAX double precision, limited support)
* F floating (VAX single precision)
» G floating (VAX double precision)
e S floating (IEEE single precision)

4-2 Floating-Point Instruction Set

» T_floating (IEEE double precision)
» Longword integer and quadword integer

Figure 4-1 shows the memory formats for the single- and double-precision
floating-point data types.

Figure 4-1: Floating-Point Data Formats

S_floating
31 30 23 22 0
Sign Exponent Fraction
T_floating
63 62 52 51 0
Sign Exponent Fraction
F_floating
31 16 15 14 76 0
Fraction . Fraction
(low) Sign Exponent (high)
D_floating
63 48 47 32 31 16 15 14 76
Fraction Fraction Fraction) Fraction
(low) (mid-low) (mid-high) | Sign | Exponent (high)
G_floating
63 48 47 32 31 16 15 14 43
Fraction Fraction Fraction) Fraction
(low) (mid-low) (mid-high) | Sign | Exponent (high)

ZK-0734U-R

4.1.2 Floating-Point Control Register

The floating-point control register (FPCR) contains status and control
information. It controls the arithmetic rounding mode of instructions that
specify dynamic rounding (d qualifier — see Section 4.1.5 for information on
instruction qualifiers) and gives a summary for each exception type of the
exception conditions detected by the floating-point instructions. It also
contains an overal summary bit indicating whether an exception occurred.

Floating-Point Instruction Set 4-3

Figure 4-2 shows the format of the floating-point control register.

Figure 4-2: Floating-Point Control Register

63

62

6059 58 57 56 55 54 53 52 51 0

sum

raz/
ign

dyn

iov

ine

unf| ovf| dze|inv raz/ign

ZK-0735U-R

The fields of the floating-point control register have the following meaning:

Bits

63

62-60

59-58

57
56
55
54
53
52

51-0

Name

sum

raz/ign

dyn

dze

i nv

raz/ign

Description

Summary — records the bitwise OR of the FPCR
exception bits (bits 57 to 52).

Read-As-Zero — ignored when written.
Dynamic Rounding Mode — indicates the current
rounding mode to be used by an IEEE floating-point

instruction that specifies dynamic mode (d qualifier).
The bit assignments for this field are as follows:

00 — Chopped rounding mode
01 — Minus infinity

10 — Normal rounding

11 — Plus infinity

Integer overflow.

Inexact result.

Underflow.

Overflow.

Division by zero.

Invalid operation.

Read-As-Zero — ignored when written.

The floating-point exceptions associated with bits 57 to 52 are described in
Section 4.1.3.

4—4 Floating-Point Instruction Set

4.1.3 Floating-Point Exceptions

Six exception conditions can result from the use of floating-point
instructions. All of the exceptions are signaled by an arithmetic exception
trap. The exceptions are as follows:

41.4

Invalid Operation — An invalid-operation exception is signaled if any
operand of a floating-point instruction, other than cnpt xx, is nonfinite.
(The cnpt xx instruction operates normally with plus and minus
infinity.) Thistrap is aways enabled. If this trap occurs, an
unpredictable value is stored in the destination register.

Division by Zero — A division-by-zero exception is taken if the numerator
does not cause an invalid-operation trap and the denominator is zero. This
trap is always enabled. If this trap occurs, an unpredictable value is stored
in the destination register.

Overflow — An overflow exception is signaled if the rounded result
exceeds the largest finite number of the destination format. Thistrap is
always enabled. If this trap occurs, an unpredictable value is stored in the
destination register.

Underflow — An underflow exception occurs if the rounded result is
smaller than the smallest finite number of the destination format. This
trap can be disabled. If this trap occurs, atrue zero is aways stored in the
destination register.

Inexact Result — An inexact-result exception occurs if the infinitely
precise result differs from the rounded result. This trap can be disabled. If
this trap occurs, the normal rounded result is still stored in the destination
register.

Integer Overflow — An integer-overflow exception occurs if the
conversion from a floating-point or integer format to an integer format
results in a value that is outside of the range of values representable by
the destination format. This trap can be disabled. If this trap occurs, the
true result is truncated to the number of bits in the destination format and
stored in the destination register.

Floating-Point Rounding Modes

If atrue result can be exactly represented in a floating-point format, all
rounding modes map the true result to that value.

The following abbreviations are used in the descriptions of rounding modes
provided in this section:;

LSB (least significant bit) — For a positive representable number, A,
whose fraction is not al ones: A + 1 LSB is the next-larger representable
number, and A + 1/2 LSB is exactly halfway between A and the next

Floating-Point Instruction Set 4-5

larger representable number.
» MAX — The largest noninfinite representable floating-point number.

* MIN — The smallest nonzero representable normalized floating-point
number.

For VAX floating-point operations, two rounding modes are provided and are
specified in each instruction:

* Normal rounding (biased)

— Maps the true result to the nearest of two representable results, with
true results exactly halfway between mapped to the larger in absolute
value. (Sometimes referred to as biased rounding away from zero.)

— Mapstrueresults > MAX + 1/2 LSB in magnitude to an overflow
— Mapstrueresults < MIN - 1/2 LSB in magnitude to an underflow
* Chopped rounding

— Maps the true result to the smaller in magnitude of two surrounding
representabl e results

— Mapstrueresults2 MAX + 1 LSB in magnitude to an overflow
— Maps true results < MIN in magnitude to an underflow
For |EEE floating-point operations, four rounding modes are provided:
* Normal rounding (unbiased round to nearest)

— Maps the true result to the nearest of two representable results, with
true results exactly halfway between mapped to the one whose
fraction endsin 0. (Sometimes referred to as unbiased rounding to
even.)

— Mapstrueresults 2 MAX + 1/2 LSB in magnitude to an overflow
— Mapstrueresults < MIN - 1/2 LSB in magnitude to an underflow
* Rounding toward minus infinity

— Maps the true results to the smaller of two surrounding representable
results

— Maps true results > MAX in magnitude to an overflow

— Maps positive true results < +MIN to an underflow

— Maps negative true results = -MIN + 1 LSB to an underflow
» Chopped rounding (round toward zero)

— Maps the true result to the smaller in magnitude of two surrounding
representabl e results

— Mapstrueresults2 MAX + 1 LSB in magnitude to an overflow

4-6 Floating-Point Instruction Set

4.1.5

— Maps nonzero true results < MIN in magnitude to an underflow
* Rounding toward plus infinity

— Maps the true results to the larger of two surrounding representable
results

— Mapstrue results > MAX in magnitude to an overflow
— Maps positive results < +MIN - 1 LSB to an underflow
— Maps negative true results > -MIN to an underflow

The first three of the IEEE rounding modes can be specified in the
instruction. The last mode, rounding toward plus infinity, can be obtained by
setting the floating-point control register (FPCR) to select it and then
specifying dynamic rounding mode in the instruction.

Dynamic rounding mode uses the |EEE rounding mode selected by the FPCR
and is described in Section 4.1.2. Dynamic rounding can be used with any of
the |IEEE rounding modes.

Alpha |EEE arithmetic does rounding before detecting overflow or underflow.

Floating-Point Instruction Qualifiers

Many of the floating-point instructions accept a qualifier that specifies
rounding and trapping modes.

The following table lists the rounding mode qualifiers. See Section 4.1.4 for
a detailed description of the rounding modes.

Rounding Mode Qualifier
VAX Rounding Mode
Normal rounding (no modifier)
Chopped c
IEEE Rounding Mode
Normal rounding (no modifier)
Plus infinity d (ensure that the dyn field of
the FPCR is 11)
Minus infinity m
Chopped c

The following table lists the trapping mode qualifiers. See Section 4.1.3 for a
detailed description of the exceptions.

Floating-Point Instruction Set 4-7

Trapping Mode

VAX Trap Mode

Imprecise, underflow disabled
Imprecise, underflow enabled
Software, underflow disabled
Software, underflow enabled

VAX Convert-to-Integer Trap Mode

Imprecise, integer overflow disabled
Imprecise, integer overflow enabled
Software, integer overflow disabled
Software, integer overflow enabled

IEEE Trap Mode

Imprecise, underflow disabled, inexact
disabled

Imprecise, underflow enabled, inexact
disabled

Software, underflow enabled, inexact
disabled

Software, underflow enabled, inexact
enabled

IEEE Convert-to-integer Trap Mode

Imprecise, integer overflow disabled,
inexact disabled

Imprecise, integer overflow enabled,
inexact disabled

Software, integer overflow enabled,
inexact disabled

Software, integer overflow enabled,
inexact enabled

Table 4-1 lists the qualifier combinations that are supported by one or more
of the individual instructions. The values in the Number column are
referenced in subsequent sections to identify the combination of qualifiers

accepted by the various instructions.

4-8 Floating-Point Instruction Set

Qualifier

(no modifier)
u

s

su

(no modifier)
Y

s

sV

(no modifier)
u
su

sui

(no modifier)
%
sV

SVi

Table 4-1: Qualifier Combinations for Floating-Point Instructions

Number Qualifiers

1 c, u, uc, s, sc, su, suc

2 ¢, md, u, uc,umud, su, suc, sum sud, sui , Sui ¢, sui m
sui d

3 S

4 su

5 SV, V

6 c,V, Ve, S, sc,Sv,sve

7 c,V,Vc, SV, svc, svi, svic,d, vd, svd, svi d

8 c

9 c,md, sui, suic, suimsuid

4.2 Floating-Point Load and Store Instructions

Floating-point load and store instructions load values and move data between
memory and floating-point registers.

Table 4-2 lists the mnemonics and operands for instructions that perform
floating-point load and store operations. The table is divided into groups of
functionally related instructions. The operands specified within a particular
group apply to al of the instructions contained in that group.

Table 4-2: Load and Store Instruction Formats

Instruction Mnemonic Operands

Load F_floating | df @ d_reg, address
Load G_floating (Load D_floating) | dg@

Load S floating (Load Longword) | ds@

Load T_floating (Load Quadword) | dt @

Load Immediate F_floating I dif d_reg, val _expr
Load Immediate D_floating Idid

Load Immediate G_floating Idig

Load Immediate S floating (Load Longword) I dis
Load Immediate T_floating (Load Quadword) I dit

Store F_floating stfad S_reg, address
Store G_floating (Store D_floating) stg?
Store S_floating (Store Longword) sts@
Store T_floating (Store Quadword) stt@d

Floating-Point Instruction Set 4-9

Table Notes:

a. In addition to the normal operands that can be specified with this
instruction, relocation operands can also be specified (see Section 2.6.4).

Table 4-3 describes the operations performed by floating-point load and store
instructions.

The load and store instructions are grouped by function. Refer to Table 4-2
for the instruction names.

Table 4-3: Load and Store Instruction Descriptions

Instruction Description

Load Instructions Load eight bytes (G_, D_, and T_floating formats) or four
(I df,1dg,!ds, bytes (F_and S floating formats) from the specified
[dt,ldif,ldid, effective address into the destination register. The address

Idig,ldis,Idit) mustbequadword aigned for 8-byte load instructions and
longword aligned for 4-byte load instructions.

Store Instructions Store eight bytes (G_, D_, and T_floating formats) or four

(stf,stg,sts, bytes (F_and S floating formats) from the source floating-

stt) point register into the specified effective address. The
address must be quadword aligned for 8-byte store
instructions and longword aligned for 4-byte store
instructions.

4.3 Floating-Point Arithmetic Instructions

Floating-point arithmetic instructions perform arithmetic and logical
operations on values in floating-point registers.

Table 4-4 lists the mnemonics and operands for instructions that perform
floating-point arithmetic and logical operations. The table is divided into
groups of functionally related instructions. The operands specified within a
particular group apply to al of the instructions contained in that group.

The Qualifiers column in Table 4-4 refers to one or more trap or rounding
modes as specified in Table 4-1.

4-10 Floating-Point Instruction Set

Table 4-4: Arithmetic Instruction Formats

Instruction

Floating Clear

Floating Absolute Vaue

Floating Negate

Negate F_floating
Negate G_floating
Negate S floating
Negate T_floating

Add F_floating
Add G _floating
Add S floating
Add T_floating
Divide F_floating
Divide G_floating
Divide S floating
Divide T_floating
Multiply F_floating
Multiply G_floating
Multiply S floating
Multiply T_floating
Subtract F_floating
Subtract G_floating
Subtract S_floating
Subtract T_floating

Mnemonic

fclr

f abs
f neg
negf
negg
negs
negt

addf
addg
adds
addt
di vf
di vg
di vs
di vt
nmul f
nmul g
mul s
mul t
subf
subg
subs
subt

A Dhowwl

NNFPFENNFEFEFERPNNRFRFRPRPNNDRRE

Qualifiers Operands

d reg

Us reg, d_reg
Dd reg/s r =
neres I g

Us regl, s reg2, d regd
Ed_reg/s_regl, S reg2 E

Floating-Point Instruction Set 4-11

Table 4-4: (continued)

Instruction Mnemonic Qualifiers Operands
Convert Quadword
o Longword cvtql 5 gs_reg, d_regg
Convert Longword cvtlq - rd_reg/s reg
to Quadword cvtgq 6
Convert G_floating
to Quadword cvttq 7
Convert T_floating cvt gf 8
to Quadword
Convert Quadword cvtag 8
to F_floating cvtgs 9
Convert Quadword cvt gt 9
to G_floating
Convert Quadword cvtdg 1
to S floating cvtgd 1
Ctonvert Qu_adword cvt gf 1
o T_floating
Convert D_floating cvtts 2
to G_floating cvt st 3
Convert G_floating
to D_floating
Convert G_floating
to F_floating
Convert T_floating
to S floating
Convert S floating
to T_floating

Table 4-5 describes the operations performed by floating-point load and store
instructions. The arithmetic instructions are grouped by function. Refer to
Table 4-4 for the instruction names.

Table 4-5: Arithmetic Instruction Descriptions

Instruction Description

Clear Instruction Clear the destination register.

(fclr)

Absolute Value Compute the absolute value of the contents of the source
Instruction register and put the floating-point result in the destination
(f abs) register.

4-12 Floating-Point Instruction Set

Table 4-5:

Instruction

Negate I nstructions
(f neg, negf , negg,
negs, negt)

Add Instructions
(addf , addg, adds,
addt)

Divide Instructions
(di vf, divg,divs,
di vt)

Multiply Instructions
(mul f, nul g, mul s,
nmul t)

Subtract Instructions
(subf, subg, subs,
subt)

Conversion Between
Integer Formats
Instructions
(cvtqgl,cvtlq)

Conversion from
Floating-Point to
Integer Format
Instructions
(cvtgqg,cvttq)

Conversion from
Integer to Floating-
Point Format
Instructions
(cvtqgf, cvtqg,
cvtgs, cvtqt)

(continued)

Description

Compute the negative value of the contents of s_r eg or
d_reg and put the specified precision floating-point result
ind_reg.

Add the contents of s_reg or d_r eg to the contents of
s_reg2 and put theresult in d_r eg. When the sum of
two operands is exactly zero, the sum has a positive sign
for al rounding modes except round toward —oo. For that
rounding mode, the sum has a negative sign.

Compute the quotient of two values. These instructions
divide the contents of s_regl or d_r eg by the contents
of s_reg2 and put theresult in d_r eg. If thedivisorisa
zero, an error is signaled if the divide-by-zero exception is
enabled.

Multiply the contentsof s_regl or d_r eg with the
contents of s_reg2 and put theresult in d_r eg.

Subtract the contents of s_r eg2 from the contents of

s reglord regandputtheresultind reg. When
the difference of two operands is exactly zero, the
difference has a positive sign for all rounding modes except
round toward —. For that rounding mode, the sum has a
negative sign.

Convert the integer contents of s_r eg to the specified
integer format and put the result in d_r eg. If an integer
overflow occurs, the truncated result is stored in d_r eg
and, if enabled, an arithmetic trap occurs.

Convert the floating-point contents of s_r eg to the
specified integer format and put the result in d_reg. If an
integer overflow occurs, the truncated result is stored in
d_reg and, if enabled, an arithmetic trap occurs.

Convert the integer contents of s_r eg to the specified
floating-point format and put the result in d_r eg.

Floating-Point Instruction Set 4-13

Table 4-5: (continued)

Instruction Description

Conversion Between Convert the contents of s_r eg to the specified precision,
Floating-Point round according to the rounding mode, and put the result in
FormatsInstructions d_reg. If an overflow occurs, an unpredictable value is
(cvtdg, cvt gd, stored in d_r eg and a floating-point trap occurs.
cvtgf,cvtts,

cvtst)

4.4 Floating-Point Relational Instructions
Floating-point relational instructions compare two floating-point values.

Table 4-6 lists the mnemonics and operands for instructions that perform
floating-point relational operations. Each of the instructions can take an
operand in any of the forms shown.

The Qualifiers column in Table 4-6 refers to one or more trap or rounding
modes as specified in Table 4-1.

Table 4-6: Relational Instruction Formats

Instruction Mnemonic Qualifiers Operands
ngupjre G floating ¢ppgeq 3 gs_regl, s reg2, d_regg
Compare G_floating cnpgl t 3 rd_reg/s regl, s reg2
Compare G_floating 4

Less Than or Equal ¢"™Pted
Compare T_floating cnpt I t 4

Equal
Compare T_floating crptle 4

Less Than cnptun 4

Compare T_floating
Less Than or Equal

Compare T_floating
Unordered

Table 4-7 describes the relational instructions supported by the assembler.
The relational instructions are grouped by function. Refer to Table 4-6 for the
instruction names.

4-14 Floating-Point Instruction Set

Table 4-7: Relational Instruction Descriptions

Instruction

Compare Equal
Instructions

(cnpgeq, cnpt eq)

Compare Less Than
Instructions

(cnpglt,cnptlt)

Compare Less Than
or Equal Instructions

(cnpgl e, cnpt | e)

Compare Unor dered
Instruction

(cnpt un)

Description

Compare the contents of s_r eg1 with the contents of
s _reg2. If s_reglequass_reg2, anonzero value
is written to the destination register; otherwise, a true
zero value is written to the destination. Exceptions are
not signaled for unordered values.

Compare the contents of s_r eg1 with the contents of
s _reg2. If s_reglislessthan s_reg2, anonzero
value is written to the destination register; otherwise, a
true zero value is written to the destination. Exceptions
are not signaled for unordered values.

Compare the contents of s_r eg1 with the contents of
s reg2. If s_reglislessthanor equal to s_reg2,
anonzero value is written to the destination register;
otherwise, a true zero value is written to the destination.
Exceptions are not signaled for unordered values.

Compare the contents of s_r eg1 with the contents of

s _reg2. If either s_regl ors_reg?2isunordered, a
nonzero value is written to the destination register;
otherwise, a true zero value is written to the destination.
Exceptions are not signaled for unordered values.

4.5 Floating-Point Move Instructions

Floating-point move instructions move data between floating-point registers.

Table 4-8 lists the mnemonics and operands for instructions that perform
floating-point move operations. The table is divided into groups of
functionally related instructions. The operands specified within a particular
group apply to al of the instructions contained in that group.

Table 4-8: Move Instruction Formats

Instruction

Floating Move

Mnemonic Operands

f mov s reg,d reg

Floating-Point Instruction Set 4-15

Table 4-8:

Instruction

Copy Sign
Copy Sign Negate

Copy Sign and Exponent

Move if Equal to Zero

Move if Not Equal to Zero
Move if Less Than Zero
Move if Less Than or Equal to

Zero

Move if Greater Than Zero
Move if Greater Than or Equal

to Zero

(continued)

Mnemonic Operands
cpys
cpysn
cpyse
fcrnoveq
f cnovne
fcnovl t

Us regl, s reg2, d regt
gd_reg/s_regl, S reg2 B

fcnovl e
f cnmovgt

f cnovge

Table 4-9 describes the operations performed by move instructions. The
move instructions are grouped by function. Refer to Table 4-8 for the

instruction names.

Table 4-9: Move Instruction Descriptions

Instruction

Move I nstruction
(f nov)

Copy Sign
Instruction

(cpys)

Copy Sign Negate
Instruction

(cpysn)

Copy Sign and
Exponent Instruction
(cpyse)

Move If Instructions
(f cnoveq,
fcrmovne, fcnovl t,
fcmovl e, f cnovgt ,
f cnovge)

4-16 Floating-Point Instruction Set

Description

Move the contentsof s_regtod_reg.

Fetch the sign bit of s_regl or d_r eg, combine it
with the exponent and fraction of s_r eg2, and copy
theresultto d_reg.

Fetch the sign bit of s _regl or d_r eg, complement
it, combine it with the exponent and fraction of
s_reg2, and copy theresult to d_r eg.

Fetch the sign and exponent of s _regl or d_reg,
combine them with the fraction of s_r eg2, and copy
theresult to d_r eg.

Compare the contents of s_regl or d_r eg against
zero. If the specified condition is true, the contents of
Ss_regZ2iscopiedto d_reg; otherwise, d_reg is
unchanged.

4.6 Floating-Point Control Instructions

Floating-point control instructions test floating-point registers and
conditionally branch.

Table 4-10 lists the mnemonics and operands for instructions that perform
floating-point control operations. The specified operands apply to all of the
instructions listed in the table.

Table 4-10: Control Instruction Formats

Instruction Mnemonic Operands
Branch Equal to Zero f beq s_reg, | abel
Branch Not Equal to Zero f bne

Branch Less Than Zero fblt

Branch Less Than or Equal to Zero fble

Branch Greater Than Zero f bgt

Branch Greater Than or Equal to Zero f bge

Table 4-11 describes the operations performed by control instructions. The
control instructions are grouped by function. Refer to Table 4-10 for
instruction names.

Table 4-11: Control Instruction Descriptions

Instruction Description

Branch Instructions The contents of the source register are compared
(f beq, fbne, fblt, with zero. If the specified relationship is true, a
fbl e, fbgt, fbge) branch is made to the specified |abel.

4.7 Floating-Point Special-Purpose Instructions
Floating-point specia-purpose instructions perform miscellaneous tasks.

Table 4-12 lists the mnemonics and operands for instructions that perform
floating-point special-purpose operations.

Floating-Point Instruction Set 4-17

Table 4-12: Special-Purpose Instruction Formats

Instruction Mnemonic Operands
Move from FP Control Register nf _f pcr d reg
Move to FP Control Register nt _fpcr s reg

No Operation f nop (none)

Table 4-13 describes the operations performed by floating-point special-
purpose instructions.

Table 4-13: Control Register Instruction Descriptions

Instruction Description

Move to FPCR Copy the value in the specified source register to the
Instruction floating-point control register (FPCR).

(nf _f pcr)

Move from FPCR Copy the value in floating-point control register
Instruction (FPCR) to the specified destination register.

(mt _fpcr)

No Operation This instruction has no effect on the machine state.
Instruction

(f nop)

4-18 Floating-Point Instruction Set

Assembler Directives 5

Assembler directives are instructions to the assembler to perform various
bookkeeping tasks, storage reservation, and other control functions. To
distinquish them from other instructions, directive names begin with a period.
Table 5-1 lists the assembler directives by category.

Table 5-1: Summary of Assembler Directives

Category Directives

Compiler-Use-Only Directives . bgnb
.endb
file
.gjsrlive
. gj srsaved
.lab
.livereg
.loc
.option
. ugen
.vreg

Location Control Directives .align
.data
.rdata
. sdata
. Space
.text

Symbol Declaration Directives .extern
. gl obl
.struct
symbolic equate
. weakext

Routine Entry Point Definition Directives . aent
. ent

Table 5-1: (continued)

Category

Data Storage Directives

Repeat Block Directives

Assembler Option Directive
Procedure Attribute Directives

Version Control Directive

Scheduling and Architecture Subset
Directives

5-2 Assembler Directives

Directives

.ascii
.asciiz

. byte
.comm

. doubl e
.d_floating
. ext ended
.float

.f _floating
.gprel 32
.g_floating
. I conm
dit4

1it8

.1 ong

. quad
.s_floating
.t_floating
.wor d
.x_floating

. endr
. repeat

. set

. edata
.efl ag
.end

. f mask
.frame

. mask

. prol ogue
.save_ ra

.verstanp

.arch
.tune

The following list contains descriptions of the assembly directives (in
alphabetical order):

.aent nanme [,synmno]
Sets an aternate entry point for the current procedure. Use this
information when you want to generate information for the debugger.
This directive must appear between a pair of . ent and . end directives.
(The optional syrmo isfor compiler use only. It refersto a dense
number ina. T file (symbol table).)

aliasregl, reg?
Indicates that memory referenced through the two registers will overlap.
The compiler uses this form to improve instruction scheduling.

.align expressi on
Sets low-order bits in the location counter to zero. The value of
expr essi on establishes the number of bits to be set to zero. The
maximum value for expr essi on isfour (which produces octaword
alignment).

If the . al i gn directive advances the location counter, the assembler
fills the skipped bytes with zeros in data sections and nop instructions
in text sections.

Normally, the. wor d, . | ong, . quad, . f| oat, . doubl e,
.extended,.d_floating,.f_floating,.g _floating,
.s_floating,.t_floating,and.x_fl oating directives
automatically align their data appropriately. For example, . wor d does
animplicit . al i gn 1, and . doubl e does an implicit. al i gn 3.

Y ou can disable the automatic alignment feature with . al i gn 0. The
assembler reinstates automatic alignment at the next . t ext , . dat a,
. rdat a, or . sdat a directive that it encounters.

Labelsimmediately preceding an automatic or explicit alignment are
also realigned. For example,

foo: .align 3
.word O

is the same as

.align 3
foo: .word O

.arch nodel
Specifies the version of the Alpha architecture that the Assembler isto
generate instructions for. The valid values for nbdel areidentical to
those you can specify with the —ar ch flag on the cc command line.
See cc (1) for details.

Assembler Directives 5-3

ascii string[,string] ..
Assembles each st ri ng from the list into successive locations. The
.asci i directive does not pad the string with null characters. You
must put quotation marks (") around each string. Y ou can optionally
use the backslash escape characters. For alist of the backslash
characters, see Section 2.4.3.

asciizstring[,string] ..
Assembles each st ri ng in the list into successive locations and adds a
null character. You can optionally use the backslash escape characters.
For alist of the backslash characters, see Section 2.4.3.

.bgnb syrmmo
For use only by compilers. Sets the beginning of alanguage block. The
. bgnb and . endb directives delimit the scope of avariable set. The
scope can be an entire procedure, or it can be a nested scope (for
example, a*‘{}"’ block in the C language). The symbol number synmo
refersto adense number ina. T file (symbol table). For an explanation
of . T files, see Chapter 8.

.byte expressi onl [,expressi on2] [expressi onN
Truncates the values of the expressions specified in the comma-separated
list to 8-bit values, and assembles the values in successive locations.
The values of the expressions must be absolute.

The operands for the . byt e directive can optionally have the following
form:

expressionval [: expressi onRep |

The expr essi onVal isan 8-bit value. The optional

expr essi onRep is a non-negative expression that specifies how
many times to replicate the value of expr essi onVal . The
expression value (expr essi onVal) and repetition count

(expr essi onRep) must be absolute.

.comm nane, expression
Unless defined elsewhere, nanme becomes a global common symbol at
the head of a block of at least expr essi on bytes of storage. The
linker overlays like-named common blocks, using the expression value
of the largest block as the byte size of the overlay.

.data
Directs the assembler to add all subsequent data to the . dat a section.

.d_floating expr essi onl [,expressi on2] [expr essi onN
Initializes memory to double-precision (64-bit) VAX D_floating
numbers. The values of the expressions must be absolute.

The operandsfor the. d_f | oat i ng directive can optionally have the
following form:

5-4 Assembler Directives

expressionval [: expressi onRep |

The expr essi onVal is a64-bit value. The optional

expr essi onRep is a non-negative expression that specifies how
many times to replicate the value of expr essi onVal . The
expression value (expr essi onVal) and repetition count

(expr essi onRep) must be absolute.

The. d_f | oati ng directive automatically aligns its data and any
preceding labels on a double-word boundary. Y ou can disable this
feature with the . al i gn O directive .

.double expressi onl [,expressi on2] [expressi onN
Synonym for . t _fl oati ng.

.edata O

.edatal [/ ang- handl er rel ocat abl e- expressi on

.edata 2 [ang- handl er const ant - expressi on
Marks data related to exception handling.

If f1 ag is zero, the assembler adds all subsequent datato the . xdat a
section.

If fl agislor 2, the assembler creates a function table entry for the
next . ent directive. The function table entry contains the language-
specific handler (I ang- handl er) and data (r el ocat abl e-
expressi on or const ant - expr essi on).

eflag f I ags
Encodes exception-related flags to be stored in the PDSC_RPD_FLAGS
field of the procedure’ s run-time procedure descriptor. Refer to the
Calling Standard for Alpha Systems for a description of the individual

flags.

.end [proc_nane]
Sets the end of a procedure. The. ent directive sets the beginning of a
procedure. Usethe. ent and . end directives when you want to
generate information for the debugger.

.endb symo
Sets the end of alanguage block. (See the description of the . bgnb
directive for details. The . bgnb directive sets the beginning of a
language block.)

.endr
Signals the end of arepeat block. The. r epeat directive starts a
repeat block.

.ent proc_nanme [| ex-1evel |
Sets the beginning of the procedure pr oc_namne. Use this directive
when you want to generate information for the debugger. The . end

Assembler Directives 5-5

directive sets the end of a procedure.

The / ex- 1 evel operand indicates the number of procedures that
statically surround the current procedure. This operand is only
informational. It does not affect the assembly process; the assembler
ignores it.

err
For use only by compilers. Signals an error. Any compiler front-end
that detects an error condition puts this directive in the input stream.
When the assembler encountersa. er r directive, it quietly ceasesto
assemble the source file. This prevents the assembler from continuing
to process a program that is incorrect.

.extended expr essi onl [,expressi on2] [expressi onN
Synonym for . x_f | oati ng.

.extern nane [nunber |
Indicates that the specified symbol is global and external; that is, the
symbol is defined in another object module and cannot be defined until
link time. The name operand is a global undefined symbol and
numnber is the expected size of the external object.

f_floating expr essi onl [,expressi onZ] [expressi onN
Initializes memory to single-precision (32-bit) VAX F_floating numbers.
The values of the expressions must be absolute.

The operandsfor the . f _f | oat i ng directive can optionally have the
following form:

expressionval [: expressi onRep |

The expr essi onVal isa32-bit value. The optional

expr essi onRep is a non-negative expression that specifies how
many times to replicate the value of expr essi onVal . The
expression value (expr essi onVal) and repetition count

(expr essi onRep) must be absolute.

The.f _fl oati ng directive automatically aligns its data and
preceding labels on alongword boundary. You can disable this feature
by using the . al i gn 0 directive.

filefile_nunmber file_name_string
For use only by compilers. Specifies the source file from which the
assembly instructions that follow originated. This directive causes the
assembler to stop generating line numbers that are used by the debugger.
A subsequent . | oc directive causes the assembler to resume generating
line numbers.

float expressi onl [,expressi on2] [expressi onN
Synonym for . s_f | oati ng.

5-6 Assembler Directives

fmask mask of fset
Sets a mask with a bit turned on for each floating-point register that the
current routine saved. The least-significant bit corresponds to register
$f 0. The of f set isthe distance in bytes from the virtual frame
pointer to where the floating-point registers are saved.

You must use . ent before. f mask, and you can use only one
. f mask for each . ent . Space should be allocated for those registers
specified in the . f mask.

frameframe-regi ster frame-size return_pc-register

[l ocal _offset]
Describes a stack frame. The first register is the frame register,
franme-si ze isthe size of the stack frame, that is, the number of bytes
between the frame register and the virtual frame pointer. The second
register specifies the register that contains the return address. The
I ocal _of f set parameter, which is for use only by compilers,
specifies the number of bytes between the virtual frame pointer and the
local variables.

You must use . ent before. f r ame, and you can use only one
.franme for each . ent . No stack traces can be done in the debugger
without the . f r ane directive.

.g_floating expr essi onl [,expressi onZ] [expressi onN
Initializes memory to double-precision (64-bit) VAX G_floating
numbers. The values of the expressions must be absolute.

The operandsfor the. g_f | oat i ng directive can optionally have the
following form:

expressionval [: expressi onRep |

The expr essi onVal is a64-bit value. The optional

expr essi onRep is a non-negative expression that specifies how
many times to replicate the value of expr essi onVal . The
expression value (expr essi onVal) and repetition count

(expr essi onRep) must be absolute.

The. g_fl oati ng directive automatically aligns its data and any
preceding labels on a quadword boundary. Y ou can disable this feature
with the . al i gn O directive.

gjsrlive
For use only by compilers. Sets the default masks for live registers
before a procedure call (absr or j sr instruction).

Assembler Directives 5—7

.gjsrsaved
For use only by compilers. Sets the masks that define the registers
whose values are preserved during a procedure call. See Table 6-1 and
Table 6-2 for the default for integer and floating-point saved registers.

.globl nane
Identifies nanme as an external symbol. If the name is otherwise defined
(for example, by its appearance as a label), the assembler exports the
symbol; otherwise, it imports the symbol. In general, the assembler
imports undefined symbols; that is, it gives them the UNIX storage class
‘“‘global undefined’’ and requires the linker to resolve them.

.gprel32 addr ess1[, addr ess?2] [,addr essN
Truncates the signed displacement between the global pointer value and
the addresses specified in the comma-separated list to 32-bit values, and
assembles the values in successive locations.

The operands for the . gpr el 32 directive can optionally have the
following form:

addressVal [: addressRep |

The addr essVal isthe addressvalue. The optional addr essRep is
a non-negative expression that specifies how many times to replicate the
value of addr essVal . The expression value (addr essVal) and
repetition count (addr ess Rep) must be absolute.

The . gpr el 32 directive automatically aligns its data and preceding
labels on alongword boundary. Y ou can disable this feature with the
.align O directive.

.gretlive
For use by conpilers. Setsthe default masks for live registers
before a procedure sreturn (ar et instruction).

lab I abel _nane
For use only by compilers. Associates a named label with the current
location in the program text.

Jdcomm nane, expressi on
Gives the named symbol (nane) a data type of bss. The assembler
allocates the named symbol to the bss area, and the expression defines
the named symbol’s length. If a. gl obl directive also specifies the
name, the assembler allocates the named symbol to external bss.

The assembler puts bss symbolsin one of two bss areas. If the
defined size is less than or equal to the size specified by the assembler
or compiler’s - G command line option, the assembler puts the symbols
inthe sbss area

5-8 Assembler Directives

litd
Allows 4-byte constants to be generated and placed in the | i t 4 section.
This directiveis only valid for . | ong (with non-relocatable
expressions), . f _floating,.float,and.s_floating.

1it8
Allows 8-byte constants to be generated and placed in the | i t 4 section.
This directiveis only valid for . quad (with non-relocatable
expressions), . d_fl oating,.g_floating,.doubl e, and
.t_floating.

Jlivereg i nt _bi t mask fp_bitnmask
For use only by compilers. Affects the next jump instruction even if it
is not the successive instruction. By default, external br instructions
and j np instructions are treated as external calls; that is; all registers are
assumed to be live. The. | i ver eg directive cannot appear before an
external br instruction because it will affect the nextr et , j sr, bsr,
jmp,orcall _pal call sys instruction instead of the br
instruction. The directive cannot be used beforeacal | _pal bpt
instruction. For cal | _pal bpt instructions, the assembler also
assumes that all registers are live.

To avoid unsafe optimizations by the reorganizer, . | i ver eg notesto
the assembler those registers that are live before ajump. The directive
. l'i ver eg takestwo arguments, i nt _bi t mask and f p_bi t nask,
which are 32-bit bitmasks with a bit turned on for each register that is
live before ajump. The most significant bit corresponds to register $0
(which is opposite to that used in other assembly directives, for
example, . mask and . f mask). Thefirst bitmap indicates live integer
registers and the second indicates live floating-point registers.

When present, this directive causes the assembler to be more
conservative and to preserve the indicated register contents. If omitted,
the assembler assumes the default masks. The . | i ver eg directive can
be coded before any of the following instructions: bsr, j sr,ret,
jmp,andcal | _pal call sys.

doc file nunber |ine_nunber
For use only by compilers. Specifies the source file and the line within
it that corresponds to the assembly instructions that follow. The
assembler ignores the file number when this directive appearsin the
assembly source file. Then, the assembler assumes that the directive
refersto the most recent . fi | e directive. Whena. | oc directive
appears in the binary assembly language . Gfile, the file number is a
dense number pointing at a file symbol in the symbol table . T file. For
more information about . Gand . T files, see Chapter 8.

Jlong expressi onl [,expressi on2] [expressi onN
Truncates the values of the expressions specified in the comma-separated

Assembler Directives 5-9

list to 32-bit values, and assembles the values in successive locations.
The values of the expression can be relocatable.

The operands for the . | ong directive can optionally have the following
form:

expressionval [: expressi onRep |

The expr essi onVal isa32-bit value. The optional

expr essi onRep is a non-negative expression that specifies how
many times to replicate the value of expr essi onVal . The
expression value (expr essi onVal) and repetition count

(expr essi onRep) must be absolute.

The . | ong directive automatically aligns its data and preceding labels
on alongword boundary. You can disable this feature with the
.align O directive.

.mask mask, offset
Sets a mask with a bit turned on for each general-purpose register that
the current routine saved. The least significant bit corresponds to
register $0. The of f set isthe distance in bytes from the virtual frame
pointer to where the registers are saved.

You must use . ent before. mask, and you can use only one . mask
for each . ent . Space should be allocated for those registers specified
in the . mask.

.noaliasregl, reg?
Informs the assembler that r eg1 and r eg2 will never point to the same
memory location when they are used as indexed registers. The
assembler uses this as a hint to make more liberal assumptions about
resource dependency in the program.

.option opt i ons
For use only by compilers. Informs the assembler that certain options
were in effect during compilation. For example, these options can limit
the assembler’s freedom to perform branch optimizations.

.prologue f I ag
Marks the end of the prologue section of a procedure.

A fl ag of zero indicates that the procedure does not use $gp; the
caller does not need to set up $pv prior to calling the procedure or
restore $gp on return from the procedure.

A f | ag of one indicates that the procedure does use $gp; the caller
must set up $pv prior to calling the procedure and restore $gp on
return from the procedure.

If f1 ag is not specified, the behavior is asif a value of one was
specified.

5-10 Assembler Directives

.quad expressi onl [,expressi onZ2] [expressi onN
Truncates the values of the expressions specified in the comma-separated
list to 64-bit values, and assembles the values in successive locations.
The values of the expressions can be relocatable.

The operands for the . quad directive can optionally have the following
form:

expressionval [: expressi onRep |

The expr essi onVal is a64-bit value. The optional

expr essi onRep is a non-negative expression that specifies how
many times to replicate the value of expr essi onVal . The
expression value (expr essi onVal) and repetition count

(expr essi onRep) must be absolute.

The . quad directive automatically aligns its data and preceding labels
on a quadword boundary. You can disable this feature with the
.align O directive.

rdata
Instructs the assembler to add subsequent data into the . r dat a section.

.repeat expr essi on
Repeats all instructions or data between the . r epeat and . endr
directives. The expr essi on defines how many times the enclosing
text and data repeats. With the . r epeat directive, you cannot use
labels, branch instructions, or values that require relocation in the block.
Also note that nesting . r epeat directivesis not alowed.

.save ra saved_ra_regi ster
Specifiesthat saved_ra_regi st er isthe register in which the
return address is saved during the execution of the procedure. If
. save_ra isnot used, the saved return address register is assumed to
be the same asthe ret urn_pc_regi st er argument of thef r ane
directive. The. save_r a directiveis valid only for register frame
procedures.

.Sdata
Instructs the assembler to add subsequent data to the . sdat a section.

.Sset opt i on
Instructs the assembler to enable or disable certain options. The
assembler has the following default options: r eor der , macr o, nove,
novol atil e, andat. Only one option can be specified by a single
. set directive. The effects of the options are as follows:

e Thereorder option permits the assembler to reorder machine-
language instructions to improve performance.

The nor eor der option prevents the assembler from reordering
machine-language instructions. If a machine-language instruction

Assembler Directives 5-11

violates the hardware pipeline constraints, the assembler issues a
warning message.

e Theracr o option permits the assembler to generate multiple
machine-language instructions from a single assembler instruction.

The nomacr o option causes the assembler to print a warning
whenever an assembler operation generates more than one machine-
language instruction. Y ou must select the nor eor der option
before using the nomacr o option; otherwise, an error results.

» Theat option permits the assembler to use the $at register for
macros, but generates warnings if the source program uses $at .

When you use the noat option and an assembler operation requires
the $at register, the assembler issues a warning message; however,
the noat option does permit source programs to use $at without
warnings being issued.

¢ Thenonove options instructs the assembler to mark each
subsequent instruction so that it cannot be moved during
reorganization. The assembler can still move instructions from
below the nonove region to above the region or vice versa. The
nonove option has part of the effect of the *‘volatile’’ C
declaration; it prevents otherwise independent loads or stores from
occurring in a different order than intended.

The nove option cancels the effect of nonove.

« Thevol ati | e option instructs the assembler that subsequent load
and store instructions may not be moved in relation to each other or
removed by redundant load removal or other optimization. The
vol ati | e option is less restrictive than nor eor der ; it allows the
assembler to move other instructions (that is, instructions other than
load and store instructions) without restrictions.

Thenovol ati | e option cancels the effect of thevol atil e
option.

.S floating expr essi onl [,expressi on2] [expressi onN
Initializes memory to single-precision (32-bit) |EEE floating-point
numbers. The values of the expressions must be absolute.

The operandsfor the. s_f | oat i ng directive can optionally have the
following form:

expressionval [: expressi onRep |

The expr essi onVal isa32-bit value. The optional

expr essi onRep is a non-negative expression that specifies how
many times to replicate the value of expr essi onVal . The
expression value (expr essi onVal) and repetition count

5-12 Assembler Directives

(expr essi onRep) must be absolute.

The. s_fl oati ng directive automatically aligns its data and
preceding labels on alongword boundary. You can disable this feature
with the . al i gn O directive.

.space expr essi on
Advances the location counter by the number of bytes specified by the
value of expr essi on. The assembler fills the space with zeros.

struct expressi on
Permits you to lay out a structure using labels plus directives such as
.wor d or. byt e. It ends a the next segment directive (. dat a,
. t ext, and so forth). It does not emit any code or data, but defines the
labels within it to have values that are the sum of expr essi on plus
their offsets from the . st ruct itself.

symbolic equate
Takes one of the following forms. name = expressi on or
name = regi ster. Youmust define the name only once in the
assembly, and you cannot redefine the name. The expression must be
computable when you assemble the program, and the expression must
involve only operators, constants, or equated symbols. You can use the
name as a constant in any later statement.

text
Instructs the assembler to add subsequent code to the . t ext section.
(Thisis the default.)

t_floating expr essi onl [,expressi onZ] [expressi onN
Initializes memory to double-precision (64-bit) |EEE floating-point
numbers. The values of the expressions must be absolute.

The operandsfor the. t _f | oat i ng directive can optionally have the
following form:

expressionval [: expressi onRep |

The expr essi onVal is a64-bit value. The optional

expr essi onRep is a non-negative expression that specifies how
many times to replicate the value of expr essi onVal . The
expression value (expr essi onVal) and repetition count

(expr essi onRep) must be absolute.

The.t _fl oati ng directive automatically aligns its data and any
preceding labels on a quadword boundary. Y ou can disable this feature
with the . al i gn O directive.

tune opti on
Selects processor-specific instruction tuning for various implementations
of the Alpha architecture. Regardless of the setting of the . ar ch

Assembler Directives 5-13

directive, the generated code will run correctly on all implementations of
the Alpha architecture. The valid values for opt i on areidentical to
those you can specify with the —ar ch flag on the cc command line.
See cc (1) for details.

.ugen
For use only by compilers. Informs the assembler that the source was
generated by the code generator.

verstamp nmj or m nor
Specifies the magjor and minor version numbers; for example, version
0.15would be . verstanp 0 15.

vregregi ster offset synno
For use only by compilers. Describes aregister variable by giving the
offset from the virtual frame pointer and the symbol number synmo (the
dense number) of the surrounding procedure.

.weakext nanel [,nane’]
Sets nanel to be aweak symbol during linking. If nameZ2 is specified,
nanel is created as a weak symbol with the same value as nane?2.
Weak symbols can be silently redefined at link time.

.word expressi onl [,expressi on2] [expressi onN
Truncates the values of the expressions specified in the comma-separated
list to 16-bit values, and assembles the values in successive locations.
The values of the expressions must be absolute.

The operands for the . wor d directive can optionally have the following
form:

expressionval [: expressi onRep |

The expr essi onVal isa16-bit value. The optional

expr essi onRep is a non-negative expression that specifies how
many times to replicate the value of expr essi onVal . The
expression value (expr essi onVal) and repetition count

(expr essi onRep) must be absolute.

The . wor d directive automatically aligns its data and preceding labels
on aword boundary. You can disable this feature with the . al i gn 0
directive.

X_floating expressi onl [,expressi onZ] [expressi onN
Initializes memory to quad-precision (128-bit) |EEE floating-point
numbers. The values of the expressions must be absolute.

The operands for the . x_f | oat i ng directive can optionally have the
following form:

expressionval [: expressi onRep |
The expr essi onVal isa128-bit vaue. The optional

5-14 Assembler Directives

expr essi onRep is a non-negative expression that specifies how
many times to replicate the value of expr essi onVal . The
expression value (expr essi onVal) and repetition count

(expr essi onRep) must be absolute.

The. x_f 1 oati ng directive automatically aligns its data and
preceding labels on an octaword boundary. You can disable this feature
with the . al i gn O directive.

Assembler Directives 5-15

Programming Considerations 6

This chapter gives rules and examples to follow when creating an assembly-
language program.

The chapter addresses the following topics:

* Why your assembly programs should use the calling conventions
observed by the C compiler. (Section 6.1)

» Anoverview of the composition of executable programs. (Section 6.2)

* The use of registers, section and location counters, and stack frames.
(Section 6.3)

» A technique for coding an interface between an assembly-language
procedure and a procedure written in a high-level language. (Section 6.4)

» The default memory-allocation scheme used by the Alpha system.
(Section 6.5)

This chapter does not address coding issues related to performance or
optimization. See Appendix A of the Alpha Architecture Reference Manual
for information on how to optimize assembly code.

6.1 Calling Conventions

When you write assembly-language procedures, you should use the same
calling conventions that the C compiler observes. The reasons for using the
same calling conventions are as follows:

» Often your code must interact with compiler-generated code, accepting
and returning arguments or accessing shared global data.

» The symbolic debugger gives better assistance in debugging programs
that use standard calling conventions.

The conventions observed by the Digital UNIX compiler system are more
complicated than those of some other compiler systems, mostly to enhance
the speed of each procedure call. Specifically:

» The C compiler uses the full, genera calling sequence only when
necessary; whenever possible, it omits unneeded portions of the sequence.
For example, the C compiler does not use a register as a frame pointer if
it is unnecessary to do so.

» The C compiler and the debugger observe certain implicit rules instead of
communicating by means of instructions or data at execution time. For
example, the debugger looks at information placed in the symbol table by
a. frame directive at compilation time. This technique enables the
debugger to tolerate the lack of aregister containing a frame pointer at
execution time.

* Thelinker performs code optimizations based on information that is not
available at compile time. For example, the linker can, in some cases,
replace the general calling sequence to a procedure with a single
instruction.

6.2 Program Model

A program consists of an executable image and zero or more shared images.
Each image has an independent text and data area.

Each data segment contains a global offset table (GOT), which contains
address constants for procedures and data locations that the text segment
references. The GOT provides the means to access arbitrary 64-bit addresses
and allows the text segment to be position independent.

The size of the GOT is limited only by the maximum image size. However,
because only 64KB can be addressed by a single memory-format instruction,
the GOT is segmented into one or more sections of 64KB or less.

In addition to providing efficient access to the GOT, the gp register is also
used to access global data within £2GB of the global pointer. This area of
memory is known as the global data area.

A static executable image is not a specia case in the program model. It is
simply an executable image that uses no shared libraries. However, it is
possible for the linker to perform code optimizations. In particular, if a static
executable image's GOT is less than or equal to 64KB (that is, has only one
segment), the code to load, save, and restore the gp register is not necessary
because al procedures will access the same GOT segment.

6.3 General Coding Concerns

This section describes three general areas of concern to the assembly
language programmer:

e Usable and restricted registers
» Control of section and location counters with directives
» Stack frame requirements on entering and exiting a procedure

Another general coding consideration is the use of data structures to
communicate between high-level language procedures and assembly

6—2 Programming Considerations

6.3.1

procedures. In most cases, this communication is handled by means of
simple variables: pointers, integers, Booleans, and single- and double-
precision real numbers. Describing the details of the various high-level data
structures that can also be used — arrays, records, sets, and so on — is beyond
the scope of this manual.

Register Use

The main processor has 32 64-bit integer registers. The uses and restrictions
of these registers are described in Table 6-1.

The floating-point co-processor has 32 floating-point registers. Each register
can hold either a single-precision (32 bit) or double-precision (64 bit) value.
Refer to Table 6-2 for details.

Table 6-1: Integer Registers

Register Name Software Name Use
(from regdef.h)

$0 vO0 Used for expression evaluations and to
hold the integer function results. Not
preserved across procedure calls.

$1-8 t0-t7 Temporary registers used for expression
evaluations. Not preserved across
procedure calls.

$9- 14 s0-s5 Saved registers. Preserved across
procedure calls.

$15 or $f p s6orfp Contains the frame pointer (if needed);
otherwise, a saved register.

$16- 21 a0- a5 Used to pass the first six integer type

actual arguments. Not preserved across
procedure calls.

$22-25 t8-t11 Temporary registers used for expression
evaluations. Not preserved across
procedure calls.

$26 ra Contains the return address. Preserved
across procedure calls.
$27 pv ort12 Contains the procedure value and used

for expression evaluation. Not
preserved across procedure calls.

$28 or $at AT Reserved for the assembler. Not
preserved across procedure calls.

Programming Considerations 6—3

6.3.2

Table 6-1:

(continued)

Register Name Software Name Use

$29 or $gp
$30 or $sp

$31

Table 6-2:

Register
Name

$f0-f1
$f2-f9
$f 10-f 15
$f 16-f 21
$f 22-f 30

$f 31

(from regdef.h)

ap Contains the global pointer. Not
preserved across procedure calls.

sp Contains the stack pointer. Preserved
across procedure calls.

zero Always has the value 0.

Floating-Point Registers

Use

Used to hold floating-point type function results ($f 0) and complex
type function results ($f O has the real part, $f 1 has the imaginary
part). Not preserved across procedure calls.

Saved registers. Preserved across procedure calls.

Temporary registers used for expression evaluation. Not preserved
across procedure calls.

Used to pass the first six single- or double-precision actual
arguments. Not preserved across procedure calls.

Temporary registers used for expression evaluations. Not preserved
across procedure calls.

Always has the value 0.0.

Using Directives to Control Sections and Location Counters

Assembled code and data are stored in the object file sections shown in
Figure 6-1. Each section has an implicit location counter that begins at zero
and increments by one for each byte assembled in the section. Location
control directives (. al i gn, . dat a, . rconst, . rdata, . sdat a,

. space, and . t ext) can be used to control what is stored in the various
sections and to adjust location counters.

The assembler always generates the text section before other sections.
Additions to the text section are done in 4-byte units.

The bss (block started by symbol) section holds data items (usually variables)
that areinitialized to zero. If a. | conmdirective defines a variable, the

6—4 Programming Considerations

assembler assigns that variable to either the . bss section or the . sbss
(small bss) section, depending on the variable' s size.

The default size for variablesin the . sbss section is eight or fewer bytes.

Y ou can change the size using the - G compilation option for the C compiler
or the assembler. Items smaller than or equal to the specified size go in the
. sbss section. Items greater than the specified size go in the . bss section.

At run time, the $gp register points into the area of memory occupied by the
.litasection. The.lita sectionis used to hold address literals for 64-
bit addressing.

Figure 6-1: Sections and Location Counters for Nonshared
Object Files

bss <4— bss (block started by symbol) section

bss segment <
.shss <—small bss section

N

.sdata <— small data section

lit4

data segment < K
g 1it8

lita

Xdata

.data

4

fini

.init

text <4——text section
text segment <

.pdata

.rdata <—read-only data section

.rconst <4——read-only constant section

ZK-0733U-R
See Chapter 7 for more information on section data.

Programming Considerations 6-5

6.3.3 The Stack Frame

The C compiler classifies each procedure into one of the following
categories:

» Nonleaf procedures. These procedures call other procedures.

* Leaf procedures. These procedures do not themselves call other
procedures. Leaf procedures are of two types: those that require stack
storage for local variables and those that do not.

Y ou must decide the procedure category before determining the calling
sequence.

To write a program with proper stack frame usage and debugging
capabilities, you should observe the conventions presented in the following
list of steps. Steps 1 through 6 describe the code you must provide at the
beginning of a procedure, step 7 describes how to pass parameters, and steps
8 through 12 describe the code you must provide at the end of a procedure:

1. Regardless of the type of procedure, you should include a. ent directive
and an entry label for the procedure:

. ent procedur e_nane
procedur e_nane:

The. ent directive generates information for the debugger, and the entry
label is the procedure name.

2. If you are writing a procedure that references static storage, calls other
procedures, uses constants greater than 31 bits in size, or uses floating
constants, you must load the $gp register with the global pointer value
for the procedure:

| dgp $gp, 0($27)

Register $27 contains the procedure value (the address of this procedure
as supplied by the caller).

3. If you are writing a leaf procedure that does not use the stack, skip to
step 4. For anonleaf procedure or a leaf procedure that uses the stack,
you must adjust the stack size by allocating all of the stack space that the
procedure requires:

| da $sp, - framesi ze($sp)
The f r anesi ze operand is the size of frame required, in bytes, and

must be a multiple of 16. You must allocate space on the stack for the
following items:

e Loca variables.

» Saved genera registers. Space should be allocated only for those
registers saved. For nonleaf procedures, you must save register $26,
which is used in the calls to other procedures from this procedure. If
you use registers $9 to $15, you must also save them.

6—6 Programming Considerations

» Saved floating-point registers. Space should be alocated only for
those registers saved. If you use registers $f 2 to $f 9, you must also
save them.

* Procedure call argument area. Y ou must allocate the maximum
number of bytes for arguments of any procedure that you call from
this procedure; this area does not include space for the first six
arguments because they are always passed in registers.

Note

Once you have modified register $sp, you should not modify
it again in the remainder of the procedure.

4. To generate information used by the debugger and exception handler, you
must include a . f r ane directive:

.frame franereg, franmesize,returnreg

The virtual frame pointer does not have a register alocated for it. It
consists of the f raner eg ($sp, in most cases) added to the
franesi ze (see step 3). Figure 6-2 illustrates the stack components.

Programming Considerations 6—7

Figure 6-2: Stack Organization

(high memory)

virtual frame

nth argument

7th argument

pointer ($fp)

frameoffset

local & temporaries

saved registers

(including returnreg)

argument build

example of saved registers

. saved $10
S saved $9
/ saved $26 (ra)
>~ framesize

stack
pointer ($sp)_>

(low memory)

ZK-0736U-R

The r et ur nr eg argument for the . f r anme directive specifies the
register that contains the return address (usualy register $26). These
usual values may change if you use a varying stack pointer or are
specifying a kernel trap procedure.

5. If the procedureis aleaf procedure that does not use the stack, skip to
step 11. Otherwise, you must save the registers for which you allocated

spacein step 3.

Saving the general registers requires the following operations:
» Specify which registers are to be saved using the following . mask

directive:

. mask

bi t mask, f r aneof f set

The bit setting in bi t mask indicate which registers are to be saved.
For example, if register $9 is to be saved, bit 9in bi t mask must be
setto 1. Thevaluefor frameof f set isthe offset (negative) from
the virtual frame pointer to the start of the register save area.

» Usethefollowing st q instruction to save the registers specified in

6—8 Programming Considerations

the mask directive:
stq reg, franesi ze+f r aneof f set +N($sp)

The value of Nis the size of the argument build area for the first
register and is incremented by 8 for each successive register. If the
procedure is a nonleaf procedure, the return address is the first register
to be saved. For example, a nonleaf procedure that saves register $9
and $10 would use the following st q instructions:

stq $26, f ranmesi ze+f r aneof f set ($sp)
stq $9, franesi ze+f r aneof f set +8($sp)
stq $10, franesi ze+f r aneof f set +16($sp)

(Figure 6-2 illustrates the order in which the registers in the preceding
example would be saved.)

Then, save any floating-point registers for which you allocated space
in step 3:

.fmask bitmask, franeof f set

stt reg, franesi ze+f r anmeof f set +N($sp)

Saving floating-point registersis identical to saving integer registers
except you use the . f mask directive instead of . mask, and the
storage operations involve single- or double-precision floating-point
data. (The previous discussion about how to save integer registers
applies here as well.)

6. Thefina step in creating the procedure’ s prologue is to mark its end as
follows:

. prol ogue flag

The fl ag is set to 1 if the prologue contains an | dgp instruction (see
step 2); otherwise, it is set to 0.

7. This step describes parameter passing: how to access arguments passed
into your procedure and how to pass arguments correctly to other
procedures. For information on high-level language-specific constructs
(call-by-name, call-by-value, string or structure passing), see the
programmer’ s guides for the high-level languages used to write the
procedures that interact with your program.

General registers $16 to $21 and floating-point registers $f 16 to $f 21
are used for passing the first six arguments. All nonfloating-point
arguments in the first six arguments are passed in general registers. All
floating-point arguments in the first six arguments are passed in floating-
point registers.

Stack space is used for passing the seventh and subsequent arguments.
The stack space allocated to each argument is an 8-byte multiple and is
aligned on an 16-byte boundary.

Programming Considerations 6-9

6.3.4

Table 6-3 summarizes the location of procedure arguments in the register

or stack.

Table 6-3: Argument Locations

Argument Integer Floating-Point

Number Register Register Stack

1 $16 (a0) $f 16

2 $17 (al) $f 17

3 $18 (a2) $f 18

4 $19 (a3) $f 19

5 $20 (a4) $f 20

6 $21 (a5) $f 21

7-n 0($sp)..(n-7)*8($sp)

8. On procedure exit, you must restore registers that were saved in step 5.
To restore general purpose registers:

I dg reg, franesi ze+f r aneof f set +N($sp)
To restore the floating-point registers:
| dt reg, franesi ze+f r aneof f set +N($sp)

(Refer to step 5 for adiscussion of the value of N)

9. Get the return address:
| dg $26, f ramesi ze+f r aneof f set ($sp)

10. Clean up the stack:
| da $sp, framesi ze($sp)

11. Return:
ret $31, ($26),1

12. End the procedure:
.end pr ocedur enane

Examples

The examples in this section show procedures written in C and equivalent
procedures written in assembly language.

Example 6-1 shows a nonleaf procedure. Notice that it creates a stack frame
and saves its return address. It saves its return address because it must put a

new return address into register $26 when it makes a procedure call.

6—10 Programming Considerations

Example 6-1: Nonleaf Procedure

int
nonl eaf (i, j)
int i, *j;
{
int abs();
int tenp;
temp =i - *j;
return abs(tenp);
}
.globl nonl eaf
1int
2 nonleaf (i, j)
3 int i, *j;
4 {
. ent nonl eaf 2
nonl eaf :
| dgp $gp, 0(%$27)
| da $sp, -16(%$sp)
stq $26, O($sp)
. mask 0x04000000, -16
.frame $sp, 16, $26, 0
. prol ogue 1
addl $16, 0, $18
5 int abs();
6 int tenp;
7
8 temp =i - *j;
I dl $1, 0(%$17)
subl $18, $1, $16
9 return abs(tenp);
jsr $26, abs
| dgp $gp, 0(%26)
I dg $26, 0($sp)
| da $sp, 16($sp)
ret $31, (%$26), 1
.end nonl eaf

Example 6-2 shows a leaf procedure that does not require stack space for
local variables. Notice that it does not create a stackframe and does not save

areturn address.

Programming Considerations 6-11

Example 6-2: Leaf Procedure Without Stack Space for Local
Variables
int
| eaf (pl, p2)
int pl, p2;

return (pl > p2) ? pl : p2;
}

.globl |eaf

1 leaf (pl, p2)

2 int pl, p2;

3
.ent | eaf 2

| eaf:
| dgp $gp, 0($27)
.frame $sp, 0, $26, 0O
. prol ogue 1
addl $16, 0, $16
addl $17, 0, $17

4 return (pl > p2) ? pl : p2;
bi s $17, $17, $0

cnpl t $0, $16, $1
cnmovne $1, $16, $0
ret $31, (%$26), 1
.end | eaf

Example 6-3 shows a leaf procedure that requires stack space for local
variables. Notice that it creates a stack frame but does not save areturn

address.
Example 6-3: Leaf Procedure With Stack Space for Local
Variables
int
| eaf _storage(i)
int i;
{
int a[16];
int j;
for (j =0; j < 10; j+4+)
a[j] =0 +j;
return a[i];
}
.globl |eaf_storage
1int
2 leaf _storage(i)
3 int i;
4
.ent | eaf _storage 2

6—12 Programming Considerations

Example 6-3: (continued)

| eaf _st orage
| dgp $gp, 0($27)
| da $sp, -80($sp)
.frane $sp, 80, $26, O
. prol ogue 1
addl $16, 0, $1

5 int a[16];

6 int j;

7 for (j =0; j < 10; j++)
I dil $2, 48
st $2, 16($sp)
I dil $3, 49
st $3, 20($sp)
I dil $0, 2
| da $16, 24(%$sp)

$32:

8 a[j] ='0 +j;
add| $0, 48, %4
st $4, 0(%16)
addl $0, 49, $5
st $5, 4(%$16)
addl $0, 50, $6
st $6, 8($16)
addl $0, 51, $7
st $7, 12(%16)
addl $0, 4, $0
addq $16, 16, $16
subq $0, 10, $8
bne $8, $3

9 return afi];
mul | $1, 4, $22
addq $22, $sp, $0
| dl $0, 16(%$0)
| da $sp, 80($sp)
ret $31, (%$26), 1
.end | eaf _storage

6.4 Developing Code for Procedure Calls

The rules and parameter requirements for passing control and exchanging
data between procedures written in assembly language and procedures written
in other languages are varied and complex. The simplest approach to coding
an interface between an assembly procedure and a procedure written in a
high-level language is to do the following:

» Usethe high-level language to write a skeletal version of the procedure
that you plan to code in assembly language.

e Compile the program using the - S option, which creates an assembly-
language (. s) version of the compiled source file.

Programming Considerations 6—13

6.4.1

» Study the assembly-language listing and then, using the code in the
listing as a guideline, write your assembly-language code.

Section 6.4.1 and Section 6.4.2 describe techniques you can use to create
interfaces between procedures written in assembly language and procedures
written in a high-level language. The examples show what to look for in
creating your interface. Details such as register numbers will vary according
to the number, order, and data types of the arguments. In writing your
particular interface, you should write and compile realistic examples of the
code you want to write in assembly language.

Calling a High-Level Language Procedure

The following steps show an approach to use in writing an assembly-
language procedure that calls at of (3), a procedure written in C that converts
ASCII charactersto numbers:

1. Writea C program that callsat of . Pass global variables instead of
local variables; this makes them easy to recognize in the assembly-
language version of the C program (and ensures that optimization does
not remove any of the code on the grounds that it has no effect).

The following C program is an example of a program that calls at of :

char c[] = "3.1415";
double d, atof();
float f;

cal ler()

atof (c);
(float)atof(c);

— =~
1

2. Compile the program using the following compiler options:
cc -S-Ocaller.c

The - S option causes the compiler to produce the assembly-language
listing; the - O option, though not required, reduces the amount of code
generated, making the listing easier to read.

3. After compilation, examine thefilecal | er. s. The commentsin the
file show how the parameters are passed, the execution of the call, and
how the returned values are retrieved:

.globl ¢
.data

.ascii "3.1415\ X00"
.comm d

.coomm f
. text
.globl caller

8
4

6—14 Programming Considerations

1 char c[] = "3.1415"

2 double d, atof();

3 float f;

4 caller()

5 {
.ent caller 2

cal ler:
| dgp $gp, 0(%$27)
| da $sp, -16(S$sp)
stq $26, 0O($sp)
. mask 0x04000000, -16
.frame $sp, 16, $26, 0
. prol ogue 1

6 d = atof(c);
| da $16, c
jsr $26, at of
| dgp $gp, 0(%$26)
stt $fo, d

7 f = (float)atof(c);
| da $16, c
jsr $26, at of
| dgp $gp, 0(%$26)
cvtts $f 0, $f10
sts $f10, f

8 }
| dg $26, 0($sp)
| da $sp, 16($sp)
ret $31, (%26), 1
.end cal ler

6.4.2 Calling an Assembly-Language Procedure

The following steps show an approach to use in writing an assembly-
language procedure that can be called by a procedure written in a high-level
language:

1. Using a high-level language, write a facsimile of the assembly-language
procedure you want to call. In the body of the procedure, write
statements that use the same arguments you intend to use in the final
assembly-language procedure. Copy the arguments to global variables
instead of local variables to make it easy for you to read the resulting
assembly-language listing.

The following C program is a facsimile of the assembly-language
program:

typedef char str[10];

typedef int bool ean

float global _r;
int global _i;
str global _s;

Programming Considerations 6—15

bool ean gl obal _b;

bool ean callee(float *r, int i, str s)
{
gl obal _r = *r;
global i =1i;
gl obal _s[0] = s[0];
return i == 3;
}

Compile the program using the following compiler options:
cc -S -Ocallee.c

The - S option causes the compiler to produce the assembly-language
listing; the - O option, though not required, reduces the amount of code
generated, making the listing easier to read.

After compilation, examine the file cal | ee. s. The commentsin the
file show how the parameters are passed, the execution of the call, and
how the returned values are retrieved:

.comm global _r 4

.conmm global _i 4

.comm global _s 10
.comm global _b 4

.text
.globl callee
10 {
.ent callee 2
cal | ee:
| dgp $gp, 0(%$27)
.frame $sp, 0, $26, O
. prol ogue 1
add| $17, 0, $17
11 gl obal _r = *r;
| ds $f 10, 0($16)
sts $f 10, gl obal _r
12 global i =1i;
st $17, gl obal _i

13 gl obal _s[0] = s[O0];
ldg_u $1, 0($18)
ext bl $1, $18, $1
. set noat
| da $28, global _s
ldg_u $2, 0($28)

i nsbl $1, $28, $3
nskbl $2, $28, $2

bi s $2, $3, $2
stg_u $2, 0(%$28)
. set at

14 return i == 3;
cnpeq $17, 3, $0
ret $31, (%$26), 1
.end cal |l ee

6—16 Programming Considerations

6.5 Memory Allocation

The default memory allocation scheme used by the Alpha system gives every
process two storage areas that can grow without bounds. A process exceeds
virtual storage only when the sum of the two areas exceeds virtua storage
space. By default, the linker and assembler use the scheme shown in Figure
6-3.

Programming Considerations 6—17

Figure 6-3: Default Layout of Memory (User Program View)

Oxffff ffff ffff ffff

Reserved for kernel
0xffff fc00 0000 0000

Oxffff fbff ffff ffff

Not accessible

0x0000 0400 0000 0000
0x0000 O3ff ffff ffff

Reserved for shared libraries

Reserved for dynamic loader
0x0000 03ff 8000 0000

0x0000 03ff 7fff ffff

Can be mapped by program

Heap
(grows up)

Bss segment

$gp —» Data segment

Text segment
0x0000 0001 2000 0000
0x0000 0001 1fff ffff Stack

(grows toward zero)

(] ——Fn— [[=]
[]

$sp —»

[=]

Can be mapped by program

0x0000 0000 0001 0000
0x0000 0000 0000 ffff

Not accessible
(by convention)
(64KB)

0x0000 0000 0000 0000

ZK-0738U-R

1. Thisareais not allocated until a user requestsit. (The same behavior is
observed in System V shared memory regions.)

2. Theheap isreserved for sbr k and br k system calls, and it is not always
present.

3. See Section 7.2.4 for details on the sections contained within the bss,
data, and text segments.

4. The stack is used for local datain C programs.

6—18 Programming Considerations

Object Files 7

This chapter provides details on how compiler-system object files are
formatted and processed.

The chapter addresses the following topics:

The components that make up the object file and the differences between
the object-file format used by the Digital UNIX compiler system and the
System V common object file format (COFF). (Section 7.1)

The headers and sections of the object file. Detailed information is given
on the logic followed by the assembler and linker in handling relocation
entries. (Section 7.2)

The formats of object files (OMAGIC, NMAGIC, and ZMAGIC).
(Section 7.3)

Information used by the dynamic loader in loading object files at run
time. (Section 7.4)

Archivefiles. (Section 7.5)
The symbols defined by the linker. (Section 7.6)

7.1 Object File Overview

The assembler and the linker generate object files. The sections in the object
files are ordered as shown in Figure 7-1. Sections that do not contain data
are omitted, except for the file header, optional header, and section header,
which are always present.

Object files aso contain a symbol table, which is aso divided into sections.
Figure 7-1 shows all of the possible sections in a symbol table. The sections
of the symbol table that appear in afinal object file can vary:

The optimization symbols table and auxiliary symbols table appear only
when a debugging option is in effect (when the user specifies one of the
-gl,-g2, or - g3 compilation options).

When you specify the - x option (strip nonglobals) for the link-edit phase,
the linker updates the procedure descriptor table and strips the following
tables from the object file: line number table, local symbols table,
optimization symbols table, auxiliary symbols table, local strings table,
and relative file descriptor table.

» Thelinker strips the entire symbol table from the object file when the
user specifies the - s option (strip) for the link-edit phase.

Any new assembler or linker designed to work with the compiler system
should lay out the object file sections in the order shown in Figure 7-1. The
linker can process object files that are ordered differently, but performance
may be degraded.

The standard System V COFF (common object file format) differs from the
Digital UNIX compiler system format in the following ways:

* Thefile header definition is based on the System V header file
fil ehdr . h with the following modifications:

— The symbol table file pointer and the number of symbol table entries
now specify the file pointer and the size of the symbolic header,
respectively.

— All tables that specify symbolic information have their file pointers
and number of entries in the symbolic header. See Chapter 8 for
information about the symbolic header.

* The definition of the optional header has the same format as specified in
the System V header file aout hdr . h, except the following fields have
been added: bl dr ev, bss_start, gpr mask, f pr mask, and
gp_val ue (see Table 7-4).

* The definition of the section header has the same format as the System V
header file scnhdr . h, except the line number fields are used for global
pointers (see Table 7-6).

The definition of the section relocation information is similar to UNIX 4.3
BSD, which has local relocation types. Section 7.2.5 provides information
on differences between local and external relocation entries.

7-2 Object Files

Figure 7-1: Object File Format

File headers

Optional headers

Section headers

Section data

comments exception scope table
ucode read-only data

large bss (0 size) large data

small bss (0 size) termination text

small data initialization text

literal address pool text

4-byte literal pool exception procedure table
8-byte literal pool ~ read-only constants

Object file
sections

Section relocation information
text read-only data
initialization text large data
termination text small data
literal address pool

AN

Symbolic header

Line numbers

Dense numbers
(ucode objects only)

Procedure descriptor table

Local symbols Symbol table
(Missing if
Optimization symbols * fully stripped.
>~ :
Ordering of elements

Auxiliary symbols * depends on compilation
options.)

Local strings

External strings

File descriptor

Relative file descriptor

External symbols

Comments

* — Created only if the debugging option
(-9 compilation option) is in effect.

I:I - Missing if stripped of nonglobals.

ZK-0739U-R

Object Files 7-3

7.2 Object File Sections

7.2.1

The following sections describe the components of an object file. Headers
are informational and provide the means for navigating the object file.
Sections contain program instructions or data (or both).

File Header

The format of the file header is shown in Table 7-1. The file header and all
of the fields described in this section are defined in f i | ehdr . h.

Table 7-1: File Header Format

Declaration Type Field Description

unsi gned short f_magic Target-machine magic number (see Table 7-2)
unsi gned short f_nscns Number of sections

i nt f _timdat Time and date stamp

| ong f_symptr File pointer to symbolic header (see Chapter
8 for a description of the symbolic header)

i nt f _nsyns Size of symbolic header

unsi gned short f_opthdr Size of optiona header
unsi gned short f_flags Flags (see Table 7-3)

The magic number inthe f _nagi c field in the file header specifies the
target machine on which an object file can execute. Table 7-2 shows the
octal values and mnemonics for the magic numbers.

Table 7-2: File Header Magic Numbers

Symbol Value Description

ALPHAMAG C 0603 Machine-code object file
ALPHAUMAG C 0617 Ucode object file

Thef fl ags field in the file header describes the object file characteristics.
Table 7-3 lists the flags and gives their hexadecimal values and their
meanings. The table notes those flags that do not apply to compiler system
object files.

7-4 Object Files

71.2.2

Table 7-3: File Header Flags

Symbol Value Description

F_RELFLG 0x0001 Relocation information stripped from file

F_EXEC 0x0002 Fileis executable (that is, no unresolved
external references)

F_LNNO 0x0004 Line numbers stripped from file

F_LSYMS 0x0008 Loca symboals stripped from file

F_NO SHARED 0x0010 Object file cannot be used to create a shared
library

F _NO CALL_ SHARED 0x0020 Object file cannot be used to create a
-cal | _shar ed executablefile

F_LOVAP 0x0040 Allows an executable file to be loaded at an
address less than VMM N_ADDRESS

F_ARL6WRA 0x0080 File has the byte ordering of an AR16WR
machine (for example, PDP-11/70)

F_AR32WRA 0x0100 File has the byte ordering of an AR32WR
machine (for example, VAX)

F_AR32W 0x0200 File has the byte ordering of an AR32W
machine (for example, 3b, maxi, MC68000)

F_PATCH? 0x0400 File contains ‘‘patch’’ list in optiona header

F_NODF2 0x0400 (Minimal file only.) No decision functions

for replaced functions

F M PS_NO SHARED 0x1000 Cannot be dynamically shared
F M PS_SHARABLE 0x2000 A dynamically shared object
F MPS CALL SHARED 0x3000 Dynamic executable file

F M PS_NO REORG 0x4000 Do not reorder sections

F_M PS_NO REMOVE 0x8000 Do not remove nops

Table Note:

a. Not used by compiler system object modules.

Optional Header

The linker and the assembler fill in the optional header, and the dynamic
loader, or other program that loads the object module at run time, uses the
information it contains, as described in Section 7.4.

Table 7-4 shows the format of the optional header (which is defined in the
header file aout hdr . h).

Object Files 7-5

Table 7-4: Optional Header Definitions

Declaration Field Description

short magi ¢ Object-file magic numbers (see Table 7-5)

short vst anp Version stamp

short bl dr ev Revision of build tools

| ong tsize Text size in bytes, padded to 16-byte boundary

| ong dsi ze Initialized data in bytes, padded to 16-byte
boundary

| ong bsi ze Uninitialized data in bytes, padded to 16-byte
boundary

| ong entry Entry point

| ong text _start Base of text used for thisfile

| ong data_start Base of data used for thisfile

| ong bss_start Base of bss used for thisfile

i nt gpr mask General-purpose register mask

i nt f pr mask Floating-point register mask

| ong gp_val ue The gp (global pointer) value used for this object

Table 7-5 shows the octal values of the magi ¢ field for the optional header;

the header file aout hdr . h contains the macro definitions.

Table 7-5: Optional Header Magic Numbers

Symbol Value Description

OvAG C 0407 Impure format — The text is not write-protected or
shareable; the data segment is contiguous with the text
segment.

NVAG C 0410 Shared text — The data segment starts at the next page
following the text segment, and the text segment is write-
protected.

ZMAG C 0413 The object file is to be paged in on demand (demand paged)

and has a special format; the text and data segments are
separated. The Alpha system provides write-protection for
the text segment. (Other systems using COFF may not
provide write-protection.) The object can be either dynamic
or static.

See Section 7.3 for information on the format of OMAGIC, NMAGIC, and
ZMAGIC files.

7—6 Object Files

7.2.3 Section Headers

Table 7-6 shows the format of the section header (which is defined in the
header file scnhdr . h).

Table 7-6: Section Header Format

Declaration

char
| ong
| ong
| ong
| ong
| ong
| ong

unsi gned short
unsi gned short
i nt

Field

s_nane[8]
s_paddr
s_vaddr
s_size
s_scnptr
s relptr
s_| nnoptr

s _nrel oc
s_nlnno
s_flags

Description

Section name (see Table 7-7)

Physical address

Virtual address

Section size

File pointer to raw data for the section
File pointer to relocations for the section
For . pdat a, indicates the number of
entries contained in the section;
otherwise, reserved.

Number of relocation entries

Number of global pointer tables

Flags (see Table 7-8)

Table 7-7 shows the defined section names for the s_nane field of the

section header.

Table 7-7: Section Header Constants for Section Names

Declaration

_TEXT
TINT
“FINI
_RCONST
_RDATA
"DATA
“LITA
“LITS
“LIT4
_SDATA
_BSS
_SBSS
~UCODE
cora
_DYNAM C?
_DYNSYM
_REL_DYNR

Field
Contents

text
.init

fini
.rconst
.rdata
.data
lita
1it8
lit4
.sdata
.bss
.shss
.ucode
.got
.dynamic
.dynsym
.rel.dyn

Description

Text section

Initialization text section for shared libraries
Cleanup text section
Read-only constant section
Read-only data section

Large data section

Literal address pool section
8-byte literal pool section
4-byte literal pool section
Small data section

Large bss section

Small bss section

ucode section

Global offset table

Dynamic linking information
Dynamic linking symbol table
Relocation information

Object Files 7-7

Table 7-7: (continued)

Field
Declaration Contents Description
_DYNSTR? .dynstr Dynamic linking strings
_HASH? .hash Symbol hash table
_MBYM? .msym Additiona dynamic linking symbol table
_CONFLI CT2 .conflict Additiona dynamic linking information
_REG NFO? .reginfo Register usage information
_XDATA xdata Exception scope table
_PDATA .pdata Exception procedure table

Table Notes:
a These sections exist only in ZMAGIC-type files and are used during
dynamic linking.

Table 7-8 shows the defined hexadecimal values for thes_f | ags field.
(Those flags that are not used by compiler system object files are noted in the
table.)

Table 7-8: Format of s_flags Section Header Entry

Symbol Value Description

STYP_REG 0x00 Regular section: allocated, relocated,
loaded

STYP_DSECT?2 0x01 Dummy section: not allocated, relocated,
not loaded

STYP_NOLOAD? 0x02 Noload section: allocated, relocated, not
loaded

STYP_GROUP2 0x04 Grouped section: formed of input
sections

STYP_PAD? 0x08 Padding section: not allocated, not
relocated, |oaded

STYP_COPY?2 0x10 Copy section (for decision function used
by field update): not allocated, not
relocated, |oaded

STYP_TEXT 0x20 Text only

STYP_DATA 0x40 Data only

STYP_BSS 0x80 Bss only

STYP_RDATA 0x100 Read-only data only

STYP_SDATA 0x200 Small data only

STYP_SBSS 0x400 Small bss only

STYP_UCODE 0x800 Ucode only

STYP_GOTP 0x1000 Global offset table

STYP_DYNAMICP 0x2000 Dynamic linking information

7-8 Object Files

Table 7-8: (continued)

Symbol Value Description

STYP_DYNSYMP 0x4000 Dynamic linking symbol table

STYP_REL_DYNP 0x8000 Dynamic relocation information

STYP_DYNSTRP 0x10000 Dynamic linking symbol table

STYP_HASHP 0x20000 Dynamic symbol hash table

STYP_MSYMP 0x80000 Additiona dynamic linking symbol table

STYP_CONFLICTP 0x100000 Additional dynamic linking information

STYP_REGINFOP 0x200000 Register usage information

STYP_FINI 0x01000000 .fini section text

STYP_COMMENT 0x02000000 Comment section

STYP_RCONST 0x02200000 Read-only constants

STYP_XDATA 0x02400000 Exception scope table

STYP_PDATA 0x02800000 Exception procedure table

STYP_LITA 0x04000000 Address literals only

STYP_LIT8 0x08000000 8-byte literals only

STYP LIT4 0x10000000 4-byte literals only

S NRELOC _OVFL 0x20000000 s_nrel oc overflowed, the valueisin
r _vaddr of thefirst entry

STYP_INIT 0x80000000 Section initialization text only

Table Notes:

a. Not used by compiler system object modules.

b. These sections exist only in ZMAGIC type files and are used during
dynamic linking.

The S_NRELOC OVFL flag is used when the number of relocation entriesin
a section overflowsthe s_nr el oc field of the section header. In this case,
s_nr el oc contains the value Oxffff and the s_f | ags field has the

S NRELOC OVFL flag set; the valuetrueisin ther _vaddr field of the
first relocation entry for that section. That relocation entry has a type of
R_ABS and all other fields are zero, causing it to be ignored under normal
circumstances.

Note

For performance reasons, the linker usesthes_f | ags entry
instead of s_nane to determine the type of section. The linker
does correctly fill in the s_nane entry, however.

Object Files 7-9

7.2.4 Section Data

Object files contain instructions and data. The instructions and data are
stored in appropriate sections according to their use. Figure 7-2 shows the
layout of section data in object files.

Figure 7-2: Organization of Section Data

Shared Object Files Nonshared Object Files
.bss bss
bss segment
-Sbss .shss
M e
-got .Sdata
.sdata ™
' it8
ta > data segment < -
it8 lita
.rdata xdata
.xdata . .data
fini
.data b fin
ini b .init
fini
ini text
nit
text > text segment = .pdata
.rdata
.pdata
g .rconst
.rconst
~
.hash
.dynsym
.dynstr
exists only
in shared < .msym
object files -
.conflict
rel.dyn
liblist
.dynamic
~ -/
ZK-0740U-R

The sections that are present in the section data and the ordering of the
sections depends on the options that are in effect for a particular compilation.

7-10 Object Files

The. conflict,.dynanm c.dynstr,.dynsym. got, . hash,
.liblist,.msymand.rel.dyn sections exist only in shared object
files and are used during dynamic linking. These sections are described in
more detail in Chapter 9. The following table describes the uses of the other
sections:

Section Name Use

. ucode Intermediate code (if present, all
other sections are excluded)

. bss Block started by symbol

.data Large data

Lfini Process termination text

.init Initialization text

dit4 4-byte literal pool

1it8 8-byte literal pool

dita Literal address pool (only present
in nonshared object files)

. pdat a Exception procedure table for pdata

. rconst Read-only constants

.rdata Read-only data

. sbss Small block started by symbol

. sdat a Small data

. text Machine instructions to be executed

. Xdat a Exception scope table for xdata

The . t ext section contains the machine instructions that are to be executed:;
the.sdata,.lit4,.1it8,.rdata,.data,and.rconst sections
contain initialized data; and the . bss and . sbss sections reserve space for
uninitialized data that is created by the dynamic loader for the program
before execution and filled with zeros. The only difference between . r dat a
and . r const isthat only . r dat a can have dynamic relocations.

As indicated in Figure 7-2, the sections are grouped into segments.

» Thetext segment containsthe . r dat a (for nonshared object files),
fini,.init,.text,and.rconst sectionsin al files except
shared object files, which contain additional sections. (The. r dat a
section can go in either the text or data segment, depending on the object
file type.)

» The data segment contains the sections . got (for shared object files),
.sdata,.lit4,.1it8,.1ita (for nonshared object files), . r dat a
(for shared object files), and . dat a.

* The bss segment contains the . bss and . sbss sections.

Object Files 7-11

7.2.5

A section is described by and referenced through the section header (see
Section 7.2.3); the optional header (see Section 7.2.2) provides the same
information for segments.

The linker references the data shown in Figure 7-2 as both sections and
segments. It references the sections through the section header and the
segments through the optional header. However, the dynamic loader, when
loading the abject file at run time, references the same data only by segment,
through the optional header.

Section Relocation Information

Program instructions and data may contain addresses that must be adjusted
when the object file is linked. Relocations locate the addresses within the
section and indicate how they are to be adjusted.

7.2.5.1 Relocation Table Entry

Table 7-9 shows the format of an entry in the relocation table (defined in the
header filer el oc. h).

Table 7-9: Format of a Relocation Table Entry

Declaration Field Description
| ong r_vaddr Virtual address of an item to be relocated.
unsi gned r_symadx For an external relocation entry,

r_symndx is an index into externa
symbols. For alocal relocation entry,

r _symdx is the number of the section
containing the symbol.

unsi gned r type:8 Relocation type (see Table 7-11).

unsi gned r_extern:1 Set to 1 for an external relocation entry.
Set to O for alocal relocation entry.

unsi gned r offset:6 For R OP_STORE, r _of f set isthe bit
offset of afield within a quadword.

unsi gned r reserved: 11 Must be zero.

unsi gned r_size:6 For R_ OP_STORE, r _si ze isthe hit
size of afield.

The setting of r _ext er n and the contents of r _synndx vary for externa
and local relocation entries:

» For external relocation entries, r _externissettolandr _symmdx is
the index into external symbols. In this case, the value of the symbol is
used as the value for relocation (see Figure 7-3).

7-12 Object Files

» For loca relocation entries, r _ext ernissetto 0, and r _synndx
contains a constant that refers to a section (see Figure 7-4). In this case,
the starting address of the section to which the constant refersis used as
the value for relocation.

Table 7-10 gives the section numbers for r _symmdx; ther el oc. h file
contains the macro definitions.

Table 7-10: Section Numbers for Local Relocation Entries

Symbol

R_SN_TEXT
R_SN_RDATA
R_SN_DATA
_SN_SDATA
_SN_SBSS
| BSS
CINT
| LI TS
| LI T4
| XDATA
| PDATA
| FI NI

| LI TA
|_ABS

I:U;UBE;U;U:U;UBE;U;U
U)U)(/)(/)U)(/)U)U)(/)U)U)
IZZZZZZZZZZ

;

Value

CoOo~NOORWNE

10
11
12
13
14
15

Description

.t ext section
. rdat a section
. dat a section
. sdat a section
. shss section
. bss section
.init section
.lit8 section
.|lit4 section

. xdat a section
. pdat a section
.fini section
.lita section
for R_OP_xxxx constants
section

Table 7-11 shows valid symbolic entries for ther _t ype field (which is
defined in the header filer el oc. h).

Table 7-11: Relocation Types

Symbol
R_ABS
R_REFLONG

R_REFQUAD
R_GPREL32

R _LI TERAL

R LI TUSE

Value

0x0
Ox1
0x2
0x3

Ox4

0x5

Description

Relocation already performed.

32-hit reference to the symbol’ s virtual address.
64-bit reference to the symbol’s virtual address.
32-bit displacement from the global pointer to the
symbol’s virtual address.

Reference to a literal in the literal address pool as an
offset from the global pointer.

Identifies an instance of aliteral address previously
loaded into aregister. Ther _symmdx field
identifies the specific usage of the register. Table 7-
12 lists the valid usage types.

Object Files 7-13

Table 7-11:

Symbol

R_GPDI SP

R_BRADDR
R_HI NT

R SREL16
R SREL32
R SREL64
R_OP_PUSH

R_OP_STORE

R_COP_PSUB

R_OP_PRSHI FT

R_GPVALUE

R _GPRELHI GH

7-14 Object Files

Value

0x6

Oox7
0x8
0x9
Oxa
Oxb
Oxc

Oxd

Oxe

Oxf

0x10

Ox11

(continued)

Description

Identifiesan | da/ | dah instruction pair that is used
to initialize a procedure’ s global-pointer register.
Ther _vaddr field identifies one instruction of the
pair. Ther _symmdx contains a byte offset, which
when added to ther _vaddr field, produces the
address of the other instruction of the pair.

21-bit branch reference to the symbol’s virtual
address.

14-bit j sr hint reference to the symbol’s virtual
address.

16-bit self-relative reference to the symbol’s virtual
address.

32-bit self-relative reference to the symbol’ s virtual
address.

64-hit self-relative reference to the symbol’s virtual
address.

Push symbol’s virtual address on relocation
expression stack.

Pop value from the relocation expression stack and
store at the symbol’s virtual address. Ther _si ze
field determines the number of bits stored. The
r_of f set field designates the bit offset from the
symbol to the target.

Pop value from the relocation expression stack and
substract the symbol’s virtual address. The result is
pushed on the relocation expression stack.

Pop value from the relocation expression stack and
shift right by the symbol’s value. The result is
pushed on the relocation expression stack.

Specifies a new gp value is to be used starting with
the address specified by ther _vaddr field. The gp
value is the sum of the optional header’s

gp_val ue field and ther _symmdx field. The

r _extern field must be zero.

Most significant 16 bits of 32-bit displacement from
$gp value. Thisisthel dah instruction of an

| dah/ I da, | dah/ I dq, or | dah/ st q pair that is
calculating an address as a displacement from the
$gp value. Sign-extension of both offsetsis
assumed. This relocation must be followed
immediately by one or more corresponding
R_GPRELLOWrelocations.

Table 7-11: (continued)

Symbol Value Description

R_GPRELLOW 0x12 Least significant 16 bits of a 32-bit displacement
from $gp value. Thisis the second instruction of
anl dah/ | da, | dah/ | dq, or | dah/ st g pair that
is calculating an address as a displacement from the
$gp value. This relocation should follow the
corresponding R_GPRELHI GH relocation. Each
R_GPRELHI GH relocation can have one or more
R_GPRELLOWrelocations.

Table 7-12 shows valid symbolic entries for the symbol index (r _symmadx)
field for the relocation type R_LI TUSE.

Table 7-12: Literal Usage Types

Symbol Description

R LU BASE The base register of a memory format instruction (except
| dah) contains a literal address.

R LU BYTOFF The byte offset register (Rb) of a byte-manipulation
instruction contains a literal address.

R LU JSR The target register of aj sr instruction contains a literal
address.

7.2.5.2 Assembler and Linker Processing of Relocation Entries

Object modules with all external references defined have the same format as
relocatable modules and are executable without relinking.

Local relocation entries must be used for symbols that are defined, and
external relocation entries are used only for undefined symbols. Figure 7-3
gives an overview of the relocation table entry for an undefined external
symbol.

Object Files 7-15

Figure 7-3: Relocation Table Entry for Undefined External

Symbols
Relocation table entry External symbols
r_vaddr
r_symndx ce
Ce I value=0
r_extern=1

Section data

v

constant <4— Sign-extended to 64 bits

ZK-0741U-R
The assembler creates a relocation table entry for an undefined external
symbol as follows:
1. Setsr_vaddr to point to the item to be relocated.

2. Places a constant to be added to the value for relocation at the address for
the item to be relocated (r _vaddr).

3. Setsr_symmdx to the index of the external symbols entry that contains
the symbol value (which is used as the value for relocation).

4. Setsr _t ype to the constant for the type of relocation types. Table 7-11
shows the valid constants for the relocation type.

5. Setsr_externtol

Note

The assembler always sets the value of the undefined external
symbols entry to 0. It may assign a constant value to be added
to the relocated value at the address where the location is to be
done. For relocation types other than R_HI NT, the linker flags
this as an error if the width of the constant is less than a full
gquadword and an overflow occurs after relocation.

7-16 Object Files

When the linker determines that an external symbol is defined, it changes the
relocation table entry for the symbol to alocal relocation entry. Figure 7-4
gives an overview of the new entry.

Figure 7-4: Relocation Table Entry for a Local Relocation Entry

Relocation table entry Section header
r_vaddr
r_symndx
s_vaddr
r_type
r_extern=0
Section data Section Ndata
<4—
sign-extended :
—> constant {w 64 bits symbol location

ZK-0742U-R

To change this entry from an external relocation entry to alocal relocation
entry, the linker performs the following steps:

1. Picks up the constant from the address to be relocated (r _vaddr).

2. If the width of the constant is less than 64 bits, sign-extends the constant
to 64 hits.

3. Adds the value for relocation (the value of the symbol) to the constant
and places it back in the address to be relocated.

4. Setsr_symdx to the section number that contains the external symbol.
5. Setsr_externtoO.

Object Files 7-17

The following examples show the use of external relocation entries:
 Examplel: 64-Bit Reference— R_REFQUAD

This example shows assembly statements that set the value at location b
to the global datavaluey.

.globl y
.data
b: .quad y # R REFQUAD rel ocation type at address b for
synbol vy

In processing this statement, the assembler generates a relocation entry of
type R_REFQUAD for the address b and the symbol y. After determining
the address for the symbol y, the linker adds the 64-bit address of y to
the 64-bit value at location b and places the sum in location b.

The linker handles 32-bit addresses (R_REFLONG) in the same manner,
except it checks for overflow after determining the relocation value.

e Example 2: 21-Bit Branch — R_BRADDR

This example shows assembly statements that call routine x from location
C.

.text
X: #routine x

c: bsr x # R BRADDR relocation type at address c for synmbol x

In processing these statements, the assembler generates a relocation entry
of type R_BRADDR for the address and the symbol x. After determining
the address for the routine, the linker subtracts the address c+4 to form
the displacement to the routine. Then, the linker adds this result (sign-
extended and multiplied by 4) to the 21 low-order bits of the instruction
at address ¢, and after checking for overflow, places the result (divided
by 4) back into the 21 low-order bits at address c.

R_BRADDR relocation entries are produced for the assembler’s br
(branch) and bsr (branch subroutine) instructions.

If the entry is alocal relocation type, the target of the branch instruction
is assembled in the instruction at the address to be relocated. Otherwise,
the instruction’s displacement field contains a signed offset from the
external symbol.

» Example 3: 32-bit GP-Relative Reference— R_GPREL 32
This example shows assembly language statements that set the value at

7-18 Object Files

location a to the offset from the global pointer to the global datavalue z.

.globl z
.data
a: .gprel32 z # R GPREL32 rel ocation type at address a for
synbol z

In processing this statement, the assembler generates a relocation entry of
type R_GPREL32 for the address a and the symbol z. After determining
the address for the symbol z, the linker adds the 64-bit displacement of z
from the the global pointer to the signed 32-hit value at location a, and
places the sum in location a. The linker checks for overflow when
performing the above operation.

Example 4: Literal Address Reference— R_LITERAL

This example shows an assembly language statement that loads the
address of the symbol y into register 22.

| da $22, y

In processing this statement, the assembler generates the following code:

.lita
x: .quad y # R REFQUAD rel ocation type at address x for
synbol y

. text
h: 1dqg $22, n($gp) # R LI TERAL relocation type at address h
for synbol x

The assembler uses the difference between the address for the symbol x
and the value of the global pointer as the value of the displacement (n)
for the instruction. The linker gets the value of the global pointer used by
the assembler from gp_val ue in the optional header (see Table 7-4).

Example 5: Literal Usage Reference— R_LITUSE

This example shows an assembly language statement that loads the 32-bit
value stored at addressy into register 22.

ldl $22, y

In processing this statement, the assembler generates the following code:

.lita
X: .quad y # R REFQUAD rel ocation type at address x for
synbol vy

.text
h: 1dqg $at, n($gp) # R LITERAL relocation type at address h
for synbol x
i: 1dl $22, 0($at) # R LITUSE relocation type at address i;
r_symdx == R _LU BASE

The assembler uses the difference between the address for the symbol x
and the value of the global pointer as the value of the displacement (n)
for the | dq instruction. The linker gets the value of the global pointer

Object Files 7-19

used by the assembler from gp_val ue in the optional header (see Table
7-4).

» Example 6: GP Displacement Reference— R_GPDISP
This example shows an assembly language statement that rel oads the
value of the global pointer after a call to procedure x.

call to procedure x returns here with return address in ra
I dgp $gp, O(ra)
In processing this statement, the assembler generates the following code:
j: lda $at, <gp_disp>[0:15](ra) # R GPDI SP rel ocation type
at address j;
r_symdx contains byte offset

fromaddress j to address k
k: Idah $gp, <gp_disp>[16:31] ($at)

The assembler determines the 32-bit displacement from the address of the
| dgp instruction to the global pointer and stores it into the offset fields
of thel da and | dah instructions. The linker gets the value of the global
pointer used by the assembler from gp_val ue in the optional header
(see Table 7-4).

e Example7: JSR Hint — R_HINT

This example shows an assembly language statement that makes an
indirect jump through register 24 and specifies to the branch-prediction
logic that the target of thej sr instruction is the address of the symbol x.

get address of procedure to call into register 24
m jsr ra, ($24), x # R HNT relocation type at address m
for synmbol x

In processing this statement, the assembler generates a relocation entry of
type R_HI NT for the address mand the symbol x.

7.3 Object-File Formats (OMAGIC, NMAGIC, ZMAGIC)
The linker creates files with the following object-file formats:
e Impure format (OMAGIC)
e Shared text format (NMAGIC)
» Demand paged format (ZMAGIC)

To understand the descriptions of these formats, you should be familiar with
the format and contents of the text, data, and bss segments as described in
Section 7.2.4.

The following constraints are imposed on the address at which an object can
be loaded and the boundaries of its segments:

7-20 Object Files

7.3.1

Segments must not overlap.

Space should be reserved for the stack, which starts just below the base
of the text segment and grows through lower addresses; that is, the value
of each subsequent address is less than that of the previous address.

For ZMAGIC and NMAGIC files, the default text segment addressis
0x120000000, with the data segment starting at 0x140000000.

For OMAGIC files, the default text segment address is 0x10000000, with
the data segment following the text segment.

The operating system can dictate additional constraints.

Impure Format (OMAGIC) Files

An OMAGIC file has the format shown in Figure 7-5.
The OMAGIC format has the following characteristics:

Each section follows the other in virtual address space aligned on a 16-
byte boundary.

The sections are not blocked.

Text and data segments can be placed anywhere in the virtual address
space using the linker’'s - T and - D options.

The addresses specified for the segments must be rounded to 16-byte
boundaries.

Object Files 7-21

Figure 7-5: Layout of OMAGIC Files in Virtual Memory

.bss

bss segment
.sbss

.sdata

lit4

1it8

>~ data segment
Jita

Xdata

.data

I

.rdata

.rconst

fini

7~ text segment
.init

text

.pdata

NN

aligned on a 16-byte boundary
ZK-0743U-R

7.3.2 Shared Text (NMAGIC) Files
An NMAGIC file has the format shown in Figure 7-6.

7-22 Object Files

Figure 7-6: Layout of NMAGIC Files in Virtual Memory

.bss

bss segment
.sbss

.sdata

litd

Ait8
—data segment

Jdita

Xdata

EEEEER

.data

fini

.init

text

>text segment
.pdata

.rdata

.rconst

FREEN

aligned on a 16-byte boundary

aligned on a page-size boundary

ZK-0744U-R
An NMAGIC file has the following characteristics:
» Thevirtual address of the . dat a section ison a pagesi ze boundary.
* The sections are not blocked.

» Each section follows the other in virtual address space aligned on a 16-
byte boundary.

* Only the start of the text and data segments, using the linker's - T and - D
options, can be specified for a shared text format file; the start of the text
and data segments must be a multiple of the page size.

Object Files 7-23

7.3.3 Demand Paged (ZMAGIC) Files

A ZMAGIC file is a demand paged file. Figure 7-7 shows the format of a
ZMAGIC file as it appearsin virtual memory and on disk.

A ZMAGIC file has the following characteristics:

» The text segment and the data segment are blocked, with pagesi ze as
the blocking factor. Blocking reduces the complexity of paging in the
files.

» The size of the sum of the file header, optional header, and headers from
each of the sections is rounded to 16 bytes and included in blocking of
the text segment. See Table 7-1, Table 7-4, and Table 7-6, respectively,
for details on the headers.

* The text segment starts by default at 0x120000000.

» Only the start of the text and data segments, using the linker’s- T and - D
options can be specified for a demand paged format file and must be a
multiple of the page size.

7-24 Object Files

Figure 7-7: Layout of ZMAGIC Files

Oxffff ffff ffff fiff
0x0000 03ff 0000 0000

0x0000 0001 4000 0000

0x0000 0001 2000 0000

Virtual Memory

reserved

i empty i

sbrk area

.bss

.shss

0O fill area

.got

.sdata

it4

1it8

lita

.xdata

.rdata

.data

L empty !

Fill area
fini
.init
text

.pdata

.rconst
.hash
.dynsym
.dynstr
.msym
.conflict
.rel.dyn
liblist
.dynamic
Headers

Stack Area i
1

I . 4—
empty |

} bss segment

~

data segment

>~ text segment

(blocked by page size)

(blocked by page size)

O

<

On Disk

Symbol table
0 fill area
.got
.sdata
lit4
it8
Jlita

Xxdata

.rdata

.data

Fill area
fini
.init
text

.pdata

.rconst
.hash
.dynsym
.dynstr
.msym
.conflict
rel.dyn
liblist
.dynamic

Headers

bottom of stack increases

automatically as required

ZK-0745U-R

Object Files 7-25

7.3.4 Ucode Objects

A ucode object contains only a file header, the ucode section header, the
ucode section, and all of the symbolic information. A ucode section never
appears in a machine-code object file.

7.4 Loading Object Files

The linker produces object files with their sections in a fixed order similar to
the order that was used in UNIX system object files that existed prior to the
implementation of the common object file format (COFF). Figure 7-1 shows
the ordering of the sections, and Section 7.2 contains information on how the
sections are formatted.

The sections are grouped into segments, which are described in the optional
header. To load an object file for execution, the dynamic loader needs only
the magic number in the file header and the optional header to load an object
file for execution.

The starting addresses and sizes of the segments for all types of object files
are specified similarly, and the segments are loaded in the same manner.

After reading in the file header and the optiona header, the dynamic loader
must examine the file magic number to determine if the program can be
loaded. Then, the dynamic loader loads the text and data segments.

The starting offset in the file for the text segment is given by the following
macro in the header filea. out . h:

N_TXTOFF (f, a)

wheref is the file header structure and a is the option header structure for
the object file to be loaded.

Thet si ze field in the optional header (Table 7-4) contains the size of the
text segment and t ext _st art contains the address at which it is to be
loaded. The starting offset of the data segment follows the text segment.
The dsi ze field in the section header (Table 7-6) contains the size of the
data segment; dat a_st art contains the address at which it is to be loaded.

The dynamic loader must fill the . bss section with zeros. The
bss_start field in the optional header specifies the starting address;

bsi ze specifies the number of bytes to be filled with zeros. In ZMAGIC
files, the linker adjusts bsi ze to account for the zero-filled area it created in
the data segment that is part of of the. sbss or . bss sections.

If the object file itself does not load the global pointer register, it must be set
to the gp_val ue field in the optional header (Table 7-4).

7—26 Object Files

The other fields in the optional header are gpr mask and f pr mask, whose
bits show the registersused inthe . text,.init,and. fi ni sections.
They can be used by the operating system, if desired, to avoid save register
relocations when a context-switch operation occurs.

7.5 Archive Files

The linker can link object files in archives created by the archiver. The
archiver and the format of the archives are based on the System V portable
archive format. To improve performance, the format of the archives symbol
table was changed to a hash table, not a linear list.

The archive hash table is accessed through the r anhashi nit () and
ranl ookup() library routinesinl i bni d. a, which are documented in
ranhash(3). The archive format definition is in the header file ar . h.

7.6 Linker Defined Symbols

Certain symbols are reserved and their values are defined by the linker. A
user program can reference these symbols, but cannot define them; an error is
generated if a user program attempts to define one of these symbols. Table
7-13 lists the names and values of these symboals; the header file sym h
contains their preprocessor macro definitions.

Table 7-13: Linker Defined Symbols

Symbol Value Description

_ETEXT _etext First location after text
segment

_EDATA _edata First location after data
segment

_END _end First location after bss
segment

_FTEXT?2 _ftext First location of text
segment

_FDATA2 _fdata First location of data
segment

_FBSSs? _fbss First location of the bss
segment

_GP _gp gp value stored in optional
header

_ PROCEDURE _

TABLE
_procedure_table Run-time procedure table
_ PROCEDURE_

Object Files 7-27

Table 7-13:

Symbol
TABLE_SI ZE

PROCEDURE_
STRI NG_TABLE

_COBOL_MAIN
_WEAK_ETEXTP

_WEAK_EDATAP

_WEAK_ENDP

Table Notes;

(continued)

Value

_procedure _table size

_procedure_string_table

_cobol_main
etext

edata
end

_BASE_ADDRESS®
"DYNAMIC_LINKE®

_DYNAMICE
_GOT_OFFSET®

a. Compiler system only.
b. Not defined with - st d.
c. No symbol entry. Not defined in sym h.

Description

Run-time procedure table
size

String table for run-time
procedure

First COBOL main symbol
Weak symbol for first
location after text segment
Weak symbol for first
location after data segment
Weak symbol for first
location after bss segment
Base address of file

1if creating a dynamic
executable file, O otherwise
Address of .dynamic section
Address of .got section for
dynamic executable file

The dynamic linker also reserves and defines certain symbols; see Chapter 9

for more information.

The first three symbols in Table 7-13 (_ETEXT, _EDATA, and _END) come
from the standard UNIX system linker. The remaining symbols are
compiler-system specific.
The linker symbol _COBOL_MAI Nis set to the symbol value of the first
external symbol with the cobol _mai n bit set. COBOL objects use this
symbol to determine the main routine.

7-28 Object Files

The following symbols relate to the run-time procedure table:
+ _PROCEDURE_TABLE

+ _PROCEDURE_TABLE_SI ZE

 _PROCEDURE_STRI NG_TABLE

The run-time procedure table is used by the exception systems in languages
that have exception-handling capabilities built into them. Its description is
found in the header file sym h. Thetableis a subset of the procedure
descriptor table portion of the symbol table with one additional field,
exception_info.

When the procedure table entry is for an external procedure and an external
symbol table exists, the linker fillsin except i on_i nf o with the address
of the external table. Otherwise, it fillsin excepti on_i nf o with zeros.

The name of the run-time procedure table is the procedure name concatenated
with the string _except i on_i nf o (that is, the default value of the
preprocessor macro EXCEPTI ON_SUFFI X, as defined in the header file
excpt. h).

The run-time procedure table provides enough information to allow a
program to unwind its stack. It istypically used by the routinesin

| i bexc. a. The comments in the header file excpt . h describe the
routines in that library.

Object Files 7-29

Symbol Table 8

This chapter describes the symbol table and the routines used to create and
make entries in the table. The chapter addresses the following major topics:

* The purpose of the symbol table, a summary of its components, and their
relationship to each other. (Section 8.1)

 The structures of symbol table entries! and the values you assign them
through the symbol table routines. (Section 8.2)

8.1 Symbol Table Overview

The symbol table is created by the compiler front-end as a stand-alone file.
The purpose of the table is to provide information that the linker and the
debugger need to perform their respective functions. At the option of the
user, the linker includes information from the symbol table in the final object
file for use by the debugger. (See Figure 7-1 for details about object file
format.)

The elements (subtables) contained by the symbol table are shown in Figure
8-1.

The compiler front-end creates one group of subtables that contain global
information relative to the entire compilation. It aso creates a unique group
of subtables for the source file and each of its include files. (Figure 8-1 uses
shading to differentiate the two types of subtables: compilation-wide
subtables are shaded and file-specific subtables are unshaded.)

Compiler front-ends, the assembler, and the linker interact with the symbol
table in the following ways:

» Thefront-end, using calls to routines supplied with the compiler system,
enters symbols and their descriptions in the table.

» The assembler fills in line numbers and optimization symbols, and
updates the local symbol table, external symbol table, and procedure
descriptor table.

1 Third Eye Software, Inc. owns the copyright (dated 1984) to the format and nomenclature of the
symbol table used by the compiler system as documented in this chapter. Third Eye Software, Inc. grants
reproduction and use rights to al parties, PROVIDED that this comment is maintained in the copy. Third
Eye makes no claims about the applicability of this symbol table to a particular use.

* Thelinker eliminates duplicate information in the external symbol table
and the external string table, removes tables with duplicate information,
updates the local symbol table with relocation information, and creates
the relative file descriptor table.

Figure 8-1: Symbol Table Overview

Symbolic header

Line numbers

Dense numbers

Procedure descriptor table

Local symbols

Optimization symbols

Auxiliary symbols *

Local strings

External strings

File descriptor

Relative file descriptor

External symbols

*= = Created only if the debugging option
(—g compilation option) is in effect

I:I = 1 table per compilation.

[] = 1 table per source and include file.
ZK-0746U-R

The symbol table elements shown in Figure 8-1 are summarized in the

paragraphs that follow. Some of the major elements are described in more
detail later in the chapter.

Symbolic Header
The symbolic header (HDRR) contains the sizes and locations (as an
offset from the beginning of the file) of the subtables that make up the
symbol table. Figure 8-2 shows the relationship of the header to the

8-2 Symbol Table

other tables. (See Section 8.2.1 for additional information on the
symbolic header.)

Figure 8-2: Functional Overview of the Symbolic Header

Symbolic header

Line numbers

v

Dense numbers

v

Procedure
descriptor table

v

Local symbols

v

Optimization symbols

v

v

Auxiliary symbols

Local strings

v

External strings

v

v

File descriptor table

ZK-0747U-R

Line Number Table
The assembler creates the line number table. The line number table
contains an entry for every instruction. Internaly, the information is
stored in an encoded form. The debugger uses the entries to map
instructions to the source lines and vice versa. (See Section 8.2.2 for
additional information on the line number table.)

Dense Number Table
The dense number table is an array of pairs. Anindex into this table is
called a dense number. Each pair consists of afile table index (i f d)
and an index (i sym) into the local symbol table. The table facilitates
symbol look-up for the assembler, optimizer, and code generator by
allowing direct table access to be used instead of hashing.

Procedure Descriptor Table
The procedure descriptor table contains register and frame information,
and offsets into other tables that provide detailed information on the
procedure. The compiler front-end creates the table and links it to the
local symbol table. The assembler enters information on registers and
frames. The debugger uses the entries in determining the line numbers

Symbol Table 8-3

for procedures and the frame information for stack traces. (See Section
8.2.3 for additional information on the procedure discriptor table.)

Local Symbol Table
The local symbol table contains descriptions of program variables, types,
and structures, which the debugger uses to locate and interpret run-time
values. The table gives the symbol type, storage class, and offsets into
other tables that further define the symbol.

A unique local symbol table exists for every source and include file; the
compiler locates the table through an offset from the file descriptor entry
that exists for every file. The entriesin the local symbol table can
reference related information in the local string table and auxiliary
symbol table. This relationship is shown in Figure 8-3. (See Section
8.2.4 for additional information on the local symbol table.)

Figure 8-3: Logical Relationship Between the File Descriptor
Table and Local Symbols

File descriptor table |

Entry for File O ‘_’
Entry for File 1

Local symbols

Local strings

Entry for File n |—

Auxiliaries

A 4

Local strings

Auxiliaries

v

Local strings

Auxiliaries

ZK-0748U-R

8—4 Symbol Table

Optimization Symbaol Table
To be defined at a future date.

Auxiliary Symbol Table
The auxiliary symbol tables contain data type information specific to
one language. Each entry is linked to an entry in the Local Symbol
Table. The entry in the local symbol table can have multiple,
contiguous entries. The format of an auxiliary entry depends on the
symbol type and storage class. Table entries are required only when one
of the debugging options (- g compilation options) is in effect. (See
Section 8.2.5 for additional information on the auxiliary symbol table.)

Local String Table
The local string tables contain the names of local symbols.

External String Table
The external string table contains the names of external symbols.

File Descriptor Table
The file descriptor table contains one entry each for each source file and
each of itsinclude files. Each entry is composed of pointers to a group
of subtables related to afile. The structure of an entry is shown in
Table 8-12, and the physical layout of the subtables is shown in Figure
8-4. (See Section 8.2.6 for additional information on the file descriptor
table.)

Symbol Table 8-5

Figure 8-4: Physical Relationship of a File Descriptor Entry
to Other Tables

File descriptor table

File descriptor entry

Line numbers

v

Procedure
descriptor table

v

Local symbols

v

v

Optimization symbols

v

Auxiliary symbols

Local strings

v

Relative file descriptor

v

ZK-0749U-R

The file descriptor entry allows the compiler to access a group of
subtables unique to one file. The logical relationship between entriesin
the file descriptor table and its subtables is shown in Figure 8-5.

8-6 Symbol Table

Figure 8-5: Logical Relationship Between the File Descriptor
Table and Other Tables

File descriptor table

Line numbers

v

Entry for File 0

Procedure
descriptor table

v

Entry for File n

Local symbols

v

Optimization symbols

v

Auxiliary symbols

v

Local strings

v

Relative file descriptor

v

Line numbers

v

Procedure
descriptor table

v

Local symbols

v

Optimization symbols

v

Auxiliary symbols

v

Local strings

v

v

Relative file descriptor

ZK-0750U-R

Relative File Descriptor Table
Each file in the symbol table contains a relative file descriptor for each
file it was compiled with (including itself and include files). The
relative file descriptor maps the index of each file at compile time to its
index after linking. All file indices inside the local symbols and
auxiliary table must be mapped through the relative file descriptor table
for the file they occur in. A missing file descriptor table implies the
identity function.

Symbol Table 8-7

External Symbol Table
The external symbol table contains global symbols entered by the
compiler front-end. The symbols are defined in one module and
referenced in one or more other modules. The assembler updates the
entries, and the linker merges the symbols and resolves their addresses.
(See Section 8.2.7 for additional information on the external symbol

table.)

8.2 Format of Symbol Table Entries

The symbol table is comprised of several subtables. The symbolic header
acts as a directory for the subtables; it provides the locations of the subtables
and gives their sizes.

The following sections describe the symbolic header and the subtables.

8.2.1 Symbolic Header
The structure of the symbolic header is shown in Table 8-1. The header file

sym h contains the header declaration.

Table 8-1: Format of the Symbolic Header

Declaration

short
short
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
| ong
| ong
| ong
| ong
| ong
| ong
| ong
| ong
| ong

8-8 Symbol Table

Name

magi ¢
vst anp
i i neMax
i dnMax
i pdMax
i symvax

i opt Max

i auxMax

i ssMax

i sSsExt Max

i f dMax

crfd

i ext Max

cbLi ne

cbLi neOr f set
cbDnO f set
cbPdCOf f set
cbSyntX f set
cbOpt O f set
cbAuxx f set
chSsO f set
CchSsExt O f set

Description

To verify validity of the table

Version stamp

Number of line number entries
Maximum index into dense numbers
Number of procedures

Number of local symbols

Maximum index into optimization entries
Number of auxiliary symbols
Maximum index into local strings
Maximum index into external strings
Number of file descriptors

Number of relative file descriptors
Maximum index into external symbols
Number of bytes for line number entries
Index to start of line numbers

Index to start dense numbers

Index to procedure descriptors

Index to start of local symbols

Index to start of optimization entries
Index to the start of auxiliary symbols
Index to start of local strings

Index to the start of external strings

8.2.2

Table 8-1: (continued)

Declaration Name Description

| ong CcbFdOF f set Index to file descriptor

| ong CbRf dOf f set Index to relative file descriptors

| ong CbExt O f set Index to the start of external symbols

The lower byte of the vst anp field contains LS_STAMP and the upper byte
contains M5_STAMP (see the header file st anp. h). These values are
defined in the st anp. h file.

Thei Max fields and the cbOf f set fields must be set to zero if one of the
tables shown in Table 8-1 is not present.

The magi ¢ field must contain the constant magi ¢Sym which is aso
defined in syntonst . h.

Line Number Table

Table 8-2 shows the format of an entry in the line number table; the header
file sym h contains its declaration.

Table 8-2: Format of a Line Number Entry

Declaration Name

i nt LI NER
int * pLI NER

The line number section in the symbol table is rounded to the nearest 4-byte
boundary.

Line numbers map executable instructions to source lines; one line number is
stored for each instruction associated with a source line. Line numbers are
stored as integers in memory and in packed format on disk. Figure 8-6
shows the layout of aline number entry on disk.

Symbol Table 8-9

Figure 8-6: Layout of Line Number Entries

Bit: 7 4 0

Y Y
Delta Count

ZK-0751U-R

The compiler assigns a line number only to those lines of source code that
generate executable instructions.

The uses of the delta and count fields are as follows:

» Dedtaisa4-hit field with avalue in the range -7 to 7. It defines the
number of source lines between the current source line and the previous
line generating executable instructions. The delta value of the first line
number entry is the displacement from the | nLow field in the procedure
descriptor table.

* Count is a4-bit field with a value in the range O to 15 indicating the
number (1 — 16) of executable instructions associated with a source line.
If more than 16 instructions (15+1) are associated with a source line, new
line number entries are generated when the delta value is zero.

An extended format of the line number entry is used when the deltavalue is
outside the range -7 to 7. Figure 8-7 shows the layout of an extended line
number entry on disk.

8-10 Symbol Table

Figure 8-7: Layout of Extended Line Number Entries

Bit: 7 4 0
1 0 0 0
N J J
Y Y
Constant eight Count
Bit: 7 0
N J
Y
Upper eight bits of delta
Bit: 7 0
N J

Y
Lower eight bits of delta

Note

ZK-0752U-R

Between two source lines that produce executable code, the
compiler alows a maximum of 32,767 comment lines, blank
lines, continuation lines, and other lines not producing executable

instructions.

The following source listing can be used to show how the compiler assigns

line numbers:

1 #i ncl ude <stdi o. h>

2 mai n()

3 |

4 char c;

5

6 printf("this programjust prints input\n");
7 for (5;) {

8 if ((c =fgetc(stdin)) != ECF) break;

9 /* this is a greater than 7-1ine coment
10 * 1

11 * 2

12 * 3

13 * 4

14 * 5

Symbol Table 8-11

15
16
17
18
19

20 } /* end main */

* 6
* 7

*/

printf("%",

c);

} /* end for */

The compiler generates line numbers only for the lines 3, 6, 8, 18, and 20;
the other lines are either blank or contain comments.

The following table shows the LI NER entries for each source line:

Source LINER
Line Contents
3 03

6 35

8 2a

182 89 00 Oa
20 23

Table Note:

Meaning

Delta 0, count 3
Delta 3, count 5
Delta 2, count 10
Delta 10, count 9
Delta 2, count 3

a. Extended format (deltais greater than 7 lines).

The compiler generates the following instructions for the example program:

=}
o

[mai
[mai
[mai
[mai
[mai
[mai
[mai
[mai
[mai
[mai
[mai
[mai
[mai
[mai
[mai
[mai
[mai
[mai
[mai
[mai
[mai
[mai
[mai
[mai
[mai
[mai

3330303 0303303030330 03033 335 35S
OO0 00000000000000O0000O00O0000O0

8-12 Symbol Table

3] 0xO0:
3] 0x4:
3] 0x8:
3] Oxc:

6] 0x10:
6] 0x14:
6] 0x18:
6] Oxlc:
6] 0x20:
6] 0x24:
8] 0x28:
8] Ox2c:
8] 0x30:
8] 0x34:
8] 0x38:
8] 0x3c:
8] 0x40:
8] 0x44:
8] 0x48:
8] Ox4c:
8] 0x50:
0x54:
0x58:
0x5c:
0x60:
0x64:

27bb0001 | dah gp, 1(t12)
23bd80d0 | da gp. -32560(gp)
23deff el | da sp, -32(sp)
b75e0008 stq ra, 8(sp)
a61d8010 I dg a0, -32752(gp)
22108000 | da a0, -32768(a0)
a77d8018 I dq t12, -32744(gp)
6b5b4000 jsr ra, (t12), printf
27ba0001 | dah gp, 1(ra)
23bd80b0 | da gp, -32592(gp)
a61d8020 I dq a0, -32736(gp)
a77d8028 I dg t12, -32728(gp)
6b5b4000 jsr ra, (t12), fgetc
27ba0001 | dah gp, 1(ra)
23bd809c | da ap, -32612(gp)
b41e0018 stq v0, 24(sp)
44000401 bi s v0, vO, tO
48203f 41 ext gh t0, Ox1, tO
48271781 sra t0, 0x38, tO
40203402 addq to, Ox1, t1

f 440000a bne t1l, Ox7c
a61d8010 I dq a0, -32752(gp)
22108020 | da a0, -32736(a0)
44000411 bi s v0, v0, al
4a203f 51 ext gh al, Ox1, al
42271791 sra al, 0x38, al

8.2.3

[mai
[nai
[mai
[mai
[mai
[mai
[mai
[mai
[mai

5 3333333535
OO0OO0OO0O0O0O0O00O0

18]
18]
18]
18]
18]
20]
20]
20]
20]

0x68: a77d8018
Ox6¢: 6b5b4000
0x70: 27ba0001
0x74: 23bd8060
0x78: c3ffffeb
0Ox7c: 47f £ 0400
0x80: a75e0008
0x84: 23de0020
0x88: 6bf a8001

Procedure Descriptor Table
Table 8-3 shows the format of an entry in the procedure descriptor table; the

header file sym h contains its declaration.

I dg t12, -32744(gp)
jsr ra, (t12), printf
| dah gp, 1(ra)

| da gp, -32672(gp)

br zero, 0x28

bi s zero, zero, vO

I dg ra, 8(sp)

| da sp, 32(sp)

ret zero, (ra), 1

Table 8-3: Format of a Procedure Descriptor Table Entry

Declaration

unsigned long

long

int
int
int
int
int

int

int

int

int

int
unsigned
unsigned
unsigned
unsigned
unsigned
short
short

Name
adr

cbLi neO f set

i sym
iline2

r egmask
regof f set b
i opt

fregmask
fregof fset
franeof f set

| nLow

| nHi gh

gp_prol ogue : 8¢
gp_used : 1

reg frame : 1
reserved : 14
| ocal off : 8

franmereg

pcreg

Description

Memory address of start of
procedure

Byte offset for this procedure
from the base of the file
descriptor entry

Start of local symbols
Procedure’s line numbers

Saved register mask

Saved register offset

Procedure’ s optimization symbol
entries

Save floating-point register mask
Save floating-point register offset
Frame size

Lowest line in the procedure
Highest line in the procedure
Byte size of gp prologue

True if the procedures uses gp
True if register frame procedure
N/A

Offset of local variables from vfp
Frame pointer register

Index or reg of return program
counter

Symbol Table 8-13

Table Notes:

a Ifthevalueofiline isnull and the cycmfield in the file descriptor
tableis zero, thei | i ne field is indexed to the actual table.

b. If thevalueof reg_frane isl, ther egof f set field containsthe
register number of the register in which the return address is stored.

c. If thevalue of gp_pr ol ogue iszero and gp_used is 1, agp prologue
is present but has been scheduled into the procedure prologue.

8.2.4 Local Symbol Table

Table 8-4 shows the format of an entry in the local symbol table; the header
file sym h contains its declaration.

Table 8-4: Format of a Local Symbol Table Entry

Declaration Name Description

| ong val ue? Value of symbol

i nt i ssP Index into local strings of symbol name
unsi gned st : 6° Symbol type

unsi gned sc : 5d Storage class

unsi gned reserved : 1 N/A

unsi gned i ndex : 20© Index into local or auxiliary symbols
Table Notes:

a. Aninteger representing an address, size, offset from a frame pointer. The
value is determined by the symbol type, asillustrated in Table 8-5.

b. Theindex into string space (i ss) is an offset from the i ssBase field of
an entry in the file descriptor table to the name of the symbol.

c. The symbol type (st) defines the symbol. The valid st Constants are
given in Table 8-6. These constants are defined in syntonst . h.

d. The storage class (sc), where applicable, explains how to access the
symbol type in memory. The valid sc constants are given in Table 8-7.
These constants are defined in syntonst . h.

e. An offset into either the local symbol table or auxiliary symbol tables,
depending of the storage type (st) as shown in Table 8-5. The compiler
usesi synmBase in the file descriptor entry as the base for an entry in the
local symbol table and i auxBase for an entry in the auxiliary symbol
table.

8-14 Symbol Table

Table 8-5:

Storage Class

Symbol Type

stFile
st Label
st d obal
stStatic
st Par am

st Local

st Proc

stStati cProc

st Menber
enumeration
structure
union

st Bl ock
enumeration
structure
text block
common block
variant
variant arm
union

st End
enumeration
file
procedure
structure
text block
union
common block
variant
variant arm

Storage Class

scText
scText
scD/ B2
scDh/ B2
scAbs
scRegi ster

scSynRef
scVar
scVar Regi st er

scAbs
scRegi ster

scText

scNi |

scUndef i ned
scVar

scVar Regi st er

scText

sclnfo
sclnfo
sclnfo

sclnfo
sclnfo
scText
scConmon
scVari ant
sclnfo
sclnfo

sclnfo
scText
scText
sclnfo
scText
sclnfo
scConmon
scVari ant
sclnfo

Index

symvac
ndexNi |
aux
aux
aux
aux

synful | ©
aux
aux

aux
aux

aux
aux
aux
aux
aux

aux

ndexNi |
aux
aux

synivac®
synmivac®
synivac®
synivac®
synivac®
synivac®
synivac®

synttart!
synttart!
synttart!
syntStart!
syntStart!
synStart!
synttart!
synttart!
synStart'

Index and Value as a Function of Symbol Type and

Value

Address of symbol
Address of symbol
Address of symbol
Address of symbol
Frame offset
Register containing
address of symbol
Frame offsetP
Frame offset?
Register containing
address of symbol
Frame offset?
Register containing
address of symbol
Address of symbol
(unused)

(unused)

Frame offset?
Register containing
address of symbol
Address of symbol

Ordinal
Bit offsetd
Bit offsetd

Max enumeration
Size

Relative addressf
Size

isymTag9
iauxRanges?

Size

0
Relative addressf
Relative addressf
0
Relative address

[oNoNoNe]

Symbol Table 8-15

Table 8-5: (continued)

Symbol Type Storage Class Index Value

st Typedef sclnfo i aux 0

Table Notes:

a. ThescD/ B storage class (data, sdata, bss, or shbss) is determined by the
assembler.

b. The frame offset value is the offset from the virtual frame pointer.

c. Theisyntul | index isthei symof the corresponding full parameter
description.

d. The bit offset value is computed from the beginning of the procedure.
e. Thei symvac index isthei symof the corresponding st End symbol

plus 1.

f. Therelative address value is the relative displacement from the
beginning of the procedure.

g. Thei symrlag index isthei symto the symbol that is the tag for the
variant.

h. Thei auxRanges index isthei aux to the ranges for the variant arm.

i. Theisynttart index isthei symof the corresponding begin block
(for example, st Bl ock, st Fi | e, or st Proc).

The linker ignores all symbols except the types that it will relocate:

st Label ,st Static,stProc,andst Stati cProc. Other symbols are
used only by the debugger and need to be entered in the table only when one
of the debugging options (- g compilation options) is in effect.

8.2.4.1 Symbol Type (st) Constants

Table 8-6 gives the allowable constants that can be specified in the st field
of entriesin the local symbol table; the header file synctonst . h contains
the declarations for the constants.

Table 8-6: Symbol Type (st) Constants

Constant Value Description
StNi| 0 Dummy entry
st d obal 1 External symbol
stStatic 2 Static

8-16 Symbol Table

Table 8-6: (continued)

Constant Value Description

st Par am 3 Procedure argument

st Local 4 Local variable

st Label 5 L abel

st Proc 6 Procedure

st Bl ock 7 Start of block

st End 8 End block, file, or procedures

st Menber 9 Member of structure, union, or enumeration
st Typedef 10 Type definition

stFile 11 File name

stStaticProc 14 L oad-time-only static procs

st Const ant 15 Constant

st St aPar am 16 Fortran static parameters

st Base 17 C++ base class

st VirtBase 18 C++ virtua base class

st Tag 19 C++tag

stlnter 20 C++ interlude

stSplit 21 Split lifetime variable

st Modul e 22 Module definition

st Modvi ew 23 Modifiers for current view of given module

8.2.4.2 Storage Class (sc) Constants

Table 8-7 gives the allowable constants that can be specified in the sc field
of entriesin the local symbol table; the header file syntonst . h contains
the declarations for the constants.

Table 8-7: Storage Class Constants

Constant Value Description

scNi | 0 Dummy entry

scText 1 Text symbol

scDat a 2 Initialized data symbol

scBss 3 Uninitialized data symbol

scRegi ster 4 Value of symbol is register number
scAbs 5 Symbol value is absolute; not to be relocated
scUndefi ned 6 Used but undefined in the current module
scUnal | ocated 7 No storage or register alocated

scBits 8 Bit field

scDbx 9 Used internally by dbx

scRegl nage 10 Register value saved on stack

sclnfo 11 Symbol contains debugger information

Symbol Table 8-17

Table 8-7: (continued)

Constant Value Description

scUser St ruct 12 Address in struct user for current process
scSDhat a 13 Small data (load time only)

scSBss 14 Small common (load time only)

scRDat a 15 Read only data (load time only)

scVar 16 Fortran or Pascal: Var parameter
scConmon 17 Common variable

scSCommon 18 Small common

scVar Regi ster 19 Var parameter in aregister

scVari ant 20 Variant records

scFi | eDesc 20 COBOL: File descriptor

scSUndef i ned 21 Small undefined

sclnit 22 i nit section symbol

scReport Desc 23 COBOL: Report descriptor

scXDat a 24 Exception handling data

scPDat a 25 Exception procedure section

scFi ni 26 fini section symbol

scRConst 27 Read-only constant symbol

scSynRef 28 Parameter is described by referenced symbol
scMax 32 Maximum number of storage classes

8.2.5 Auxiliary Symbol Table

Table 8-8 shows the format of an entry in the auxiliary symbol table; the
sym h file contains its declaration. Note that the entry is declared as a
union; Table 8-8 lists the members of the union.

Table 8-8: Auxiliary Symbol Table Entries

Declaration Name Description

TIR tia Type information record

RNDXR r ndxP Relative index into local symbols

i nt dnLow Low dimension of array

i nt dnHi gh High dimension of array

i nt i synf Index into local symbols for st End

i nt i ss Index into local strings (not used)

i nt wi dt h Width of a structured field not declared with the
default value for size

i nt count d Count of ranges for variant arm

8-18 Symbol Table

Table Notes:

a

Table 8-9 shows the format of ati entry; the sym h file contains its
declaration.

The compiler front-end fills this field in describing structures,
enumerations, and other complex types. The relative file index is a pair
of indexes. Oneindex is an offset from the start of the file descriptor
table to one of its entries. The second is an offset from the file descriptor
entry to an entry in the local symbol table or auxiliary symbol table.

This index is always an offset to an st End entry denoting the end of a
procedure.

Used in describing case variants. Gives the number of elements that are
separated by commas in a case variant.

Table 8-9: Format of a Type Information Record Entry

Declaration Name Description

unsi gned fBitfield : 1 Setif bit width is specified

unsi gned continued : 1 Nextauxiliary entry hast q information
unsi gned bt 6 Basic type

unsi gned tq4 4 Type qualifier

unsi gned t g5 4 Type qualifier

unsi gned tq0 4 Type qualifier

unsi gned tql 4 Type qualifier

unsi gned tg2 4 Type qualifier

unsi gned tg3 4 Type qualifier

All groups of auxiliary entries have a type information record with the
following entries:

fbitfieldissetif the basic type (bt) is of nonstandard width.

bt (for basic type) specifies the type of the symbol (for example, integer,
real, complex, or structure). The valid entries for this field are shown in
Table 8-10; the sym h file contains its declaration.

t q (for type qualifier) defines whether the basic type (bt) has an array
of, function returning, or pointer to qualifier. The valid entries for this
field are shown in Table 8-11; the sym h file contains its declaration.

Symbol Table 8-19

Table 8-10: Basic Type (bt) Constants

Constant

bt Ni |

bt Adr 32
bt Char

bt UChar
bt Short
bt UShor t
bt I nt

bt Ul nt

bt Long32
bt ULong32
bt Fl oat
bt Doubl e
bt St ruct
bt Uni on
bt Enum

bt Typedef

bt Range

bt Set

bt Conpl ex

bt DConpl ex
bt | ndi r ect

bt Fi xedBi n
bt Deci mal

bt Voi d

bt Pt r Mem

bt Scal edBi n
bt Vpt r

bt ArrayDesc
bt d ass

bt Long64

bt Long

bt ULong64
bt ULong

bt LongLong
bt ULongLong
bt Adr 64

bt Adr

bt | nt 64

bt Ul nt 64

bt LDoubl e

8-20 Symbol Table

Value

Co~NOOUOP~WNEFLO

21
22
26
27
27
28
28
29
30

31
31
32
33

35
36
37

Default
Size?

0
32
8

8
16
16
32
32
32
32
32
64
n/a
n/a
32
n/a

32
32
64
128
n/a

RERRRRIXXLER

Description

Undefined, void

Address (32 hits)

Symbol character

Unsigned character

Short (16 bits)

Unsigned short

Integer

Unsigned integer

Long (32 bits)

Unsigned long (32 hits)

Floating point (rea)
Double-precision floating-point real
Structure (record)

Union (variant)

Enumerated

Defined by means of a typedef; r ndx
points at ast Typedef symbol
Subrange of integer

Pascal: Sets

Fortran: Complex

Fortran: Double complex

Indirect definition; r ndx pointsto an
entry in the auxiliary symbol table
that contains a TIR (type information
record)

COBOL: Fixed binary

COBOL: Packed or unpacked decimal
Void

C++: Pointer to member

COBOL: Scaled binary

C++: Virtua function table
Fortran90: Array descriptor

C++: Class (record)

Address (64 bits)

Synonym for bt Long64
Unsigned long (64 bits)

Synonym for bt Ul ong64

Long long (64 bits)

Unsigned long long (64 bits)
Address (64 bits)

Synonym for bt Adr 64

64-bit integer

64-bit unsigned integer

Long double (real*15)

8.2.6

Table 8-10: (continued)

Default
Constant Value Size? Description
btInt8 38 8 8-hit integer
bt Ul nt 8 39 8 8-hit unsigned integer
bt Max 64 n/a

Table Notes:
a Sizein hits.

Table 8-11: Type Qualifier (tq) Constants

Constant Value Description

tqNi | 0 Place holder; no qualifier
tgPtr 1 Pointer

t gProc 2 Procedure or function
tgArray 3 Array

t gVol 5 Volatile

t gConst 6 Constant

t qRef 7 Reference

t gMax 8 Number of type qualifiers

File Descriptor Table

Table 8-12 shows the format of an entry in the file descriptor table; the
header file sym h contains its declaration.

Table 8-12: Format of File Descriptor Entry

Declaration Name Description

unsi gned long adr Memory address of start of file

| ong cbLi neO f set Byte offset from header or file lines
| ong cbLi ne Size of lines for the file

| ong cbSs Number of bytesin local strings

i nt rss Source file name

i nt i ssBase Start of local strings

i nt i synBase Start of local symbol entries

i nt csym Count of local symbol entries

i nt i lineBase Start of line number entries

Symbol Table 8-21

Table 8-12: (continued)

Declaration

i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
unsi gned
unsi gned
unsi gned

unsi gned
unsi gned
unsi gned

Name

cline

i opt Base
copt

i pdFi rst
cpd

i auxBase
caux

r f dBase
crfd

lang : 5
fMerge : 1
fReadin : 1

f Bi gendi an :

glevel : 2
reserved :

8.2.7 External Symbol Table

The external symbol table has the same format as the local symbol table,
except an offset (i f d) field has been added to the file descriptor table. This
field is used to locate information associated with the symbol in an auxiliary
symbol table. Table 8-13 shows the format of an entry in the external
symbol table; the sym h file contains its declaration.

2

1

2

Description

Count of line number entries

Start of optimization symbol entries
Count of optimization symbol entries
Start of procedure descriptor table
Count of procedures descriptors
Start of auxiliary symbol entries
Count of auxiliary symbol entries
Index into relative file descriptors
Relative file descriptor count
Language for this file

Whether this file can be merged
Trueif it was read in (not just
created)

Not used

Level this file was compiled with
Reserved for future use

Table 8-13: External Symbol Table Entries

Declaration

SYMR

unsi gned short
unsi gned short
i nt

8-22 Symbol Table

Name

asym
weakext
reserved :
ifd

1

15

Description

Same as local symbol table

Symbol is weak externa

Reserved for future use

Pointer to entry in file descriptor table

Program Loading and Dynamic Linking 9

Executable files and shared library files are used to create a process image
when a program is started by the system. This chapter describes the object
file structures that relate to program execution and also describes how the
process image is created from executable and shared object files.

This chapter addresses the following topics:

* Factors that influence linking and loading operations. (Section 9.1)
* Theloading process. (Section 9.2)

* Dynamic linking and loading. (Section 9.3)

9.1 Object File Considerations

9.1.1

The following sections describe several general factors that are involved in
the linking and loading process.

Structures

The following object file structures contain information that is used in linking
and loading operations:

» File Header — The file header identifies a file as an aobject file and
additionally indicates whether the object is a static executable file, a
shared executable file, or a shared library file.

» Optional Header — The optiona header immediately follows the file
header and identifies the size, location, and virtual addresses of the
object’s segments.

e Section Headers — Section headers describe the individual sections that
comprise the object’ s segments. Section headers are normally not used in

program loading; however, the section headers are used to locate the
dynamic section in shared executable files and shared libraries.

See Chapter 7 for further details on file headers, optional headers, and section
headers.

9.1.2

9.1.3

9.14

Base Addresses

Executable files and shared library files have a base address, which is the
lowest virtual address associated with the process image of the program. The
base address is used to relocate the process image during dynamic linking.

During program loading, the base address is calculated from the memory load
address, the maximum page size, and the lowest virtual address of the
program’ s loadable segment.

Segment Access Permissions

A program that is to be loaded by the system must have at least one loadable
segment, even though this is not required by the file format. When the
process image is created, the segments are assigned access permissions,
which are determined by the type of segment and type of program image.
Table 9-1 shows the access permissions for the various segment and image

types.

Table 9-1: Segment Access Permissions

Image Segment Access Permissions
OMAGIC text, data, bss Read, Write, Execute
NMAGIC text Read, Execute
NMAGIC data, bss Read, Write, Execute
ZMAGIC text Read, Execute
ZMAGIC data, bss Read, Write, Execute

Segment Contents

An object file segment can contain one or more sections. The number of
sections in a segment is not important for program loading, but specific
information must be present for linking and execution. Figure 9-1 illustrates
typical segment contents for executable files and shared object files. The
order of sections within a segment may vary.

Text segments contain instructions and read-only data, and data segments
contain writable data. Text segments and data segments typically include the
sections shown in Figure 9-1.

9-2 Program Loading and Dynamic Linking

Figure 9-1: Text and Data Segments of Object Files

~
.rconst
text -
.bss
.hash
.sbss
.dynsym
.got
.dynstr '
>°2;€;Ifna;,§f)d -sdata typical data
msym segment
lit4
.conflict
1it8
.rel.dyn
.rdata
Jiblist
.data
.dynamic _
-/

ZK-0753U-R

9.2 Program Loading

As the system creates or augments a process image, it logically copies afile's
segment to a virtual memory segment. The time at which the system
physically reads the file depends on the program’s execution behavior,

system load, and other factors. A process does not require a physical page
unless it references the logical page during execution.

Processes commonly leave many pages unreferenced. This improves system
performance because delaying physical reads frequently obviates them. To
obtain this efficiency in practice, shared executable files and shared library
files must have segment images whose virtual addresses are zero, modulo the
file system block size.

Virtual addresses for the text and data segments must be aligned on 64KB
(0x10000) or larger power of 2 boundaries. File offsets must be aligned on
8KB (0x2000) or larger power of 2 boundaries.

Because the page size can be larger than the alignment restrictions of a
segment’ s file offset, up to seven file pages (depending on page size) can

hold text or data that is not logically part of the segment. The contents of the
various file pages are as follows:

Program Loading and Dynamic Linking 9-3

» Thefirst text page contains the COFF file header, section headers, and
other information.

* The last text page may hold a copy of the beginning of data.
» Thefirst data page may have a copy of the end of text.

* Thelast data page may contain file information not relevant to the
running process.

Logically, the system enforces the memory permissions as if each segment
were complete and separate; segment’ s addresses are adjusted to ensure that
each logical page in the address space has a single set of permissions.

The end of the data segment requires special handling for uninitialized data,
which must be set to zero. If afile's last data page includes information not
in the logical memory page, the extraneous data must be set to zero, not the
contents of the executable file.

9.3 Dynamic Linking

An executable file is loaded at fixed addresses; the system creates its
segments using the virtual addresses from the optional header. The system
transfers control directly to the entry point of the executable file.

An executable file that uses dynamic linking requires one or more shared
libraries to be loaded in addition to the executable file. Instead of loading the
executable file, the system loads the dynamic loader, which in turn loads the
executable file and its shared libraries.

9.3.1 Dynamic Loader

When building an executable file that uses dynamic linking, the linker adds
theflag F_M PS_CALL_SHAREDto thef f | ags field of the file header.
This flag tells the system to invoke the dynamic loader to |oad the executable
file. Typically, the dynamic loader requested is/ sbi n/ | oader, the
default loader. The exec function and the dynamic loader cooperate to
create the process image. Creating the process image involves the following
operations:

» Adding segments of the file to the process image
» Adding segments of shared object files to the process image
» Performing relocations for the executable file and its shared library files

» Transferring control to the program, making it appear that the program
received control directly from exec

To assist the dynamic loader, the linker also constructs the following data
items for shared library files and shared executable files:

9-4 Program Loading and Dynamic Linking

9.3.2

* The. dynam c section contains the dynamic header. (See Section
9.3.2)

» The. got section contains the global offset table. (See Section 9.3.3.)

* The. dynsymsection contains the dynamic symbol table. (See Section
9.34)

* The.rel.dyn section contains the dynamic relocation table. (See
Section 9.3.5.)

* The. nmsymsection contains the msym table. (See Section 9.3.6.)
* The. hash section contains a symbol hash table. (See Section 9.3.7.)

* The. dynstr section contains the dynamic string table. (See Section
9.3.8)

* The.liblist section contains the library dependency table. (See
Section 9.3.10.1.)

* The.conflict section contains the conflict symbol table. (See
Section 9.3.10.2.)

These data items are located in loadable segments and are available during
execution.

Shared library files may be located at virtual addresses that differ from the
addresses in the optional header. The dynamic loader relocates the memory
image and updates absolute addresses before control is given to the program.

If the environment variable LD_BI ND_NOWhas a non-null value, the
dynamic loader processes all relocations before transferring control to the
program. The dynamic loader may use the lazy binding technique to evaluate
procedure linkage table entries, avoiding symbol resolution and rel ocation for
functions that are not called. (See Section 9.3.3.1 for information about lazy
binding.)

The following sections describe the various dynamic linking sections. The C
language definitions are in the header filesel f _abi . h and el f _m ps. h.

Dynamic Section (.dynamic)

The dynamic section acts as a table of contents for dynamic linking
information within the object. Dynamic sections are present only in shared
executable files and shared library files.

The dynamic section is located by its section header. This section header is
identified by its name (. dynami c) or its section type (STYP_DYNAM C) in
the flags field (s_f | ags).

Program Loading and Dynamic Linking 9-5

The dynamic section is an array with entries of the following type:

typedef struct {
El f 32_Sword d_t ag;
uni on {
El f32_ Wrd d_val;
El f32_Addr d_ptr;
} d_un;
} Elf32_Dyn;
The structure and union members in the preceding structure definition
provide the following information:

d tag
Indicates how the d_un field is to be interpreted.

d_val
Represents integer values.

d ptr
Represents program virtual addresses. A file's virtual addresses may not
match the memory virtual addresses during execution. The dynamic
loader computes actual addresses based on the virtual address from the
file and the memory base address. Object files do not contain relocation
entries to correct addresses in the dynamic section.

The d_t ag requirements for shared executable files and shared library files
are summarized in Table 9-2. ‘*Mandatory’’ indicates that the dynamic
linking array must contain an entry of that type; ‘‘optional’’ indicates that an
entry for the tag may exist but is not required.

Table 9-2: Dynamic Array Tags (d_tag)

Shared
Name Value d_un Executable Object
DT_NULL 0 ignored mandatory mandatory
DT_NEEDED 1 duvd optional optional
DT_PLTRELSz? 2 dvad optional optiona
DT _PLTGOT 3 dnptr optional optional
DT_HASH 4 dptr mandatory mandatory
DT_STRTAB 5 dnptr mandatory mandatory
DT _SYMTAB 6 dnptr mandatory mandatory
DT_RELA?2 7 dptr mandatory optional
DT_RELASZz2 8 dyva mandatory optional
DT_RELAENT?2 9 dva mandatory optional
DT_STRSZ 10 d.va mandatory mandatory
DT_SYMENT 11 d.va mandatory mandatory
DT_INIT 12 d ptr optional optional
DT _FINI 13 d ptr optional optional

9-6 Program Loading and Dynamic Linking

Table 9-2:

(continued)

Shared
Name Value d_un Executable Object
DT_SONAME 14 d.vad ignored optional
DT_RPATH 15 dvd optional ignored
DT_SYMBOLIC 16 ignored ignored optiona
DT _REL 17 d_ptr mandatory optional
DT _RELSZ 18 d.va mandatory optional
DT_RELENT 19 d.va mandatory optional
DT_PLTREL?2 20 dyva optional optional
DT_DEBUG? 21 d ptr optional ignored
DT _TEXTREL?2 22 ignored optional optiona
DT_JMPREL?2 23 d_ptr optional optional
DT_LOPROC 0x70000000 unspecified unspecified unspecified
DT_HIPROC Ox7fffffff ~ unspecified unspecified unspecified
Table Notes:

a. Not used by the default system linker and loader.
The uses of the various dynamic array tags are as follows:

DT_NULL
Marks the end of the array.

DT_NEEDED
Contains the string table offset of a null terminated string that is the
name of a needed library. The offset is an index into the table indicated
in the DT_STRTAB entry. The dynamic array may contain multiple
entries of this type. The order of these entries is significant.

DT _PLTRELSZ
Contains the total size in bytes of the relocation entries associated with
the procedure linkage table. If an entry of type DT_JMPREL is present,
it must have an associated DT_PLTRELSZ entry. (Not used by the
default system linker and loader.)

DT_PLTGOT
Contains an address associated with either the procedure linkage table,
the global offset table, or both.

DT_HASH
Contains the address of the symbol hash table.

DT_STRTAB
Contains the address of the string table.

DT_SYMTAB

Program Loading and Dynamic Linking 9-7

Contains the address of the symbol table with El f 32_Symentries.

DT_RELA
Contains the address of a relocation table. Entries in the table have
explicit addends, such as El f 32_Rel a. An object file may have
multiple relocation sections. When the linker builds the relocation table
for an shared executable file or shared object file, these sections are
concatenated to form a single table. While the sections are independent
in the abject file, the dynamic loader sees a single table. When the
dynamic loader creates a process image or adds a shared library file to a
process image, it reads the relocation table and performs the associated
actions. If this entry is present, the dynamic structure must also contain
DT_RELASZ and DT_RELAENT entries. When relocation is mandatory
for afile, either DT_RELA or DT_REL may be present. (Not used by
the default system linker and loader.)

DT_RELASZ
Contains the size in bytes of the DT_RELA relocation table. (Not used
by the default system linker and loader.)

DT_RELAENT
Contains the size in bytes of a DT_RELA relocation table entry. (Not
used by the default system linker and loader.)

DT_STRSZ
Contains the size in bytes of the string table.

DT_SYMENT
Contains the size in bytes of a symbol table entry.

DT_INIT
Contains the address of the initialization function.

DT_FINI
Contains the address of the termination function.

DT_SONAME
Contains the string table offset of a null-terminated string that gives the
name of the shared library file. The offset is an index into the table
indicated in the DT_STRTAB entry.

DT_RPATH
Contains the string table offset of a null-terminated library search path
string. The offset is an index into the table indicated in the DT_STRTAB
entry.

DT_SYMBOLIC
If this entry is present, the dynamic loader uses a different symbol
resolution algorithm for references within alibrary. The symbol search
starts from the shared library file instead of the shared executablefile. If

9-8 Program Loading and Dynamic Linking

the shared library file does not supply the referenced symbol, the shared
executable file and other shared library file are searched.

DT_REL
Contains the address of the relocation table. An object file can have
multiple relocation sections. When the linker builds the relocation table
for a shared executable file or shared library file, these sections are
concatenated to form a single table. While the sections are independent
in the abject file, the dynamic loader sees a single table. When the
dynamic loader creates a process image or adds a shared library file to a
process image, it reads the relocation table and performs the associated
actions. If this entry is present, the dynamic structure must contain the
DT_RELSZ entry.

DT_RELSZ
Contains the size in bytes of the relocation table pointed to by the
DT_REL entry.

DT_RELENT
Contains the size in bytes of a DT_REL entry.

DT_PLTREL
Specifies the type of relocation entry referred to by the procedure
linkage table. The d_val member holds DT_REL or DT_RELA, as
appropriate. All relocations in a procedure linkage table must use the
same relocation. (Not used by the default system linker and loader.)

DT_DEBUG
Used for debugging. The contents of this entry are not specified. (Not
used by the default system linker and loader.)

DT_TEXTREL
If this entry is not present, no relocation entry should cause a
modification to a nonwritable segment. If this entry is present, one or
more relocations might request modifications to a nonwritable segment.
(Not used by the default system linker and loader.)

DT_JMPREL
If thisentry is present, itsd_pt r field contains the address of relocation
entries associated only with the procedure linkage table. The dynamic
loader may ignore these entries during process initialization if lazy
binding is enabled. See Section 9.3.3.1 for information about lazy
binding. (Not used by the default system linker and loader.)

DT_LOPROC through DT_HIPROC
Reserved for processor-specific semantics.

Program Loading and Dynamic Linking 9-9

Table 9-3: Processor-Specific Dynamic Array Tags (d_tag)

Name

DT_MIPS RLD_VERSION
DT_MIPS_TIME_STAMP
DT_MIPS_ICHECKSUM
DT_MIPS_IVERSION
DT_MIPS FLAGS
DT_MIPS_BASE_ADDRESS
DT_MIPS_CONFLICT
DT_MIPS_LIBLIST
DT_MIPS_LOCAL_GOTNO
DT_MIPS_CONFLICTNO
DT_MIPS_LIBLISTNO
DT_MIPS_SYMTABNO
DT_MIPS_UNREFEXTNO
DT_MIPS_GOTSYM
DT_MIPS_HIPAGENO?

Table Notes;

a. Not used by the default system linker and loader.

Value

0x70000001
0x70000002
0x70000003
0x 70000004
0x70000005
0x70000006
0x70000008
0x70000009
0x7000000A
0x7000000B
0x70000010
0x70000011
0x70000012
0x70000013
0x70000014

d_un

d va
d vd
d vd

d va

d va
d_ptr
d_ptr
d_ptr
d va
d vd

d va

d val
d va

d vd
d va

Executable

mandatory
optional
optional
optional
mandatory
mandatory
optional
optional
mandatory
optional
optional
optional
optional
mandatory
mandatory

Shared
Object

mandatory
optional
optional
optional
mandatory
mandatory
optional
optional
mandatory
optional
optional
optional
optional
mandatory
mandatory

The uses of the various processor-specific dynamic array tags are as follows:

DT_MIPS RLD_VERSION

Holds an index into the object file's string table, which holds the version
of the run-time linker interface. The version is 1 for executable objects
that have a single GOT and 2 for executable objects that have multiple

GQOTs.
DT_MIPS TIME_STAMP

Contains a 32-bit time stamp.

DT_MIPS_ICHECKSUM

Contains a value that is the sum of all of the COMMON sizes and the
names of defined external symbols.

DT_MIPS_IVERSION

Contains the string table offset of a series of colon-separated version
strings. An index value of zero means no version string was specified.

9-10 Program Loading and Dynamic Linking

DT_MIPS FLAGS
Contains a set of 1-bit flags. The following flags are defined for
DT_M PS_FLAGS:

Flag Value Meaning
RHF_QUI CKSTART 0x00000001 Object may be quickstarted
by loader
RHF_NOTPOT (0x00000002 Hash size not a power of two
RHF_NO LI BRARY
REPLACENMENT 0x00000004 Use default system libraries
only
RHF_NO_MOVE 0x00000008 Do not relocate
RHF_RI NG_SEARCH 0x10000000 Symbol resolution same as
DT_SYMBCLI C
RHF_DEPTH_FI RST 0x20000000 Depth first symbol resolution
RHF_USE_31BI T_
ADDRESSES 0x40000000 TASO (Truncated Address

Support Option) objects

DT_MIPS BASE ADDRESS
Contains the base address.

DT_MIPS CONFLICT
Contains the address of the. conf | i ct section.

DT_MIPS LIBLIST
Contains the address of the . | i bl i st section.

DT_MIPS LOCAL_GOTNO
Contains the number of local GOT entries. The dynamic array contains
one of these entries for each GOT.

DT_MIPS CONFLICTNO
Contains the number of entriesin the. confl i ct section and is
mandatory if thereisa. confli ct section.

DT_MIPS LIBLISTNO
Contains the number of entriesinthe. | i bl i st section.

DT_MIPS SYMTABNO
Indicates the number of entriesin the . dynsymsection.

DT_MIPS_UNREFEXTNO
Holds an index into the dynamic symboal table. The index is the entry of
the first external symbol that is not referenced within the object.

Program Loading and Dynamic Linking 9-11

DT_MIPS_GOTSYM
Holds the index of the first dynamic symbol table entry that corresponds
to an entry in the global offset table. The dynamic array contains one of
these entries for each GOT.

DT_MIPS_HIPAGENO
Holds the number of page table entries in the global offset table. A page
table entry here refersto 64KB of data space. This entry is used by the
profiling tools and is optional. (Not used by the default system linker
and loader.)

All other tag values are reserved. Entries may appear in any order, except for
the relative order of the DT_NEEDED entries and the DT_NULL entry at the
end of the array.

9.3.2.1 Shared Object Dependencies

When the linker processes an archive library, library members are extracted
and copied into the output object file. These statically linked services are
available during execution and do not involve the dynamic loader. Shared
executable files also provide services that require the dynamic loader to
include the appropriate shared library filesin the processimage. To
accomplish this, shared executable files and shared library files must describe
their dependencies.

The dependencies, indicated by the DT_NEEDED entries of the dynamic
structure, indicate which shared library files are required for the program.
The dynamic loader builds a process image by connecting the referenced
shared library files and their dependencies. When resolving symbolic
references, the dynamic loader looks first at the symbol table of the shared
executable program, then at the symbol tables of the DT__NEEDED entries (in
order), then at the second-level DT__NEEDED entries, and so on. Shared
library files must be readable by the process.

Note

Even if a shared object is referenced more than once in the
dependency list, the dynamic loader includes only one instance
of the object in the process image.

Names in the dependency list are copies of the DT_SONAME strings.

If ashared library name has one or more slash charactersin its name, such as
lusr/1ib/libz,thedynamic loader uses the string as the pathname. If
the name has no dashes, such as| i ba, the object is searched as follows:

1. Thedynamic array tag DT_RPATH may give a string that holds a list of
directories separated by colons, such as
fusr/new ib:/usr/local/lib. Thedynamic loader searches

9-12 Program Loading and Dynamic Linking

9.3.3

these directories in order and, if alibrary is not located, it then searches
the current directory.

The environment variable LD _LI BRARY _PATH can hold alist of colon-
separated directories, optionally followed by a semicolon and another
directory list. These directories are searched after those specified by
DT_RPATH.

If the library was not located in any of the directories specified by
DT_RPATHor LD_LI BRARY_PATH, the dynamic loader searches
fusr/shlib,/usr/ccs/lib,/usr/lib/cnplrs/cc,
fusr/lib,andthen/usr/local/lib.

The following environment variables are defined:

_RLD ARGS Argument to dynamic loader
_RLD ROOT Prefix that the dynamic loader adds to all paths except those

specified by LD_LI BRARY_PATH

Note

For security, the dynamic loader ignores environmental search
specifications, such as LD_LI BRARY_PATH, for set-user-ID and
set-group-ID programs.

Global Offset Table (.got)

Position-independent code cannot contain absolute virtual addresses. Global
offset tables (GOTSs) hold absolute addresses in private data, thus making the
addresses available without compromising the position-independence and
sharability of a program’stext. A program referencesits global offset table
using position-independent addressing and extracts absolute values, thus
redirecting position-independent references to absolute locations.

The global offset table is split into two logically separate subtables — local
and external:

Local entriesreside in the first part of the table; these are entries for
which there are standard local relocation entries. These entries only
require relocation if they occur in a shared library file with a memory
load address that differs from the virtual address of its |oadable segments.
As with the defined external entries in the global offset table, these local
entries contain actual addresses.

External entries reside in the second part of the section. Each entry in the
external part of the GOT corresponds to an entry in the. dynsym
section. The first referenced global symbol in the . dynsymsection
corresponds to the first quadword of the table, the second symbol

Program Loading and Dynamic Linking 9-13

corresponds to the second quadword, and so on. Each quadword in the
external entry part of the GOT contains the actual address for its
corresponding symbol.

The external entries for defined symbols must contain actual addresses. If
an entry corresponds to an undefined symbol and the table entry contains
a zero, the entry must be resolved by the dynamic loader, even if the
dynamic loader is performing a quickstart. (See Section 9.3.10 for
information about quickstart processing.)

After the system creates memory segments for a loadable object file, the
dynamic loader may process the relocation entries. The only relocation
entries remaining are type R_REFQUAD or R_REFLONG, referring to local
entries in the GOT and data items containing addresses. The dynamic loader
determines the associated symbol (or section) values, calculates their absolute
addresses, and sets the proper values. Although the absolute addresses may
be unknown when the linker builds an object file, the dynamic loader knows
the addresses of all memory segments and can find the correct symbols and
calculate the absolute addresses.

If a program requires direct access to the absolute address of a symbal, it
uses the appropriate GOT entry. Because the shared executable file and
shared library file have separate global offset tables, a symbol’ s address may
appear in several tables. The dynamic loader processes all necessary
relocations before giving control to the process image, thus ensuring the
absolute addresses are available during execution.

The zero (first) entry of the . dynsymsection is reserved and holds a null
symbol table entry. The corresponding zero entry in the GOT is reserved to
hold the address of the entry point in the dynamic loader to call when using
lazy binding to resolve text symbols (see Section 9.3.3.1 for information
about resolving text symbols using lazy binding).

The system may choose different memory segment addresses for the same
shared library file in different programs; it may even choose different library
addresses for different executions of the same program. Nonetheless,
memory segments do not change addresses once the processimage is
established. Aslong as a process exists, its memory segments reside at fixed
virtual addresses.

A single GOT can hold a maximum of 8190 local and global entries. If a
program references 8K or more global symbols, it will have multiple GOTs.
Each GOT in a multiple-GOT object is referenced by means of a different
global pointer value. A single . got section holds all of the GOTsin a
multiple-GOT object.

The DT_M PS_LOCAL_GOTNO and DT_PLTGOT entries of the dynamic
section describe the attributes of the global offset table.

9-14 Program Loading and Dynamic Linking

9.3.3.1 Resolving Calls to Position-Independent Functions

The GOT is used to hold addresses of position-independent functions as well
as data addresses. It is not possible to resolve function calls from one shared
executable file or shared library file to another at static link time, so all of the
function address entries in the GOT would normally be resolved at run time
by the dynamic loader. Through the use of specially constructed pieces of
code known as stubs, this run-time resolution can be deferred through a
technique known as lazy binding.

Using the lazy binding technique, the linker builds a stub for each called
function and allocates GOT entries that initially point to the stubs. Because
of the normal calling sequence for position-independent code, the call
invokes the stub the first time that the call is made.
stub_xyz:

ldg t12, .got_index(gp)

lda $at, .dynsym.index_| ow zero)

I dah $at, .dynsym.index_hi gh($at)

jmp t12, (t12)
The stub code loads register t 12 with an entry from the GOT. The entry
loaded into register t 12 is the address of the procedure in the dynamic
loader that handles lazy binding. The stub code also loads register $at with
the index into the . dynsymsection of the referenced external symbol. The
code then transfers control to the dynamic loader and loads register t 12 with
the address following the stub. The dynamic loader determines the correct
address for the called function and replaces the address of the stub in the
GOT with the address of the function.

Most undefined text references can be handled by lazy text evaluation, except
when the address of a function is used in other than aj sr instruction. In the
exception case, the program uses the address of the stub instead of the actual
address of the function. Determining which caseis in effect is based on the
following processing:

* Thelinker generates symbol-table entries for all function references with
the st _shndx field containing SHN_UNDEF and the st _t ype field
containing STT_FUNC.

» The dynamic loader examines each symbol-table entry when it starts
execution:

— If thest _val ue field for one of these symbols is nonzero, only j sr
references were made to the function and nothing needs to be done to
the GOT entry.

— If the field is zero, some other kind of reference was made to the
function and the GOT entry must be replaced with the actual address
of the referenced function.

Program Loading and Dynamic Linking 9-15

The LD_BI ND_NOWenvironment variable can also change dynamic loader
behavior. If its value is non-null, the dynamic loader evaluates al symbol-
table entries of type STT_FUNC, replacing their stub addresses in the GOT
with the actual address of the referenced function.

Note

Lazy binding generally improves overall application performance
because unused symbols do not incur the dynamic loader
overhead. Two situations, however, make lazy binding
undesirable for some applications:

e Theinitia referenceto afunction in a shared object file takes
longer than subsequent calls because the dynamic loader intercepts
the call to resolve the symbol. Some applications cannot tolerate
this unpredictability.

e |If an error occurs and the dynamic loader cannot resolve the
symbol, the dynamic loader terminates the program. Under lazy
binding, this might occur at arbitrary times. Once again, some
applications cannat tolerate this unpredictability.

By turning off lazy binding, the dynamic loader forces the failure to
occur during process initialization, before the application receives
control.

9.3.4 Dynamic Symbol Section (.dynsym)

The dynamic symbol section provides information on all external symbols,
either imported or exported from an object.

All externaly visible symbols, both defined and undefined, must be hashed
into the hash table (see Section 9.3.7).

Undefined symbols of type STT_FUNC that have been referenced only by

j sr instructions may contain nonzero values in their st _val ue field
denoting the stub address used for lazy evaluation for this symbol. The
dynamic loader uses this to reset the GOT entry for this external symbol to
its stub address when unloading a shared library file. All other undefined
symbols must contain zero in their st _val ue fields.

Defined symbols in a shared executable file cannot be preempted. The
symbol table in the shared executable file is always searched first to resolve
any symbol references.

9-16 Program Loading and Dynamic Linking

The dynamic symbol section contains an array of entries of the following
type:
typedef struct {

El f32_Word st _nane;
El f 32_Addr st _val ue;
El f32 Word st _size;

unsi gned char st _info;

unsi gned char st _ot her;

El f 32_Hal f st _shndx;
} EIf32_Sym

The structure members in the preceding structure definition provide the
following information:

st _nane
Contains the offset of the symbol’s name in the dynamic string section.

st _val ue
Contains the value of the symbol for those symbols defined within the
object; otherwise, contains the value zero.

st _si ze
Identifies the size of symbols with common storage allocation;
otherwise, contains the value zero. For STB_DUPLI CATE symbols, the
size field holds the index of the primary symbol.

st_info
| dentifies the symbol’ s binding and type. The macros
ELF32_ST_BI ND and ELF32_ST_TYPE are used to access the
individual values.

A symbol’s binding determines the linkage visibility and behavior. The
binding is encoded in the st _i nf o field and can have one of the
following values:

Value Description

STB_LOCAL Indicates that the symbol islocal to the object.
STB_GL.OBAL Indicates that the symbal is visible to other objects.
STB_WEAK Indicates that the symbol is a weak global symbol.

STB_DUPLI CATE Indicates the symbol is a duplicate. (Used for
objects that have multiple GOTSs.)

A symbol’s type identifies its use. The type is encoded in the st _i nf o
field and can have one of the following values:

Value Description

STT_NOTYPE Indicates that the symbol has no type or its type is unknown.

Program Loading and Dynamic Linking 9-17

Value Description

STT_OBJECT Indicates that the symbol is a data object.

STT_FUNC Indicates that the symbol is a function.
STT_SECTI ON Indicates that the symbol is associated with a program
section.
STT_FILE Indicates that the symbol as the name of a source file.
st _ot her

Currently holds a value of zero and has no defined meaning.

st _shndx
| dentifies the section to which this symbol is related.

All symbols are defined relative to some program section. The
st _shndx field identifies the section and can have one of the
following values:

Value Description

SHN_UNDEF Indicates that the symbol is undefined.

SHN_ABS Indicates that the symbol has an absolute value.

SHN_COVVON Indicates that the symbol has common storage
(unallocated).

SHN M PS_ACOWMON Indicates that the symbol has common storage
(allocated).

SHN_M PS_TEXT Indicates that the symbol is in atext segment.

SHN_M PS_DATA Indicates that the symbol is in a data segment.

The entries of the dynamic symbol section are ordered as follows:
e A singlenull entry.
» Symbolsloca to the object.

» Unreferenced global symboals, that is, symbols that are defined within the
object but not referenced.

» Referenced global symbols. These symbols correspond one-to-one with
the GOT entries for global symbols.

Figure 9-2 shows the layout of the . dynsymsection and its relationship to
the . got section.

9-18 Program Loading and Dynamic Linking

9.3.5

Figure 9-2: Relationship Between .dynsym and .got

.got .dynsym
reserved reserved
GOT #0 locals locals
Ist —>
lobals
DT_MIPS_LOCAL_GOTNO g unreferenced | «— b7 miPs_
reserved I globals UNREFEXTNO
locals
cors referenced | ¢ ;5 pT GOTSYM
2nd —> globals
DT_MIPS_LOCAL_GOTNO globals
one to one f d
reserved _,| rererence <— 2nd DT_GOTSYM
globals
GOT #2 locals
3rd — referenced | ¢ 54 p7 GoTsYM
DT_MIPS_LOCAL_GOTNO globals o oone > globals -
>

ZK-0755U-R

The DT_SYMENT and DT_SYMI'AB entries of the dynamic section describe
the attributes of the dynamic symbol table.

Dynamic Relocation Section (.rel.dyn)

The dynamic relocation section describes all locations within the object that
must be adjusted if the object is loaded at an address other than its linked
base address.

Only one dynamic relocation section is used to resolve addresses in data
items, and it must be called . r el . dyn. Shared executable files can contain
normal relocation sections in addition to a dynamic relocation section. The
normal relocation sections may contain resolutions for any absolute valuesin
the main program. The dynamic linker does not resolve these or relocate the
main program.

As noted previously, only R_REFQUAD and R_REFL ONG relocation entries
are supported in the dynamic relocation section.

The dynamic relocation section is an array of entries of the following type:
t ypedef struct {

El f 32_Addr r_offset;
El f32_Word r_info;
} EIf32_Rel;

The structure members in the preceding structure definition provide the
following information:

Program Loading and Dynamic Linking 9-19

r_offset
Identifies the location within the object to be adjusted.

r_info
I dentifies the rel ocation type and the index of the symbol that is
referenced. The macrosELF32_ R SYMand ELF32 R TYPE access
the individual attributes. The relocation type must be either
R_REFQUAD or R_REFLONG

The entries of the dynamic relocation section are ordered by symbol index
value.

The DT_REL and DT_RELSZ entries of the dynamic section describe the
attributes of the dynamic relocation section.

9.3.6 Msym Section (.msym)

The optiona . msymsection contains precomputed hash values and dynamic
relocation indexes for each entry in the dynamic symbol table. Each entry in
the . nsymsection maps directly to an entry in the . dynsymsection. The

. msymsection is an array of entries of the following type:

t ypedef struct

El f32_Word ns_hash_val ue;

El f32_Word ns_info;
} Elf32_Msym
The structure members in the preceding structure definition provide the
following information:

ns_hash_val ue
The hash value computed from the name of the corresponding dynamic
symbol.

ns_info
Contains both the dynamic relocation index and the symbol flags field.
The macros ELF32_MS_REL | NDEX and ELF32_M5_FLAGS are
used to acess the individual values.

The dynamic relocation index identifies the first entry inthe . r el . dyn
section that references the dynamic symbol corresponding to this msym
entry. If the index is 0, no dynamic relocations are associated with the
symbol.

The symbol flags field is reserved for future use.

The DT_M PS_MsSYMentry of the dynamic section contains the address of
the . msymsection.

9-20 Program Loading and Dynamic Linking

9.3.7 Hash Table Section (.hash)

A hash table of El f 32_Wbr d entries provides fast access to symbol entries
in the dynamic symbol section. Figure 9-3 shows the contents of a hash
table. The entriesin the hash table contain the following information:

* Thenbucket entry indicates the number of entriesin the bucket
array.
* Thenchai n entry indicates the number of entries in the chai n array.

 Thebucket and chai n entries hold symbol table indexes; the entries
in chai n parallel the symbol table. The number of symbol table entries
should be equal to nchai n; symbol table indexes also select chai n
entries.

Figure 9-3: Hash Table Section

nbucket

nchain

bucket[0]

bucket[nbucket —1]

chain[0]

chain[nchain - 1]

ZK-0756U-R

The hashing function accepts a symbol name and returns a value that can be
used to compute abucket index. If the hashing function returns the value X
for aname, bucket [X % nbucket] givesanindex, Y, into the symbol
table and chai n array. If the symbol table entry indicated is not the correct
one, chai n[Y] indicates the next symbol table entry with the same hash
value. The chai n links can be followed until the correct symbol table entry
is located or until the chai n entry contains the value STN_UNDEF.

The DT_HASH entry of the dynamic section contains the address of the hash
table section.

Program Loading and Dynamic Linking 9-21

9.3.8

9.3.9

Dynamic String Section (.dynstr)

The dynamic string section is the repository for all strings referenced by the
dynamic linking sections. Strings are referenced by using a byte offset within
the dynamic string section. The end of the string is denoted by a byte
containing the value zero.

The DT_STRTAB and DT_STRSZ entries of the dynamic section describe
the attributes of the dynamic string section.

Initialization and Termination Functions

After the dynamic loader has created the process image and performed
relocations, each shared object file gets the opportunity to execute
initialization code. The initialization functions are called in reverse-
dependency order. Each shared object file' s initialization functions are called
only after the initialization functions for its dependencies have been executed.
All initialization of shared object files occurs before the executable file gains
control.

Similarly, shared object files can have termination functions that are executed
by the at exi t mechanism when the process is terminating. Termination
functions are called in dependency order — the exact opposite of the order in
which initialization functions are called.

Shared object files designate initialization and termination functions through
the DT_I NI T and DT_FI NI entries in the dynamic structure. Typically, the
code for these functions residesinthe. i nit and. fi ni sections.

Note

Although at exi t termination processing normally is done, it is
not guaranteed to have executed when the process terminates. In
particular, the process does not execute the termination
processing if it calls _exi t or if the process terminates because
it received a signal that it neither caught nor ignored.

9.3.10 Quickstart

The quickstart capability provided by the assembler supports several sections
that are useful for faster startup of programs that have been linked with
shared library files. Some ordering constraints are imposed on these sections.
The group of structures defined in these sections and the ordering constraints
allow the dynamic loader to operate more efficiently. These additional
sections are also used for more complete dynamic shared library file version
control.

9-22 Program Loading and Dynamic Linking

9.3.10.1 Shared Object List (.liblist)

A shared object list section is an array of El f 32_Li b structures that
contains information about the various dynamic shared library files used to
statically link the shared object file. Each shared library file used has an
entry in the array. Each entry has the following format:

typedef struct {
El f32_Word | _nane;

El f32_Word | _time_stanp;
El f32_ Word | _checksum
El f32_Word | _version;
El f32_Word | _fl ags;
} EIf32_Lib;

The structure members in the preceding structure definition provide the
following information:

| _nane
Specifies the name of a shared library file. Itsvaueis a string table
index. This name can be a full pathname, relative pathname, or file
name.

| tinme_stanp
Contains a 32-bit time stamp. The value can be combined with the
| _checksumvalueand thel ver si on string to form a unigue
identifier for this shared library file.

| _checksum
Contains the sum of all common sizes and all string names of externally
visible symbols.

| _version
Specifies the interface version. Its value is a string table index. The
interface version is a string containing no colons. It is compared to a
colon separated string of versions pointed to by a dynamic section entry
of the shared library file. Shared library file with matching names may
be considered incompatible if the interface version strings are deemed
incompatible. An index value of zero means no version string is
specified and is equivalent to the string _nul | .

| _flags
Specifies a set of 1-bit flags.
Thel f1l ags field can have one or both of the following flags set:
LL_EXACT_MATCH At run time, use a unique ID composed of the
| _time_stanp,| _checksum and
| _ver si on fields to demand that the run-time

dynamic shared library file match exactly the
shared library file used at static link time.

Program Loading and Dynamic Linking 9-23

LL_I GNORE_I NT_VER At run time, ignore any version incompatibility
between the dynamic shared library file and the
shared library file used at static link time.

Normally, if neither LL_ EXACT_MATCH nor
LL_| GNORE_| NT_VER bits are set, the
dynamic loader requires that the version of the
dynamic shared library match at least one of the
colon separated version strings indexed by the

| _versi on string table index.

The DT_M PS_LI BLI ST and DT_M PS_LI BLI STNO entries of the
dynamic section describe the attributes of the shared object list section.

9.3.10.2 Conflict Section (.conflict)

Each . confl i ct sectionisan array of indexes into the . dynsymsection.

Each index entry identifies a symbol that is multiply defined in either of the

following ways:

» The symboal is defined in the shared object file and one or more of the
shared library files that the shared object file depends on.

* The symboal is defined in two or more or the shared library files that the
shared object file depends on.

The shared library files that the shared object file depends on are identified at
static link time.

The symbols identified in this section must be resolved by the dynamic
loader, even if the object is quickstarted. The dynamic loader resolves all
references of a multiply-defined symbol to a single definition.

The. conflict sectionisanarray of El f 32_Conf |l i ct elements:
typedef Elf32_Word Elf32_Conflict;

The DT_M PS_CONFLI CT and DT_M PS_CONFLI CTNO entries of the
dynamic section describe the attributes of the conflict section.

9.3.10.3 Ordering of Sections

In order to take advantage of the quickstart capability, ordering constraints
areimposed on the . r el . dyn section. The. rel . dyn section must have
all local entries first, followed by the external entries. Within these
subsections, the entries must be ordered by symbol index. This groups each
symbol’s relocations together.

9-24 Program Loading and Dynamic Linking

Instruction Summaries A

The tables in this appendix summarize the assembly-language instruction set:
» Table A-1 summarizes the main instruction set.
» Table A-2 summarizes the floating-point instruction set.

e Table A-3 summarizes the rounding and trapping modes supported by
some floating-point instructions.

Most of the assembly-language instructions translate into single instructions
in machine code.

The tables in this appendix show the format of each instruction in the main
instruction set and the floating-point instruction set. The tables list the
instruction names and the forms of operands that can be used with each
instruction. The specifiers used in the tables to identify operands have the
following meanings:

Operand Specifier Description

address A symbolic expression whose effective value is used as an
address.

b_reg Base register. A register containing a base address to which
is added an offset (or displacement) value to produce an
effective address.

d_reg Destination register. A register that receives avalue as a
result of an operation.

d reg/s reg One register that is used as both a destination register and a
source register.

| abel A label that identifies a location in a program.

no_oper ands No operands are specified.

of fset An immediate value that is added to the contents of a base
register to calculate an effective address.

pal code A value that determines the operation performed by a PAL
instruction.

s_reg, s_regl, s_reg2 Source registers. Registers whose contents are to be used in
an operation.

val _expr An expression whose value is used as an absolute value.

Operand Specifier Description

val _i med An immediate value that is to be used in an operation.
j hi nt An address operand that provides a hint of whereaj np or
j sr instruction will transfer control.

rhi nt An immediate operand that provides software with a hint
about how aret orjsr_coroutine instruction is used.

The tables in this appendix are segmented into groups of instructions that
have the same operand options; the operands specified within a particular
segment of the table apply to all of the instructions contained in that
segment.

Table A-1: Main Instruction Set Summary

Instruction Mnemonic Operands
Load Address | da? d_reg, address
Load Byte I db
Load Byte Unsigned | dbu
Load Word | dw
Load Word Unsigned | dwu
Load Sign Extended Longword I dl@
Load Sign Extended Longword Idl |2
Locked | dqﬁ
Load Quadword I dg_I @
Load Quadword Locked | dq_ua

Load Quadword Unaligned ul dw
Load Unaligned Word ul dwu
Load Unaligned Word Unsigned ul dl

Load Unaligned Longword

Load Unaligned Quadword ul dq
Store Byte stb s_reg, address
Store Word stw
Store Longword stl@
Store Longword Conditional stl _c?@
Store Quadword st q@
Store Quadword Conditional stq_c?
Store Quadword Unaligned stq_u?
Store Unaligned Word ustw
Store Unaligned Longword ust |
Store Unaligned Quadword ustq

A-2 Instruction Summaries

Table A-1: (continued)

Instruction

Load Address High
Load Global Pointer

Load Immediate Longword
Load Immediate Quadword

Branch if Equal to Zero

Branch if Not Equal to Zero

Branch if Less Than Zero

Branch if Less Than or Equal to
Zero

Branch if Greater Than Zero

Branch if Greater Than or Equal
to Zero

Branch if Low Bit is Clear

Branch if Low Bit is Set

Branch
Branch to Subroutine

Jump
Jump to Subroutine

Return from Subroutine
Jump to Subroutine Return

Architecture Mask

Clear
Implementation Version

Mnemonic

| dah?
I dgp

I dil
I dig

beq
bne
bl t

bl e
bgt

bge
bl bc
bl bs

br
bsr

=3
o

—_—

ret
jsr_
corout i ne?

amask

clr
i mpl ver

Operands

d_reg, offset(b_reg)
d_reg, val _expr

s_reg, | abel

Ed_r eg, | abel O
DI abel 0

Bd_r eg, (s_reg),jhint
nd_reg, (s_reg)
O(s_reg), j hint

E(s_r eg)

Od_reg, addr ess

Baddr ess

Od_reg, (s_reg), rhint
Sd_r eqg, (s_reg)
nd_reg, rhint

Od _reg

B(s_r eg), rhi nt
O(s_reg)

Ur hi nt

Bno_oper ands

Ooooooooooo

Us reg, d reg o
Bval_i med, d_r egg

d_reg

Instruction Summaries A-3

Table A-1: (continued)

Instruction Mnemonic Operands
Absolute Value Longword absl 0 0
Absolute Value Quadword absq 0s_reg, d_reg O
Move nov Ed_r eg/ s_reg E
Negate Longword (without neg| gval _imed, d_reg
overflow) negl v
Negate Longword (with overflow)
Negate Quadword (without negq
overflow) negqv
Negate Quadword (with overflow) not
Logical Complement (NOT) sextb
Sign-Extension Byte sextl
Sign-Extension Longword sextw

Sign-Extension Word

Add Longword (without overflow) addl

Add Longword (with overflow) addl v Bs_r egl, s_reg2, d_reg B
Add Quadword (without overflow) addq Bd_r eg/s_regl, s_reg2 B
Add Quadword (with overflow) addqv oS_regl, val _inmed, d_regp
Scaled Longword Add by 4 s4addl 0d_reg/s_regl, val _i medd
Scaled Quadword Add by 4 s4addq H 0
Scaled Longword Add by 8 s8addl

Scaled Quadword Add by 8 s8addq

Compare Signed Quadword Equal chpeq
Compare Signed Quadword Less

Than cnpl t
Compare Signed Quadword L ess cnple
Than or Equal cnpul t
Compare Unsigned Quadword Less cppul e
Than mul |
Compare Unsigned Quadword Less
Than or Equal mul v
Multiply Longword (without mul q
overflow) mul qv
Multiply Longword (with overflow) subl
Multiply Quadword (without subl v
overflow)
Multiply Quadword (with overflow) ~ subq
Subtract Longword (without subqv
overflow) s4subl
Subtract Longword (with overflow) ~ S4subq
Subtract Quadword (without s8subl
overflow)

Subtract Quadword (with overflow)
Scaled Longword Subtract by 4
Scaled Quadword Subtract by 4
Scaled Longword Subtract by 8

A—4 Instruction Summaries

Table A-1: (continued)

Instruction

Scaled Quadword Subtract by 8

Scaled Quadword Subtract by 8

Unsigned Quadword Multiply High

Divide Longword

Divide Longword Unsigned

Divide Quadword

Divide Quadword Unsigned

Longword Remainder

Longword Remainder Unsigned

Quadword Remainder

Quadword Remainder Unsigned

Logical Product (AND)

Logical Sum (OR)

Logical Sum (OR)

Logical Difference (XOR)

Logical Product with Complement
(ANDNOT)

Logical Product with Complement
(ANDNOT)

Logical Sum with Complement
(ORNQT)

Logical Equivalence (XORNOT)

Logica Equivalence (XORNQOT)

Move if Equal to Zero

Move if Not Equal to Zero

Move if Less Than Zero

Move if Less Than or Equal to
Zero

Move if Greater Than Zero

Move if Greater Than or Equal to
Zero

Move if Low Bit Clear

Move if Low Bit Set

Shift Left Logical

Shift Right Logical

Shift Right Arithmetic

Compare Byte

Extract Byte Low

Extract Word Low

Extract Longword Low

Extract Quadword Low

Extract Word High

Extract Longword High

Extract Quadword High

Insert Byte Low

Insert Word Low

Insert Longword Low

Insert Quadword Low

Mnemonic Operands
s8subq
s8subq
urrul h
di vl
divlu
divq
di vqu
rem
remu
reng
renqgu
and

bi s

or

xor

bi c
andnot

(see previous page)

or not
eqv

Xor not
crmoveq
cnovne
cnovl t

cnovl e
cnovgt

cnovge
cnovl bc
cnovl bs
sl |

srl

sra
cnpbge
ext bl
extw
extl|
ext gl
ext wh
extlh
ext gh

i nsbl

i nsw
insll

i nsql

Instruction Summaries A-5

Table A-1: (continued)

Instruction Mnemonic Operands
Insert Word High i nswh (see previous page)
Insert Word High i nswh

Insert Longword High inslh

Insert Quadword High i nsgh

Mask Byte Low nskbl

Mask Word Low mskwl

Mask Longword Low skl |

Mask Quadword Low nskql

Mask Word High nmskwh

Mask Longword High skl h

Mask Quadword High nskgh

Zero Bytes zap

Zero Bytes NOT zapnot

Call Privileged Architecture Library cal | _pal pal code
Prefetch Data fetch of fset(b_reg)
Prefetch Data, Modify Intent fetch_m

Read Process Cycle Counter rpcc d_reg

No Operation nop no_oper ands
Universal No Operation unop

Trap Barrier trapb

Exception Barrier exch

Memory Barrier b

Write Memory Barrier wnb

Table Notes:

a. Inaddition to the normal operands that can be specified with this
instruction, relocation operands can also be specified (see Section 2.6.4).

A number of the floating-point instructions in Table A-2 support qualifiers
that control rounding and trapping modes. Table notes identify the qualifiers
that can be used with a particular instruction. (The notes aso identify the
isntructions on which relocation operands can be specified.) Qualifiers are
appended as suffixes to the particular instructions that support them, for
example, the instruction cvt dg with the sc qualifier would be coded

cvt dgsc. The qualifier suffixes consist of one or more characters, with
each character identifying a particular rounding or trapping mode. Table A-3
defines the rounding or trapping modes associated with each character.

A-6 Instruction Summaries

Table A-2: Floating-Point Instruction Set Summary

Instruction

Load F_Floating

Load G_Floating (Load D_Floating)
Load S Floating (Load Longword)
Load T_Floating (Load Quadword)

Store F_Floating

Store G_Floating (Store D_Floating)
Store S_Floating (Store Longword)
Store T_Floating (Store Quadword)

Load Immediate F_Floating
Load Immediate D_Floating
Load Immediate G_Floating
Load Immediate S_Floating
Load Immediate T_Floating

Branch Equal to Zero

Branch Not Equal to Zero

Branch Less Than Zero

Branch Less Than or Equal to Zero
Branch Greater Than Zero

Branch Greater Than or Equal to Zero

Floating Clear

Floating Move

Floating Negate
Floating Absolute Value
Negate F_Floating
Negate G_Floating
Negate S Floating
Negate T_Floating

Mnemonic

| df @
| dg?
| ds@
[dt@

stfd
st g@
sts@
stt@

00 00Q
T naQ o~

f beq
fbne
fblt
fble
f bgt
f bge

fclr

f mov
fneg
f abs
negfb
neggP®
negs®
negt ©

Operands

d_reg, address

s_reg, address

d_reg, val_expr

Os reg, IabelO
U abel O
O]

d reg

Us reg, d_regd
Bd_r eg/s_reg B

Instruction Summaries A—7

Table A-2: (continued)
Instruction Mnemonic Operands

Copy Sign cpys Us _regl, s_reg2, d_regQ

Copy Sign Negate cpysn 0 0
Copy Sign and Exponent cpyse nd-reg/s_regl, s_reg2 p
Move if Equal to Zero f coveq
Move if Not Equal to Zero f cnovne
Move if Less Than Zero fcnovl t
Move if Less Than or Equal to Zero fcrmovl e
Move if Greater Than Zero f cnovgt
Move if Greater Than or Equal to Zero f cnovge
Add F_Floating addf d
Add G_Floating addgd
Add S_Floating adds®
Add T_Floating addt ©
Compare G_Floating Equal cnpgeq b
Compare G_Floating Less Than cnpgl t
Compare G_Floating Less Than or cpgl eb
Equal c n-pt eqC
Compare T_Floating Equal c c
. npt |t
Compare T_Floating Less Than cnpt |t €
Compare T_Floating Less Than cnpt un®
Compare T_Floating Unordered
Compare T_Floating Less Than or cnpt | e°
Equal di vfd
Divide F_Floating di vgd
Divide G_Floating di vs®
Divide S_Floating divte
Divide T_Floating mul fd
Multiply F_Floating mul gd
Multiply G_Floating mul s€
Multiply S_Floating mul t €
Multiply T_Floating subfd
Subtract F_Floating subgd
Subtract G_Floating subs®
Subtract S_Floating subt ©
Subtract T_Floating
Convert Quadword to Longword cvtql f
Convert Longword to Quadword cvtlqg Ez—reg'/ dreg E
Convert G_Floating to Quadword cvt gq¥ né-regrs-red g
Convert T_Floating to Quadword cvtt q_h
Convert Quadword to F_Floating cvtgf!
Convert Quadword to G_Floating cvt qg'
Convert Quadword to S_Floating cvtgs!
Convert Quadword to T_Floating cvtqt!
Convert D_Floating to G_Floating cvt dgd
Convert G_Floating to D_Floating cvt gdd
Convert G_Floating to F_Floating cvt gf d
Convert T_Floating to S_Floating cvtts®
Convert S_Floating to T_Floating cvtstP

A-8 Instruction Summaries

Table A-2:

(continued)

Instruction Mnemonic
Move From FP Control Register nf_f pcr
Move To FP Control Register nmt _f pcr
Floating No Operation f nop
Table notes:

a

@ o oo

i
J.

notes.

Table A-3: Rounding and Trapping Modes

Suffix

(no suffix)

_'<C(DBQ_O

Operands

d reg
s_reg

no_oper ands

In addition to the normal operands that can be specified with this
instruction, relocation operands can also be specified (see Section 2.6.4).

S

Su

C, u, uc, s, sc, su, suc
¢, md, u,uc,umud, su, suc, sum sud, sui, sui ¢, sui msuid

SV, V

c,v,Vv(C,s,sC,sv, sve

c,V,VC, SV, svc, svi,svic,d,vd,svd, svid

c

c,md, sui,suic,suimsuid
See the text immediately preceding Table A-2 for a description of the table

Description

Normal rounding

Chopped rounding

Dynamic rounding

Minus infinity rounding
Software completion
Underflow trap enabled
Integer overflow trap enabled
Inexact trap enabled

Instruction Summaries A-9

B.1

B.2

32-Bit Considerations B

The Alpha AXP architecture is a quadword (64-bit) architecture, with limited
backward compatibility for longword (32-bit) operations. The Alpha AXP
architecture’' s design philosophy for longword operations is to use the
quadword instructions wherever possible and to include specialized longword
instructions for high-frequency operations.

Canonical Form

Longword operations deal with longword data stored in canonical form in
guadword registers. The canonical form has the longword data in the low 32
bits (0-31) of the register, with bit 31 replicated in the high 32 bits (32-63).
Note that the canonical form is the same for both signed and unsigned
longword data.

To create a canonical form operand from longword data, use the | dl ,
I dl _I,oruldl instruction.

To create a canonical form operand from a constant, use the | di |
instruction. Thel di | instruction is a macro instruction that expands into a
series of instructions, including the | da and | dah instructions.

Longword Instructions

The Alpha architecture includes the following longword instructions:
e Load Longword (I dlI)

e Load Longword Locked (I dl _I)

» Store Longword (st |)

» Store Longword Conditional (st _c)

e Add Longword (addl , addl v)

» Subtract Longword (subl , subl v)

* Multiply Longword (rmul |, mul | v)

» Scaled Longword Add (s4addl , s8addl)

» Scaled Longword Subtract (s4subl , s8subl)

B.3

In addition, the assembler provides the following longword macro
instructions:

» Divide Longword (di vl , di vl u)

* Remainder Longword (rem , rem u)

* Negate Longword (negl, negl v)

* Unaligned Load Longword (ul dl)

* Load Immediate Longword (I di |)

* Absolute Vaue Longword (absl)

» Sign-Extension Longword (sext |)

All longword instructions, with the exception of st 1 and st| _c, generate
results in canonical form.

All longword instructions that have source operands produce correct results
regardless of whether the data items in the source registers are in canonical
form.

See Chapter 3 for a detailed description of the longword instructions.

Quadword Instructions for Longword Operations

The following quadword instructions, if presented with two canonical
longword operands, produce a canonical longword result:

» Logical AND (and)

* Logica OR (bi s)

» Logica Exclusive OR (xor)

» Logical OR NOT (or not)

» Logica Equivalence (eqv)

» Conditional Move (crmov xx)

* Compare (Cnpxx)

» Conditiona Branch (bxx)

« Arithmetic Shift Right (sr a)

Note that these instructions, unlike the longword instructions, must have
operands in canonical form to produce correct results.

See Chapter 3 for a detailed description of the quadword instructions.

B-2 32-Bit Considerations

B.4

B.5

B.6

Logical Shift Instructions

No instructions, either machine or macro, exist for performing logical shifts
on canonical longwords.

To perform alogical shift left, the following instruction sequence can be
used:

sl $rx, xx, $ry # noncanoni cal result

addl $ry, 0, S$ry # sign-extend bit-31

To perform alogical shift right, the following instruction sequence can be
used:

zap $rx, Oxf0, $ry # noncanonical result
srl $ry, xx, $ry #if xx >= 1, bring in zeros
addl $ry, 0, $ry # sign-extend bit-31

Note that the addl instruction is not needed if the shift count in the previous
seguence is guaranteed to be non-zero.

Conversions to Quadword

A signed longword value in canonical form is also a proper signed quadword
value and no conversions are needed.

An unsigned longword value in canonical form is not a proper unsigned
guadword vaue. To convert an unsigned longword to a quadword, the
following instruction sequence can be used:

zap $rx, Oxf0O, $ry # clear bits 32-63

Conversions to Longword

To convert a quadword value to either a signed or unsigned longword, the
following instruction sequence can be used:

addl $rx, 0, $ry # sign-extend bit-31

32-Bit Considerations B—3

Cl

Basic Machine Definition C

The assembly-language instructions described in this book are a superset of
the actual machine-code instructions. Generally, the assembly-language
instructions match the machine-code instructions; however, in some cases the
assembly-language instructions are macros that generate more than one
machine-code instruction (the division instructions in assembly language are
examples). This appendix describes the assembly-language instructions that
generate more than one machine-code instruction.

You can, in most instances, consider the assembly-language instructions as
machine-code instructions; however, for routines that require tight coding for
performance reasons, you must be aware of the assembly-language
instructions that generate more than one machine-code instruction.

Implicit Register Use

Register $28 ($at) is reserved as a temporary register for use by the
assembler.

Some assembly-language instructions require additional temporary registers.
For these instructions, the assembler uses one or more of the general-purpose
temporary registers (t 0 —t 12). The following table lists the instructions
that require additional temporary registers and the specific registers that they
use:

Instruction Registers Used

| db AT, t9

| dbu AT, t 92

| dw AT, t9

| dwu AT, t 92

stb AT, t9,1t102

stw AT, t9,t102

ustw AT,t9,110,t11,t12
ust| AT, t9,t10,t11,t12
ust q AT,t9,t10,t11,t12
ul dw AT, t9,t10

ul dwu AT,t9,t10

ul dl AT,t9,t10

ul dq AT, 19,110

di vl AT,t9,t10,t11,t12

Instruction Registers Used

di vq AT, t9,t10,t11,t12
divliu AT,t9,t10,t11,t12
di vqu AT,t9,t10,t11,t12
rem AT,t9,t10,t11,t12
renmg AT, t9,t10,t11,t12
rem u AT,t9,t10,t11,t12
remgu AT, t9,1t10,t11,t12
Table Notes:

a. Use of registers depends on the setting of the . ar ch directive or the
—ar ch flag on the cc command line.

The registers that equate to the software names (from r egdef . h) in the
preceding table are as follows:

Software Register

Name

AT $28 or $at
t9 $23

t10 $24

t11 $25

t12 or pv $27

Note

The di v and r eminstructions destroy the contents of t 12 only
if the third operand is aregister other thant 12. See Section C.5
for more details.

C.2 Addresses

If you use an address as an operand and it references a data item that does
not have an absolute address in the range -32768 to 32767, the assembler
may generate a machine-code instruction to load the address of the data (from
the literal address section) into $at .

The assembler’s| dgp (load global pointer) instruction generatesan | da and
| dah instruction. The assembler requires the | dgp instruction because
| dgp couples relocation information with the instruction.

C-2 Basic Machine Definition

C.3

C4

Immediate Values

If you use an immediate value as an operand and the immediate value falls
outside the range -32768 to 32767 for thel di | and | di q instructions or
the range 0 — 255 for other instructions, multiple machine instructions are
generated to load the immediate value into the destination register or $at .

Load and Store Instructions

On most processors that implement the Alpha architecture, loading and
storing unaligned data or data less than 32 bits is done with multiple
machine-code instructions. Except on EV56 Alpha processors, the following
assembler instructions generate multiple machine-code instructions:

* Load Byte (I db)

» Load Byte Unsigned (I dbu)

e Load Word (I dw)

e Load Word Unsigned (I dwu)

e Unaligned Load Word (ul dw)

e Unaligned Load Word Unsigned (ul dwu)
e Unaligned Load Longword (ul dl)
* Unaligned Load Quadword (ul dq)
e Store Byte (st b)

e Store Word (st w)

e Unaligned Store Word (ust w)

e Unaligned Store Longword (ust |)
» Unaligned Store Quadword (ust q)

Signed loads may require one more instruction than an unsigned load.

On EV56 Alpha processors, the following instructions from the preceding list
generate a single instruction:

» Load Byte Unsigned (I dbu)
e Load Word Unsigned (I dwu)
e Store Byte (st b)

e Store Word (st w)

Basic Machine Definition C-3

C.5

C.6

C.7

Integer Arithmetic Instructions

Multiply operations using constant powers of two are turned into sl | or
scaled add instructions.

There are no machine instructions for performing integer division (di vl ,

di vl u, di vg, and di vqu) or remainder operations (r eml , rem u, r enqg,
and r engu). The machine instructions generated for these assembler
instructions depend on the operands specified on the instructions.

Division and remainder operations involving constant values are replaced by
an instruction sequence that depends on the data type of the numerator and
the value of the constant.

Division and remainder operations involving nonconstant values are replaced
with a procedure call to alibrary routine to perform the operation. The library
routines are in the C run-time library (I i bc). The library routines use a
nonstandard parameter passing mechanism. The first operand is passed in
register t 10 and the second operand ispassed int 11. The result is returned
int 12. If the operands specified are other than those just described, the
assembler moves them to the correct registers. The library routines expect the
return addressin t 9; therefore, a routine that uses divide instructions does
not need to save register r a just because it uses divide instructions.

The absl and absq (absolute value) instructions generate two machine
instructions.

Floating-Point Load Immediate Instructions

There are no floating-point instructions that accept an immediate value
(except for 0.0). Whenever the assembler encounters a floating-point load
immediate instruction, the immediate value is stored in the data section and a
load instruction is generated to load the value.

One-to-One Instruction Mappings

Some assembler instructions generate single machine instructions. Such
assembler instructions are sometimes referred to as pseudo-instructions. The
following table lists these assembler instructions and their equival ent
machine instructions:

Assembler Instruction Machine Instruction
andnot $rx, $ry, $rz bi ¢ $rx, $ry, $rz
clr $rx bi s $31, $31, $rx

f abs $f x, $fy cpys $f 31, $f x, $fy
fclr $f x cpys $f 31, $f 31, $f x
f mov $f x, $fy cpys $f x, $f x, $fy

C—4 Basic Machine Definition

Assembler Instruction

f neg

f nop
nov
nov
negf
negf s
negg
neggs
negl
negl v
negq
negqv
negs
negssu
negt
negt su
nop
not

or
sext |
unop
Xor not

$fx, $fy

$rx, $ry
val _i mmed, $r x
$fx, $fy
$fx, $fy
$fx, $fy
$fx, $fy
$rx, $ry
$rx, $ry
$rx, $ry
$rx, $ry
$fx, $fy
$fx, $fy
$fx, $fy
$f x, $fy

$rx, $ry
$rx, $ry, $rz
$rx, $ry

$rx, $ry, $rz

Machine Instruction

cpysn
cpys
bi s
bi s
subf
subfs
subg
subgs
subl
subl v
subq
subqv
subs
subssu
subt
subt su
bi s

or not
bi s
addl
ldg_u
eqv

$f x, $f x, $fy
$f 31, $f 31, $f 31
$rx, $rx, $ry
$31, val _i nmed, $rx
$f 31, $f x, $fy
$f 31, $f x, $fy
$f 31, $f x, $fy
$f 31, $f x, $fy
$31, $rx, $ry
$31, $rx, $ry
$31, $rx, $ry
$31, $rx, $ry
$f 31, $f x, $fy
$f 31, $f x, $fy
$f 31, $f x, $fy
$f 31, $f x, $fy
$31, $31, $31
$31, $rx, $ry
$rx, $ry, $rz
$rx, 0, $ry
$31, 0($sp)
$rx, $ry, $rz

Basic Machine Definition C-5

D.1

PALcode Instruction Summaries D

This appendix summarizes the Privileged Architecture Library (PALcode)
instructions that are required to support an Alpha AXP system.

By including the file pal . h (use #i ncl ude <al pha/ pal . h>) in your
assembly language program, you can use the symbolic names for the
PALcode instructions.

Unprivileged PALcode Instructions
Table D-1 describes the unprivileged PAL code instructions.

Table D-1: Unprivileged PALcode Instructions

Symbolic Name

PAL_bpt

PAL_bugchk

PAL cal |l sys

PAL_gentrap

PAL_i nmb
PAL rduniq

PAL_wr uni g

Number

0x80

0x81

0x83

Oxaa

0x86

0x9%e

OxOf

Operation and Description

Break Point Trap — switches mode to kernel
mode, builds a stack frame on the kernel stack,
and dispatches to the breakpoint code.

Bugcheck — switches mode to kernel mode,
builds a stack frame on the kernel stack, and
dispatches to the breakpoint code.

System call — switches mode to kernel mode,
builds a callsys stack frame, and dispatches to
the system call code.

Generate Trap — switches mode to kernel, builds
a stack frame on the kernel stack, and
dispatches to the gentrap code.

[-Stream Memory Barrier — makes the I-cache
coherent with main memory.

Read Unique — returns the contents of the
process unique register.

Write Unique — writes the process unique
register.

D.2 Privileged PALcode Instructions

The privileged PALcode instructions can be called only from kernel mode.
They provide an interface to control the privileged state of the machine.

Table D-2 describes the privileged PALcode instructions.

Table D-2: Privileged PALcode Instructions

Symbolic Name

PAL_hal t

PAL rdps
PAL rdusp
PAL rdval

PAL rtsys

PAL rti

PAL_swpct x

PAL_swpi pl

PAL_t bi

D-2 PALcode Instruction Summaries

Number

0x00

0x36

Ox3a

0x32

0x3d

Ox3f

0x30

0x35

0x33

Operation and Description

Halt Processor — stops normal instruction
processing. Depending on the halt action setting,
the processor can either enter console mode or
the restart sequence.

Read Process Status — return the current process
status.

Read User Stack Pointer — reads the user stack
pointer while in kernel mode and returns it.

Read System Value — reads a 64-bit per-
processor value and returnsit.

Return from System Call — pops the return
address, the user stack pointer, and the user
global pointer from the kernel stack. It then
saves the kernel stack pointer, sets mode to user
mode, enables interrupts, and jumps to the
address popped off the stack.

Return from Trap, Fault, or Interrupt — pops
certain registers from the kernel stack. If the
new mode is user mode, the kernel stack is
saved and the user stack is restored.

Swap Privileged Context — saves the current
process data in the current process control block
(PCB). Then it switches to the PCB and loads
the new process context.

Swap IPL — returns the current IPL value and
sets the IPL.

TB Invalidate — removes entries from the
instruction and data translation buffers when the
mapping entries change.

Table D-2: (continued)

Symbolic Name

PAL_whani

PAL_wr fen
PAL wr kgp
PAL_wr usp
PAL_wr val

PAL_wr vpt ptr

Number

0x3c

0x2b

0x37

0x38

0x31

0x2d

Operation and Description

Who Am | — returns the process number for the
current processor. The processor number isin
the range 0 to the number of processors minus
one (0..numproc-1) that can be configured into
the system.

Write Floating-Point Enable — writes a bit to the
floating-point enable register.

Write Kernel Global Pointer — writes the kernel
global pointer internal register.

Write User Stack Pointer — writes a value to the
user stack pointer while in kernel mode.

Write System Value — writes a 64-hit per-
processor value.

Write Virtual Page Table Pointer — writes a
pointer to the virtual page table pointer (vptptr).

PALcode Instruction Summaries D-3

A

abd instruction, 3-10, 3-11
absg instruction, 3-10, 3-11
addf instruction, 4-11, 4-13
addg instruction, 4-11, 4-13
addl instruction, 3-10, 3-12
addlv instruction, 3-10, 3-12
addq instruction, 3-10, 3-12
addqv instruction, 3-10, 3-12
addresses
specia handling, C-2
addressing
formats, 2—12
adds instruction, 4-11, 4-13
addt instruction, 4-11, 4-13
.aent directive, 5-3
.alias directive, 5-3
.align directive, 5-3
amask instruction, 3-32
and instruction, 3-18
andnot instruction, 3-18, 3-19
.arch directive, 5-3
archive files
object files, 7-27
arithmetic instructions
floating-point instruction set, 4-10 to 4-14
main instruction set, 3-9 to 3-17

Index

.ascii directive, 54

.asciiz directive, 54

assembler directives, 5-1 to 5-15
auxiliary symbol table, 85
auxiliary symbols, 8-18

B

backslash escape characters, 2-3
base addr esses

calculation and use, 9-2
basic type (bt) constants, 8-20
beq instruction, 3-24, 3-25
bge instruction, 3-24, 3-25
.bgnb directive, 54
bgt instruction, 3-24, 3-25
bic instruction, 3-18, 3-19
big endian

byte ordering, 1-2
binding

lazy binding, 9-15
bisinstruction, 3-18
blbc instruction, 3-24, 3-25
blbs instruction, 3-24, 3-25
ble instruction, 3-24, 3-25
blt instruction, 3-24, 3-25
bneinstruction, 3-24, 3-25

br instruction, 3-24, 3-25
bsr instruction, 3-24, 3-25
.bss section, 64, 7-11
bss segment
sections contained in, 7-11
bt constants, 8-20
.byte directive, 54
byte ordering
big endian, 1-2
little endian, 1-2
byte-manipulation instructions
main instruction set, 3-26 to 3-31

C

C programs

caling, 6-1

-S compilation option, 6-13
call_pal instruction, 3-32
calls

to programs in other languages, 6-1
chopped rounding (IEEE), 4-6
chopped rounding (VAX), 46
clr instruction, 3-10, 3-11
cmoveq instruction, 3-22, 3-23
cmovge instruction, 3-22, 3-23
cmovgt instruction, 3-22, 3-23
cmovlbc instruction, 3-22, 3-23
cmovlbs instruction, 3-22, 3-23
cmovle instruction, 3-22, 3-23
cmovlt instruction, 3-22, 3-23
cmovne instruction, 3-22, 3-23
cmpbge instruction, 3-27, 3-28
cmpeq instruction, 3-21
cmpgeq instruction, 4-14, 4-15
cmpgleinstruction, 4-14, 4-15

Index—2

cmpglt instruction, 4-14, 4-15
cmpleinstruction, 3-21
cmplt instruction, 3-21
cmpteq instruction, 4-14, 4-15
cmptle instruction, 4-14, 4-15
cmptlt instruction, 4-14, 4-15
cmptun instruction, 4-14, 4-15
cmpuleinstruction, 3-21, 3-22
cmpult instruction, 3-21
code optimization, 6-1
.comm directive, 54
comments, 2-1
compilation options

-S option, 6-13
.conflict section, 924
constants

floating-point, 2-2

scalar, 2-2

string, 2-3
control instructions

floating-point instruction set, 4-17

main instruction set, 3-23 to 3-26
counters, 64
cpys instruction, 4-15, 4-16
cpyse instruction, 4-15, 4-16
cpysn instruction, 4-15, 4-16
cvtdg instruction, 4-11, 4-13
cvtgd instruction, 4-11, 4-13
cvtdf instruction, 4-11, 4-13
cvtgq instruction, 4-11, 4-13
cvtlq instruction, 4-11, 4-13
cvtgf instruction, 4-11, 4-13
cvtqg instruction, 4-11, 4-13
cvtql instruction, 4-11, 4-13
cvtgsinstruction, 4-11, 4-13

cvtgt instruction, 4-11, 4-13
cvtst instruction, 4-11, 4-13
cvttq instruction, 4-11, 4-13
cvttsinstruction, 4-11, 4-13

D

.d_floating directive, 54
.data directive, 54
.data section, 7-11
data segment

sections contained in, 7-11
data segments

sections contained in, 92
dense numbers, 8-3
directives

assembler directives, 5-1 to 5-15
divf instruction, 4-11, 4-13
divg instruction, 4-11, 4-13
divl instruction, 3-10, 3-15
divlu instruction, 3-10, 3-15
divq instruction, 3-10, 3-15
divqu instruction, 3-10, 3-15
divsinstruction, 4-11, 4-13
divt instruction, 4-11, 4-13
.double directive, 5-5
dynamic linking, 94
dynamic loader

default, 94

use, 94
dynamic relocation section

See .rel.dyn section
dynamic rounding mode, 4-3
.dynamic section

contents, 95

ordering for quickstart, 924

dynamic string section
See .dynstr section
dynamic symbol section
See .dynsym section
.dynstr section, 9-22
.dynsym section, 9-16
relationship with .got section, 9-18

E

.edata directive, 5-5
flag directive, 5-5
.end directive, 5-5
.endb directive, 5-5
.endr directive, 5-5
.ent directive, 5-5
eqv instruction, 3-18, 3-19
.err directive, 5-6
escape characters, backslash, 2-3
excb instruction, 3-32
exceptions
floating-point, 1-5
main processor, 1-5
expression operators, 2-9
expressions
operator precedence rules, 2-9
type propagation rules, 2-11
extbl instruction, 3-27, 3-28
.extended directive, 56
.extern directive, 5-6
external string table, 85
external symbol table, 8-22
external symbols, 8-8
extlh instruction, 3-27, 3-29
extll instruction, 3-27, 3-28
extgh instruction, 3-27, 3-29

Index-3

extql instruction, 3-27, 3-28
extwh instruction, 3-27, 3-28
extwl instruction, 3-27, 3-28

F

f floating directive, 56

fabs instruction, 4-11, 4-12
fbeq instruction, 4-17

fbge instruction, 4-17

fbgt instruction, 4-17

fble instruction, 4-17

fblt instruction, 4-17

fbne instruction, 4-17

fclr instruction, 4-11, 4-12
fcmoveq instruction, 4-15, 4-16
fcmovge instruction, 4-15, 4-16
femovgt instruction, 4-15, 4-16
fcmovle instruction, 4-15, 4-16
fcmovlt instruction, 4-15, 4-16
fcmovne instruction, 4-15, 4-16
fetch instruction, 3-32

fetch_m instruction, 3-32, 3-33
file descriptor table, 8-21, 86
file directive, 5-6

file header

file header magic field (f_magic), 76

flags (s_flags), 7-8
fini section, 7-11
float directive, 5-6
floating-point constants, 2-2
floating-point control register
See FPCR
floating-point directives
.d_floating (VAX D_floating), 54
f_floating (VAX F_floating), 5-6
.g_floating (VAX G_floating), 5-7

Index—4

floating-point directives (cont.)
.s floating (1EE single precision), 5-12
.t floating (IEE double precision), 5-13
X_floating (IEE quad precision), 5-14
floating-point exception traps, 4-5
floating-point instruction qualifiers
rounding mode qualifiers, 4—7
trapping mode qualifiers, 4-7 to 4-8
floating-point instruction set, 4-1 to 4-18
floating-point instructions
arithmetic instructions, 4-10 to 4-14
control instructions, 4-17
load instructions, 4-9 to 4-10
move instructions, 4-15 to 4-16
relational instructions, 4-14 to 4-15
special-purpose instructions, 4-17 to 4-18
store instructions, 4-9 to 4-10
floating-point rounding modes, 4-5
fmask directive, 5-7
fmov instruction, 4-15, 4-16
fneg instruction, 4-11, 4-12
fnop instruction, 4-18
FPCR, 4-3
frame directive, 5-7
functions, position-independent
resolving cals to, 9-15

G

.g_floating directive, 5-7
.gisrlive directive, 5-7
.gjsrsaved directive, 5-8
global offset table
See .got section
.globl directive, 5-8
.got section, 7-11, 9-13
relationship with .dynsym section, 9-18

.gprel32 directive, 5-8
.gretlive directive, 5-8

H

.hash section, 9-21
hash table section
See .hash section

identifiers, 2-1
immediate values, C-3
implicit register use, C-1

implver instruction, 3-32, 3-33

infinity

rounding toward plus or minus infinity, 4-6,

4-7
.init section, 7-11
insbl instruction, 3-27, 3-29
ingh instruction, 3-27, 3-30
indl instruction, 3-27, 3-29

insgh instruction, 3-27, 3-30

insgl instruction, 3-27, 3-29

instruction qualifiers, floating-point
rounding mode qualifiers, 4—7
trapping mode qualifiers, 4-7 to 4-8

instruction summaries, A-1

inswh instruction, 3-27, 3-30
inswl instruction, 3-27, 3-29
integer arithmetic instructions, C4

J

jmp instruction, 3-24, 3-25
jsr instruction, 3-24, 3-25

jsr_coroutine instruction, 3-24, 3-26

K
keyword statements, 2-6

L

Jab directive, 5-8

label definitions, 2-5
language interfaces, 6-2
lazy binding, 9-15

Icomm directive, 5-8, 64
ldainstruction, 3-2, 34
Idah instruction, 3-3, 3-7
|db instruction, 3-2, 3-4
Idbu instruction, 3-2, 34
Idf instruction, 4-10, 4-9
Idg instruction, 4-10, 4-9
Idgp instruction, 3-3, 3-7
Idid instruction, 4-10, 4-9
|dif instruction, 4-10, 4-9
Idig instruction, 4-10, 4-9
Idil instruction, 3-3, 3-7
Idig instruction, 3-3, 3-7
Idis instruction, 4-10, 4-9
Idit instruction, 4-10, 4-9
Idl instruction, 3-2, 3-5
Idl_I instruction, 3-2, 3-5
Idq instruction, 3-2, 3-5
Idg_l instruction, 3-2, 3-6
Idg_u instruction, 3-2, 3-6
Ids instruction, 4-10, 4-9
|dt instruction, 4-10, 4-9
Ildw instruction, 3-2, 34
Idwu instruction, 3-2, 34
Jiblist section, 923

line number table, 8-3

Index-5

linkage conventions
examples, 6-10
general, 6-3
language interfaces, 6-14
memory allocation, 6-17
linker defined symbols, 7-27
linking
dynamic linking, 94
lit4 section, 7-11
lit8 section, 7-11
lit4 directive, 5-9
lit8 directive, 5-9
Jlita section, 7-11, 6-5
little endian
byte ordering, 1-2
Jivereg directive, 5-9
load and store instructions, C-3
main instruction set, 3-2 to 3-9
load instructions
floating-point instruction set, 4-9 to 4-10
main instruction set, 3-2 to 3-9
loader
default dynamic loader, 94
use of dynamic loader, 94
loading considerations, 9-3
loading programs, 9-3
loc directive, 5-9
local string table, 8-5
local symbol table, 84
logical instructions
descriptions of, 3-18
formats, 3-17
long directive, 5-9

Index—6

M

.mask directive, 5-10
mb instruction, 3-32, 3-33
mf_fpcr instruction, 4-18
minus infinity

rounding toward (IEEE), 4-6
mnemonic

definition, 26
mov instruction, 3-22, 3-23
move instructions

floating-point instruction set, 4-15 to 4-16

main instruction set, 3-22 to 3-23
mskbl instruction, 3-27, 3-30
msklh instruction, 3-27, 3-30
mskll instruction, 327, 3-30
mskqgh instruction, 3-27, 3-31
mskql instruction, 3-27, 3-30
mskwh instruction, 3-27, 3-30
mskwl instruction, 3-27, 3-30
.msym section, 9-20
mt_fpcr instruction, 4-18
mulf instruction, 4-11, 4-13
mulg instruction, 4-11, 4-13
mull instruction, 3-10, 3-13
mullv instruction, 3-10, 3-13
mulq instruction, 3-10, 3-13
mulqgv instruction, 3-10, 3-13
mulsinstruction, 4-11, 4-13
mult instruction, 4-11, 4-13

N

negf instruction, 4-11, 4-12
negg instruction, 4-11, 4-12
negl instruction, 3-10, 3-11

neglv instruction, 3-10, 3-11
negq instruction, 3-10, 3-11
negqv instruction, 3-10, 3-11
negs instruction, 4-11, 4-12
negt instruction, 4-11, 4-12
NMAGIC files, 7-6

segment access permissions, 9-2
.noalias directive, 5-10
nop instruction, 3-32, 3-33
normal rounding (IEEE)

unbiased round to nearest, 46
normal rounding (VAX)

biased, 4-6
not instruction, 3-18
null statements, 2—6

O

object file format, 7-1
object file types
demand paged (ZMAGIC) files, 7-24
impure format (OMAGIC) files, 7-21
shared text (NMAGIC) files, 7-22
object files
See also executable files
See also shared executable files
See also shared library files
See also shared object files
archived object files, 7-27
data segment contents, 9-2
loading
boundary constraints, 7-20
description, 7-26
text segment contents, 9-2
OMAGIC files, 7-21
segment access permissions, 9-2

operator evaluation order
precedence rules, 2-9
operators, expression, 2-9
optimization
optimizing assembly code, 6-1
optimization symbol table, 8-5
.option directive, 5-10
optional header, 7-5
optional header magic field (magic), 7-6
or instruction, 3-18, 3-19
ornot instruction, 3-18, 3-19

P

PAL code

instruction summaries, D—1
.pdata section, 7-11
performance

optimizing assembly code, 6-1
plus infinity

rounding toward (IEEE), 4-7
position-independent functions

resolving calls to, 9-15
precedence rules

operator evaluation order, 2-9
procedure descriptor table, 8-13, 8-3
program loading, 9-3
program model, 6-2
program optimization, 6-1
program segments

access permissions, 9-2
.prologue directive, 5-10
pseudo-instructions, C4

Index—7

Q

.quad directive, 5-11
quickstart, 9-22
section ordering constraints, 9-24

R

.reconst section, 7-11
.rdata directive, 5-11
rdata section, 7-11
register use, 6-3
registers
floating-point, 1-2, 64
format, 1-3
general, 1-1
integer, 1-1, 6-3
.rel.dyn section, 9-19
ordering for quickstart, 924
relational instructions
floating-point instruction set, 4-14 to 4-15
main instruction set, 3-20 to 3-22
relative file descriptor table, 8-7
relocation operands
syntax and use, 26
reml instruction, 3-10, 3-15
remlu instruction, 3-10, 3-16
remq instruction, 3-10, 3-16
remqu instruction, 3-10, 3-16
.repeat directive, 5-11
ret instruction, 3-24, 3-26
rounding mode
chopped rounding (IEEE), 4-6
chopped rounding (VAX), 4-6
dynamic rounding qualifier, 4-3
floating-point instruction qualifiers, 4—7
floating-point rounding modes, 4-5 to 4-7

Index—8

rounding mode (cont.)
FPCR control, 4-3
normal rounding (IEEE, unbiased), 46
normal rounding (VAX, biased), 46
rounding toward minus infinity (IEEE), 4-6
rounding toward plus infinity (IEEE), 4—7
rpcc instruction, 3-32, 3-33

S

-S compilation option, 6-13
sfiles, 6-13

s4addl instruction, 3-10
sBadd| instruction, 3-10
sdaddl instruction, 3-12
s8addl instruction, 3-12
saddq instruction, 3-10
sBaddq instruction, 3-10
SAaddq instruction, 3-12
s8addq instruction, 3-13
.s floating directive, 5-12
sAsubl instruction, 3-10
s8subl instruction, 3-10
#Asubl instruction, 3-14
s8subl instruction, 3-14
HAsubq instruction, 3-10
s8subq instruction, 3-10
HAsubq instruction, 3-14
s8subq instruction, 3-14
.save _radirective, 5-11
.sbss section, 64, 7-11
sc constants, 8-17

scalar constants, 22
.sdata directive, 5-11
.sdata section, 7-11
section data, 7-10, 7-7

section headers
flags (s _flags), 7-8
section name (s_name), 7-7
section relocation information
assembler and linker processing, 7-15
relocation entry, 7-12
relocation table entry, 7-15
segments
access permissions for program segments,
92
alignment of data segements, 9-3
alignment of text segments, 9-3
segments, text
sections contained in, 9-2
.set directive, 5-11
sextb instruction, 3-10, 3-11
sextl instruction, 3-10, 3-11
sextw instruction, 3-10, 3-11
shared executable files
dependencies, 9-12
dynamic section, 9-5
loading considerations, 9-3
offset alignment, 9-3
shared libraries
dynamic linking, 94
shared library files
dependencies, 9-12
dynamic section, 9-5
loading considerations, 9-3
offset alignment, 9-3
quickstart, 9-22
shared object files
dependencies, 9-12
initialization and termination functions, 9-22
shared object list section
See liblist section

shift instructions
descriptions of, 3-18
formats, 3-17
dl instruction, 3-18, 3-19
.space directive, 5-13
special-pur pose instructions
floating-point instruction set, 4-17 to 4-18
main instruction set, 3-31 to 3-2
sra instruction, 3-18, 3-20
sl instruction, 3-18, 3-20
st contants, 8-16
stack frame, 67
statements, 2-5
stb instruction, 3-3, 3-8
stf instruction, 4-10, 4-9
stg instruction, 4-10, 4-9
stl instruction, 3-8
stl_cinstruction, 3-3, 3-8
storage class (sc) constants, 8-17
store instructions
floating-point instruction set, 4-9 to 4-10
main instruction set, 3-2 to 3-9
stq instruction, 3-3, 3-8
stg_c instruction, 3-3, 3-9
stg_u instruction, 3-3, 3-9
string constants, 2-3
.struct directive, 5-13
stsinstruction, 4-10, 4-9
stt instruction, 4-10, 4-9
stw instruction, 3-3, 3-8
subf instruction, 4-11, 4-13
subg instruction, 4-11, 4-13
subl instruction, 3-10, 3-13
sublv instruction, 3-10, 3-13
subq instruction, 3-10, 3-14

Index—9

subqv instruction, 3-10, 3-14
subsinstruction, 4-11, 4-13
subt instruction, 4-11, 4-13
symbol table, 8-1

format of entries, 8-8

line numbersin, 8-3
symbol type (st) constants, 8-16
symbolic equate, 5-13
symbolic header, 8-2, 8-8

T

.t_floating directive, 5-13
text directive, 5-13
text section, 7-11
text segment

sections contained in, 7-11
text segments

alignment, 9-3

sections contained in, 92
tg constants, 8-21
trapb instruction, 3-32, 3-33
trapping mode

floating-point instruction qualifiers, 4-7 to

4-8
tune directive, 5-13
type propagation rules, 2-11

type qualifier (tq) constants, 8-21

U

.ugen directive, 5-14

uldl instruction, 3-2, 3-7

uldq instruction, 3-2, 3-7
uldw instruction, 3-2, 3-6
uldwu instruction, 3-2

Index—-10

umulh instruction, 3-10, 3-14
unop instruction, 3-32, 3-33
ustl instruction, 3-3, 3-9

ustq instruction, 3-3, 3-9
ustw instruction, 3-3, 3-9

Vv

.verstamp directive, 5-14
.vreg directive, 5-14

w

.weakext directive, 5-14
wmb instruction, 3-32, 3-33
.word directive, 5-14

X

X_floating directive, 5-14
xdata section, 7-11

Xor instruction, 3-18, 3-19
xornot instruction, 3-18, 3-19

Z

zap instruction, 3-27, 3-31
zapnot instruction, 3-27, 3-31
ZMAGIC files, 7-24

segment access permissions, 9-2

How to Order Additional Documentation

Technical Support

If you need help deciding which documentation best meets your needs, call 800-DIGITAL
(800-344-4825) before placing your electronic, telephone, or direct mail order.

Electronic Orders

To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-bps
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the
Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location Call Contact
Continental USA, 800-DIGITAL Digital Equipment Corporation
Alaska, or Hawaii P.O. Box CS2008

Nashua, New Hampshire 03061
Puerto Rico 809-754-7575 Local Digital subsidiary
Canada 800-267-6215 Digital Equipment of Canada

Attn: DECdirect Operations KAO2/2
P.O. Box 13000

100 Herzberg Road

Kanata, Ontario, Canada K2K 2A6

International —_— Local Digital subsidiary or
approved distributor
Internal2 _— SSB Order Processing — NQO/V 19

or
U. S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road

Nashua, NH 03063-1260

aFor internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader’s Comments Digital UNIX
Assembly Language Programmer’s Guide
AA-PS31D-TE

Digital welcomes your comments and suggestions on this manual. Your input will help us to
write documentation that meets your needs. Please send your suggestions using one of the
following methods:

e This postage-paid form

* Internet electronic mail: r eaders_coment @k3. dec. com

* Fax: (603) 881-0120, Attn: UEG Publications, ZKO3-3/Y 32

If you are not using this form, please be sure you include the name of the document, the page
number, and the product name and version.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manua says)

Completeness (enough information)

Clarity (easy to understand)

Organization (structure of subject matter)

Figures (useful)

Examples (useful)

Index (ability to find topic)

Usability (ability to access information quickly)

Please list errorsyou have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the softwar e described by this manual are you using?

Name/Title Dept.
Company Date
Mailing Address

Email Phone

_______ Do Not Cut or Tear — Fold Here and Tape ____ _ el __.

™
Hﬂﬂﬂnau NO POSTAGE

NECESSARY IF
MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
UEG PUBLICATIONS MANAGER
ZKO3-3/Y32

110 SPIT BROOK RD

NASHUA NH 03062-9987

Do Not Cut or Tear — Fold Here

Cut on
Dotted
Line

