
APPENDIX B

Bessel functions

z J0(z) J1(z) J2(z) J3(z) J4(z)

0.00 1.00000 00000 00000 0.00000 00000 0.00000 00000 0.00000 000 0.00000 000

0.02 0.99990 00024 99972 0.00999 95000 0.00004 99983 0.00000 000 0.00000 000

0.05 0.99937 50976 49468 0.02499 21883 0.00031 24349 0.00000 260 0.00000 002

0.1 0.99750 15620 66040 0.04993 75260 0.00124 89587 0.00002 082 0.00000 026

0.2 0.99002 49722 39576 0.09950 08326 0.00498 33542 0.00016 625 0.00000 416

0.4 0.96039 82266 59563 0.19602 65780 0.01973 46631 0.00132 005 0.00006 614

0.6 0.91200 48634 97211 0.28670 09881 0.04366 50967 0.00439 966 0.00033 147

0.8 0.84628 73527 50480 0.36884 20461 0.07581 77625 0.01024 678 0.00103 299

1.0 0.76519 76865 57967 0.44005 05857 0.11490 34849 0.01956 335 0.00247 664

1.2 0.67113 27442 64363 0.49828 90576 0.15934 90183 0.03287 434 0.00502 267

1.4 0.56695 51203 74289 0.54194 77139 0.20735 58995 0.05049 771 0.00906 287

1.6 0.45540 21676 39381 0.56989 59353 0.25696 77514 0.07252 344 0.01499 516

1.8 0.33998 64110 42558 0.58151 69517 0.30614 35353 0.09880 202 0.02319 652

2.0 0.22389 07791 41236 0.57672 48078 0.35283 40286 0.12894 325 0.03399 572

2.2 0.11036 22669 22174 0.55596 30498 0.39505 86875 0.16232 547 0.04764 715

2.4 0.00250 76832 97244 0.52018 52682 0.43098 00402 0.19811 480 0.06430 696

2.6 -0.09680 49543 97038 0.47081 82665 0.45897 28517 0.23529 381 0.08401 287

2.8 -0.18503 60333 64387 0.40970 92469 0.47768 54954 0.27269 860 0.10666 866

3.0 -0.26005 19549 01933 0.33905 89585 0.48609 12606 0.30906 272 0.13203 418

3.5 -0.38012 77399 87263 0.13737 75274 0.45862 91842 0.38677 011 0.20440 529

4.0 -0.39714 98098 63847 -0.06604 33280 0.36412 81459 0.43017 147 0.28112 9

4.5 -0.32054 25089 85121 -0.23106 04319 0.21784 89837 0.42470 397 0.34842 3

5.0 -0.17759 67713 14338 -0.32757 91376 0.04656 51163 0.36483 123 0.39123 2

5.5 -0.00684 38694 17819 -0.34143 82154 -0.11731 54816 0.25611 8 0.39671 7

6.0 0.15064 52572 50997 -0.27668 38581 -0.24287 32100 0.11476 8 0.35764 2

6.5 0.26009 46055 81606 -0.15384 13014 -0.30743 03906 -0.03534 7 0.27480 3

7.0 0.30007 92705 19556 -0.00468 28235 -0.30141 72201 -0.16755 6 0.15779 8

8.0 0.17165 08071 37554 0.23463 63469 -0.11299 17204 -0.29113 2 -0.10535 7

9.0 -0.09033 36111 82876 0.24531 17866 0.14484 73415 -0.18093 5 -0.26547 1

10.0 -0.24593 57644 51348 0.04347 27462 0.25463 03137 0.05837 9 -0.21960 3

11.0 -0.17119 03004 07196 -0.17678 52990 0.13904 75188 0.22734 8 -0.01504 0

12.0 0.04768 93107 96834 -0.22344 71045 -0.08493 04949 0.19513 7 0.18249 9

13.0 0.20692 61023 77068 -0.07031 80521 -0.21774 42642 0.00332 0 0.21927 6

14.0 0.17107 34761 10459 0.13337 51547 -0.15201 98826 -0.17680 9 0.07624 4

15.0 -0.01422 44728 26781 0.20510 40386 0.04157 16780 -0.19401 8 -0.11917 9

16.0 -0.17489 90739 83629 0.09039 71757 0.18619 87209 -0.04384 7 -0.20264 2

272
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z J5(z) J6(z) J7(z) J8(z) J9(z) J10(z) J11(z) J12(z)

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.5 0.000008 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

1.0 0.000250 0.000021 0.000002 0.000000 0.000000 0.000000 0.000000 0.000000

1.5 0.001799 0.000228 0.000025 0.000002 0.000000 0.000000 0.000000 0.000000

2.0 0.007040 0.001202 0.000175 0.000022 0.000002 0.000000 0.000000 0.000000

2.5 0.019502 0.004225 0.000777 0.000124 0.000018 0.000002 0.000000 0.000000

3.0 0.043028 0.011394 0.002547 0.000493 0.000084 0.000013 0.000002 0.000000

3.5 0.080442 0.025429 0.006743 0.001543 0.000311 0.000056 0.000009 0.000001

4.0 0.132087 0.049088 0.015176 0.004029 0.000939 0.000195 0.000037 0.000006

4.5 0.194715 0.084276 0.030022 0.009126 0.002425 0.000573 0.000122 0.000024

5.0 0.261141 0.131049 0.053376 0.018405 0.005520 0.001468 0.000351 0.000076

5.5 0.320925 0.186783 0.086601 0.033657 0.011309 0.003356 0.000893 0.000216

6.0 0.362088 0.245837 0.129587 0.056532 0.021165 0.006964 0.002048 0.000545

6.5 0.373565 0.299913 0.180121 0.088039 0.036590 0.013288 0.004297 0.001254

7.0 0.347896 0.339197 0.233584 0.127971 0.058921 0.023539 0.008335 0.002656

8.0 0.185775 0.337576 0.320589 0.223455 0.126321 0.060767 0.025597 0.009624

9.0 -0.055039 0.204317 0.327461 0.305067 0.214881 0.124694 0.062217 0.027393

10.0 -0.234062 -0.014459 0.216711 0.317854 0.291856 0.207486 0.123117 0.063370

11.0 -0.238286 -0.201584 0.018376 0.224972 0.308856 0.280428 0.201014 0.121600

12.0 -0.073471 -0.243725 -0.170254 0.045095 0.230381 0.300476 0.270412 0.195280

13.0 0.131620 -0.118031 -0.240571 -0.141046 0.066976 0.233782 0.292688 0.261537

14.0 0.220378 0.081168 -0.150805 -0.231973 -0.114307 0.085007 0.235745 0.285450

15.0 0.130456 0.206150 0.034464 -0.173984 -0.220046 -0.090072 0.099950 0.236666

Table of zeros of Bessel functions:

k J0 J1 J2 J3 J4 J5 J6 J7

1 2.4048256 3.83171 5.13562 6.38016 7.58834 8.77148 9.93611 11.08637

2 5.5200781 7.01559 8.41724 9.76102 11.06471 12.33860 13.58929 14.82127

3 8.6537279 10.17347 11.61984 13.01520 14.37254 15.70017 17.00382 18.28758

4 11.7915344 13.32369 14.79595 16.22347 17.61597 18.98013 20.32079 21.64154

5 14.9309177 16.47063 17.95982 19.40942 20.82693 22.21780 23.58608 24.93493

6 18.0710640 19.61586 21.11700 22.58273 24.01902 25.43034 26.82015 28.19119

7 21.2116366 22.76008 24.27011 25.74817 27.19909 28.62662 30.03372 31.42279

8 24.3524715 25.90367 27.42057 28.90835 30.37101 31.81172 33.23304 34.63709

9 27.4934791 29.04683 30.56920 32.06485 33.53714 34.98878 36.42202 37.83872

10 30.6346065 32.18968 33.71652 35.21867 36.69900 38.15987 39.60324 41.03077

11 33.7758202 35.33231 36.86286 38.37047 39.85763 41.32638 42.77848 44.21541

12 36.9170984 38.47477 40.00845 41.52072 43.01374 44.48932 45.94902 47.39417

The kth zero of Jn is denoted jn;k.

Fourier series

sin(z sin �) = 2

1X
n=0

J2n+1(z) sin(2n+ 1)�

cos(z sin �) = J0(z) + 2

1X
n=1

J2n(z) cos 2n�

Jn(z) =
1

�

Z �

0
cos(n� � z sin �) d�:
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Di�erential equation

J 00n(z) +
1

z
J 0n(z) +

�
1� n2

z2

�
Jn(z) = 0

Power series

Jn(z) =
1X
k=0

(�1)k( z2 )n+2k
k!(n+ k)!

Generating function

e
1
2
z(t� 1

t
) =

1X
n=�1

Jn(z)t
n

Limiting values

If n is constant, z is real and jzj ! 1,

Jn(z) =
q

2
�z cos(z � 1

2(n+
1
2)�) +O(jzj�3=2):

[Here, O(jzj�3=2) represents an error term which is bounded by some con-

stant multiple of jzj�3=2]
If z is constant and n!1, Jn(z) � 1p

2�n

�
ez
2n

�n
.

[The � notation means that the ratio of these two quantities tends to one as
n!1]

For n �xed, as k !1, jn;k � (k + 1
2n� 1

4)�.

Other formulas

J�n(z) = (�1)nJn(z)
J 0n(z) =

1
2(Jn�1(z)� Jn+1(z))

Jn(z) =
z
2n(Jn�1(z) + Jn+1(z))

d

dz
(znJn(z)) = znJn�1(z)
1X

n=�1
Jn(z)

2 = 1

In particular, jJn(z)j � 1 for all n and z, and if n 6= 0 then jJn(z)j � 1p
2
.

FM Synthesis

sin(�+ z sin �) =

1X
n=�1

Jn(z) sin(�+ n�)

The following table shows how index of modulation (I) varies as a func-
tion of operator output level (an integer in the range 0{99) on the Yamaha
six operator synthesizers DX7, DX7IID, DX7IIFD, DX7S, DX5, DX1, TX7,
TX816, TX216, TX802 and TF1:
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0 1 2 3 4 5 6 7 8 9

0 0.0002 0.0003 0.0005 0.0007 0.0010 0.0012 0.0016 0.0019 0.0023 0.0027

10 0.0032 0.0038 0.0045 0.0054 0.0064 0.0076 0.0083 0.0091 0.0108 0.0118

20 0.0140 0.0152 0.0166 0.0181 0.0198 0.0216 0.0235 0.0256 0.0280 0.0305

30 0.0332 0.0362 0.0395 0.0431 0.0470 0.0513 0.0559 0.0610 0.0665 0.0725

40 0.0791 0.0862 0.0940 0.1025 0.1118 0.1219 0.1330 0.1450 0.1581 0.1724

50 0.1880 0.2050 0.2236 0.2438 0.2659 0.2900 0.3162 0.3448 0.3760 0.4101

60 0.4472 0.4877 0.5318 0.5799 0.6324 0.6897 0.7521 0.8202 0.8944 0.9754

70 1.0636 1.1599 1.2649 1.3794 1.5042 1.6403 1.7888 1.9507 2.1273 2.3198

80 2.5298 2.7587 3.0084 3.2807 3.5776 3.9014 4.2545 4.6396 5.0595 5.5174

90 6.0168 6.5614 7.1552 7.8028 8.5090 9.2792 10.119 11.035 12.034 13.123

The following table shows how index of modulation (I) varies as a func-
tion of operator output level (an integer in the range 0{99) on the Yamaha
four operator synthesizers DX11, DX21, DX27, DX27S, DX100 and TX81Z:

0 1 2 3 4 5 6 7 8 9

0 0.0004 0.0006 0.0009 0.0013 0.0018 0.0024 0.0031 0.0036 0.0043 0.0052

10 0.0061 0.0073 0.0087 0.0103 0.0123 0.0146 0.0159 0.0174 0.0206 0.0225

20 0.0268 0.0292 0.0318 0.0347 0.0379 0.0413 0.0450 0.0491 0.0535 0.0584

30 0.0637 0.0694 0.0757 0.0826 0.0900 0.0982 0.1071 0.1168 0.1273 0.1388

40 0.1514 0.1651 0.1801 0.1963 0.2141 0.2335 0.2546 0.2777 0.3028 0.3302

50 0.3601 0.3927 0.4282 0.4670 0.5093 0.5554 0.6056 0.6604 0.7202 0.7854

60 0.8565 0.9340 1.0185 1.1107 1.2112 1.3209 1.4404 1.5708 1.7130 1.8680

70 2.0371 2.2214 2.4225 2.6418 2.8809 3.1416 3.4259 3.7360 4.0741 4.4429

80 4.8450 5.2835 5.7617 6.2832 6.8519 7.4720 8.1483 8.8858 9.6900 10.567

90 11.523 12.566 13.704 14.944 16.297 17.772 19.380 21.134 23.047 25.133



APPENDIX C

Complex numbers

We use i to denote
p�1, and the general complex number is of the

form a+ ib where a and b are real numbers. Addition and multiplication are
given by

(a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2)

(a1 + ib1)(a2 + ib2) = (a1a2 � b1b2) + i(a1b2 + b1a2):

The real numbers a and b can be thought of as the Cartesian coordinates of
the complex number a + ib, so that complex numbers correspond to points
on the plane. In this language, the real numbers are contained in the com-
plex numbers as the x axis, and the points on the y axis are called pure imag-
inary numbers.

For the purpose of multiplication, it is easier to work in polar coordi-
nates. If z = x + iy is a complex number, we de�ne the absolute value of z

to be jzj =
p
x2 + y2. The argument of z is the angle � formed by the line

from zero to z. Angle is measured counterclockwise from the x axis.

�
�
�
�
�
�

z

x

y

r

� p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
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p
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real
axis

imaginary
axis

The complex conjugate of z = x+ iy is de�ned to be �z = x� iy, so that
z�z = jzj2 = x2 + y2:

276
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So division by a nonzero complex number z is achieved by multiplying by

�z

jzj2 =
x

x2 + y2
� i

y

x2 + y2
;

which is the multiplicative inverse of z.
The exponential function is de�ned for a complex argument z = x+ iy

by
ez = ex(cos y + i sin y):

This means that convertion from Cartesian coordinates to polar coordinates
is given by

z = x+ iy = rei�;

where r =
p
x2 + y2 and tan � = y=x. Translation in the other direction is

given by x = r cos � and y = r sin �. The trigonometric identities

sin(A+B) = sinA cosB + cosA sinB

cos(A+B) = cosA cosB � sinA sinB:

are equivalent to the statement that if z1 and z2 are complex numbers then

ez1ez2 = ez1+z2 :

So we have Euler's formula

ei� = cos � + i sin � (C.1)

and

cos � = 1
2(e

i� + e�i�) (C.2)

sin � = 1
2i(e

i� � e�i�): (C.3)

Using (C.1), the relation (ei�)n = ein� translates as de Moivre's Theorem

(cos � + i sin �)n = cosn� + i sinn�:

The complex nth roots of unity (i.e., of the number one) are the numbers

e2�im=n = cos 2�m=n+ i sin 2�m=n

for 0 � m � n�1. These are equally spaced around the unit circle in the com-
plex plane. For example, here is a picture of the complex �fth roots of unity.

q

e2�i = 1

q

e
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5
�i

q
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Remark. Engineers use the letter j instead of i.

Hyperbolic functions: In Section 3.7 the analysis of the xylophone in-
volves the hyperbolic functions cosh x and sinhx. These are de�ned by anal-
ogy with equations (C.2) and (C.3) via

cosh x = 1
2(e

x + e�x) (C.4)

sinhx = 1
2(e

x � e�x): (C.5)

The standard identities for these functions are

cosh2 x� sinh2 x = 1;

and

sinh(A+B) = sinhA coshB + coshA sinhB

cosh(A+B) = coshA coshB + sinhA sinhB:

The values at zero are given by

sinh(0) = 0; cosh(0) = 1:

The derivatives are given by

d

dx
sinhx = cosh x;

d

dx
cosh x = sinhx:

Note the changes in sign from the corresponding trigonometric formulas.



APPENDIX D

Dictionary

As an aide to reading the liter-
ature on the subject in French, Ger-
man, Italian, Latin and Spanish, as
well as the literature on ancient Greek
music, here is a dictionary of common
terms.

Abklingen (G.), decay
Abgeleiteter Akkord (G.), inversion of

a chord
Absatz (G.), cadence
Abstimmung (G.), tuning
accord (Fr.), chord
accordage (Fr.), accordatura (It.),

tuning, intonation
accordo (It.), acorde (Sp.), chord
a�naci�on (Sp.), tuning
a�aiblissement (Fr.), decay
aigu (Fr.), acute, high
Akkord (G.), chord
allgemein (G.), general
ampli�cateur (Fr.), ampli�catore (It.),

ampli�cador (Sp.), ampli�er
Anklang (G.), tune, harmony, accord
armoneggiare (It.), to harmonize
armonica (It.), arm�onico (Sp.), harmonic
atenuamiento (Sp.), attenuazione (It.),

decay
audici�on (Sp.), audition (Fr.), hearing
auferions (archaic Eng.), wire strings
Aufhaltung (G.), suspension (harmony)
aulos (Gk.), ancient Greek reed

instrument
Ausdruck (G.), expression

battements (Fr.), battimenti (It.), beats
bec (Fr.), becco (It.), mouthpiece
b�ecarre (Fr.), becuardo (Sp.),

natural (\)
Bedingung (G.), condition

Beispiel (G.), example
beliebig (G.), arbitrary
b�emol (Fr.), bemol (Sp.), bemolle (It.),

at ([)
bequadro (It.), natural (\)
beweisen (G.), to prove
bruit (Fr.), noise
Bund (G.), fret

cadenza d'inganno (It.), deceptive
cadence

caisse (Fr.), drum
Canonici, followers of the Pythagorean

system of music, where consonance
is based on ratios, see also Musici

chevalet (Fr.), bridge of stringed
instrument

chiave (It.), clave (Sp.), clavis (L.),
clef, key

chi�rage (Fr.), time signature
clavecin (Fr.), harpsichord
cloche (Fr.), bell
concento (It.), concentus (L.), harmony
controreazione (It.), feedback
conversio (L.), inversion
cor (Fr.), horn
cuarta (Sp.), fourth

Dach (G.), sounding board
daher (G.), hence
Darstellung (G.), representation
demi-ton (Fr.), semitone
denarius (L.), numbers 1{10
diapason (Fr., It.), diapas�on (Sp.), pitch
diapason (Gk.), octave
diapente (Gk.), �fth
diastema (Gk.), interval
diatessaron (Gk.), fourth
diazeuxis (Gk.), separation of two

tetrachords by a tone
di�ese (Fr.), diesis (It.), sharp (])
disdiapason (Gk.), two octaves
dod�ecaphonique (Fr.), twelve tone

279
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Doppelbee (G.), double at ([[)
Doppelkreuz (G.), double sharp (5)
Dreiklang (G.), triad
Dur (G.), major
durchgehend (G.), transient

�echantilloneur (Fr.), sampler
�echelle (Fr.), scale
einfach (G.), simple
Einheit (G.), unity
Einklang (G.), consonance
Einselement (G.), identity element
emmeleia (Gk.), consonance
enmascaramiento (Sp.), masking
ensemble (Fr.), set
entier (Fr.), integer
entonaci�on (Sp.), intonation
entsprechen (G.), to correspond to
erh�ohen (G.), to raise, increase
erweitern (G.), to extend, augment
escala (Sp.), scale
espectro (Sp.), spectrum
estribo (Sp.), �etrier (Fr.), stapes

faux (Fr.), out of tune
Folge (G.), sequence, series

gama (Sp.), gamma (It.), gamme (Fr.),
scale

ganancia (Sp.), gain
ganze Zahl (G.), integer
ganzer Ton (G.), whole tone
Gegenpunkt (G.), counterpoint
gerade (G.), even, just, exactly
Gesetz (G.), law, rule
giusto (It.), just
gleichschwebende (G.), equal beating
gleichstu�ge (G.), equal (temperament)
Gleichung (G.), equation
gleichzeitig (G.), simultaneous
Glied (G.), term
Grundton (G.), fundamental
guadagno (It.), gain

Halbton (G.), semitone
hautbois (Fr.), oboe
hauteur (Fr.), H�ohe (G.), pitch
helicon (Gk.), instrument used for

calculating ratios
hemiolios (Gk.), ratio 3:2
H�orbar (G.), audible

H�oren (G.), hearing

impair (Fr.), odd
imparfait (Fr.), imperfect
Kettenbruch (G.), continued fractions
Klang (G.), timbre
Klangstufe (G.), degree of scale
klein (G.), small, minor
Kombinationston (G.), combination tone
Komma (G.), comma
Kraft (G.), energy
Kreuz (G.), sharp (])

laud (Sp.), Laute (G.), lute
Leistung (G.), power
leiten (G.), to derive, deduce
Leiter (G.), scale
ley (Sp.), law
lima�con (Fr.), cochlea
L�osung (G.), solution

maggiore (It.), majeur (Fr.), mayor (Sp.),
major

marche d'harmonie (Fr.), harmonic
sequence

Menge (G.), set
menor (Sp.), minor
mehrstimmig (G.), polyphonic
m�esotonique (Fr.), meantone
minore (It.), minor
mittelt�onig (G.), meantone
Moll (G.), at ([), minor
Musici, followers of the Aristoxenian

system of music, in which the ear
is the judge of consonance,
see also Canonici

Muster (G.), pattern

Nachhall (G.), reverberation
Nenner (G.), denominator
neuvi�eme (Fr.), ninth
Notenschlussel (G.), clef

Oberwelle (G.), harmonic
o�en (G.), open
Ohr (G.), ear
Ohrmuschel (G.), auricle
o��do (Sp.), ear
onda (It., Sp.), wave
onda portante (It.), onda portadora

(Sp.), carrier
onde (Fr.), wave
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orecchio (It.), oreille (Fr.), ear
ou��e (Fr.), hearing; sound-hole

padigione (It.), auricle
pair (Fr.), par (Sp.), even
parfait (Fr.), perfect
pavillon (Fr.), auricle
port�ee (Fr.), sta�, stave
porteuse (Fr.), carrier
potencia (Sp.), potenza (It.), puissance

(Fr.), power
profondeur (Fr.), depth
pulsaciones (Sp.), beats

Quadrat (G.), natural (\)
quadrivium (L.), The four disciplines:

arithmetic, geometry, astronomy
and music

quarta (It., L.), quarte (Fr.), Quarte
(G.), fourth

quaternarius (L.), numbers 1{4
quinta (It., L., Sp.), quinte (Fr.), Quinte

(G.), �fth

r�eaction (Fr.), feedback
reine Stimmung (G.), just intonation
renversement (Fr.), inversion
retard (Fr.), delay
retroalimentaci�on (Sp.), feedback
ronde (Fr.), whole note (USA),

semibreve (GB)
R�uckkopplung (G.), feedback

Saite (G.), string
Schall (G.), sound
Schlag (G.), beat
Schl�ussel (G.), clef
Schnecke (G.), cochlea
Schwebungen (G.), beats
Schwingungen (G.), vibrations
senarius (L.), numbers 1{6
sensible (Fr.), leading note
septenarius (L.), numbers 1{7
septime (L.), seventh
Septimenakkord (G.), chord of the

seventh
s�erie de hauteurs (Fr.), tone row
sesquialtera (L.), ratio 3:2
sesquitertia (L.), ratio 4:3
Sext (G.), sexta (L.), sixth
sibilo (It.), si�ement (Fr.), silbo (Sp.),

hiss
sillet (Fr.), bridge
Skala (G.), scale
son (Fr.), sound
son combin�e (Fr.), combination tone
son di��erentiel (Fr.), di�erence tone
sonido (Sp.), sound
sonido de combinaci�on (Sp.),

combination tone
sonorit�a (It.), harmony, resonance
sonus (L.), sound
sostenido (Sp.), sharp (])
spectre (Fr.), spectrum
sta�a (It.), stapes
stark (G.), loud
Stege (G.), bridge
Steigb�ugel (G.), stapes
Stufe (G.), scale degree
subsemitonia (L.), split keys
suono (It.), sound
suono di combinazione (It.), combination

tone
synaphe (Gk.), conjunction, or

overlapping of two tetrachords

Takt (G.), time, measure, bar
tambour (Fr.), tamburo (It.), tambor

(Sp.), drum
Tastame (It.), Tastatur, Tastenbrett,

Tastenleiter (G.), Tastatura,
Tastiera (It.), keyboard of piano
or organ

tasto (It.), tecla (Sp.), fret
teilbar (G.), divisible
Teilmenge (G.), subset
Teilung (G.), division
Temperatur (G.), temperament
temperiert (G.), tempered
temps (Fr.), beat, measure
tercera (Sp.), tertia (L.), Terz (G.), terza

(It.), tierce (Fr.), third
ton (Fr.), pitch, tone, key
tonalit�e (Fr.), Tonart (G.), key
Tonausweichung (G.), modulation
Tonh�ohe (G.), pitch
tono medio (It., Sp.), meantone
Tonschluss (G.), cadence
Tonstufe (G.), scale degree
touche (Fr.), fret
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Tr�ager (G.), carrier
tripla (L.), ratio 3:1
Trommel (G.), drum
tuyau �a bouche (Fr.), open pipe
tuyau d'orgue (Fr.), organ pipe
tympan (Fr.), eardrum

�Ubereinstimmung (G.), consonance,
harmony

�Uberm�assig (G.), augmented
udibile (It.), audible
udito (It.), hearing
uguale (It.), equal
Umkehrung (G.), inversion
Unterdominant (G.), subdominant
Unterhalbton (G.), leading note
Unterleitton (G.), dominant seventh
Untergruppe (G.), subgroup

valeur propre (Fr.), eigenvalue
vent (Fr.), wind
Ventil (G.), ventile (It.), valve, on wind

instruments

vents (Fr.), wind instruments

Verbindung (G.), combination, union

Verdeckung (G.), masking

Verh�altnis (G.), ratio, proportion

Verkn�upfung (G.), operation

vermindert (G.), diminished

versetzen (G.), to transpose

Versetzungszeichen (G.), accidentals

Versp�atung (G.), delay

Verst�arker (G.), ampli�er

Verst�arkung (G.), gain

verstimmt (G.), out of tune

verwandt (G.), related

Verzerrung (G.), distortion

Vollkommenheit (G.), perfection

Welle (G.), wave

Zahl (G.), number

Zeichen (G.), sign, note

Zischen (G.), hiss

Zuklang (G.), unison, consonance



APPENDIX E

Equal tempered scales

q p3 e3 p5 e5 p7 e7 e35 e357 e5:q
2 e35 :q

3
2 e357:q

4
3

2 1 +213:686 1 �101:955 2 +231:174 166.245 190.365 392 470 480
3 1 +13:686 2 +98:045 2 �168:826 70.000 112.993 882 364 489
4 1 �86:314 2 �101:955 3 �68:826 94.459 86.760 1631 756 551
5 2 +93:686 3 +18:045 4 �8:826 67.464 55.319 451 754 473
6 2 +13:686 4 +98:045 5 +31:174 70.000 59.922 3530 1029 653
7 2 �43:457 4 �16:241 6 +59:746 32.804 43.672 796 608 585
8 3 +63:686 5 +48:045 6 �68:826 56.410 60.831 3075 1276 973
9 3 +13:686 5 �35:288 7 �35:493 26.764 23.104 2858 723 433
10 3 �26:314 6 +18:045 8 �8:826 22.561 19.113 1804 713 412
11 4 +50:050 6 �47:410 9 +12:992 48.748 40.503 5737 1778 991
12 4 +13:686 7 �1:955 10 +31:174 9.776 19.689 282 406 541
13 4 �17:083 8 +36:507 10 �45:749 28.500 35.202 6170 1336 1076
14 5 +42:258 8 �16:241 11 �25:969 32.012 30.132 3183 1677 1017
15 5 +13:686 9 +18:045 12 �8:826 16.015 14.034 4060 930 519
16 5 �11:314 9 �26:955 13 +6:174 20.671 17.250 6900 1323 695
17 5 �33:373 10 +3:927 14 +19:409 23.761 22.404 1135 1665 979
18 6 +13:686 11 +31:378 15 +31:174 24.207 26.732 10167 1849 1261
19 6 �7:366 11 �7:218 15 �23:457 7.293 13.745 2606 604 697
20 6 �26:314 12 +18:045 16 �8:826 22.561 19.113 7218 2018 1038
21 7 +13:686 12 �16:241 17 +2:603 15.018 12.354 7162 1445 716
22 7 �4:496 13 +7:136 18 +12:992 5.964 8.943 3454 615 551
31 10 +0:783 18 �5:181 25 �1:084 3.705 3.089 4979 639 301

41 13 �5:826 24 +0:484 33 �2:972 4.134 3.786 814 1085 535
53 17 �1:408 31 �0:068 43 +4:759 0.997 2.866 192 385 570
65 21 +1:379 38 �0:417 52 �8:826 1.018 5.163 1760 534 1349
68 22 +1:922 40 +3:927 55 +1:762 3.092 2.722 18160 1734 755
72 23 �2:980 42 �1:955 58 �2:159 2.520 2.406 10135 1540 721
84 27 �0:599 49 �1:955 68 +2:603 1.446 1.911 13794 1113 703
99 32 +1:565 58 +1:075 80 �0:871 1.343 1.206 10539 1323 552
118 38 +0:127 69 �0:260 95 �2:724 0.205 1.582 3621 262 915
130 42 +1:379 76 �0:417 105 +0:405 1.018 0.864 7040 1509 569
140 45 �0:599 82 +0:902 113 �0:254 0.766 0.642 17682 1269 467
171 55 �0:349 100 �0:201 138 �0:405 0.285 0.330 5866 636 313

441 142 +0:081 258 +0:086 356 �0:118 0.083 0.096 16689 772 324

494 159 �0:079 289 +0:069 399 +0:405 0.074 0.241 16909 815 943
612 197 �0:039 358 +0:006 494 �0:198 0.028 0.117 2166 424 607
665 214 �0:148 389 �0:0001 537 +0:197 0.105 0.142 50 1798 825

This table shows how well the scales based around equal divisions of
the octave approximate the 5:4 major third, the 3:2 perfect �fth and the 7:4
seventh harmonic. The �rst column (q) gives the number of divisions to the
octave. The second column (p3) shows the scale degree closest to the 5:4 ma-
jor third (counting from zero for the tonic), and the next column (e3) shows
the error in cents:

e3 = 1200

�
p3
q
� log2

�
5

4

��
:

Similarly, the next two columns (p5 and e5) show the scale degree closest to
the 3:2 perfect �fth and the error in cents:

e5 = 1200

�
p5
q
� log2

�
3

2

��
:
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The two columns after that (p7 and e7) show the scale degree closest to the
7:4 seventh harmonic and the error in cents:

e7 = 1200

�
p7
q
� log2

�
7

4

��
:

We write e35 for the root mean square (RMS) error of the major third
and perfect �fth:

e35 =
q
(e23 + e25)=2

and e357 for the RMS error for the major third, perfect �fth and seventh har-
monic:

e357 =
q
(e23 + e25 + e27)=3:

Theorem 6.2.3 shows that the quantity e5:q
2 is a good measure of how

well the perfect �fth is approximated by p5=q of an octave, with respect to
the number of notes in the scale. This theorem shows that there are in�n-
itely many values of q for which e5:q

2 < 1200, while on average we should
expect this quantity to grow linearly with q.

Similarly, Theorem 6.2.5 with k = 2 shows that the quantity e35:q
3

2 is
a good measure of how well the major third and perfect �fth are simultane-
ously approximated, and shows that there are in�nitely many values of q for

which e35:q
3

2 < 1200, while on average we should expect this quantity to grow
like the square root of q. Theorem 6.2.5 with k = 3 shows that the quantity

e357:q
4

3 is a good measure of how well all three intervals: major third, per-
fect �fth and seventh harmonic are simultaneously approximated, and shows

that there are in�nitely many values of q for which e357:q
4

3 < 1200, while on
average we should expect this quantity to grow like the cube root of q.

Particularly good values of e5:q
2, e35:q

3

2 and e357:q
4

3 are indicated in
bold face in the last three columns of the table.



APPENDIX I

Intervals

This is a table of intervals not exceeding one octave (or a tritave in the
case of the Bohlen{Pierce, or BP scale). A much more extensive table may
be found in Appendix XX to Helmholtz [43] (page 453), which was added by
the translator, Alexander Ellis. Names of notes in the BP scale are denoted
with a subscript BP, to save confusion with notes which may have the same
name in the octave based scale.

The �rst column is equal to 1200 times the logarithm to base two of
the ratio given in the second column. Logarithms to base two can be calcu-
lated by taking the natural logarithm and dividing by ln 2. So the �rst col-
umn is equal to

1200

ln 2
� 1731:234

times the natural logarithm of the second column.
We have given all intervals to three decimal places for theoretical pur-

poses. While intervals of less than a few cents are imperceptible to the hu-
man ear in a melodic context, in harmony very small changes can cause large
changes in beats and roughness of chords. Three decimal places gives great
enough accuracy that errors accumulated over several calculations should not
give rise to perceptible discrepancies.
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Cents Interval ratio Eitz Name, etc. Ref

0:000 1:1 C
0
, C

0

BP Fundamental x4.1
1:000 2

1
1200 :1 Cent x5.4

1:805 2
1
665 :1 Degree of 665 tone scale x6.4

1:953 32805:32768 B]
�1

Schisma x5.6
3:986 10

1
1000 :1 Savart x5.4

14:191 245:243 C
+1

BP BP-minor diesis x6.7
19:553 2048:2025 D[[

+2
Diaschisma x5.6

21:506 81:80 C
+1

Syntonic, or ordinary comma x5.5
22:642 2

1
53 :1 Degree of 53 tone scale x6.3

23:460 312:219 B]
0

Pythagorean comma x5.2
27:264 64:63 Septimal comma x5.6
35:099 Carlos'  scale degree x6.6
41:059 128:125 D[[

+3
Great diesis x5.10

49:772 713:323 D[[
0

BP BP 7/3 comma x6.7
63:833 Carlos' � scale degree x6.6
70:672 25:24 C]

�2
Small (just) semitone x5.5

77:965 Carlos' � scale degree x6.6
90:225 256:243 D[

0
Diesis or Limma x5.2

100:000 2
1
12 :1 � C]

�
7
11 Equal semitone x5.12

111:731 16:15 D[
+1

Just minor semitone (ti{do, mi{fa) x5.5
113:685 2187:2048 C]

0
Pythagorean apotom�e x5.2

133:238 27:25 D[
�2

BP x6.7
146:304 3

1
13 :1 BP-equal semitone x6.7

182:404 10:9 D
�1

Just minor tone (re{mi, so{la) x5.5

193:157
p
5:2 D

�
1
2

Meantone whole tone x5.10

200:000 2
1
6 :1 � D

�
2
11 Equal whole tone x5.12

203:910 9:8 D
0

Just major tone (do{re, fa{so, la{ti); x5.5
Pythagorean major tone; x5.2
Nineth harmonic x4.1

294:135 32:27 E[
0

Pythagorean minor third x5.2

300:000 2
1
4 :1 � E[

+ 3
11

Equal minor third x5.12
315:641 6:5 E[

+1
Just minor third (mi{so, la{do, ti{re) x5.5

386:314 5:4 E
�1

Just major third (do{mi, fa{la, so{ti); x5.5
Meantone major third; x5.10
Fifth harmonic x4.1

400:000 2
1
3 :1 � E

�
4
11 Equal major third x5.12

407:820 81:64 E
0

Pythagorean major third x5.2
498:045 4:3 F

0
Perfect fourth x5.2
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Cents Interval ratio Eitz Name, etc. Ref

500:000 2
5
12 :1 � F

+ 1
11 Equal fourth x5.12

503:422 2:5
1
4 F

+1
4

Meantone fourth x5.10
551:318 11:8 Eleventh harmonic x4.1

600:000
p
2:1 � F]

�
6
11 Equal tritone x5.12

611:731 729:512 F]
0

Pythagorean tritone x5.2

696:579 5
1
4 :1 G

�
1
4

Meantone �fth x5.10

700:000 2
7
12 :1 � G

�
1
11 Equal �fth x5.12

701:955 3:2 G
0

Just and Pythagorean (perfect) �fth; x5.2
Third harmonic x4.1

792:180 128:81 A[
0

Pythagorean minor sixth x5.2

800:000 2
2
3 :1 � A[

+ 4
11 Equal minor sixth x5.12

813:687 8:5 A[
+1

Just minor sixth x5.5
840:528 13:8 Thirteenth harmonic x4.1
884:359 5:3 A

�1
Just major sixth x5.5

889:735 5
3
4 :2 A

�
3
4 Meantone major sixth x5.10

900:000 2
3
4 :1 � A

�
3
11

Equal major sixth x5.12
905:865 27:16 A

0
Pythagorean major sixth x5.2

968:826 7:4 Seventh harmonic x4.1
996:091 16:9 B[

0
Pythagorean minor seventh x5.2

1000:000 2
5
6 :1 � B[

+ 2
11

Equal minor seventh x5.12

1082:892 5
5
4 :4 B

�
5
4 Meantone major seventh x5.10

1088:269 15:8 B
�1

Just major seventh; x5.5
Fifteenth harmonic x4.1

1100:000 2
11
12 :1 � B

�
5
11 Equal major seventh x5.12

1109:775 243:128 B
0

Pythagorean major seventh x5.2
1200:000 2:1 C

0
Octave; Second harmonic x4.1

1466:871 7:3 A
0

BP BP-tenth x6.7
1901:955 3:1 C

0

BP BP-Tritave x6.7



APPENDIX J

Just, equal and meantone scales compared

The �gure on the next page has its horizontal axis measured in multi-
ples of the (syntonic) comma, and the vertical axis measured in cents. Each
vertical line represents a regular scale, generated by its �fth. The size of the
�fth in the scale is equal to the Pythagorean �fth (ratio of 3:2, or 701.955
cents) minus the multiple of the comma given by the position along the hor-
zontal axis. The three sloping lines show how far from the just values the
�fth, major third and minor third are in these scales. This �gure is relevant
to Exercise 2 in x6.4.

It is worth noting that if 1
11 comma meantone were drawn on this di-

agram, it would be indistinguishable from 12 tone equal temperament; see
x5.12.
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APPENDIX M

Music theory

This appendix consists of the background in elementary music theory
needed to understand the main text. The emphasis is slightly di�erent than
that of a standard music text. We begin with the piano keyboard, as a con-
venient way to represent the modern scale.

C

C]

D[

D

D]

E[

E F

F]

G[

G

G]

A[

A

A]

B[

B C

C]

D[

D

D]

E[

E

Both the black and the white keys represent notes. This keyboard is peri-
odic in the horizontal direction, in the sense that it repeats after seven white
notes and �ve black notes. The period is one octave, which represents dou-
bling the frequency corresponding to the note. The principle of octave equiv-
alence says that notes di�ering by a whole number of octaves are regarded
as playing equivalent roles in harmony. In practice, this is almost but not
quite completely true.

On a modern keyboard, each of the twelve intervals making up an oc-
tave represents the same frequency ratio, called a semitone. The name comes
from the fact that two semitones make a tone. The twelfth power of the
semitone's frequency ratio is a factor of 2:1, so a semitone represents a fre-

quency ratio of 2
1

12 :1. The arrangement where all the semitones are equal in
this way is called equal temperament. Frequency is an exponential function
of position on the keyboard, and so the keyboard is really a logarithmic rep-
resentation of frequency.

Because of this logarithmic scale, we talk about adding intervals when
we want to multiply the frequency ratios. So when we add a semitone
to another semitone, for example, we get a tone with a frequency ratio of
21=12 � 21=12:1 or 21=6:1. This transition between additive and multiplicative
notation can be a source of great confusion.
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Sta� notation works in a similar way, except that the logarithmic fre-
quency is represented vertically, and the horizontal direction represents time.
So music notation paper can be regarded as graph paper with a linear hori-
zontal time axis and a logarithmic vertical frequency axis.

�
I
G

log(Frequency)

" " Time

"
�!

" " " "

In the above diagram, each note is twice the frequency of the previous one,
so they are equally spaced on the logarithmic frequency scale (except for the
break between the bass and treble clefs). The gap between adjacent notes is
one octave, so the gap between the lowest and highest note is described ad-
ditively as �ve octaves, representing a multiplicative frequency ratio of 25:1.

There are two clefs on this diagram. The upper one is called the tre-
ble clef, with lines representing the notes E, G, B, D, F, beginning with the
E two white notes above middle C and working up the lines. The spaces be-
tween them represent the notes F, A, C, E between them, so that this takes
care of all the white notes between the E above middle C and the F an oc-
tave and a semitone above that. The black notes are represented in by us-
ing the line or space with the likewise lettered white note with a sharp (]) or
at ([) sign in front.

The lower clef is called the bass clef, with lines representing the notes G,
B, D, F, A, with the last note representing the A two white notes below mid-
dle C and the �rst note representing the G an octave and a tone below that.

Middle C itself is represented using a leger line, either below the tre-
ble clef or above the bass clef.

G " J
"

The frequency ratio represented by seven semitones, for example the
interval from C to the G above it, is called a perfect �fth. Well, actually, this
isn't quite true. A perfect �fth is supposed to be a frequency ratio of 3:2, or
1.5:1, whereas seven semitones on our modern equal tempered scale produce
a frequency ratio of 27=12:1 or roughly 1.4983:1. The perfect �fth is a con-
sonant interval, just as the octave is, for reasons described in Chapter 4. So
seven semitones is very close to a consonant interval. It is very diÆcult to
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discern the di�erence between a perfect �fth and an equal tempered �fth ex-
cept by listening for beats; the di�erence is about one �ftieth of a semitone.

The perfect fourth represents the interval of 4:3, which is also conso-
nant. The di�erence between a perfect fourth and the equal tempered fourth
of �ve semitones is exactly the same as the di�erence between the perfect
�fth and the equal tempered �fth, because they are obtained from the cor-
responding versions of a �fth by subtracting from an octave.

The frequency ratio represented by four semitones, for example the in-
terval from C to the E above it, is called a major third. This represents a fre-
quency ratio of 24=12:1 or 3

p
2:1, or roughly 1.25992:1. The just major third

is de�ned to be the frequency ratio of 5:4 or 1.25:1. Again it is the just ma-
jor third which represents the consonant interval, and the major third on our
modern equal tempered scale is an approximation to it. The approximation
is quite a bit worse than it was for the perfect �fth. The di�erence between
a just major third and an equal tempered major third is quite audible; the
di�erence is about one seventh of a semitone.

The frequency ratio represented by three semitones, for example the
interval from E to the G above it, is called a minor third. This represents a
frequency ratio of 23=12:1 or 4

p
2:1, or roughly 1.1892:1. The consonant just

minor third is de�ned to be the frequency ratio of 6:5 or 1.2:1. The equal
tempered minor third again di�ers from it by about a seventh of a semitone.

A major third plus a minor third makes up a �fth, either in the
just/perfect versions or the equal tempered versions. So the intervals C to
E (major third) plus E to G (minor third) make C to G (�fth). In the
just/perfect versions, this gives ratios 4:5:6 for a just major chord C|E|G.
We refer to C as the root of this chord. The chord is named after its root, so
that this is a C major chord.

G """
4:5:6

If we used the frequency ratios 3:4:5, it would just give an inversion of this
chord, which is regarded as a variant form of the C major chord, because of
the principle of octave equivalence.

G """ 3:4:5

while the frequency ratios 2:3:4 give a much simpler chord with a �fth and
an octave.
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G """ 2:3:4

So the just major chord 4:5:6 is the chord that is basic to the western
system of musical harmony. On an equal tempered keyboard, this is approx-
imated with the chord 27=12:24=12:1, which is a good approximation except
for the somewhat sharp major third.

The major scale is formed by taking three major chords on three notes
separated by intervals of a �fth. So for example the scale of C major is formed
from the notes of the chords F major, C major and G major. Between them,
these account for the white notes on the keyboard, which make up the scale
of C major. So in just intonation, the C major scale would have the follow-
ing frequency ratios.

C D E F G A B C D

1
1

9
8

5
4

4
3

3
2

5
3

15
8

2
1

9
4

4 : 5 : 6 : (8)

4 : 5 : 6

(3) : 4 : 5 : 6

Here, we have made use of 2:1 octaves to transfer ratios between the right
and left end of the diagram.

The basic problem with this scale is that the interval from D to A is
almost, but not quite equal to a perfect �fth. It is just close enough that it
sounds like a nasty, out of tune �fth. It is short of a perfect �fth by a ratio
of 81:80. This interval is called a syntonic comma. In this text, when we use
the word comma without further quali�cation, it will always mean the syn-
tonic comma. This and other commas are investigated in Section 5.6.

The meantone scale addresses this problem by distributing the syn-
tonic comma equally between the four �fths C{G{D{A{E. So in the mean-
tone scale, the �fths are one quarter of a comma smaller than the perfect
�fth, and the major thirds are just. In the meantone scale, a number of dif-
ferent keys work well, but the more remote keys do not. For further details,
see Section 5.10.

To make all keys work well, the meantone scale must be bent to meet
around the back. A number of di�erent versions of this compromise have been
used historically, the �rst ones being due to Werckmeister. Some of these well
tempered scales are described in Section 5.11. Meantone and well tempered
scales were in common use for about four centuries before equal tempera-
ment became widespread in the late nineteenth and early twentieth century.
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Online papers

Several journals have good selections of papers available online. Access
usually requires you to be logged on from an academic establishment which
subscribes to the journal in question. Here is a selection of what is available
from a typlical academic institution.

From http://www.jstor.org you can obtain online copies of papers from
the American Mathematics Monthly, a publication which concentrates on un-
dergraduate level mathematics. Papers include the following, in chronologi-
cal order.

J. M. Barbour, Synthetic musical scales, Amer. Math. Monthly 36 (3) (1929), 155{160.

J. M. Barbour, A sixteenth century approximation for �, Amer. Math. Monthly 40 (2)

(1933), 69{73.

J. M. Barbour, Music and ternary continued fractions, Amer. Math. Monthly 55 (9) (1948),

545{555.

J. B. Rosser, Generalized ternary continued fractions, Amer. Math. Monthly 57 (8) (1950),

528{535.

J. M. Barbour, A geometrical approximation to the roots of numbers, Amer. Math. Monthly

64 (1) (1957), 1{9.

Mark Kac, Can one hear the shape of a drum? Amer. Math. Monthly 73 (4) (1966), 1{23.

John Rogers and Bary Mitchell, A problem in mathematics and music, Amer. Math.

Monthly 75 (8) (1968), 871{873.

A. L. Leigh Silver, Musimatics, or the nun's �ddle, Amer. Math. Monthly 78 (4) (1971),

351{357.

G. D. Hasley and Edwin Hewitt, More on the superparticular ratios in music, Amer. Math.

Monthly 79 (10) (1972), 1096{1100.

I. J. Schoenberg, On the location of the frets on the guitar, Amer. Math. Monthly 83 (7)

(1976), 550{552.

David Gale, Tone perception and decomposition of periodic function, Amer. Math. Monthly

86 (1) (1979), 36{42.

Murray Schechter, Tempered scales and continued fractions, Amer. Math. Monthly 87 (1)

(1980), 40{42.

David L. Reiner, Enumeration in music theory, Amer. Math. Monthly 92 (1) (1985), 51{54.

John Clough and Gerald Myerson, Musical scales and the generalized circle of �fths, Amer.

294



O. ONLINE PAPERS 295

Math. Monthly 93 (9) (1986), 695{701.

S. J. Chapman, Drums that sound the same, Amer. Math. Monthly 102 (2) (1995), 124{138.

Rachel W. Hall and Kre�simir Josi�c, The mathematics of musical instruments, Amer. Math.

Monthly 108 (4) (2001), 347{357.

There are occasionally relevant articles in the SIAM1 journals, also
available from http://www.jstor.org. Examples include the following.

A. A. Goldstein, Optimal temperament, SIAM Review 19 (3) (1977), 554{562.

A. Inselberg, Cochlear dynamics: the evolution of a mathematical model, SIAM Review 20

(2) (1978), 301{351.

Robert Burridge, Jay Kappra� and Christine Mordeshi, The Sitar string, a vibrating string

with a one-sided inelastic constraint, SIAM J. Appl. Math. 42 (6) (1982), 1231{1251.

M. H. Protter, Can one hear the shape of a drum? Revisited, SIAM Review 29 (2) (1987),

185{197.

Tobin A. Driscoll, Eigenmodes of isospectral drums, SIAM Review 39 (1) (1997), 1{17.

From http://ojps.aip.org/jasa/ (then hit \browse html" or \search")
you can obtain online copies of articles from the Journal of the Acoustical
Society of America (JASA) from 1997 to the current issue. Here is a selec-
tion of some relevant articles that can be downloaded.

Donald L. Sullivan, Accurate frequency tracking of timpani spectral lines, JASA 101 (1)

(1997), 530{538.

Antoine Chaigne and Vincent Doutaut, Numerical simulations of xylophones. I. Time-

domain modeling of the vibrating bars, JASA 101 (1) (1997), 539{557.

Hugh J. McDermott and Colette M. McKay, Musical pitch perception with electrical stim-

ulation of the cochlea, JASA 101 (3) (1997), 1622{1631.

John Sankey and William A. Sethares, A consonance-based approach to the harpsichord

tuning of Domenico Scarlatti, JASA 101 (4) (1997), 2332{2337.

Knut Guettler and Anders Askenfelt, Acceptance limits for the duration of pre-Helmholtz

transients in bowed string attacks, JASA 101 (5) (1997), 2903{2913.

Marc-Pierre Verge, Benoit Fabre, A. Hirschberg and A. P. J. Wijnands, Sound production

in recorderlike instruments. I. Dimensionless amplitude of the internal acoustic �eld, JASA

101 (5) (1997), 2914{2924.

M. P. Verge, A. Hirschberg and R. Causs�e, Sound production in recorderlike instruments.

II. A simulation model, JASA 101 (5) (1997), 2925{2939.

David M. Mills, Interpretation of distortion product otoacoustic emission measurements. I.

Two stimulus tones, JASA 102 (1) (1997), 413{429.

Eric Prame, Vibrato extent and intonation in professional Western lyric singing, JASA 102

(1) (1997), 616{621.

1Society for Industrial and Applied Mathematics



296 O. ONLINE PAPERS

Guy Vandegrift and Eccles Wall, The spatial inhomogeneity of pressure inside a violin at

main air resonance, JASA 102 (1) (1997), 622{627.

Harold A. Conklin, Jr., Piano strings and \phantom" partials, JASA 102 (1) (1997), 659.

I. Winkler, M. Tervaniemi and R. N�a�at�anen, Two separate codes for missing-fundamental

pitch in the human auditory cortex, JASA 102 (2) (1997), 1072{1082.

Alain de Cheveign�e, Harmonic fusion and pitch shifts of mistuned partials, JASA 102 (2)

(1997), 1083{1087.

Robert P. Carlyon, The e�ects of two temporal cues on pitch judgments, JASA 102 (2)

(1997), 1097{1105.

N. Giordano, Simple model of a piano soundboard, JASA 102 (2) (1997), 1159{1168.

Ray Meddis and Lowel O'Mard, A unitary model of pitch perception, JASA 102 (3) (1997),

1811{1820.

Bruno H. Repp, Acoustics, perception, and production of legato articulation on a computer-

controlled grand piano, JASA 102 (3) (1997), 1878{1890.

William A. Sethares, Specifying spectra for musical scales, JASA 102 (4) (1997), 2422{2431.

Eric D. Scheirer, Tempo and beat analysis of acoustic musical signals, JASA 103 (1) (1998),

588{601.

Myeong-Hwa Lee, Jeong-No Lee and Kwang-Sup Soh, Chaos in segments from Korean tra-

ditional singing and Western singing, JASA 103 (2) (1998), 1175{1182.

Alain de Cheveign�e, Cancellation model of pitch perception, JASA 103 (3) (1998), 1261{

1271.

Louise J. White and Christopher J. Plack, Temporal processing of the pitch of complex

tones, JASA 103 (4) (1998), 2051{2063.

N. Giordano, Mechanical impedance of a piano soundboard, JASA 103 (4) (1998), 2128{

2133.

Henry T. Bahnson, James F. Antaki and Quinter C. Beery, Acoustical and physical dynam-

ics of the diatonic harmonica, JASA 103 (4) (1998), 2134{2144.

Jian-Yu Lin and William M. Hartmann, The pitch of a mistuned harmonic: evidence for a

template model, JASA 103 (5) (1998), 2608{2617.

Shigeru Yoshikawa, Jet-wave ampli�cation in organ pipes, JASA 103 (5) (1998), 2706{2717.

Teresa D. Wilson and Douglas H. Keefe, Characterizing the clarinet tone: measurements of

Lyapunov exponents, correlation dimension, and unsteadiness, JASA 104 (1) (1998), 550{

561.

Bruno H. Repp, A microcosm of musical expression. I. Quantitative analysis of pianists'

timing in the initial measures of Chopin's Etude in E major, JASA 104 (2) (1998), 1085{

1100.

Cornelis J. Nederveen, Inuence of a toroidal bend on wind instrument tuning, JASA 104

(3) (1998), 1616{1626.



O. ONLINE PAPERS 297

Jo�el Gilbert, Sylvie Ponthus and Jean-Fran�cois Petiot, Arti�cial buzzing lips and brass in-

struments: Experimental results, JASA 104 (3) (1998), 1627{1632.

Vincent Doutant, Denis Matignon and Antoine Chaigne, Numerical simulations of xylo-

phones. II. Time-domain modeling of the resonator and of the radiated sound pressure,

JASA 104 (3) (1998), 1633{1647.

N. Giordano, Sound production by a vibrating piano soundboard: Experiment, JASA 104

(3) (1998), 1648{1653.

Je�rey M. Brunstrom and Brian Roberts, Pro�ling the perceptual suppression of partials in

periodic complex tones: Further evidence for a harmonic template, JASA 104 (6) (1998),

3511{3519.

George Bissinger, A0 and A1 coupling, arching, rib height, and f-hole geometry dependence

in the 2 degree-of-freedom network model of violin cavity modes, JASA 104 (6) (1998), 3608{

3615.

Harold A. Conklin, Jr., Generation of partials due to nonlinear mixing in a stringed instru-

ment, JASA 105 (1) (1999), 536{545.

N. H. Fletcher and A. Tarnopolsky, Blowing pressure, power, and spectrum in trumpet play-

ing, JASA 105 (2) (1999), 874{881.

Stephen McAdams, James W. Beauchamp and Suzanna Meneguzzi, Discrimination of mu-

sical instrument sounds resynthesized with simpli�ed spectrotemporal parameters, JASA 105

(2) (1999), 882{897.

Judith C. Brown, Computer identi�cation of musical instruments using pattern recognition

with cepstral coeÆcients as features, JASA 105 (3) (1999), 1933{1941.

J. Bretos, C. Santamar��a and J. Alonso Moral, Vibrational patterns and frequency responses

of the free plates and box of a violin obtained by �nite element analysis, JASA 105 (3)

(1999), 1942{1950.

Daniel Pressnitzer and StephenMcAdams, Two phase e�ects in roughness perception, JASA

105 (5) (1999),2773{2782.

Seiji Adachi and Masashi Yamada, An acoustical study of sound production in biphonic

singing X�o�omij, JASA 105 (5) (1999), 2920{2932.

Xavier Boutillon and Gabriel Weinreich, Three-dimensional mechanical admittance: Theory

and new measurement method applied to the violin bridge, JASA 105 (6) (1999), 3524{3533.

Eiji Hayashi, Masami Yamane and Hajime Mori, Behavior of piano-action in a grand pi-

ano. I. Analysis of the motion of the hammer prior to string contact, JASA 105 (6) (1999),

3534{3544.

Le��la Rhaouti, Antoine Chaigne and Patrick Joly, Time-domain modeling and numerical

simulation of a kettledrum, JASA 105 (6) (1999), 3545{3562.

Sten Ternstr�om, Preferred self-to-other ratios in choir singing, JASA 105 (6) (1999), 3563{

3574.

Howard F. Pollard, Tonal portrait of a pipe organ, JASA 106 (1) (1999), 360{370.

Bruno H. Repp, A microcosm of musical expression. III. Contributions of timing and



298 O. ONLINE PAPERS

dynamics to the aesthetic impression of pianists' performances of the initial measures of

Chopin's Etude in E major, JASA 106 (1) (1999), 469{478.

Alain de Cheveign�e, Pitch shifts of mistuned partials: A time-domain model, JASA 106 (2)

(1999), 887{897.

E. Obataya and M. Norimoto, Acoustic properties of a reed (Arundo donax L.) used for

the vibrating plate of a clarinet, JASA 106 (2) (1999), 1106{1110.

George R. Plitnik and Bruce A. Lawson, An investigation of correlations between geome-

try, acoustic variables, and psychoacoustic parameters for French horn mouthpieces, JASA

106 (2) (1999), 1111{1125.

Valter Ciocca, Evidence against an e�ect of grouping by spectral regularity on the percep-

tion of virtual pitch, JASA 106 (5) (1999), 2746{2751.

Thomas D. Rossing and Gila Eban, Normal modes of a radially braced guitar determined

by electronic TV holography, JASA 106 (5) (1999), 2991{2996.

Edward M. Burns and Adrianus J. M. Houtsma, The inuence of musical training on the

perception of sequentially presented mistuned harmonics, JASA 106 (6) (1999), 3564{3570.

Maureen Mellody and Gregory H. Wake�eld, The time-frequency characteristics of violin

vibrato: modal distribution analysis and synthesis, JASA 107 (1) (2000), 598{611.

Alpar Sevgen, A principle of least complexity for musical scales, JASA 107 (1) (2000), 665{

667.

Huanping Dai, On the relative inuence of individual harmonics on pitch judgment, JASA

107 (2) (2000), 953{959.

Je�rey M. Brunstrom and Brian Roberts, Separate mechanisms govern the selection of spec-

tral components for perceptual fusion and for the computation of global pitch, JASA 107 (3)

(2000), 1566{1577.

N. Giordano and J. P. Winans II, Piano hammers and their force compression character-

istics: Does a power law make sense?, JASA 107 (4) (2000), 2248{2255.

Richard J. Krantz and Jack Douthett, Construction and interpretation of equal-tempered

scales using frequency ratios, maximally even sets, and P-cycles, JASA 107 (5) (2000),

2725{2734.

Anna Runnemalm, Nils-Erik Molin and Erik Jansson, On operating deection shapes of the

violin body including in-plane motions, JASA 107 (6) (2000), 3452{3459.

G. R. Plitnik, Vibration characteristics of pipe organ reed tongues and the e�ect of the shal-

lot, resonator, and reed curvature, JASA 107 (6) (2000), 3460{3473.

Robert P. Carlyon, Brian C. J. Moore and Christophe Micheyl, The e�ect of modulation

rate on the detection of frequency modulation and mistuning of complex tones, JASA 108

(1) (2000), 304{315.

J. Woodhouse, R. T. Schumacher and S. Garo�, Reconstruction of bowing point friction

force in a bowed string, JASA 108 (1) (2000), 357{368.

M. J. Elejabarrieta, A. Ezcurra and C. Santamar��a, Evolution of the vibrational behavior



O. ONLINE PAPERS 299

of a guitar soundboard along successive construction phases by means of the modal analy-

sis technique, JASA 108 (1) (2000), 369{378.

Georg Essl and Perry R. Cook, Measurements and eÆcient simulations of bowed bars, JASA

108 (1) (2000), 379{388.

J. M. Harrison and N. Thompson-Allen, Constancy of loudness of pipe organ sounds at dif-

ferent locations in an auditorium, JASA 108 (1) (2000), 389{399.

A. Z. Tarnopolsky, N. H. Fletcher and J. C. S. Lai, Oscillating reed valves|An experimen-

tal study, JASA 108 (1) (2000), 400{406.

Thomas D. Rossing, Uwe J. Hansen and D. Scott Hampton, Vibrational mode shapes in

Caribbean steelpans. I. Tenor and double second, JASA 108 (2) (2000), 803{812.

N. H. Fletcher, A class of chaotic bird calls?, JASA 108 (2) (2000), 821{826.

Gabriel Weinreich, Colin Holmes and Maureen Mellody, Air-wood coupling and the Swiss-

cheese violin, JASA 108 (5) (2000), 2389{2402.

Robert P. Carlyon, Laurent Demany and John Deeks, Temporal pitch perception and the

binaural system, JASA 109 (2) (2000), 686{700.

Hedwig Gockel, Brian C. J. Moore and Robert P. Carlyon, Inuence of rate of change of

frequency on the overall pitch of frequency-modulated tones, JASA 109 (2) (2000), 701{712.

Daniel Pressnitzer, Roy D. Patterson and Katrin Krumbholz, The lower limit of melodic

pitch, JASA 109 (5) (2000), 2074{2084.

R. Ranvaud, W. F. Thompson, L. Silveira-Moriyama and L.-L. Balkwill, The speed of pitch

resolution in a musical context, JASA 109 (6) (2001), 3021{3030.

Je�rey M. Brunstrom and Brian Roberts, E�ects of asynchrony and ear of presentation on

the pitch of mistuned partials in harmonic and frequency-shifted complex tones, JASA 110

(1) (2001), 391{401.

Lily M. Wang and Courtney B. Burroughs, Acoustic radiation from bowed violins, JASA

110 (1) (2001), 543{555.

Michael W. Thompson and William J. Strong, Inclusion of wave steepening in a frequency-

domain model of trombone sound reproduction, JASA 110 (1) (2001), 556{562.

Werner Goebl, Melody lead in piano performance: Expressive device or artifact?, JASA

110 (1) (2001), 563{572.

Michael A. Akeroyd, Brian C. J. Moore and Geo�rey A. Moore, Melody recognition using

three types of dichotic-pitch stimulus, JASA 110 (3) (2001), 1498-1504.

Alexander Galembo, Anders Askenfelt, Lola L. Cuddy and Frank A. Russo, E�ects of rel-

ative phases on pitch and timbre in the piano bass range, JASA 110 (3) (2001), 1649{1666.

From http://ojps.aip.org/chaos/ you can obtain online copies of pa-
pers from the journal \Chaos" from 1991 to the current issue. The only rel-
evant article I've found is the following.

Diana S. Dabby, Musical variations from a chaotic mapping, Chaos 6 (2) (1996), 95{107.

From http://www.elsevier.com you can download the following papers.



300 O. ONLINE PAPERS

R. C. Read, Combinatorial problems in the theory of music, Discrete Mathematics 167/168

(1997), 543{551.

J�an Halu�ska, Equal temperament and Pythagorean tuning: a geometrical interpretation in

the plane, Fuzzy Sets and Systems 114 (2000), 261{269.

From http://www.idealibrary.com, you can obtain online copies of pa-
pers from a number of journals; for example, the following papers come from
the Journal of Sound and Vibration.

F. Gautier and N. Tahani, Vibroacoustic behaviour of a simpli�ed musical wind instrument,

Journal of Sound and Vibration 213 (1) (1998), 107{125.

S. Gaudet, C. Gauthier and V. G. LeBlanc, On the vibrations of an N-string, Journal of

Sound and Vibration 238 (1) (2000), 147{169.



APPENDIX P

Partial derivatives

Partial derivatives are what happens when we di�erentiate a function
of more than one variable. For example, a geographical map which indicates
height above sea level, by some device such as coloration or contours, can be
regarded as describing a function z = f(x; y). Here, x and y represent the
two coordinates of the map, and z denotes height above sea level. If we move
due east, which we take to be the direction of the x axis, then we are keep-
ing y constant and changing x. So the slope in this direction would be the
derivative of z = f(x; y) with respect to x, regarding y as a constant. This

derivative is denoted
@z

@x
. More formally,

@z

@x
= lim

h!0

f(x+ h; y)� f(x; y)

h
:

Similarly,
@z

@y
is the derivative of z with respect to y, regarding x as a con-

stant. As an example, let z = x4+x2y�2y2. Then we have
@z

@x
= 4x3+2xy,

because x2y is being regarded as a constant multiple of x2, and �2y2 is just
a constant. Similarly,

@z

@y
= x2 � 4y, because x4 is a constant and x2y is a

constant multiple of y.
Second partial derivatives are de�ned similarly, but we now �nd that

we can mix the variables. As well as
@2z

@x2
and

@2z

@y2
, we can now form

@2z

@x@y

by taking the partial derivative of
@z

@y
with respect to x, regarding y as con-

stant, and we can also form
@2z

@y@x
by taking partial derivatives in the oppo-

site order. So in the above example, we have

@2z

@x2
= 12x2 + 2y;

@2z

@y2
= �4; @2z

@x@y
=

@2z

@y@x
= 2x:

In fact, the two mixed partial derivatives agree under some fairly mild hy-
potheses.
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Theorem P.1. Suppose that the partial derivatives
@2z

@x@y
and

@2z

@y@x
both exist and are both continuous at some point (i.e., for some chosen val-
ues of x and y). Then they are equal at that point.

Proof. See any book on elementary analysis; for example, J. C. Burkhill,
A �rst course in mathematical analysis, CUP, 1962, theorem 8.3. �

Partial derivatives work in exactly the same way for functions of more

variables. So for example if f(x; y; z) = xy2 sin z then we have
@f

@x
= y2 sin z,

@f

@y
= 2xy sin z, and

@f

@z
= xy2 cos z. For each pair of variables, the two

mixed partial derivatives with respect to those variables agree provided they
are both continuous.

The chain rule for partial derivatives needs some care. Suppose, by
way of example, that z is a function of u, v and w, and that each of u, v and
w is a function of x and y. Then z can also be regarded as a function of x
and y. A change in the value of x, keeping y constant, will result in a change
of all of u, v and w, and each of these changes will result in a change in the
value of z. These changes have to be added as follows:

@z

@x
=
@z

@u

@u

@x
+
@z

@v

@v

@x
+
@z

@w

@w

@x
:

Similarly, we have

@z

@y
=
@z

@u

@u

@y
+
@z

@v

@v

@y
+
@z

@w

@w

@y
:

It is essential to keep track of which variables are independent, intermediate,
and dependent. In this example, the independent variables are x and y, the
intermediate ones are u, v and w, and the dependent variable is z.

A good illustration of the chain rule for partial derivatives is given by
the conversion from Cartesian to polar coordinates. If z is a function of x
and y then it can also be regarded as a function of r and �. To convert from
polar to Cartesian coordinates, we use x = r cos � and y = r sin �, and to con-

vert back we use r =
p
x2 + y2 and tan � = y=x. Let us convert the quantity

@2z

@x2
+
@2z

@y2
;

into polar coordinates, assuming that all mixed second partial derivatives
are continuous, so that the above theorem applies. This calculation will be
needed in x3.5, where we investigate the vibrational modes of the drum. For
this purpose, it is actually technically slightly easier to regard x and y as the
intermediate variables and r and � as the independent variables, although it
would be quite permissible to interchange their roles. The dependent vari-
able is z. We have

@z

@r
=
@z

@x

@x

@r
+
@z

@y

@y

@r
= cos �

@z

@x
+ sin �

@z

@y
: (P.1)
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To take the second derivative, we do the same again.

@2z

@r2
= cos �

@

@r

�
@z

@x

�
+ sin �

@

@r

�
@z

@y

�

= cos �

�
cos �

@2z

@x2
+ sin �

@2z

@y@x

�
+ sin �

�
cos �

@2z

@x@y
+ sin �

@2z

@y2

�

= cos2 �
@2z

@x2
+ 2 sin � cos �

@2z

@x@y
+ sin2 �

@2z

@y2
: (P.2)

Similarly, we have

@z

@�
=
@z

@x

@x

@�
+
@z

@y

@y

@�
= (�r sin �)@z

@x
+ (r cos �)

@z

@y
;

and

@2z

@�2
= (�r sin �) @

@�

�
@z

@x

�
+ (�r cos �)@z

@x

+ (r cos �)
@

@�

�
@z

@y

�
+ (�r sin �)@z

@y

= (�r sin �)
�
(�r sin �)@

2z

@x2
+ (r cos �)

@2z

@y@x

�
+ (�r cos �)@z

@x

+ (r cos �)

�
(�r sin �) @

2z

@x@y
+ (r cos �)

@2z

@y2

�
+ (�r cos �)@z

@y

= r2
�
sin2 �

@2z

@x2
� 2 sin � cos �

@2z

@x@y
+ cos2 �

@2z

@y2

�

� r

�
cos �

@z

@x
+ sin �

@z

@y

�
: (P.3)

Comparing the formula (P.2) for
@2z

@r2
with the formula (P.3) for

@2z

@�2
, and us-

ing the fact that sin2 � + cos2 � = 1, we see that

@2z

@r2
+

1

r2
@2z

@�2
=
@2z

@x2
+
@2z

@y2
� 1

r

�
cos �

@z

@x
+ sin �

@z

@y

�
:

Finally, looking back at equation (P.1) for
@z

@r
, we obtain the formula we were

looking for, namely

@2z

@r2
+

1

r

@z

@r
+

1

r2
@2z

@�2
=
@2z

@x2
+
@2z

@y2
: (P.4)



APPENDIX R

Recordings

Go to the entry \compact discs" in the index to �nd the points in the text which
refer to these recordings.

Johann Sebastian Bach, The Complete Organ Music, recorded by Hans Fagius, Vol-
umes 6 and 8, BIS-CD-397/398 (1989) and BIS-CD-443/444 (1989 & 1990). These
recordings are played on the reconstructed 1764 Wahlberg organ, Fredrikskyrkan,
Karlskrona, Sweden. This organ was reconstructed using the original temperament,
which was Neidhardt's Circulating Temperament No. 3 \f�ur eine grosse Stadt" (for
a large town).

Clarence Barlow's \OTOdeBLU" is in 17 tone equal temperament, played on two
pianos. This piece was composed in celebration of John Pierce's eightieth birthday,
and appeared as track 15 on the Computer Music Journal's Sound Anthology CD,
1995, to accompany volumes 15{19 of the journal. The CD can be obtained from
MIT press for $15.

Easley Blackwood has composed a set of microtonal compositions in each of the
equally tempered scales from 13 tone to 24 tone, as part of a research project funded
by the National Endowment for the Humanities to explore the tonal and modal be-
havior of these temperaments. He devised notations for each tuning, and his com-
positions were designed to illustrate chord progressions and practical application of
his notations. The results are available on compact disc as Cedille Records CDR
90000 018, Easley Blackwood: Microtonal Compositions (1994). Copies of the scores
of the works can be obtained from Blackwood Enterprises, 5300 South Shore Drive,
Chicago, IL 60615, USA for a nominal cost.

Dietrich Buxtehude, Orgelwerke, Volumes 1{7, recorded by Harald Vogel, published
by Dabringhaus and Grimm. These works are recorded on a variety of European or-
gans in di�erent temperaments. Extensive details are given in the liner notes.

CD1 Tracks 1{8: Norden { St. Jakobi/Kleine organ in Werckmeister III;

Tracks 9{15: Norden { St. Ludgeri organ in modi�ed 1
5
Pythagorean comma meantone with C]

�
6
5
p

,

G]
�
6
5
p

, B[
+1
5
p

and E[
0
;

CD2 Tracks 1{6: Stade { St. Cosmae organ in modi�ed quarter comma meantone with1 C]
�
3
2 , G]

�
3
2 ,

F
0
, B[

0
, E[

�
1
5 ;

Tracks 7{15: Weener { Georgskirche organ in Werckmeister III;

CD3 Tracks 1{10: Grasberg organ in Neidhardt No. 3;

Tracks 11{14: Damp { Herrenhaus organ in modi�ed meantone with pitches taken from original pipe

lengths;

1The liner notes are written as though G]
�
3
2 were equal to A[

�
2
5 , which is not quite

true. But the discrepancy is only about 0.2 cents.
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CD4 Tracks 1{8: Noordbroeck organ in Werckmeister III;

Tracks 9{15: Groningen { Aa-Kerk orgen in (almost) equal temperament;

CD5 Tracks 1{5: Pilsum organ in modi�ed 1
5
Pythagorean comma meantone (the same as the Norden {

St. Ludgeri organ described above);

Tracks 6{7: Buttforde organ;

Tracks 8{10: Langwarden organ in modi�ed quarter comma meantone with G]
�
7
4 , B[

�
1
4 , E[

�
1
4 ;

Tracks 11{13: Basedow organ in quarter comma meantone;

Tracks 14{15: Gro� Eichsen organ in quarter comma meantone;

CD6 Tracks 1{10: Roskilde organ in Neidhardt (no. 3?);

Track 11: Helsing�r organ (unspeci�ed temperament);

Tracks 12{15: Torrl�osa organ (unspeci�ed temperament);

CD7 Tracks 1{10 modi�ed 1
5
comma meantone with2 C]

�
6
5 , G]

�
6
5 , B[

+1
5 and E[

1
5
�

1
10

p

.

William Byrd, Cantones Sacrae 1575, The Cardinall's Music, conducted by David
Skinner. Track 12, Diliges Dominum, exhibits temporal reectional symmetry, so
that it is a perfect palindrome.

Wendy Carlos, Switched-On Bach 2000, Audio CD, Telarc, 1992. CD-80323. Carlos'
original \Switched-On Bach" recording was performed on a Moog analog synthesizer,
back in the late 1960s. The Moog is only capable of playing in equal temperament.
Improvements in technology inspired her to release this new recording, using a vari-
ety of temperaments and modern methods of digital synthesis. The temperaments
used are 1

5 and 1
4 comma meantone, and various circular (irregular) temperaments.

Wendy Carlos, Beauty in the Beast, Audion, 1986, Passport Records, Inc., SYNCD
200. Tracks 4 and 5 make use of super just scales.

Charles Carpenter has two CDs, titled Frog �a la Pêche (Caterwaul Records,
CAT8221, 1994) and Splat (Caterwaul Records, CAT4969, 1996), composed using
the Bohlen{Pierce scale, and played in a progressive rock/jazz style. These record-
ings can be ordered directly from http://www.kspace.com/carpenter for $13.95 each. Al-
though Carpenter does not restrict himself to sounds composed mainly of odd har-
monics, his compositions are nonetheless compelling.

Perry Cook (ed.), Music, congnition and computerized sound. An introduction to
psychoacoustics [15] comes with an accompanying CD full of sound examples.

Michael Harrison, From Ancient Worlds, for Harmonic Piano, New Albion Records,
Inc., 1992. NA 042 CD. The pieces on this recording all make use of his 24 tone su-
per just scale.

In Joseph Haydn's Sonata 41 in A (Hob. XVI:26), the movement Menuetto al
rovescio is a perfect palindrome. This piece can be found as track 16 on the Naxos
CD number 8.553127, Haydn, Piano sonatas, Vol. 4, with Jen~o Jand�o at the piano.

A. J. M. Houtsma and T. D. Rossing and W. M. Wagenaars, Auditory Demonstra-
tions, Audio CD and accompanying booklet, Philips, 1987. This classic collection of
sound examples illustrates a number of acoustic and psychoacoustic phenomena. It
can be obtained from the Acoustical Society of America at http://asa.aip.org/discs.html

for $26 + shipping.

2The liner notes identify A[
�

1
10

p

with G]
�
6
5 , in accordance with the approximation of

Kirnberger and Farey described in x5.12.
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Enid Katahn, Beethoven in the Temperaments (Gasparo GSCD-332, 1997). Katahn
plays Beethoven's Sonatas Op. 13, Path�etique and Op. 14 Nr. 1 using the Prinz tem-
perament, and Sonatas Op. 27 Nr. 2, Moonlight and Op. 53 Waldstein in Thomas
Young's temperament. The instrument is a modern Steinway concert grand rather
than a period instrument. The tuning and liner notes are by Edward Foote.

Enid Katahn and Edward Foote have also brought out a recording, Six degrees of
tonality (Gasparo GSCD-344, 2000). This begins with Scarlatti's Sonata K. 96 in
quarter comma meantone, followed by Mozart's Fantasie Kv. 397 in Prelleur tem-
perament, a Haydn sonata in Kirnberger III, a Beethoven sonata in Young tem-
perament, Chopin's Fantaisie-Impromptu in DeMorgan temperament, and Grieg's
Glochengel�aute in Coleman 11 temperament. Finally, and in many ways the most
interesting part of this recording, the Mozart Fantasie is played in quarter comma
meantone, Prelleur temperament and equal temperament in succession, which al-
lows a very direct comparison to be made. Unfortunately, the tempi are slightly dif-
ferent, which makes this recording not very useful for a blind test.

Bernard Lagac�e has recorded a CD of music of various composers on the C. B. Fisk
organ at Wellesley College, Massachusetts, USA, tuned in quarter comma meantone
temperament. This recording is available from Titanic Records Ti-207, 1991.

Guillaume de Machaut (1300{1377), Messe de Notre Dame and other works. The
Hilliard Ensemble, Hyper��on, 1989, CDA66358. This recording is sung in Pythagor-
ean intonation throughout. The mass alternates polyphonic with monophonic sec-
tions. The double leading-note cadences at the end of each polyphonic section are
particularly striking in Pythagorean intonation. Track 19 of this recording is Ma
�n est mon commencement (My end is my beginning). This is an example of retro-
grade canon, meaning that it exhibits temporal reectional symmetry.

Mathews and Pierce, Current directions in computer music research [66] comes with
a companion CD containing numerous examples; note that track 76 is erroneous, cf.
Pierce [84], page 257.

Edward Parmentier, Seventeenth Century French Harpsichord Music, Wildboar,
1985, WLBR 8502. This collection contains pieces by Johann Jakob Froberger,
Louis Couperin, Jacques Champion de Chambonni�eres, and Jean-Henri d'Anglebert.
The recording was made using a Keith Hill copy of a 1640 harpsichord by Joannes
Couchet, tuned in 1

3 comma meantone temperament.

Many of Harry Partch's compositions have been rereleased on CD by Composers
Recordings Inc., 73 Spring Street, Suite 506, New York, NY 10012-5800. As a start-
ing point, I would recommend The Bewitched, CRI CD 7001, originally released on
Partch's own label, Gate 5. This piece makes extensive use of his 43 tone super just
scale.

A number of Robert Rich's recordings are in some form of super just scale. His ba-
sic scale is mostly 5-limit with a 7:5 tritone:

1:1, 16:15, 9:8, 6:5, 5:4, 4:3, 7:5, 3:2, 8:5, 5:3, 9:5, 15:8.

This appears throughout the CDs Numena, Geometry, Rainforest, and others. One
of the nicest examples of this tuning is The Raining Room on the CD Rainforest,
Hearts of Space HS11014-2. He also uses the 7-limit scale

1:1, 15:14, 9:8, 7:6, 5:4, 4:3, 7:5, 3:2, 14:9, 5:3, 7:4, 15:8.
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This appears on Sagrada Familia on the CD Gaudi, Hearts of Space HS11028-2. See
http://www.amoeba.com for a more complete discography of Robert Rich's work.

William Sethares, Xentonality, Music in 10-, 17- and 19-tet. See Frog Peak Music
http://www.frogpeak.org to get hold of this recording.

Sethares, Tuning, timbre, spectrum, scale [105] comes with a CD full of examples.

Isao Tomita, Pictures at an Exhibition (Mussorgsky), BMG 60576-2-RG. This
recording was made on analog synthesizers in 1974, and is remarkably sophisticated
for that era.

Johann Gottfried Walther, Organ Works, Volumes 1 and 2, played by Craig Cramer
on the organ of St. Bonifacius, Tr�ochtelborn, Germany. Naxos CD numbers 8.554316
and 8.554317. This organ was restored in Kellner's reconstruction of Bach's tem-
perament, see x5.11. For more information about the organ (details are not given in
the CD liner notes), see http://www.gdo.de/neurest/troechtelborn.html.

Aldert Winkelman, Works by Mattheson, Couperin, and others. Clavigram VRS

1735-2. This recording is hard to obtain. The pieces by Johann Mattheson, Fran�cois

Couperin, Johann Jakob Froberger, Joannes de Gruytters and Jacques Duphly are

played on a harpsichord tuned to Werckmeister III. The pieces by Louis Couperin

and Gottlieb Mu�at are played on a spinet tuned in quarter comma meantone.



APPENDIX W

The wave equation

This appendix is a supplement to Section 3.6. Its purpose is to justify
the method of separation of variables for the wave equation, and to explain
why a drum has \enough" eigenvalues. The account of the solution of the
wave equation given here is deliberately much more compressed than the ac-
count usually given in books on partial di�erential equations, to emphasize
the shape of the reasoning rather than the more computational aspects usu-
ally emphasized. The level of mathematical sophistication needed to follow
this appendix is rather greater than for the rest of the book, but it should
be accessible to someone who has taken standard undergraduate courses in
vector calculus, analysis and linear algebra.

We discuss solutions z of the two dimensional wave equation

@2z

@t2
= c2r2z; (W.1)

on a closed, bounded domain 
. We assume that z is identically zero on the
boundary S. Initial conditions are given by specifying the values of z and @z

@t
at t = 0.

Throughout this appendix, 
 is a closed, bounded, simply connected
domain in R

2 with piecewise twice continuously di�erentiable boundary S,
such that the pieces of the boundary meet at nonzero interior angles. We
write x for the position vector (x; y) on 
, and dx for the element dx dy
of area on 
. We write n for the outward normal vector to S, and d� de-
notes the element of length on S. With this notation, the divergence theo-
rem states that if f(x) is a continuously di�erentiable function on 
 thenZ

S
f :n d� =

Z


rf dx: (W.2)

In order to solve the wave equation, we begin with a study of Laplace's
equation

r2� = 0

on 
, with Dirichlet boundary conditions. In other words, the value of � is
given on the boundary S.

308



GAUSS' FORMULA 309

Green's Identities

Let 
 be a closed bounded region with boundary S. Suppose that f(x)
and g(x) are functions on 
. Then we have

r:(frg) = fr2g +rf :rg: (W.3)

If 
 is a closed bounded region with boundary S, then integrating over 

and using the divergence theorem (W.2), we get Green's �rst identity.

Theorem W.1 (Green's First Identity). Let f(x) be continuously dif-
ferentiable, and g(x) be twice continuously di�erentiable on 
. ThenZ

S
(frg) :n d� =

Z


(fr2g +rf :rg) dx: (W.4)

Reversing the roles of f and g and subtracting gives Green's second
identity.

Theorem W.2 (Green's Second Identity). Let f(x) and g(x) be twice
continuously di�erentiable on 
. ThenZ

S
(frg � grf) :n d� =

Z


(fr2g � gr2f) dx: (W.5)

Gauss' formula

We start with the function of two variables x and x0 in 
 given by
z = ln jx�x0j. For functions of two variables, it makes sense to apply r with
respect to x keeping x0 constant, or vice versa. These are analogs of partial
di�erentiation. To distinguish between these two options, we write rx or rx0 .

An easy calculation in terms of coordinates shows that as long as
x 6= x0, we have

r
x
0 ln jx� x0j = � x� x0

jx� x0j2 (W.6)

and
r2
x
0 ln jx� x0j = 0: (W.7)

For x = x0, the quantity r2
x
0 ln jx� x0j doesn't make sense, because the log-

arithm isn't de�ned. But if we pretend that it is continuously di�erentiable,
and integrate using the divergence theorem (W.2) we getZ



r2
x
0 ln jx� x0j dx0 =

Z
S
r
x
0 ln jx� x0j :n0 d�0 = �

Z
S

x� x0

jx� x0j2 :n
0 d�0;

(W.8)
where n0 and �0 are with respect to x0. The shape of the region 
 doesn't
matter in this calculation, as long as x0 is in the interior, because of equa-
tion (W.7). If we measure using x as the origin and make the region a unit
disk centered at the origin, then the calculation reduces to

R
S x

0:n0 d�0. But
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in this case x0 and n0 are unit vectors in the same direction, so x0:n0 = 1.
Since the circumference of the unit circle is 2�, the integral gives 2�,Z

S
r
x
0 ln jx� x0j :n0 d�0 = 2�: (W.9)

The interpretation of this calculation is that although ln jx�x0j is not
di�erentiable with respect to x0 at x0 = x, we can think of r2

x
0 ln jx� x0j as

a distribution, in the sense in which we introduced the term in Section 2.15.
We have to replace

R1
�1 with

R

, so that the delta function Æ(x) is de�ned

to be zero for x 6= 0, and
R

 Æ(x) dx = 1. In terms of this delta function, the

above calculation can be expressed as saying that

r2
x
0 ln jx� x0j = 2�Æ(x � x0): (W.10)

So far, we have assumed that x0 is in the interior of 
. For a point x0
outside 
, the integrand in equation (W.8) is zero so the integral is zero. If
x0 is on the boundary S, and it is a point where S is continuously di�eren-
tiable, then instead of a circle, in the above calculation we have to integrate
over a semicircle. So the integral is � instead of 2�. At a corner with angle
�, we are integrating over a sector of a circle with angle �, so the integral is
�. So we de�ne a function p(x) on R2 by

p(x) =

8>>><
>>>:
2� if x is in the interior of 
,

0 if x is not in 
,

� if x is a continuously di�erentiable point on S,

� if x is a corner of S with interior angle �.

Then the extension of equation (W.9) to the plane is Gauss' formulaZ
S
r
x
0 ln jx� x0j :n0 d�0 = p(x): (W.11)

If f(x) is any continuous function on 
, then we haveZ


f(x0)r2

x
0 ln jx� x0j dx0 = p(x)f(x): (W.12)

This is because the integrand is zero except near x = x0, so f(x0) may as well
be replaced by f(x) and taken out of the integral before applying the diver-
gence theorem.

Remark. The above calculation was performed in two dimensions. The correspond-
ing calculation in three dimensions uses the function 1=jx�x

0j instead of ln jx�x
0j.

The unit circle is replaced by the unit sphere, of surface area 4�, and the analog of
equation (W.9) is Z

S

rx0
1

jx� x0j
:n0 d�0 = 4�:

The de�nition of h(x;x0) and G(x;x0) below are adjusted accordingly.
Similarly, in n dimensions (n � 3), the corresponding formula isZ

S

rx0
1

jx� x0jn�2
:n0 d�0 = n(n� 2)�(n)
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where �(n) denotes the (n � 1)-dimensional volume of the surface of the n-

dimensional sphere.

Green's functions

Equation (W.10) is an important property of the function ln jx � x0j.
But the main problem with this function is that it doesn't vanish on the
boundary S of 
. To remedy this, we adjust it as follows. Suppose that we
can �nd a solution h(x;x0) to Laplace's equation

r2
x
0h(x;x0) = 0 (W.13)

on 
, with boundary conditions

h(x;x0) =
1

2�
ln jx� x0j (W.14)

for x0 on S. That is, we insist that h(x;x0) is de�ned even when x = x0 (in
the interior of 
). Then the function

G(x;x0) = h(x;x0)� 1

2�
ln jx� x0j

still satis�es
r2
x
0G(x;x0) = Æ(x � x0) (W.15)

for x0 in the interior of 
, but it now also satis�es G(x;x0) = 0 for x0 on S.
The function G(x;x0) de�ned this way is called the Green's function for the
Laplace operator r2.

Lemma W.3. The Green function, if it exists, satis�es the symmetry
relation G(x;x0) = G(x0;x).

Proof. Using Lemma W.10, we have

G(x;x0) =
Z


G(x;x00)Æ(x0 � x00) dx00 =

Z


G(x;x00)r2

x
00G(x0;x00) dx00

=

Z


G(x0;x00)r2

x
00G(x;x00) dx00 =

Z


G(x;x00)Æ(x0 � x00) dx00 = G(x0;x):

�

The construction of the Green's function G(x;x0) depends on solving
Laplace's equation (W.13) with boundary conditions (W.14). We do this us-
ing Fredholm theory.

Hilbert space

A Hilbert space V is a (usually in�nite dimensional) complex vector
space with inner product h ; i satisfying

(i) hx; �y1 + �y2i = �hx; y1i+ �hx; y2i,
(ii) hx; yi = hy; xi (and in particular hx; xi is real), and
(iii) hx; xi � 0, and hx; xi = 0 if and only if x = 0,
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(iv) Writing jxj for
p
hx; xi, the metric with distance function jx � yj

is complete. In other words, every Cauchy sequence has a limit.

For example, if D is a compact domain in Rn then the space L2(D) of
square integrable functions on D is a Hilbert space, with inner product

hf; gi =
Z



�f g dx:

In this example, the completeness is a standard fact from Lebesgue integra-
tion theory. In order to satisfy (iii), we stipulate that two functions are iden-
ti�ed if they agree except on a set of measure zero. Of course, this never
identi�es two continuous functions.

Lemma W.4 (Schwartz's inequality). For vectors x and y in Hilbert
space, we have hx; yi � jxjjyj.

Proof. Consider the quantity

hx� ty; x� tyi = jxj2 � 2thx; yi+ t2jyj2 � 0:

Di�erentiating with respect to t, we see that this expression is minimized by
setting t = hx; yi=jyj2. With this value of t, we get

jxj2 � 2hx; yi2=jyj2 + hx; yi2=jyj2 � 0;

or hx; yi2=jyj2 � jxj2. �

Elements x and y satisfying hx; yi = 0 are said to be orthogonal. If W
is a subspace of V , we writeW? for the subspace consisting of vectors v such
that for all w 2 W we have hv; wi = 0. If W is �nite dimensional, then any
vector v in V can be written in a unique way as v = w+ x with w in W and
x in W?, so that

V =W �W?:
If K is a linear operator on V , its image is

Im (K) = fKv; v 2 V g
and its kernel is

Ker (K) = fv 2 V j Kv = 0g:
Lemma W.5. If K and K� are adjoint linear operators on V (i.e., for

all x and y, hK�x; yi = hx;Kyi) and the image of K is �nite dimensional,
then

(i) V = ImK�KerK�, and
(ii) V = ImK� �KerK

are orthogonal direct sum decompositions of V , and

dim Im (K) = dimIm (K�):
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Proof. If K�x 2 Im (K�) and y 2 Ker (K) then

hK�x; yi = hx;Kyi = 0

so Im (K�) ? Ker (K). If x 2 Im (K�)\Ker (K) then hx; xi = 0 and so x = 0.
Thus

Im (K�)�Ker (K) � V: (W.16)

so we have

dim Im (K) = dim(V=Ker (K)) � dim Im(K�); (W.17)

with equality if and only if (W.16) is an equality. In particular, it follows
that Im (K�) is also �nite dimensional. So we may repeat the above argu-
ment with the roles of K and K� reversed, so that

Im (K)�Ker (K�) � V (W.18)

and
dim Im(K�) � dimIm (K) (W.19)

with equality if and only if (W.18) is an equality. Comparing (W.17) with
(W.19), we see that both must be equalities, so (W.16) and (W.18) are equal-
ities. �

Lemma W.6. If K and K� are adjoint operators and Im (K) is �nite
dimensional then

(i) V = Im(I�K)�Ker (I�K�) and
(ii) V = Im (I�K�)�Ker (I�K)

are orthogonal decompositions of V , and dim Im (I �K) = dimIm (I �K�)
is �nite.

Proof. By Lemma W.5, Im (K�) is �nite dimensional, so V1 = Im(K)+
Im(K�) � V is also �nite dimensional. So V = V1 � V2 where

V2 = V ?1 = Ker (K) \Ker (K�):

So I�K and I�K� send V1 into V1 and act as the identity map on V2. Ap-
plying Lemma W.5 with I � K instead of K and V1 in place of V , we see
that V1 decomposes in the way described in the lemma. Since I � K and
I�K� act as the identity on V2, this just contributes another summand to
Im (I�K) and Im (I�K�), so the decomposition holds for V . �

The Fredholm alternative

Now let V be the vector space L2(D) of Lebesgue square integrable
functions on a compact domain D in Rn . Suppose that K(x;x0) is a contin-
uous complex valued function of two variables x and x0 in D. We are inter-
ested in the operator K on L2(D) given by

K (x) =

Z
D
 (x0)K(x;x0) dx0: (W.20)



314 W. THE WAVE EQUATION

Such an operator is called a Fredholm operator. Its adjoint is given by

K� (x) =
Z
D
 (x0)K(x0;x) dx0: (W.21)

In general, the image of a Fredholm operator is not �nite dimensional, so we
can't apply Lemma W.6 directly. However, a function of the form K(x;x0) =
g(x)h(x0) gives rise to an operator K with one dimensional image spanned
by g(x). Any polynomial function of x and x0 can be written as a �nite sum
of monomials, each of which has this form. So if K(x;x0) is a polynomial
function, we may apply Lemma W.6.

The Weierstrass approximation theorem states that any continuous
function on a compact domain in R

n may be uniformly approximated by
polynomial functions. Applying this to K(x;x0) on D � D, we may write
K = K1 + K2 where K1 is a polynomial function and K2 satis�es B < 1,
where B is de�ned by

B =

ZZ
D
jK2(x;x

0)j2 dx dx0:

For any function  (x) in L2(D), Schwartz's inequality (Lemma W.4) implies
that

jK2 (x)j2 � h ; i
Z
D
jK2(x;x

0)j2 dx0:
Integrating with respect to x gives

hK2 ;K2 i � Bh ; i:
It follows by comparing with the geometric series

1 +B +B2 +B3 + : : :

that the sequence whose nth term is
nX
i=0

Ki
2 

forms a Cauchy sequence in L2(D). Since L2(D) is complete, it follows that
this Cauchy sequence has a limit; in other words, the in�nite sum

1X
i=0

Ki
2 =  +K2 +K2

2 +K3
2 + � � �

converges in L2(D). It is now easy to check that the operator

I+K2 +K2
2 +K3

2 + : : :

is an inverse to I�K2 on L
2(D). So we write (I�K2)

�1 for this inverse.
Now we have

I�K = I� (K1 +K2) = (I�K2)(I� (I�K2)
�1K1):

The operator (I�K2)
�1K1 has �nite dimensional image, because K1 does.

So Lemma W.6 enables us to write L2(D) as a direct sum of the image of
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I�(I�K2)
�1K1 and the kernel of its adjoint. The invertibility of I�K2 then

gives us the following theorem, which is known as the Fredholm alternative.

Theorem W.7. With K and K� de�ned by equations (W.20) and
(W.21), the kernels of I�K and I�K� are �nite dimensional, and have the
same dimension. If this dimension is zero, then I�K is invertible, so that
the equation

 �K = f

has a unique solution  for any given element f of L2(D). �

Solving Laplace's equation

In the section on Green's functions (page 311), we saw that if we can
solve Laplace's equation (W.13) with boundary conditions (W.14) then we
can construct a Green's functionG(x;x0) satisfying equation (W.15) and zero
on the boundary S. In this section we use Fredholm theory to solve Laplace's
equation

r2�(x) = 0 (W.22)

subject to twice continuously di�erentiable boundary conditions �(x) = f(x)
on S.

We begin with uniqueness. We de�ne the potential energy of a contin-
uously di�erentiable function � on 
 by

E = �c2
Z


r� :r�dx:

So E � 0, and if E = 0 then r� = 0, so that � is constant. If �1 and
�2 are solutions of (W.22) satisfying the same boundary conditions, then
� = �1 � �2 satis�es (W.22) and is zero on the boundary. By Green's �rst
identity (W.4) with f = g = �, we see that we have E = 0, so � is constant;
since � = 0 on the boundary, this constant is zero. We conclude that if a so-
lution to Laplace's equation (W.22) with given values on the boundary ex-
ists, then it is unique.

The same method can also be used for solutions of Laplace's equation
(W.22) for the unbounded region 
0 obtained by removing the interior of 

from R

2 , but we need to be careful about the behavior of � as x goes o� to
in�nity. The point is that we need to apply Green's �rst identity (W.4) for a
region with a hole, bounded by S and a large circle S0 of radius R surround-
ing 
, and then let R!1. The extra term we get from the second bound-
ary component is

R
S0 �r� :

�
x

R

�
d�, because the unit normal vector is x=R.

The length of S0 is 2�R, so we need to check that 2�Rj�r� :� xR�j ! 0 as
jxj ! 0. So we have proved the following theorem.

Theorem W.8. (i) If r2� = 0 has a solution on 
 with speci�ed val-
ues on S, then the solution is unique.
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(ii) If r2� = 0 has a solution on 
0 with speci�ed values on S, and
satisfying

lim
jxj!1

j�r� :xj = 0

then that solution is unique. �

We now examine the question of existence of solutions. To this end,
we look for solutions of equation (W.22) of the form

�(x) =

Z
S
 (x0)r

x
0 ln jx� x0j :n0 d�0; (W.23)

with  a twice continuously di�erentiable function de�ned on S.
Any twice continuously di�erentiable function  on S can be extended

to a twice continuously di�erentiable function on 
, which we also denote by
 . So we can use Green's �rst identity (W.4) to write

�(x) =

Z


( (x0)r2

x
0 ln jx� x0j+r (x0) :r

x
0 ln jx� x0j) dx0:

By equation (W.12), we have

�(x) = p(x) (x) +

Z


r (x0) :r

x
0 ln jx� x0j dx0: (W.24)

In this formula, it can be shown using some elementary estimates that the in-
tegral term is continuous as x crosses the boundary S. It follows that �(x) is
discontinuous at S, so to solve Laplace's equation (W.22) using �, we should
use the limiting value at the boundary. Namely, for x0 in S and x in 
 but
not in S, we have

lim
x!x0

�(x) = 2� (x0) +

Z


r (x0) :r

x
0 ln jx0 � x0j dx0;

whereas except at the corners, the value of � on S is given by

�(x0) = � (x0) +

Z


r (x0) :r

x
0 ln jx0 � x0j dx0:

So we have
lim
x!x0

�(x) = �(x0) + � (x0):

In order to satisfy the boundary condition we want

lim
x!x0

�(x) = f(x0):

So we must solve the equation

�(x) + � (x) = f(x) (W.25)

on S. Notice that the value of  at corners is irrelevant to the integral (W.23),
so we just ignore the anomalous values of � at corners and solve (W.25) for
all x in S.
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We rewrite equation (W.25) as

 (x) +
1

�

Z
S
 (x0)r

x
0 ln jx� x0j:n0 d�0 = 1

�
f(x): (W.26)

Setting

K(x;x0) = � 1

�
r
x
0 ln jx� x0j:n0 = (x� x0):n0

�jx� x0j2
and D = S, we use equation (W.20) to obtain an operator K on L2(S) given
by

K (x) = � 1

�

Z
S
 (x0)r

x
0 ln jx� x0j:n0 d�0:

Equation (W.26) then becomes

 �K =
1

�
f:

Applying Fredholm theory (Theorem W.7), we see that this equation
always has a solution provided we can prove that the only solution of the
equation

 �K = 0

is the zero function. So assume that  satis�es this equation, and de�ne
�(x) by equation (W.23). Then r2� = 0, and �(x)! 0 as x approaches the
boundary from inside 
. So by Theorem W.8 (i), we have �(x) = 0 for x in

. Similarly, we de�ne �(x) by equation (W.23) on 
0. Then using equation
(W.6) we �nd that j�r� :xj ! 0 as R ! 1. So by Theorem W.8 (ii), we
have �(x) = 0 in 
0. Now it follows from equation (W.24) that for a point
x0 on S which is not a corner,

lim
x!x0

in 


�(x) � lim
x!x0

in 
0

�(x) = 2� (x0):

It follows that  (x0) = 0. Since we were only interested in  at points which
are not corners, this completes the proof that the only solution of  �K = 0
is  = 0. Applying Fredholm theory as mentioned above, this completes the
proof of existence of solutions of Laplace's equation.

Conservation of energy

We are now ready to begin proving existence and uniqueness for solu-
tions of the wave equation (W.1). The basic tool for proving uniqueness of
solutions is the conservation of energy. We de�ne the energy E(t) of a con-
tinuously di�erentiable function z of x and t to be the quantity

E(t) = �

Z



 �
@z

@t

�2
+ c2rz:rz

!
dx: (W.27)

The two terms in this integral correspond to kinetic and potential energy re-
spectively. Since E(t) is obtained by integrating a sum of squares, it satis-
�es E(t) � 0. Furthermore, E(t) = 0 can only occur if the integrand is zero;
namely if @z

@t and rz are zero.
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Suppose that z satis�es the wave equation (W.1). Di�erentiating, and
using the divergence theorem (W.2), we get

dE

dt
=

Z


�

�
2
@z

@t

@2z

@t2
+ 2c2rz :@rz

@t

�
dx

=

Z


�

�
2
@z

@t
c2r2z + 2c2rz :r@z

@t

�
dx

=

Z


2�c2r:

�
@z

@t
rz
�
dx

=

Z
S
2�c2

�
@z

@t
rz
�
:n d�:

Since @z
@t = 0 on S, we obtain

dE

dt
= 0

so that E is a constant, independent of t. This is the statement of the con-
servation of energy for solutions of the wave equation.

Uniqueness of solutions

We now prove the uniqueness theorem for solutions to the wave equa-
tion. Suppose that z1 and z2 are solutions to the wave equation (W.1) on 
,
with the same initial conditions (i.e., the same values of z and @z

@t for t = 0),
and both vanishing on S. Then z = z1 � z2 satis�es the initial conditions
z = 0 and @z

@t = 0 at t = 0. Equation (W.27) then shows that E(0) = 0. Con-

servation of energy implies that E(t) = 0 for all t. So @z
@t = 0 for all t, which

implies that z is independent of t. Since it is zero at t = 0, we deduce that
z = 0 for all values of t. Thus z1 and z2 are equal. It follows that there is at
most one solution to the wave equation (W.1) for a given set of initial con-
ditions for z and @z

@t .
It is less easy to prove existence of solutions. For this, we use the eigen-

value method. This will occupy the rest of the appendix.

Eigenvalues are nonnegative and real

We now prove that the eigenvalues of the Laplace operator r2 are non-
negative and real|even if we allow f to take complex values (for real valued
functions, ignore the bars in the proof of the lemma).

Lemma W.9. Let 
 be a closed bounded region. If f is a nonzero (com-
plex valued) twice di�erentiable function satisfying r2f = ��f in 
 and
f = 0 on the boundary S of 
, then � is a nonnegative real number.

Proof. Let �f be the complex conjugate of f . Then using Green's �rst
identity (W.4), we haveZ

S
( �f rf) :n d� =

Z


r �f :rf dx+

Z



�f(r2f) dx
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=

Z


jrf j2 dx� �

Z


jf j2 dx;

Since f is zero on S, the left hand side is zero. Since
R

 jf j2 dx > 0 andR


 jrf j2 dx � 0, this means that

� =

R

 jrf j2 dxR

 jf j2 dx

� 0

so that � is a nonnegative real number. This expression for � is called
Rayleigh's quotient. �

Orthogonality

The relationship between r2 and the inner product for functions on 

is expressed in the following lemma, which says that r2 is self-adjoint with
respect to the inner product, for functions vanishing on the boundary.

Lemma W.10. For twice continuously di�erentiable functions f and g
on 
 vanishing on the boundary S, we have

hf;r2gi = hr2f; gi:
Proof. This follows from Green's second identity (W.5) (replacing f

by �f) and the fact that f(x) and g(x) vanish on the boundary S. The left
hand side of equation (W.5) is zero, while the right hand side is equal to
hf;r2gi � hr2f; gi. �

This allows us to see easily why the eigenvalues of r2 are real num-
bers (Lemma W.9). Namely if r2f = ��f , and f(x) = 0 on the boundary
S, then we have

��hf; fi = h�f; fi = �hr2f; fi = �hf;r2fi = hf; �fi = �hf; fi:
Since hf; fi 6= 0, we have � = ��. However, positivity is less easy to see from
this point of view.

A similar argument shows that eigenfunctions with distinct eigenval-
ues are orthogonal, as in the following lemma.

LemmaW.11. Let f and g be Dirichlet eigenfunctions on 
 with eigen-
values � and � respectively. If � 6= � Then

hf; gi = 0:

Proof. Using the fact thatr2 is self-adjoint (see LemmaW.10), we have

�hf; gi = hr2f; gi = hf;r2gi = �hf; gi;
and so (�� �)hf; gi = 0. If � 6= �, it follows that hf; gi = 0. �



320 W. THE WAVE EQUATION

Inverting r2

The key to understanding the eigenvalues and eigenfunctions of r2 is
to �nd an inverse K for the operator r2 using Green's functions. The in-
verse is an integral operator with a wider domain of de�nition, and whose
eigenvalues are the reciprocals of those for r2. The operator K is an exam-
ple of a compact operator, which is what makes the eigenvalue theory easier.

The construction of the inverse goes as follows. If f(x) satis�es

r2f(x) = ��f(x) (W.28)

on 
 and f(x) = 0 on S, then we have

f(x) =

Z


f(x0)Æ(x � x0) dx0 =

Z


f(x0)r2G(x;x0) dx0

=

Z


G(x;x0)r2f(x0) dx0 = ��

Z


f(x0)G(x;x0) dx0:

In particular, f(x) 6= 0 implies � 6= 0, so zero is not an eigenvalue of r2.
We write K for the operator de�ned by

Kf(x) = �
Z


f(x0)G(x;x0) dx0:

Then the above calculation shows that if f(x) satis�es (W.28) then

Kf(x) =
1

�
f(x):

So f(x) is an eigenfunction ofK with eigenvalue 1=�. Conversely, if f(x) is an
eigenfunction ofK with nonzero eigenvalue �, and f is twice continuously dif-
ferentiable, then f(x) is also an eigenfunction of r2 with eigenvalue � = 1=�.

Compact operators

Let V be a Hilbert space. We say that a sequence of elements x1; x2; : : :
of elements of V is bounded if there is some positive constant M such that
all the xi satisfy jxij �M . A continuous operator K on V is said to be com-
pact if, given any bounded sequence x1; x2; : : : , the images Kx1;Kx2; : : : has
a convergent subsequence.

Example. If the image of K is �nite dimensional then the Bolzano{
Weierstrass theorem implies that K is compact. More generally, the Fred-
holm alternative can be expressed in terms of compact operators.

IfK is compact and self-adjoint then there is an upper bound to the val-
ues of hKx; xi as x runs over the elements of V satisfying jxj = 1. This is be-
cause otherwise, there would be a sequence x1; x2; : : : such that hKxi; xii > i,
and then by Schwartz' lemma, hKxi;Kxii > i2, so that there could not ex-
ist a convergent subsequence; this would contradict the fact that K is com-
pact. Writing U for the least upper bound of the values for hKx; xi for
jxj = 1, we can �nd a sequence x1; x2; : : : of elements with jxij = 1, such
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that hKx1; x1i; hKx2; x2i; : : : converges to U . Using Schwartz' lemma again,
we have

hKxi � Uxi;Kxi � Uxii = hKxi;Kxii � 2UhKxi; xii+ U2

� hKxi; xii2 � 2UhKxi; xii+ U2

� 2U2 � 2UhKxi; xii
= 2U(U � hKxi; xii)! 0 as i!1;

and so Kxi � Uxi ! 0 as i!1.
Since K is compact, we can replace x1; x2; : : : by a subsequence with

the property that Kx1;Kx2; : : : converges. So Ux1; Ux2; : : : converges, and
provided U 6= 0, this implies that x1; x2; : : : also converges. Setting x =
limi!1 xi, the continuity of K implies that Kx = limi!1Kxi, so we have

Kx = Ux:

In other words, x is an eigenvector of K with eigenvalue U . So if U 6= 0 then
U is an eigenvalue of K.

Eigenvalue stripping

In the last section, we saw a method for �nding an eigenvalue and
eigenvector for K. Suppose that we have already found some eigenvalues
�1; : : : ; �n and corresponding eigenvectors  1; : : : ;  n of K, and we wish to
�nd some more. The most convenient method is to form a new operator
Kn whose eigenvalues and eigenvectors are the same as K except for the re-
moval of the ones we have found. As a preliminary step, we make sure that
if there are repeated eigenvalues, then the corresponding eigenvectors are or-
thogonal. This can be done using the Gram{Schmidt process of linear alge-
bra. Then we de�ne

Kn(x;x
0) = K(x;x0)�

nX
i=1

 i(x) i(x0)
�i

:

Then we de�ne Kn by

Kn =

Z


Kn(x;x

0) (x0) dx0;

so that Kn takes value zero on  1; : : : ;  n, and takes the same value as K on
any function orthogonal to  1; : : : ;  n.

To be continued. . .
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baroque music, 127
basal end of cochlea, 5
base of natural logarithms, 153
basilar membrane, 5, 12
basis for a lattice, 172
bass clef, 291
bass singer, 9
bassoon, 222
baud rate, MIDI, 228
beam equation, Euler{Bernoulli, 94
beat, dead, 22
beats, 16, 139, 285
Beauty in the Beast (Carlos), 145
Beethoven, Ludwig van (1770{1827),

144, 237, 306
B�ek�esy, Georg von (1899{1972), 323
bel (= 10 dB), 7
bell
(FM & CSound), 219
change ringing, 246
tubular |, 90

Benade, Arthur H., 323
bending moment, 91

Benedetti, G. B., 117
Berg and Stork, 323
Bernoulli, Daniel (1700{1782), 30, 94
Bessel, F. W. (1784{1846)
|'s equation, 54
function, 49{58, 60, 202, 272
book about |, 333
graph of |, 51
hyperbolic |, 97
Neumann's |, 55
power series for |, 56
zeros of |, 85, 273

beta scale (Carlos), 146, 167, 286
Bewitched, The (Partch), 306
bible, 152
bibliography, 323
bifurcation, 207
bijective function, 248
binary representation, 180
birnd (CSound), 224
birdsong, 329
Bitheadz Retro AS-1 (software), 230
Blackwood, Easley (1933{ ), 164, 304,

323
blend factor, 196
block
diagram (DX7), 202
periodicity |, 171, 174

Bôcher, Maxime (1867{1918), 44
Boethius, Anicius Manlius Severinus
(ca. 480{524 a.d.), 117

Bohlen{Pierce scale, 112, 168, 285
Bologna State Museum, 165
Bolzano{Weierstrass theorem, 320
Bombelli, Rafael (1526{1572), 151
Boo I (Partch), 147
books, xi
Boole, George (1815{1864), 180
Borrmann, Rudiger, 230
Bosanquet, Robert H. M. (1841{1912),

159
bottle, plucked, 196
Boulanger, Nadia (1887{1979), 168
Boulanger, Richard Charles, 170, 225,

324
boundary conditions, 78
bounded sequence, 320
bowed instrument, 41
BP intervals, 168, 169
BP-just scale, 170
brass, 208, 297
brightness, 191
Brombaugh, John (organ builder), 133
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Brouncker, William (1620{1684), 153
brown noise, 66
Brown, Colin, 126
Brownian motion, 39, 66
Brun, Viggo (1885{1978), 159
Burnside's lemma, 257
Buser and Imbert, 324
Buxtehude, Dietrich (ca. 1637{1707), 304
Byrd, William (1543{1623), 132, 242, 305

C1 function, 38
C++ Synthesis Toolkit, 230
C programming language, 210
Cakewalk (software), 233
calculus, vector, 87
calm temperaments, 139
Calvin and Hobbes, 45
campanology, 246
Campbell and Greated, 324
canal
auditory |, 3
semicircular |, 4

Cancrizans, 241
canon, retrograde/crab, 241
capacitor, 198
cards, shu�ing, 261
Carlos, Wendy (1939{ ), 145, 148, 166,

286, 305
Carpenter, Charles, 171, 305
carrier frequency, 198
carry feature (CSound), 217
Cartesian coordinates, 276, 302
Cartesian product, 253
cascade modulation, 205
Casio, 231
Cataldi, P. A. (1548{1623), 151
cathode ray tube, 45
Cauchy, Augustin Louis (1789{1857)
|'s integral formula, 58
principal value, 63
sequence, 312

Caus, Salomon de (ca. 1576{1626)
|'s monochord, 120

CD-ROM, Neuwirth, 331
cello, 131
centroid, 93
cents, 9, 114, 286
Ces�aro, Ernesto (1859{1906)
sum, 39, 42, 46

chain
ossicular |, 3
rule, multivariable, 76, 302

Chalmers, John (1940{ ), 149

Champion de Chambonni�eres, Jacques
(1602{1672), 306

change ringing, 246
Chao Jung-Tze, 152
chaos, 39, 207, 210, 296, 299
Chebychev, Pafnuti L. (1821{1894)
polynomials, 226

Chinese L�u scale, 148
Chopin, Fr�ed�eric Fran�cois (1810{1849),

144, 306
chorus, 191, 228
Chowning, John, 199
and David Bristow, 324

Chowning, Maureen, 170
chromatic
genus, 142
scale, 145

circle of �fths, 113, 252
circular motion, 19
clarinet, 9, 15, 33, 168, 209, 222, 296, 298
classes, pitch, 218, 250
classical harmony, 126
clef, 291
clipping, 212
CLM (freeware), 230
clock arithmetic, 249
closed
bounded region, 88
interval, 38, 42
tube, 14

CMix (freeware), 230
CMN (freeware), 231
CMusic, 330
cochlea, 4, 7, 12, 295
Coda Music Software, 231
code, 227
collision frequency, 1
color, x, 100
coloratura soprano, 170
Colton, David, 324
columnella, 4
combination tone, 106
comma, 113, 115{118, 126
BP 7/3 |, 169, 286
ditonic |, 113
notation (superscript), 118
of Didymus, 116
ordinary |, 116
Ptolemaic |, 116
Pythagorean |, 113, 115, 133, 141,
158, 160, 286

scale of |s, 161
septimal |, 117, 286
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syntonic |, 116, 286, 293
Common Lisp Music (freeware), 230
commutative law, 70, 243
compact disc, 180
Bach/Hans Fagius, 138, 304
Blackwood, 164, 304
Byrd, 242, 305
Carlos, 145, 150, 305
Carpenter, 171, 305
Cook, 171, 305
Harrison, 150, 305
Haydn, 242, 305
Houtsma, Rossing & Wagenaars, 110,
305

Katahn/Foote, 132, 138, 306
Lagac�e, Wellesley organ, 132, 306
Machaut/Hilliard Ensemble, 114, 242,
306

Mathews & Pierce, 171, 306
Parmentier, 132, 306
Partch, 150, 306
Rich, 150, 306
Sethares, 106, 307
Tomita/Mussorgsky, 180, 307
Winkelman, 132, 138, 307
Xentonality (Sethares), 164, 307

compact operator, 320
complementary function, 24
completeness, 89
complex
analysis, 57
conjugate, 276
exponential, 45, 277
numbers, 22, 25, 45, 159, 276

composer, aleatoric, 234
Composers Recordings Inc., 306
Computer Music Journal, xi
computer music, academic, 234
concert pitch, 16
concha, 3
conical tube, 15
conjugate, complex, 276
conjunction of tetrachords, 142
conservation of energy, 317
consonance, 99{101
continued
fractions, 150, 154, 165, 327
for e, 153
for log2(3=2), 159
for log

2
(3=2)= log

2
(5=4), 166

for log
3
(7=3), 168

for �, 152
for

p
2, 158

periodic, 158
subtraction, 141

continuous
dependence on initial conditions, 81
function, 38
nowhere di�erentiable |, 39
piecewise |, 42

control rate (CSound), 211
convergence
absolute |, 32
mean square |, 40
pointwise |, 43, 45
uniform |, 35, 43, 45

convergents, 152, 169
convex drums, 90
convolution, 70, 187
convolve, 70
Cook, Perry, 324
Cooke, Deryck, x, 325
Cool Edit (shareware), 229
Cooley and Tukey, 189
coordinates
Cartesian |, 276, 302
polar |, 64, 65, 84, 276, 302

Cope, David, 325
Cordier, Serge, 140
cos, cosh, cosinv (CSound), 224
coset, 174, 254
representatives, 171, 255

coshx, 278
Couperin, Fran�cois (1668{1733), 138, 307
Couperin, Louis (1626{1661), 306
coupled oscillators, 157
crab canon, 241
Cremer, Lothar, 325
critical bandwidth, 102
critically damped system, 22
Cscore, 225
CSound, 210, 229, 324
Direct|, 225
email discussion group, 229
The | book, 225

CTAN, 232
Cubase (software), 233
curvature, radius of, 93
Cybersound Studio (software), 230
cycle notation, 244
cycle of �fths, 113
cycles per second, 7
cyclic group, 237, 251
Cycling '74 (Mac software), 230
cylinder of thirds and �fths, 131
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d'Alembert, Jean-le-Rond (1717{1783),
30, 76

d'Anglebert, Jean-Henri (1635{1691),
306

damped harmonic motion, 11, 21
Dani�elou, Alain (1907{1994), 325
DAT, 180
data transmission, MIDI, 228
dB, 7
dB SPL, 8
dBA, 8
de Moivre, Abraham (1667{1754)
|'s theorem, 277

dead beat, 22
decay, 189
of Fourier coeÆcients, 41
stretching, 196

decibels, 7
delay, 185, 191, 193, 195
�t, time between samples, 180
Æ(t), Dirac delta function, 67, 180
density, 75, 83, 92, 96
derivative, 38
partial |, 75, 301

Desain and Honig, 326
descending node, 158
determinant, 174
Deutsch, Diana, 326
Deva, B. Chaitanya, 326
Devie, Dominique, 326
diaschisma, 117, 119, 286
diatonic
genus, 142
syntonic scale, 141

dictionary, 279
Didymus ho mousicos (1st c. b.c.), 116
comma of |, 116

diesis, 117, 126, 141, 161, 286
BP-minor |, 169, 286
great |, 117, 131, 286

di�erence tones, 106
di�erentiable periodic function, 41
di�erential equation, 11, 12, 54
linear second order |, 21
partial |, 83

digital
audio, 331
audio tape (DAT), 180
delay, 185
�lters, 185
formats for music, 227
music, 179
representation of sound, 180

signal processing, 330
signals, 180
synthesizer, 105, 145

dihedral group, 241, 254
diminished triad, 127
diode, 198, 199
Dirac, P. A. M. (1902{1984)
delta function, 67, 180

direct product, 253
DirectCSound, 225
Dirichlet, Peter Gustav Lejeune (1805{

1859), 38, 156
kernel, 48
spectrum, 88

disc, compact, 180
discography of microtonal music, 229
discrete Fourier transform, 189
discriminant, 21
discrimination, limit of, 10
disjunction of tetrachords, 142
disp�t, display (CSound), 223
displacement, 81
dissonance, 99{101
dissonant octave, 105
distribution, 68
tempered |, 69

distributive law, 70
ditonic comma, 113
divergence theorem, 87, 308
divisors, elementary, 257
Dodge and Jerse, 326
domain, fundamental, 171
Doppelg�anger (J. A. Lyndon), 240
Dorian tetrachord, 141
dot notation, 12
double
angle formula, 18
at, 114
integral, 64
sharp, 114

Dover reprints, xi
draconic month, 158
drum, 83, 99, 196, 209, 295
convex |, 90
ear |, 3
hearing the shape of a |, 89
kettle|, 86
square |, 87
wood | (FM & CSound), 220

Dufay, Guillaume (ca. 1400{1474), 142
Duphly, Jacques (1715{1789), 138, 307
Dupras, Martin, 230
duration, 2
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DX7, Yamaha, 201, 230, 231, 324
emulation, 231

dynamic friction, 41

E (Energy), 315
E (Young's modulus), 92
e (identity), 243
e, continued fraction for, 153
ez (complex exponential), 277
ear, 3, 285
drum, 3

Easy Music Theory (online), 229
eccentricity of ellipse, 59
echo, 191
eclipse, ecliptic, 158
editors, sound, 229
e�ect
|s unit, 191
Mozart |, 235

e�ective length, 82
eigenfunction, 88, 319
eigenvalues, 87, 88, 318
Eitz, Carl (1848{1924)
|'s notation, 118, 169, 267, 268

elasticity, longitudinal, 92
electroencephalogram, 7
electromagnetic wave, 2
Electronic
Music Interactive (WWW), 231
Musician (magazine), xi, 225, 226

electronic music, xi
element, 242
elementary divisors, 257
11-limit, 147
eleventh harmonic, 287
elliptic orbit, 59
Ellis, Alexander J. (1814{1890), 114, 139,

285
Elmore and Heald, 326
energy, 317
density, 65
potential |, 315

enharmonic
genus, 142
notes, 113

Ensoniq, 231
enumeration theorem, P�olya's, 260
envelope, 189, 191, 215, 225
epimorphism, 248
equal beating temperament, 135
equal temperament, 133, 138, 150, 285,

290
Cordier's |, for piano, 140

equation
auxiliary |, 21
Bessel's |, 54
di�erential |, 11, 12, 54
Laplace's |, 311
partial di�erential |, 75, 83, 308
quadratic |, 21, 158
Sturm{Liouville |, 82
wave |, 75, 82, 308
Webster's horn |, 82

equilibrium position, 12
equivalence, 173
octave, 100, 171, 249

Erlangen monochord, 120
Erlich, Paul, xii, 149, 171, 175
error
correcting code, 227
mean square |, 40, 132

escape (diesis), 117
Escher, Maurits Cornelius (1898{1972)
Ascending and descending, 109

Euclid (ca. 330{275 b.c.)
's algorithm, 251
|'s algorithm, 141, 158

Euler, Leonhard (1707{1783), 30, 39
|'s continued fraction for e, 153
|'s formula for ei�, 277
|'s joke, 185
|'s monochord, 124, 174
{Bernoulli beam equation, 94
phi function, 252

even function, 36
exercises, answers to, 263
exp (CSound), 224
expansion, Laurent, 58
exponential
function, complex, 45, 277
interpolation, 219

extension, 92
extraduction, 261

f̂(�) =
R
1

�1
f(t)e�2�i�t dt, 62

Fagius, Hans, 138, 304
FAQ, 235
Farey, John (1766{1826), 139
fast Fourier transform, 189, 224
Fay, R., 7
feedback, 59, 206
Fej�er, Lipot (1880{1959), 39
kernel, 47

fenestra rotunda, 5
Fibonacci (= Leonardo of Pisa, ca. 1180{

1250) series, 157
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Fichet, Laurent, 326
�fteenth harmonic, 287
�fth
circle/cycle of |s, 113, 252
harmonic, 116, 286
perfect |, 100, 104, 163, 291
Cordier's equal temperament, 140

sequence of |s, 112
spiral of |s, 114

�fty-three tone scale, 159
�lter, 71, 190
band pass |, 103
digital, 185
low pass |, 183

Finale (software), 231
�nality, 127
�rst isomorphism theorem, 257
�sh, proving the existence of, 38
Fisk organ, Wellesley, 132
5-limit, 147
�xed point, 244
at, double, 114
Fletcher and Rossing, 326
Fletcher{Munson curves, 9
ute, 15, 208
FM
instruments in CSound, 219
radio, 198
synthesis, xi, 51, 59, 199, 201, 210,
216, 324

FMusic (freeware), 234
focus of ellipse, 59
focusing of sound, 3
Fogliano, Lodovico (late 1400s{ca. 1539)
|'s monochord, 120

Fokker, Adriaan D. (1887{1972), 164, 171
folk music, 127, 233
Foote, Edward (piano technician), 306
force, shearing, 91
forced harmonic motion, 24
form, 253
formula
Cauchy's integral |, 58
double angle |, 18
Gauss' |, 309
Parseval's |, 65

Forte, Allen, 326
Forty-Eight Preludes and Fugues (J. S.

Bach), 133
forty-three tone scale, 147
Fourier, Jean Baptiste Joseph, Baron de

(1768{1830), 30
coeÆcients, 30, 33

bounded |, 41
rapid decay of |, 41

series, 14, 29, 49
transform, 62

fourth, perfect, 104, 111, 116, 141
frac (CSound), 224
fractal music, xi
Fractal Tune Smithy (free/shareware),

234
fractal waveform, 39
fractions, 150
continued |, 150, 154, 165, 327
partial |, 158, 188

FractMus (freeware), 234
Frazer, J., 111
Frederick the Great, 241
Fredholm, Erik Ivar (1866{1927)
alternative, 313
operator, 314

French
horn, 298
Revolution, 31

frequency, 2, 100, 101, 106
cochlea, 6
collision |, 1
combination tone, 106
combined |, 18
Hertz, 7
limit of discrimination, 10
missing fundamental, 108
modulation, 198
multiples of fundamental |, 30
nominal |, 86
octave, 13
piano strings, 18
ratio, 114
resonant |, 11, 26, 27
sine wave, 16
spectrum, 8, 65
standard |, 16

Frequency analyzer (freeware), 229
Frick, Arthur, 334
friction, 21, 41
Froberger, Johann Jakob (1616{1667),

138, 306, 307
front page, CSound, 229
ftp.ucsd.edu, 231
function, 248
arctan |, 154
Bessel |, 49{58, 202, 272, 333
complementary |, 24
cosine |, 16
Dirac delta |, 67, 180
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Euler's phi |, 252
even |, 36
exponential |, 277
generalized |, 68
Green's |, 311
Heaviside |, 70
hyperbolic |, 278
kernel |, 69
logarithm |, 285
periodic |, 30, 32
rational, 187
sampling |, 181
sawtooth |, 39, 41, 42
sine |, 16
square wave |, 33, 39, 42, 61, 190
tangent |, 154
test |, 69
transfer, 186
triangular |, 41
Weber |, 55

fundamental, 99, 104
domain, 171
missing |, 2, 86, 108

Furia and Scacciaferro, 326

Ga�urius, Franchinus (1451{1522), 101
Galilei, Galileo (1564{1642)
|'s principle, 1
pitch and frequency, 102

gamelan, 99, 146
gamma scale (Carlos), 167, 286
Garland and Kahn, 327
gas, 1
Gaudi (Rich), 307
Gauss, Johann Carl Friedrich

(1777{1855), 49, 155, 157
|'s formula, 309
|ian integers, 159

GEN05 (CSound), 219
GEN07 (CSound), 216
GEN10 (CSound), 213
generalized
function, 68
keyboard harmonium, 159

generators
for a group, 251
for a sublattice, 173

Genevois and Orlarey, 327
genus, 142
geometric series, 49
geometry, 101
Germain, Sophie (1776{1831), 96
Gestalt, 329

Gibbs, Josiah Willard (1839{1903)
phenomenon, 35, 42

Gibelius' monochord, 130
Gilbert and Sullivan, 29
glide reection, 239
global variables (CSound), 215
GNU, 232
Gold and Morgan, 327
Goldberg Variation 25 (J. S. Bach), 232
golden ratio, 153, 157, 209
Goldwave (shareware), 229
gong, 96, 99
Gordon, Webb and Wolpert, 89
G�otze and Wille, 327
Gra�, Karl, 327
Grain Wave (Mac shareware), 230
grains, 225
granular synthesis, 210, 225
graphicx, xii
Gray's Anatomy, 3
great diesis, 117, 131, 286
greatest common divisor, 141, 251
Greek
music, 141
scales, 142

Green, George (1793{1841)
|'s function, 311
|'s theorem, 309

GriÆth and Todd, 327
Groovemaker (software), 230
group, 242
abelian |, 243
cyclic, 251
dihedral, 254
in�nite cyclic, 237
in�nite dihedral, 241
Mathieu | M12, 260
permutation |, 245
simple |, 261
sporadic |, 261
symmetric |, 245

Gruytters, Joannes de (1709{1772), 138,
307

guitar, 298, 299

H(t), 70
~, 63
H�aba, Alois (1893{1973), 163
half-period symmetry, 37
Hall, Donald E., 137, 327
hammer, 3
Hamming, Richard Wesley (1915{1998),

327
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Hammond organ, 192
Han dynasty (206 b.c.{221 a.d.), 148
Hanson, Howard (1896{1981), 163
Hardy and Wright, 154, 155, 158, 327
harmonic, 1, 116, 286
law (Kepler), 101
motion, 12
damped |, 21
forced |, 24

mth |, 99
odd |, 33
piano (Harrison), 149
scale (Carlos), 148
series, 99, 214
seventh |, 99, 167

harmonica, 296
Harmonices Mundi (Kepler), 101
harmonium, 159
voice | (Colin Brown), 126

harmony, 10, 126
septimal, 176

harpsichord, 138, 295, 306, 307
Harrington, Je�, 230
Harris, Sidney, 87, 157, 180
Harrison, John (1693{1776), 132
Harrison, Lou (1917{ ), 148
Harrison, Michael, 149
Hartmann, William M. (1939{ ), 327
Haydn, Franz Joseph (1732{1809), 242,

305, 306
header (CSound), 211
hearing
range (frequency), 7
threshold of |, 8

Heaviside, Oliver (1850{1925)
function, 70

Heisenberg uncertainty principle, 63
helioctrema, 5
helix, 3
Helmholtz, Hermann (1821{1894), 6, 327
Hertz, Gustav Ludwig (1887{1975)
unit of frequency, 7

Hewitt, Michael, 3289, 158
Hilbert, David (1862{1943)
space, 311

Hilliard Ensemble, 306
Hindemith, Paul (1895{1963), 101
history of temperament, 141
Ho�nung, Gerard (1925{1959), 83, 168
Hofstadter, Douglas R., 158, 328
homogeneity, 19
homomorphism, 248

Hooke, Robert (1635{1703)
|'s law, 92

horn equation, Webster's, 82
Houtsma, Rossing and Wagenaars, 305
Howard and Angus, 328
Hua Loo Keng, 158, 328
Huai-nan-dsi, 148
human ear, 3, 285
Huygens, Christiaan (1629{1695), 163,

164
Huygens-Fokker Foundation, 228
hyperbolic
Bessel functions, 97
functions, 278

Hz, 7

In(z), 97
I (inversion), 252
i =

p�1, 276
identities, trigonometric, 16, 277
identity element, 70, 243
Ile de feu 2 (Messiaen), 260
illusion, visual, 111
image, 248
imaginary numbers, 276
I'm Old Fashioned (Kern/Mercer), 129
Impromptu No. 3 (Schubert), 134
Improvise (shareware), 234
impulse response, 186
incus, 3
index, 335
of modulation, 202
of unison sublattice, 174

Indian Shruti scale, 149
inductive algorithm, 151
inequality, Schwartz's, 312, 314
in�nite
cyclic group, 237
dihedral group, 241, 254
order, 245

inharmonic spectrum, 204, 209
initial conditions, 80, 308
injective function, 248
inner
ear, 3
product, 32, 46

inner product, 311
instrument
bowed |, 41
percussive |, 195
wind |, 14, 330

instruments
wind, 81
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int (CSound), 224
integer, 30, 31, 99, 101{116
Gaussian |, 159
part, 43, 151
ratio, 100

integral, 18, 19, 32, 50, 158
double |, 64
formula, Cauchy's, 58
particular |, 24

integration, Lebesgue, 312
intensity, sound, 7, 9
internal direct product, 253
internet resources, 228
CSound, 229
FAQs, 235
MIDI, 234
music theory, 229
other |, 235
random music, 234
scales and temperaments, 228
sequencers, 233
sound editors, 229
synthesis software, 230
synthesizers and patches, 231
typesetting software, 231

Interplanetary Music Festival, 168
interpolation
exponential |, 219
linear |, 180, 216

interval
major
sixth, 162
third, 116, 162

minor
seventh, 112
sixth, 112, 163
third, 112, 162

perfect �fth, 100, 163
table of |s, 267, 268, 285
wolf |, 131

intonation, just, 10, 115, 147, 171
inverse
element, 243
Fourier transform, 64
function, 248
multiplicative |, 277

inverse function, 244
inversion, 239, 252, 292
IRCAM, 235
irrational numbers, 150
irregular temperament, 133
Isaco�, Stuart M., 328
isomorphism, 248

isophon, 9
isospectral plane domains, 89
Ives, Charles (1874{1954), 163

Jn(z), 50, 60, 272
j =

p�1 (engineers), 278
Jaja, Bruno Heinz, 168
Jaramillo, Herman, xii
JASA, 295
Java Music Theory, 229
jazz, 127
Jeans, Sir James Hopwood (1877{1946),

328
Johnson, Tom, xi, 328
Johnston, Ian, 328
joke, Euler's, 185
Jorgensen, Owen, 328
JP-8000/JP-8080, 61
Jupiter, orbit of, 157
just
intonation, 10, 115, 147, 171
network, 229

major
scale, 116, 119, 126
sixth, 104, 116, 287
third, 104, 116, 286
triad, 126

minor
semitone, 286
sixth, 116
third, 104, 116, 286
tone, 286
triad, 119, 126

noticeable di�erence, 9
super | scale, 147

Kac, Mark (1914{1984), 89
Karplus{Strong algorithm, 195, 210
Katahn, Enid (pianist), 306
Kawai, 231
Kelletat, Herbert, 137
Kellner, Herbert Anton, 137, 138, 307
Kepler, Johannes (1571{1630)
|'s laws, 59, 101
|'s monochord, 121

Kern, Jerome (1885{1945), 129
kernel
Dirichlet |, 48
Fej�er |, 47
functions, 69
of a homomorphism, 257

kettledrum, 86, 297
key o�, key on, 190
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Keyboard (magazine), xi, 225, 226
Keynote (software), 232
keys, split, 143
King Fâng (3rd c. b.c.), 161
Kinsler and Frey, 328
Kircho�, 98
Kirnberger, Johann Philipp (1721{1783)
approximation of |, 139
temperaments of |, 135, 136

Kliban, B., 38
Knuth, Donald (1938{ ), 232
Korg, 231
K�orner, T. W. (1946{ ), 30, 329
Kruth and Stobart, 329
Kuykens, Hans, 233

L1, 63
labyrinth, 3
membranous |, 4
osseous |, 4

Lagac�e, Bernard, 132, 306
Lambda scale, 169
lamina spiralis
ossea, 5
secundaria, 5

Laplace, Pierre-Simon (1749{1827)
|'s equation, 311
operator, 87, 311, 318

Lattard, J., 329
lattice, 149, 171
Laurent, Pierre-Alphonse (1813{1854)
expansion, 58

law
associative, 243
commutative, 243
Hooke's |, 92
Kepler's |s, 59, 101
Mersenne's |s of stretched strings, 79
Newton's |s of motion, 12, 76

leak (diesis), 117
Lebesgue, Henri L�eon (1875{1941)
integration, 312

leger line, 291
Leman, Marc, 329
lemma, Burnside's, 257
Lemur (Mac software), 230
Lendvai, E., 329
length, e�ective, 82
Leonardo da Vinci (1452{1519), 143
Lewin, David, 329
LFO (low frequency oscillator), 61, 189,

190
Licklider, J. C. R., 108

light, 100
LilyPond (GNU freeware), 232
Lime (software), 232
limen, 9
limit, 44, 63, 147
left/right |, 42
of discrimination, 10

limitations of the ear, 7
limma, 141, 286
Linderholm, Carl E., 261, 329
linear
algebra, 87
density, 75, 92
interpolation, 180, 216

linearity, 19
lineseg (CSound), 223
Linux, 230
Lloyd and Boyle, 329
local variables (CSound), 215
log

2
(3) is irrational, 150

log, log10 (CSound), 224
logarithmic scale
of cents, 114
of decibels, 7

logarithms, 285
natural |, base of, 153

long division, 158
longitudinal
elasticity, 92
wave, 2, 75

lookup table, 201
loop, 225
loudness, 2
low frequency oscillator (LFO), 61, 190
low pass �lter, 183
L�u scale, Chinese, 148
Lucy, Charles, 132
lunar eclipse, 158
lute tunings, Mersenne's, 122
Lyapunov, Aleksandr Mikhailovich

(1857{1918) exponent, 296
Lyndon, J. A., 240

Mac, 229
Machaut, Guillaume de (1300{1377),

114, 242, 306
Madden, Charles, xi, 329
magazine
Electronic Musician, xi, 225
Keyboard, xi, 225, 226

Mahler, Gustav (1860{1911)
|'s tenth symphony, x

major
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scale, 112
seventh, 287
sixth, 162
just |, 104, 116

third, 10, 116, 142, 162
just |, 104, 116

triad, 116
Make-Prime-Music (freeware), 234
Malamini organ, 143
Malcolm's monochord, 123
malleus, 3
Mandelbaum, M. Joel, 164
Mandelbrot Music (freeware), 234
marimba, bamboo (Partch), 147
Marpurg, Friedrich Wilhelm (1718{1795)
|'s monochord, 122
|'s temperament I, 136

masking, 6, 106, 108
master volume, 228
mathematicians, musicality of, 332
Mathews, Max V. and Pierce, John R.,

330
Mathieu, E. (1835{1900)
group M12, 260

Mathieu, W. A., 330
matrix, 174
Mattheson, Johann (1681{1764), 138,

307
MAX, 235
Mazzola, Guerino, 330
McClain, Ernest, 330
mean
free path, 1
square convergence, 40
square error, 40, 132
velocity of air molecules, 1

meantone scale, 112, 129, 130, 131, 165,
285, 293

meatus auditorius externus, 3
Media Lab, MIT, 210
membrana
basilaris, 5
tympani secundaria, 5

membrane
basilar |, 5
tympanic |, 3

membranous labyrinth, 4
Mercer, Johnny (1909{1976), 129
Mercury, rotation of, 157
Mersenne, Marin (1588{1648), 30
improved meantone temperament, 134
law of stretched strings, 79
picture, 79

pitch and frequency, 102
spinet/lute tunings, 122

message, system exclusive, 228, 267
Messiaen, Olivier (1908{1992), 260
MetaPost, xii
Mexican hat, 72
Meyer, Alfred, 6
middle ear, 3
MIDI, xi, 210, 228, 233
baud rate, 228
�les, 132, 234
home page, 234
to CSound, 210, 230

MIDI2CS, 210, 230
MIDI2TEX, 233
MikTeX, 232
minor
scale, 112
semitone, 141, 161
just |, 286

seventh, 112
sixth, 112, 163
just |, 116

third, 112, 162
just |, 104, 116

tone, just, 286
triad, just, 119

Mirror duet (attr. Mozart), 238
missing fundamental, 2, 86, 108
MIT Media Lab, 210
mixed partial derivative, 301
mode
Dorian |, 141
vibrational |, 13

modeling, physical, 193
Modern Major General, 29
modiolus, 4
modulation
amplitude |, 198
frequency |, 198
index of |, 202
ring |, 199

modulus, Young's, 92, 96
moment
bending, 91
sectional, 94

moment, sectional, 96
Mongean shu�e, 261
monochord
Agricola's |, 120
BP |, 170
de Caus's |, 120
Erlangen |, 120
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Euler's |, 124, 174
Fogliano's |, 120
Gibelius' |, 130
Kepler's |, 121
Malcolm's |, 123
Marpurg's |, 122
Montvallon's |, 124
Ramis' |, 120
Romieu's |, 125
Rousseau's |, 124

monomorphism, 248
Montvallon, Andr�e Barrigue de
|'s monochord, 124

mood in music, x
Moog, Robert A. (1934{ )
synthesizer, 146, 305

moon, 157, 158
Moonlight Sonata (Beethoven), 237
Moore, Brian C. J., 330
Moore, F. Richard, 330
Morgan, Joseph, 330
Morse and Ingard, 330
motion
Brownian |, 39, 66
circular |, 19
damped harmonic |, 11, 21
harmonic |, 12
planetary |, 59, 101
simple harmonic |, 11

Mozart, Wolfgang Amadeus (1756{1791)
e�ect, 235
Fantasie (Kv. 397), 306
|'s pitch, 16
Sinfonia Concertante, 134
Sonata (K. 333), 128
Spiegel, 238

MS-DOS, 210
Mu�at, Gottlieb (1690{1770), 132
Mulgrew, Grant and Thompson, 330
multiplication table, 243
multiplicative inverse, 277
Mus� Sioni� (M. Praetorius), 10
music
academic computer |, 234
aleatoric |, 234
atonal |, 145
baroque |, 127
digital |, 179
electronic |, xi
folk |, 127, 233
fractal |, xi
Greek |, 141
mood in |, x

of the spheres, 101
polyphonic |, 142
random |, xi, 234
rock |, 127
romantic |, 127
theory, 290
theory (online), 229
twelve tone |, 145

Music Theory Online (journal), 235
Music V, 330
MuSICA Research Notes, 235
Musical O�ering (J. S. Bach), 241
Musical World, 111
musicality of mathematicians, 332
MusicTEX, xii, 232, 233
MusiNum (freeware), 234
MusixTEX, 232
Mussorgsky, 180, 307
Muzika (freeware), 232

N (sample rate), 180
nabla squared (r2), 87, 318
Nachbaur, Fred, 238
Native Instruments (software), 230
natural
logarithms, base of, 153
pitch, 13

Nature, 43
Nederveen, Cornelius Johannes, 330
Neidhardt, Johann Georg (1685{1739),

135, 138, 304
Nemesis GigaSampler (software), 230
Neumann, Carl Gottfried (1832{1925)
|'s Bessel function, 55
spectrum, 88

neutral surface, 93
Neuwirth, Erich, 331
new moon, 158
newton (unit of force), 75
Newton, Sir Isaac (1642{1727)
|'s laws of motion, 12, 76

NeXT, 229, 231
Nicomachus (ca. 60{120 a.d.), 145
Nine Taylors (Dorothy Sayers), 246
nineteen tone scale, 149, 162
nineth harmonic, 286
node, 158
noise, 39, 207
white, pink, brown |, 66

nominal frequency, 86
nonlinearity, 107
normal subgroup, 256
Northwestern University, 234
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notation
cycle, 244
dot | (derivative), 12
Eitz's |, 118, 169, 267, 268
roman numeral |, 127
software, 231

notepad, 214
nu (�, frequency), 16
numbers, 101
complex |, 22, 25, 45, 159, 276
imaginary |, 276
irrational |, 150
rational |, 150, 151

Nutation (NeXT freeware), 232
Nyquist (freeware), 230
Nyquist, Harold (1889{1976)
frequency, 182
|'s theorem, 182

object oriented programming, 331
oboe, 15
octahedron, 149
octave, 9, 13, 100, 104, 290
dissonant |, 105
equivalence, 100, 171, 249
stretched |, 132, 141

odd
function, 36
harmonics, 33

Odington, Walter (. 1298{1316), 142
Olson, Harry F., 331
omega ! = 2��, 16
one-one correspondence, 248
Online Music Instruction Page, 229
online papers, 294
Op de Coul, Manuel, xii, 228
opcode (CSound), 212
open tube, 14
operator, 201
compact, 320
Fredholm |, 314
Laplace |, 87, 311, 318

orbit, 254
orchestra, 75
�le (CSound), 210

order, 245
ordered pairs, 253
ordinary
comma, 116
di�erential equation, 11, 12, 21, 54

organ, 192, 296{299
Duke/Brombaugh, 133
Knox/Toronto/Wollf, 133

Malamini |, 143
stops, 192
Tr�ochtelborn |, 138, 307
Wahlberg |, 304
Wellesley/Fisk, 132

organum, parallel, 142
orientation, 174
origin, 171
orthogonality relation, 32, 46, 319
oscil, oscili (CSound), 212
oscillator, 191
|s, coupled, 157
low frequency (LFO), 190

osseous labyrinth, 4
ossicular chain, 3
outer ear, 3
oval window, 3, 5
overblowing, 15
overdamped system, 22
overtone, 99
Overture (software), 232

p-limit, 147
Padgham, Charles A., 331
palindrome, 239, 241
Pallas, orbit of, 157
panning, 223, 228
papers online, 294
paradox
Russel's, 242
Shepard's |, 109
tritone |, 110

parallel organum, 142
parallelogram, 20, 174
paranoia in the music business, 180
Parmentier, Edward, 306
Parseval, Marc Antoine (1755{1836)
|'s formula, 65

Partch, Harry (1901{1974), 129, 147,
306, 331

partial, 99, 100, 108, 192
derivative, 75, 301
di�erential equation, 75, 83, 308
fractions, 158, 188

particular integral, 24
patch, 207, 228, 231
PC, 229, 230
peak
amplitude, 16, 19
of consonance, 104

pelog scale, 146
percussive instruments, 195, 209
perfect



INDEX 349

BP-tenth, 168
�fth, 100, 104, 163, 291
Cordier's equal temperament, 140

fourth, 104, 111, 116, 141
periodic
continued fraction, 158
function, 30, 32
Riemann integrable |, 39

wave, 30
periodicity block, 171, 174
Perle, George, 331
permutation, 145
group, 245

perpendicular, 32
Perret, Wilfrid, 148
Pfrogner, Hermann, 331
phase, 16, 18{20, 65, 81, 191
vocoder, 210, 226

phenomenon, Gibbs, 35, 42
phi function, Euler's, �(n), 252
Phillips, Dave, 230
Philolaus of Tarentum (d. ca. 390 b.c.),

117, 161
phon, 9
physical modeling, 193
pi
biblical value of |, 152
continued fraction for |, 151
is irrational, 154
is smaller than 22

7
, 158

meantone scale based on �
p
2, 132

16th c. approximation to |, 294
2� radians in a circle, 16

piano, 299
computer-controlled, 296
hammer, 297, 298
harmonic | (Harrison), 149
soundboard, 296, 297
strings, 296
tuning, 17, 18
Cordier's equal temperament, 140
Pleyel, 140

Pickles, James O., 331
pictures
Bosanquet's harmonium, 160
Brown's voice harmonium, 125
Calvin and Hobbes, 45
Carlos, Wendy, 167
Chowning, John, 199
cochlea, 4
d'Alembert, Jean-le-Rond, 77
DX7, 201
Euler, Leonhard, 124

Fibonacci, 157
Fourier, Joseph, 30
Ga�urius' Experiences of Pythagoras,
101

Hammond B3 organ, 192
Kepler, Johannes, 121
Malamini organ (split keys), 143
Marpurg, Wilhelm, 123
Mersenne, Marin, 79
mobile instrument, Arthur Frick, 334
osseous labyrinth, 4
Partch, Harry, 147
proving the existence of �sh, 38
Pythagoras, 112
simpli�ed version for public, 87
Trasuntius' 31 tone clavicord, 165
Vallotti, Francescantonio, 137
visual illusion, 111
WABOT-2, 179

Pictures at an Exhibition (Mussorgsky),
180, 307

piecewise continuity, 42
Pierce, John R. (1910{ ), 9, 105, 331
Pierrot Lunaire (Schoenberg), 145
pink noise, 66
pinna, 3
pitch, 2, 16, 101
classes, 218, 250
envelope, 210
in Tudor Britain, 16
Mozart's |, 16
natural |, 13
perception, place theory of, 6
virtual |, 107

place theory, 6
Plain Bob, 246
Plain Hunt, 247
Planck, Max (1858{1947)
|'s constant, 63

plane domains, isospectral, 89
planetary motion, 59, 101
Plato (427{347 b.c.), 142
Republic, 101

Pleyel, piano tuning, 140
Plomp, R. and Levelt, W. J. M., 103
plucked
bottle, 196
string, 195

Pohlmann, Ken C., 331
pointwise convergence, 43, 45
Poisson, Sim�eon Denis (1781{1840)
|'s ratio, 96
|'s summation formula, 66, 181
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polar coordinates, 64, 65, 84, 276, 302
poles, 188
P�olya's enumeration theorem, 260
polynomials, Chebychev, 226
polyphonic music, 142
Pope, Stephen Travis, 331
position, equilibrium, 12
potential energy, 315
power
gain, 8
intensity, 7
series for Jn(z), 57

Power Tracks Pro Audio (software), 233
Practical Music Theory (online), 229
Praetorius, Michael (1571{1621)
Mus� Sioni�, 10

predictability in music, 239
Preludes and Fugues (J. S. Bach), 133
pressure, acoustic, 81, 88
prime form, 253
principal value, Cauchy, 63
principle of reection, 78
Pringsheim, Alfred (1850{1941), 154
product
Cartesian, 253
direct, 253
inner, 32, 46

product, inner, 311
programming language, C, 210
progression, 126
proving the existence of �sh, 38
psychoacoustics, 2, 108, 305, 324, 326,

328{330, 334
psychology of music, 326
Ptolemy, Claudius (ca. 83{161 a.d.), 145
comma, 116
diatonic syntonon, 141

public domain, 210
pulse width modulation, 61, 190
pure imaginary numbers, 276
PWM, 61, 190
pyknon, 142
Pythagoras (ca. 569{500 b.c.), 101
Pythagorean, 161
apotom�e, 141, 286
comma, 113, 115, 133, 141, 158, 160,
286

minor semitone, 141
scale, 112, 285

quadratic equation, 21, 158
quadrivium, 101
quantization, 180

quantum mechanics, 63
quarter-tone scale, 163
QuasiFractalComposer (freeware), 234
Quintilianus, Aristides, 145
quotient, Rayleigh's, 319

R (retrograde), 252
radians, 16, 224
per second, 20

radio, AM and FM, 198
radius of curvature, 93
ragas, 149
Raichel, Daniel R., 331
rainbow, 100
Rainforest (Rich), 306
Rameau, Jean-Philippe (1693{1764), xi,

102, 138, 144, 331
Ramis, Bartolomeus | de Pareja (1440{

ca. 1491)
|' monochord, 120

random
music, xi, 234
wave, 190

ratio, 7
frequency |, 114
golden |, 153, 157
of integers, 100, 101, 116
Poisson's |, 96

rational
approximation, 150{158
function, 187
numbers, 151

Rayleigh, John William Strutt (1842{
1919), 332

|'s quotient, 319
recorder, 295
Recordings, 304
recurrence relation
for Jn(z), 54
Karplus{Strong algorithm, 195

recursive index, 350
Reed{Solomon code, 227
reection, principle of, 78
reectional symmetry, 239
register stops (organ), 192
Reiner, David, 259
relation
orthogonality |, 32, 46, 319
recurrence |, 54

release, 189
repetition, 237
representation of sound, digital, 180
representatives, coset, 171, 255



INDEX 351

Republic (Plato), 101
resonance, 24, 25, 188, 191
resonant frequency, 11, 26, 27
response, impulse, 186
retrograde, 252
retrograde canon, 241
reverberation, 191, 228
R�ev�esz, Geza, 332
Reymond, Paul DuBois, 38
� (density), 75, 83, 92, 96
Rich, Robert, xii, 115, 146, 306
Riemann, (Georg Friedrich) Bernhard

(1826{1866)
integrable periodic function, 39
sum, 44

Riemann, (Karl Wilhelm Julius) Hugo
(1849{1919), 119

Rigden, John S., 332
ring modulation, 199
Risset, Jean-Claude (1938{ ), 110
RMS amplitude, 19
rnd (CSound), 224
Roads, Curtis, 332
rock music, 127
rod, vibrating, 90
Roederer, Juan G., 332
Roland, 231
JP-8000/JP-8080, 61
sound canvas, 267

Roman Empire, decline of, 142
roman numeral notation, 127
romantic music, 127
Romieu, Jean Baptiste, 106
|'s monochord, 125

root, 292
root mean square, 19
roots of unity, 277
Rosegarden (Unix freeware), 233
Rossi, Lemme
|'s 2

9
-comma temperament, 131

Rossing, Thomas D., 332
and Fletcher, 332

rotational symmetry, 241
Rothstein, Joseph, 332
roughness, 100, 102
round window, 5
Rousseau, Jean-Jacques (1712{1778)
|'s monochord, 124

Ruland, Heiner, 332
Russel, Bertrand (1872{1970)
|'s paradox, 242

sm = 1

2
a0 +

mX

n=1

(an cos(n�) + bn sin(n�)),

39
saccule, 7
Salinas, Francisco de (1513{1590)
|'s 1

3
-comma temperament, 131

sample
dump, 228
rate (CSound), 211

sampling, 225
function, 181

Sankey, John, 132
Savart, F�elix (1791{1841), 115, 286
sawtooth function, 39, 41, 42, 190
Sayers, Dorothy L., 246
scala
tympani, 5
vestibuli, 5, 7

Scala (software), 229
scale, xi, 111
Aaron's meantone |, 130
Agricola's monochord, 120
alpha | (Carlos), 146, 166, 286
Barca's 1

6
-comma |, 136

beta | (Carlos), 146, 167, 286
Bohlen{Pierce |, 112, 168, 285
BP-just |, 170
Chalmers' super just |, 149
Chinese L�u |, 148
chromatic |, 145
de Caus's monochord, 120
diatonic syntonic |, 141
equal tempered |, 138, 285
Erlangen monochord, 120
Euler's monochord, 124, 174
�fty-three tone |, 159
Fogliano's monochord, 120
forty-three tone |, 147
gamma | (Carlos), 167, 286
Gibelius' meantone |, 130
Greek |, 142
harmonic | (Carlos), 148
Indian Shruti |, 149
internet resources, 228
irregular |, 133{136
just |, 116, 120{125
Kepler's monochord, 121
Kirnberger I{III, 135
Lambda, 169
logarithmic | of cents, 114
Lou Harrison's super just |, 148
L�u | (Chinese), 148
major |, 112
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Malcolm's monochord, 123
Marpurg's
monochord, 122
temperament I, 136

meantone |, 112, 129{131, 165, 285,
293

Mersenne's
improved meantone |, 134
lute tunings, 122
spinet tunings, 122

Michael Harrison's super just |, 149
minor |, 112
Montvallon's monochord, 124
Neidhardt, 135, 138, 304
nineteen tone |, 149, 162
of commas, 161
Partch's forty-three tone |, 147
pelog |, 146
Perret's super just |, 148
Pythagorean |, 112, 285
quarter-tone |, 163
Ramis' monochord, 120
Romieu's monochord, 125
Rossi's 2

9
-comma |, 131

Rousseau's monochord, 124
Salinas' 1

3
-comma |, 131

Shruti | (Indian), 149
665 tone |, 161
sixteen tone |, 148
slendro |, 146
super just |, 147
Carlos, 148
Chalmers, 149
Lou Harrison, 148
Michael Harrison, 149
Perret, 148

tables, 268
tempered |, 129
thirty-one tone |, 164
twelve tone |, 113, 138, 148
twenty-four tone |, 163
twenty-four tone super just |, 149
twenty-two tone |, 149
Vallotti and Young, 136
Werckmeister
I{II, 133
III{V (Correct Temperament No. 1{
3), 133

VI (Septenarius), 133
Young's No. 1, 136
Zarlino's 2

7
-comma |, 131

Scarlatti, Domenico (1685{1757), 306
SCC-1 card, 267

Schillinger, Joseph (1895{1943), 332
schisma, 117, 119, 120, 126, 286
Schneider, Albrecht, 333
Schnitzler, G�unter, 333
Schoenberg, Arnold (1874{1951)
Pierrot Lunaire, 145

Schouten, J. F., 107
Schubert, Impromptu No. 3, 134
Schwartz, Laurent (1915{ )
|'s inequality, 312, 314
space, 69

scordatura, 134
Score (software), 232
score �le (CSound), 210
scot (CSound), 224
second harmonic, 287
sectional moment, 94, 96
sections (CSound), 217
Seer Systems Reality (software), 230
self-modulation, 206
self-reference, 352
self-similarity, 39
semicircular canals, 4
semitone, 112, 114, 129, 286, 290
minor |, 141, 161
small |, 286

separable solution, 84
separation, spatial, 3
septenarius (Werckmeister), 133
septimal
comma, 117, 286
harmony, 176

sequence, 237
bounded, 320
of �fths, 112

sequencers, 233
series
Fibonacci |, 157
Fourier |, 14, 29, 49
geometric |, 49
harmonic |, 99, 214
trigonometric |, 31

set, 242
Sethares, William A. (1955{ ), 106, 164,

307, 333
seventh
harmonic, 99, 116, 167, 287
major |, 287
minor |, 112

SGI, 231
sharp, double, 114
shearing force, 91
Shepard scale, 109
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Shruti scale (Indian), 149
shu�e, Mongean, 261
Sibelius (software), 232
side band, 201, 202
�m = (s0 + � � �+ sm)=(m+ 1), 39
signal
analog |, 180
digital |, 180
to noise ratio, 8

Silbermann, 131
simple group, 261
simple harmonic motion, 11
simply connected, 89
sin, sinh, sininv (CSound), 224
sine wave, 6, 10, 190
Sinfonia Concertante (Mozart), 134
singer, bass, 9
sinhx, 278
sixteen tone scale, 148
sixth
major |, 104, 162
minor |, 112, 163

slendro scale, 146
Slonimsky, Nicolas (1894{1995), iii, 111
slur, 196
small semitone, 286
smell, x
snail, 4
software
CSound, 210
MetaPost, xii
notation |, 231
random music |, 234
Scala (scales and temperaments), 229
sequencers, 233
synthesis |, 230
TEX, 232

solar eclipse, 158
solution
separable |, 84
steady state |, 25

Sonata K. 333 (Mozart), 128
soprano, coloratura, 170
Sorge, Georg Andreas (1703{1778), 102,

106, 131
sound
canvas, Roland, 267
editors, 229
focusing of |, 3
intensity, 7, 9
spectrum, 2, 8, 62
what is it?, 1

space

Hilbert, 311
spatial separation, 3
spectral display (CSound), 223
Spectrogram (freeware), 66, 229
spectrum, 2, 8, 65, 87, 105
Dirichlet |, 88
inharmonic |, 204, 209
Neumann |, 88

Spiegel (attr. Mozart), 238
spinet, 132
tunings, Mersenne's, 122

spiral of �fths, 114
split keys, 143
sporadic group, 261
sqrt (CSound), 224
square
drum, 87
wave, 33, 39, 42, 61, 190

stability, 187
stabilizer, 255
stapes, 3
star sphere, 158
static friction, 41
steady state solution, 25
steelpans, 299
Steiglitz, Ken, 333
Stein, Richard Heinrich (1882{1942), 163
Steinberg Rebirth (software), 230
Steinberg, Reinhard, 333
stereo, 223
Stevin, Simon, 131
stirrup, 3
stochastic music, 333
stops (organ), 192
strain, tension, 92
Stravinsky, Igor (1882{1971), 168
stress, tension, 92
stretch factor, 196
stretched strings, laws of, 79
string
plucked |, 195
vibrating |, 13, 75, 193

Sturm{Liouville equation, 82
subgroup, 245
normal, 256

sublattice, 173
subtraction, continued, 141
sum
Ces�aro |, 39, 42, 46
Riemann |, 44

sumer is icumen in, 142
summation formula, Poisson's, 66, 181
super just scale, 147
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superposition, 19
superscript notation, Eitz's, 118
surface, neutral, 93
surjective function, 248
surprise in music, 239
sustain, 189
Switched on Bach (Carlos), 146
symmetric group, 245
symmetry, 36, 237, 329
synodic month, 158
Synth Site (WWW), 231
synthesis, 179, 189
additive |, 191
FM |, xi, 51, 59, 199, 201, 210, 216,
324

granular |, 210, 225
software, 210, 229, 230
wavetable |, 225

Synthesis Toolkit (C++ code), 230
synthesizer, 105, 145, 231
analog |, 61, 190, 307
analog modeling |, 61
Moog |, 146
Yamaha DX7 |, 201

syntonic comma, 116, 126, 286, 293
system exclusive messages, 228, 267

Tn(x) (Chebyshev polynomials), 226
T (transposition), 252
table of intervals, 267, 268, 285
tan, tanh, taninv (CSound), 224
Tangent (free/shareware), 234
tangent function, 154
Tartini, Giuseppe (1692{1770)
|'s tones, 106

taste, x
Taupin, Daniel, 232
Taylor, Charles, 333
Tchebyche�, 226
Tempelaars, Stan, 333
temperament, xi
Aaron's meantone |, 130
Barca's 1

6
-comma |, 136

calm |, 139
equal |, 133, 138, 150, 285
Cordier's, for piano, 140

equal beating |, 135
irregular |, 133
Kirnberger I{III, 135
Marpurg I, 136
Mersenne's improved meantone|, 134
Neidhardt's |s, 135, 138, 304
Rossi's 2

9
-comma |, 131

Salinas' 1

3
-comma |, 131

Vallotti and Young, 136
Werckmeister III{V (Correct Temper-
ament No. 1{3), 133

Young's No. 1, 136
Zarlino's 2

7
-comma |, 131

tempered
distributions, 69
scale, 129

tempo (CSound), 222
tension, 75, 83, 92
strain, 92
stress, 92

tenth symphony, Mahler's, x
test function, 69
tetrachord, 141
tetrahedron, 149
TEX (software), 232
Theinred of Dover (12th c.), 142
theorem
Bolzano{Weierstrass |, 320
de Moivre's |, 277
divergence |, 87, 308
Fej�er's |, 39
Fermat's last |, 96
�rst isomorphism |, 257
Green's |, 309
Nyquist's |, 182
P�olya's enumeration |, 260
uniqueness |, 318

therapy, 261
third
harmonic, 116, 287
major |, 10, 104, 116, 142, 162
minor |, 104, 112, 162

thirteen tone scale, 168
thirteenth harmonic, 287
thirty-one tone scale, 164
3-limit, 147
threshold
of hearing, 8
of pain, 8

tie, 196
timbre, 2, 190, 203
timpani, 83, 295
tinnitus, 6
tire, 161
Toccata and Fugue in D (J. S. Bach), 239
Toccata in F] minor (J. S. Bach), 134
Tomita, Isao (synthesist), 180, 307
tone, 9, 112, 290
combination |, 106
control, 191
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di�erence |, 106
row, 145
Tartini's |s, 106

torque, 90
torus of thirds and �fths, 161
Tr�ochtelborn organ, 138, 307
transfer function, 186
transform
Fourier |, 62
wavelet |, 71
z- |, 184, 186, 195

transients, 191
transitive action, 255
translational symmetry, 237
transverse wave, 2, 75
Trasuntinis, Vitus, 165
treble clef, 291
Treitler, Leo, 145
tremolo, 190, 221
triad, 127
diminished |, 127
just major |, 116
just minor |, 119

triangular wave, 41, 190
trigonometric
identities, 16, 277
series, 31

tritave (BP), 168
tritone, 287
paradox, 110

trombone, 9, 299
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