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What is pileup and why is it there?

Why is it bad?
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What is pileup?

Want to study rare phenomena (unknown or poorly understood)

How: we need many collisions

In practice: many proton bunches, many p per bunch, beams focalised

Consequence: simultaneous pp collisions when 2 bunches cross

Pileup: One “interesting” event accompanied by many others

[ATLAS event]No pileup

Clear picture

With pileup

Not so clear!

Soft (low-energy) background blurring your resolution ⇒ to be mitigated
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Typical numbers

(peak) Pileup multiplicity
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µ = 〈NPU〉: increased from ∼ 20 (Run I) to ∼ 40 (early Run II) and
now ∼ 60 (late 2017)

Will keep increasing in the future with 140− 200 planned for HL-LHC

Collisions rate (luminosity) increases in parallel
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Idea/Plan for the talk

Useful simple characterisation of pileup

Review of the area–median pileup subtraction technique
(currently in use at the LHC)

Comparison with other basic approaches

Go over ideas for new pileup mitigation techniques

Highlight that some level of (analytic) understanding can be achieved
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Early clarifications/disclaimers

A few (purposeful) over-simplifications

no detector response/simulation

purely “in-time” pileup

often neglect UE for simplicity

will concentrate on jet quantities (MET and lepton/photon isolation
have extra dependence (tuning) on detector details)

will mostly focus on the jet pt
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Early clarifications/disclaimers

A few (purposeful) over-simplifications

no detector response/simulation

purely “in-time” pileup

often neglect UE for simplicity

will concentrate on jet quantities (MET and lepton/photon isolation
have extra dependence (tuning) on detector details)

will mostly focus on the jet pt

But...

detector and out-of-time PU: minor impact expected (at least
qualitatively and for the physics message)

I’ll briefly discuss other quantities than the jet pt when relevant

I can come back to these points if necessary (closer to the end)

Grégory Soyez Pileup mitigation at the LHC 5 / 36



Simple characterisation of pileup
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Simple (and very helpful!) characterisation

Pileup is roughly uniform (in y − φ)

Pileup mostly characterised by 3 numbers

ρ: the average activity in an event (per unit area)

σ: the intra-event fluctuations (per unit area)

σρ: the event-to-event fluctuations of ρ

y or φ

pt

event 1

y or φ

pt

event 2

ρ

ρ

σ
σρ
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Pileup is roughly uniform (in y − φ)

Pileup mostly characterised by 3 numbers

ρ: the average activity in an event (per unit area)

σ: the intra-event fluctuations (per unit area)

σρ: the event-to-event fluctuations of ρ

Jet of momentum pt and area A (more below):

one event: pt
+pileup−−−→ pt + ρA± σ

√
A

event average: pt
+pileup−−−→ pt + 〈ρ〉A ± σρA± σ

√
A
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Simple (and very helpful!) characterisation

Pileup is roughly uniform (in y − φ)

Pileup mostly characterised by 3 numbers

ρ: the average activity in an event (per unit area)

σ: the intra-event fluctuations (per unit area)

σρ: the event-to-event fluctuations of ρ

Jet of momentum pt and area A (more below):

one event: pt
+pileup−−−→ pt + ρA± σ

√
A

event average: pt
+pileup−−−→ pt + 〈ρ〉A ± σρA± σ

√
A

pt shift pt smearing
resolution degradation
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Pileup effects: explicit example

Example: (fictitious new) Z ′ boson with MZ ′ = 300 GeV

Z ′ → qq̄ → jj

Z ′

jet

j1

j2

jet

q̄

q

“Z ′ ≈ j1 + j2”
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Pileup mitigation

1. generic strategy
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Pileup subtraction

p
(truth)
t

+pileup−−−−−→ p
(full)
t

subtract−−−−−→ p
(sub)
t

Goal: p
(sub)
t ≈ p

(truth)
t , i.e. ∆pt = p

(sub)
t − p

(truth)
t ≈ 0.

More precisely, the subtraction should be:

Unbiased: 〈∆pt〉events ≈ 0

Sharp (good resolution): σ∆pt as small as possible
Alternative width measurements possible (but avoid correaltion coefficients)

Robust: independent of the jet pt , rapidity, NPU, the process, ...
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Testing framework

Tests based on Monte-Carlo event generators:

Hard event

Hard jets

Full event

Full jets

Subtracted jets
∆pt , ∆O

〈∆O〉, σ∆O

+pileup

cluster cluster

subtract

average over events Can vary: process, scales,

PU conditions

generator and tune
a
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Pileup mitigation

2. the area–median technique

Grégory Soyez Pileup mitigation at the LHC 9 / 36



Defining jet area

[M.Cacciari, G.P. Salam, GS, 2008]

Remember:
pt

+pileup−−−→ pt + ρA± σ
√
A
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Defining jet area

[M.Cacciari, G.P. Salam, GS, 2008]

Remember:
pt

+pileup−−−→ pt + ρA± σ
√
A

Introduce an “Active” area definition:

Add “ghosts” to the event:

particles with infinitesimal pt
on a grid (+fluct.) of cell area a0

Include the ghosts in the clustering

If a jet contains Ng ghosts, its area is Nga0
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Area–median pileup subtraction method

[M.Cacciari, G.P. Salam, 08]

Estimation: ρest = median
j∈patches

{

pt,j

Aj

}

Subtraction: p
(sub)
t,jet = pt,jet − ρestAjet

per event
(typically)

per jet
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Simple discussion of pileup subtraction (take 1)

To illustrate the physics, use a simple (1-D) event with 1 jet + PU

Pileup

Hard
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Simple discussion of pileup subtraction (take 1)
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Pileup
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Grégory Soyez Pileup mitigation at the LHC 12 / 36



Simple discussion of pileup subtraction (take 1)

Subtract pileup from the hard jets

Pileup

Hard

ρA
Aσ

Area-median subtraction would subtract ρA

Grégory Soyez Pileup mitigation at the LHC 12 / 36



Simple discussion of pileup subtraction (take 1)

Subtract pileup from the hard jets

Pileup

Hard

Aσ

For the hard jets: unbiased (average ≈ 0) and robust
For the hard jets: smearing ≈ σ

√
A (smaller than ±σρA± σ

√
A)
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Subtraction benchmarks

[revamped Les-Houches 2011 study]

average pt shift
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Subtraction benchmarks
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event-by-event ρ is key
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PU subtraction as seen in ATLAS

[B. Petersen, ATLAS Status report for the LHCC, 2013]
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PU subtraction as seen in ATLAS

[B. Petersen, ATLAS Status report for the LHCC, 2013]

Gain compared to a
f (µ,NPV ) correction:

even-by-event determination
of ρ captures the fluctuations
better than an (averaged)
fixed function

(one partial exception where f (µ,NPV ) info helps
the area–median is for the rapidity profile in

the forward calorimater; ask details later)
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Further developments

Improvements/extensions of the basic method

Methods to handle positional dependence of ρ
Directly relevant for the LHC (e.g. rapidity dependence)

[M.Cacciari,G.Salam,GS,2010-2011]

Subtraction for jet mass and jet shapes
Important for jet tagging (“q v. g jet”, b jet, top jet, H → bb̄)

[GS,G.Salam,J.Kim,S.Dutta,M.Cacciari,2013]
[P.Berta,M.Spousta,D.Miller,R.Leitner,2014]

Applications to CHS events
[M.Cacciari,G.Salam,GS,2013]

Applications to heavy-ion collisions (not discussed here)

[M.Cacciari,J.Rojo,G.Salam,GS,2011]

Subtraction of fragmentation function (moments) (not discussed here)

Useful for quenching in PbPb collisions
[M.Cacciari,P.Quiroga,G.Salam,GS,2012]
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Rapidity dependence

ρ = median
j∈patches

{

pt,j

Aj

}

−→ ρ(y) = f (y)median
j∈patches

{

pt,j

Aj f (yj )

}

f (y) from minbias
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4-vector and jet mass subtraction

p
µ,(sub)
jet = p

µ
jet − ρestA

µ
jet
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4-vector and jet mass subtraction

p
µ,(sub)
jet = p

µ
jet − ρestA

µ
jet

How do we do for the jet mass?
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4-vector and jet mass subtraction

Generic 4-vector: (mt =
√

p2t +m2)

pµ ≡ (pt cos(φ), pt sin(φ),mt sinh(φ),mt cosh(φ))

Background uniform in y and φ

⇒ 2 degrees of freedom: pt and mt
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4-vector and jet mass subtraction

Generic 4-vector: (mt =
√

p2t +m2)

pµ ≡ (pt cos(φ), pt sin(φ),mt sinh(φ),mt cosh(φ))

Background uniform in y and φ

⇒ 2 degrees of freedom: pt and mt

For pile-up contamination in a jet:

∑

i

p
µ
i =

∑

i

(pt,i cos(φi ), pt,i sin(φi ),mt,i sinh(φi ),mt,i cosh(φi ))

=
∑

i

pt,i(cos(φi ), sin(φi ), sinh(φi ), cosh(φi ))

+ (mt,i − pt,i)(0, 0, sinh(φi ), cosh(φi ))

1st line is ∝ ρ× ghost coverage; 2nd line is a new correction
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4-vector and jet mass subtraction

p
µ
sub = pµ − ρAµ − ρmA

µ
m

with

ρm = median
j∈patches

{

∑

i∈j mt,i − pt,i

A

}

and Aµ
m ≡ (0, 0,Az ,AE )
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Jet shapes: extrapolation to 0 pileup

jet pt

shape

p
(withPU)
t

s(withPU) q
measured

Grégory Soyez Pileup mitigation at the LHC 20 / 36



Jet shapes: extrapolation to 0 pileup

jet pt

shape

p
(withPU)
t

s(withPU) q
measured

p
(noPU)
t ρA

s(noPU) q
goal

increasing PU
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Jet shapes: extrapolation to 0 pileup

jet pt

shape

p
(withPU)
t

s(withPU) q
measured

p
(noPU)
t ρA

s(noPU) q
goal

increasing PU

s(sub,1st) q

1st-order extrap

knowledge of the derivatives wrt uniform shift of PU

→ extrapolate from pt,jet to pt,jet − ρA
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Jet shapes: extrapolation to 0 pileup

jet pt

shape

p
(withPU)
t

s(withPU) q
measured

p
(noPU)
t ρA

s(noPU) q
goal

increasing PU

s(sub,1st) q

1st-order extrap

knowledge of the derivatives wrt uniform shift of PU

→ extrapolate from pt,jet to pt,jet − ρA

s(sub,2nd)
q

2nd-order extrap
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Jet shapes performance

Example: N-subjettiness for boosted top tagging
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good performance and stability
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Application to CHS events

Assume idealised CHS (perfect separation between charged and neutral,

perfect charged pileup identification)

Area–median applies as before
with ρ estimated from the neutrals (or CHS)
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Application to CHS events

Assume idealised CHS (perfect separation between charged and neutral,

perfect charged pileup identification)

Area–median applies as before
with ρ estimated from the neutrals (or CHS)

Subtleties

PU charged tracks can be kept as ghosts (with ∞al momentum)
additional +ivity constraints
A “neutral-proportional-to-charged” (NpC) approach like

p
(sub)
t,neutral = p

(full)
t,neutral − γp

(PU)
t,charged

does a slightly worse job than the area–median
(mostly because soft physics looses the collinear correlation etween charged

and neutrals)
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Area–median: final recommendations

Issue: information scattered over several papers
⇒ Goal/Idea: summarise recommendations for the area–median method

Recommendations

Basic setup:

use active areas with ghosts up to the particle rapidity acceptance
(+ use n repeat=1 + try lowering a0 + keep random seeds)

estimate ρ using a grid of size 0.55 (0.5-0.7)
use rapidity rescaling for the positional dependence

Generic usage:

use explicit ghosts
include the extra ρm term for observables sensitive to particle masses
use “safe mass” subtraction (avoids negative m2)

Specific usage:

CHS events: ρ from neutral or CHS (PU tracks as ghosts)
For grooming: subtract subjets before applying the grooming condition
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Area–median: final recommendations

Issue: information scattered over several papers
⇒ Goal/Idea: summarise recommendations for the area–median method

Recommendations

Basic setup:

use active areas with ghosts up to the particle rapidity acceptance
(+ use n repeat=1 + try lowering a0 + keep random seeds)

estimate ρ using a grid of size 0.55 (0.5-0.7)
use rapidity rescaling for the positional dependence

Generic usage:

use explicit ghosts
include the extra ρm term for observables sensitive to particle masses
use “safe mass” subtraction (avoids negative m2)

Specific usage:

CHS events: ρ from neutral or CHS (PU tracks as ghosts)
For grooming: subtract subjets before applying the grooming condition

Everything implemented in FastJet
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Pileup mitigation

3. towards new strategies
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Goal/Challenges

Goal: get a better resolution i.e. reduce effects of σ

Come back to our simple (1-D) event with 1 jet + PU

Pileup

Hard
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Goal/Challenges

Goal: get a better resolution i.e. reduce effects of σ

Now, we look at a smaller scale, e.g. subjets (or particles)

Pileup

Hard
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Goal/Challenges

Goal: get a better resolution i.e. reduce effects of σ

Now, we look at a smaller scale, e.g. subjets (or particles)

Pileup

Hard

sub
sub

Aσ Aρ

Similar to before:
∑

ρAsub = ρAjet and
∑

σ2Asub = σ2Ajet
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Goal/Challenges

Goal: get a better resolution i.e. reduce effects of σ

Now, we look at a smaller scale, e.g. subjets (or particles)

Pileup

Hard

subtract ρAsub in each subjet
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Goal/Challenges

Goal: get a better resolution i.e. reduce effects of σ

Now, we look at a smaller scale, e.g. subjets (or particles)

Pileup

Hard

But one gets (unphysical) negative subjets!!
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Goal/Challenges

Goal: get a better resolution i.e. reduce effects of σ

Now, we look at a smaller scale, e.g. subjets (or particles)

Pileup

Hard

With a simple cut: reduced energy smearing, but biased (undersubtraction)
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Goal/Challenges

Goal: get a better resolution i.e. reduce effects of σ

Now, we look at a smaller scale, e.g. subjets (or particles)

Pileup

Hard

For an unbiased method, we need to balance negative and positive subjets
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Goal/Challenges

Goal: get a better resolution i.e. reduce effects of σ

Now, we look at a smaller scale, e.g. subjets (or particles)

Generic idea

Say we have a method that keeps/thrown away particles (or subjets)

PU particles kept: positive bias

“hard” particles thrown out: negative bias

The two biases need to balance generically (all pt , NPU,...)

Challenge: fine-tuning to get small biases + robustness at stakes
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Preliminary ideas to explore (0/2)

We have explored many options mostly in 2 directions:

Subjet-based (grooming) techniques

Idea: use a grooming technique
Cluster the jet into smaller subjets, subtract the subjets, keep only
some of the hard subjets
Example: keep subjets with pt ≥ nσ

√

Asubjet (“above noise”)

even-wide particle-level subtraction

Idea: cut or subtract soft particles in the whole event
Useful quantities to consider: particle pt , Voronoi particle area, ...
various “stopping conditions” considered (examples later)
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Preliminary ideas to explore (1/2)

[GS, unpublished, started in Les-Houches 2013]

Category 1: use subjets (grooming: Filtering, trimming, area-trimming)
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Preliminary ideas to explore (2/2)

[M.Cacciari,G.Salam,GS, unpublished]

Category 2: particle-level subtraction (before clustering)
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The SoftKiller approach to event-wide subtraction

[M.Cacciari,G.Salam,GS,2014]

Come back to our toy event...

Pileup

Hard
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The SoftKiller approach to event-wide subtraction

[M.Cacciari,G.Salam,GS,2014]

Come back to our toy event...

Pileup

Hard

cut

start to remove the softest particles
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The SoftKiller approach to event-wide subtraction

[M.Cacciari,G.Salam,GS,2014]

Come back to our toy event...

Pileup

Hard

cut

progressively increase the cut on soft particles
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The SoftKiller approach to event-wide subtraction

[M.Cacciari,G.Salam,GS,2014]

Come back to our toy event...

Pileup

Hard

cut

empty empty empty empty empty

until the estimated ρ is 0 (i.e. half the event is empty)
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The SoftKiller approach to event-wide subtraction

[M.Cacciari,G.Salam,GS,2014]

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  50  100  150  200

√s=14 TeV, Pythia8(4C)

anti-kt(R=0.4), pt,jet>50 GeV

〈∆
p

t〉 
[G

e
V

]

NPU

area-median, dijets

area-median, ttbar

SoftKiller(a=0.4), dijets

SoftKiller(a=0.4), ttbar

Reasonable bias

 0

 3

 6

 9

 12

 15

 18

 0  50  100  150  200

√s=14 TeV, Pythia8(4C)

anti-kt(R=0.4), pt,jet>50 GeV
σ ∆

p
t [

G
e

V
]

NPU

area-median, dijets

area-median, ttbar

SoftKiller(a=0.4), dijets

SoftKiller(a=0.4), ttbar

smaller dispersion

Grégory Soyez Pileup mitigation at the LHC 29 / 36



The SoftKiller approach to event-wide subtraction

[M.Cacciari,G.Salam,GS,2014]

Remarkable timings
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great e.g. for trigger
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The SoftKiller approach to event-wide subtraction

[M.Cacciari,G.Salam,GS,2014]
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SoftKiller + clustering
clustering after SoftKiller

SoftKiller
SoftKiller (no y,φ init)

great e.g. for trigger

Preliminary work

adding zeroing (remove if not close to a

chg track from LV) helps a bit further

Not obvious to improve on
angular (R) dependence)
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Analytic properties

Many effects understood e.g. from a Gaussian approximation

Here: also discussing more specific examples
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Simple example PU+steeply-falling spectrum

Gaussian pileup: (σ ≪ ρ ≪ pt,jet)

dP

dδpt,PU
=

1√
2πAσ

exp

(

−(pt,PU − ρA)2

2σ2A

)

,

“hard” spectrum can be approximated by:

dσtruth

dpt
=

σ0

µ
e−pt/µ

We find the expected shift and smearing effects:

dσreco

dpt
=

dσtruth

dpt
exp

(

ρA

µ
+

σ2A

2µ2

)

and

p
most likely
t,truth = pt,reco − ρA− σ2A

µ
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Analytic properties of jet areas
[M.Cacciari, G.Salam, GS, 08]

Jet areas are (almost by definition) infrared unsafe.
But we can say many (analytic) things about them

Passive area (for simplicity)

Add one “ghost” (∞alpt): ajet =
∫

dy dφΘ(ghost at (y , φ) ∈ jet)

Perturbative calculations of area

1 particle:

a = πR2
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Analytic properties of jet areas
[M.Cacciari, G.Salam, GS, 08]

Jet areas are (almost by definition) infrared unsafe.
But we can say many (analytic) things about them

Passive area (for simplicity)

Add one “ghost” (∞alpt): ajet =
∫
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Analytic properties of jet areas
[M.Cacciari, G.Salam, GS, 08]

Jet areas are (almost by definition) infrared unsafe.
But we can say many (analytic) things about them

Passive area (for simplicity)

Add one “ghost” (∞alpt): ajet =
∫

dy dφΘ(ghost at (y , φ) ∈ jet)

Perturbative calculations of area

1 particle + 1 soft particle:
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Analytic properties of jet areas
[M.Cacciari, G.Salam, GS, 08]

Jet areas are (almost by definition) infrared unsafe.
But we can say many (analytic) things about them

Passive area (for simplicity)

Add one “ghost” (∞alpt): ajet =
∫

dy dφΘ(ghost at (y , φ) ∈ jet)

Perturbative calculations of area

One noticeable exception:

anti-kt jets are insensitive
to soft particles
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Analytic properties of the ρ estimation

[Adapted from [M.Cacciari, G.Salam, S.Sapeta, 10]

How good is our estimation of ρ? What drives differences?
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Analytic properties of the ρ estimation

[Adapted from [M.Cacciari, G.Salam, S.Sapeta, 10]

How good is our estimation of ρ? What drives differences?

Setup

Toy-model for pileup (indep particles with exp spectrum)

soft emissions from the hard event (initial-initial state)

Gives at least parametric estimates (pt , ρ, σ,R ,range)
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Analytic properties of the ρ estimation

[Adapted from [M.Cacciari, G.Salam, S.Sapeta, 10]

How good is our estimation of ρ? What drives differences?

Setup

Toy-model for pileup (indep particles with exp spectrum)

soft emissions from the hard event (initial-initial state)

Gives at least parametric estimates (pt , ρ, σ,R ,range)

Median 6= average:

ρest − ρ

ρ
∝ − σ2

ρ2a2grid

Hard contaminates median:

ρest − ρ

ρ
∝ +

agridσ

ρ
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Analytic properties of the ρ estimation

[Adapted from [M.Cacciari, G.Salam, S.Sapeta, 10]

How good is our estimation of ρ? What drives differences?

Setup

Toy-model for pileup (indep particles with exp spectrum)

soft emissions from the hard event (initial-initial state)

Gives at least parametric estimates (pt , ρ, σ,R ,range)

Median 6= average:

ρest − ρ

ρ
∝ − σ2

ρ2a2grid

Hard contaminates median:

ρest − ρ

ρ
∝ +

agridσ

ρ

Many applications (in the thesis and beyond)

sizeable agrid range, range size estimates, jet R optimisation
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Usefulness of analytic control

Analytic control of 3 types:

simple Gaussian description of PU effects

understanding of how a jet reacts to soft particles (area
understanding)

understanding of biases of the area–median

have greatly helped the understanding of jet algs and PU subtraction

Cone v. kt v. anti-kt around 2008

understanding of areas–median biases (e.g. number of jets in the
median estimate)

understanding of grooming selection biases

...
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Future perspectives
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Ideas for future work

Several directions of varying interest and impact

Towards better PU mitigation techniques

Can we get analytic control from (pQCD)hard + (toy-model/data)PU?

Analytic control over SoftKiller parameter (NPU, pt , R dependence)

Better analytic understanding of grooming techniques

Deeper exploration of other noise-reduction techniques

Ultimate goal: use that knowledge to design efficient new techniques

Other curiosities/open questions

Areas to tune Monte-Carlo?

Better analytic understanding of actve areas (e.g. pure-ghost jets)

What is the maximal reach of anti-kt jets?
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New candidates:
◮ better resolution
◮ fine-tuning

“external” not
reviewed here

Stay tuned
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