New perspectives in QCD with jet substructure

Grégory Soyez

IPhT, CEA Saclay, CNRS

University of Vienna, January 16 2018

Jets are routine QCD objects

- ubiquitous in collider physics
- around since 40 years
- used in at least 60% of LHC analyses

Jets are routine QCD objects

- ubiquitous in collider physics
- around since 40 years
- used in at least 60% of LHC analyses

You could live a happy life by just knowing a few things

Concepts:

- Jets are proxies to hard partons produced in collisions
- infrared-and-collinear safe
- capture collimated parton cascades from hard scale Q to $\mathcal{O}(1 \text{ GeV})$

Practically:

- obtained by running a clustering algorithm
- the LHC uses the anti- k_t algorithm
- FastJet covers covers all your numerical needs for clustering

Vienna, 16/01/2018

The anti- k_t (and generalised k_t algorithm)

From all the objects to cluster, define the distances

$$d_{ij} = \min(p_{t,i}^{2p}, p_{t,j}^{2p})(\Delta y_{ij}^2 + \Delta \phi_{ij}^2), \qquad d_{iB} = p_{t,i}^{2p}R^2$$

• repeatedly find the minimal distance if d_{ii} : recombine i and j into k = i + j

if d_{iB} : call i a jet

The anti- k_t (and generalised k_t algorithm)

From all the objects to cluster, define the distances

$$d_{ij} = \min(p_{t,i}^{2p}, p_{t,j}^{2p})(\Delta y_{ij}^2 + \Delta \phi_{ij}^2), \qquad d_{iB} = p_{t,i}^{2p}R^2$$

repeatedly find the minimal distance

```
if d_{ij}: recombine i and j into k = i + j if d_{iB}: call i a jet
```

- Parameter p is (typically) one of
 - p = 1: k_t algorithm (closest to QCD) [Catani,Dokshitzer,Seymour,Weber,Ellis,Soper,1993]
 - p = 0: Cambridge/Aachen (geometrical distance) [Dokshitzer,Leder,Moretti,Webber,1997]
 - p = -1: anti- k_t (the LHC choice) [M.Cacciari, G.Salam, GS, 2008]

Start with your favourite picture

Start with your favourite picture event

min is $d_{ij} = 2.7 \, 10^{-5}$

min is $d_{ij} = 2.2 \, 10^{-5}$

min is $d_{ij} = 6.7 \, 10^{-5}$

min is $d_{ij} = 4.7 \, 10^{-5}$

min is $d_{ij} = 4.1 \, 10^{-5}$

min is $d_{ij} = 4.5 \, 10^{-5}$

min is $d_{ij} = 4.8 \, 10^{-5}$

min is $d_{ij} = 5.4 \, 10^{-5}$

min is $d_{iB} = 4.9 \, 10^{-5}$

declare as a jet

min is $d_{ij} = 1.5 \, 10^{-4}$

min is $d_{ij} = 1.1 \, 10^{-4}$

min is $d_{ij} = 1.4 \, 10^{-4}$

min is $d_{iB} = 1.8 \, 10^{-4}$

declare as a jet

min is $d_{ij} = 2.6 \, 10^{-4}$

declare as a jet

min is $d_{iB} = 2.1 \, 10^{-4}$

decclare as a jet

min is $d_{ij} = 4.6 \, 10^{-4}$

recombine them

min is $d_{iB} = 8.2 \, 10^{-4}$

declare as a jet

Substructure means looking at the internal dynamics of jets (as opposed to consider jets as monolithic objects)

Substructure means looking at the internal dynamics of jets (as opposed to consider jets as monolithic objects)

Many useful/interesting aspects:

- boosted jet tagging (now a common search tool)
- entered the field of Heavy-Ion collisions
- rich QCD phenomenology
- precision calculations at the LHC
- many conceptual ideas

Substructure means looking at the internal dynamics of jets (as opposed to consider jets as monolithic objects)

Many useful/interesting aspects:

- boosted jet tagging (now a common search tool)
- entered the field of Heavy-Ion collisions
- rich QCD phenomenology
- precision calculations at the LHC
- many conceptual ideas

This talk: give you a hint of all these aspects

Boosted objects and searches

Boosted objects

(massive) objects produced boosted (energy \gg mass) are seen as 1 jet:

$$heta_{qar{q}}\sim rac{m}{p_t}$$

Boosted objects

use substructure to separate from QCD jets

What jet do we have here?

a quark?

- a quark?
- a gluon?

- a quark?
- a gluon?
- \bullet a W/Z (or a Higgs)?

- a quark?
- a gluon?
- a W/Z (or a Higgs)?
- a top quark?

What jet do we have here?

- a quark?
- a gluon?
- a W/Z (or a Higgs)?
- a top quark?

Source: ATLAS boosted top candidate

What jet do we have here?

- a quark?
- a gluon?
- a W/Z (or a Higgs)?
- a top quark?

Source: ATLAS boosted top candidate

Many applications, all relevant to new physics searches:

- 2-pronged decay: W/Z o qar q, H o bar b
- 3-pronged decay: t o qqb, $ilde{\chi} o qqq$
- quark-gluon discrimination
- more exotic signatures

Searches and measurements

- ↑ (now-gone) di-boson excess (end of Run-I)
- ightharpoonup Search for X o qar qRegion inaccessible otherwise
- \rightarrow Clear Z peak, hint of a H peak

Conceptual ideas

Like a kid in a candy store

Compared to standard jets, substructure uses a large toolkit

- all kinds of jet algorithms anti- k_t , Cambridge/Aachen (ang-ordered), k_t , generalised k_t , winner-takes-all recomb., ...
- tools to find peaks in jets
 (modified) mass-drop, Soft Drop, trimming, JHTopTagger, ...
- tools to quantify radiation patterns in jets

 N-subjettiness, energy-correlation functions, planar flow, ...
- tools to limit sensitivity to soft-large-angle radiation (UE, PU,...)
 filtering, trimming, pruning, Soft Drop, (m)MDT, ...

Active field for developing/studying new tools, combining them,...

Requires both some creativity and some control over the underlying physics

[J.Butterworth, A.Davison, M.Rubin, G.Salam, 08]

Variant: **SoftDrop**: impose $z > z_{cut}\theta^{\beta}$

[A.Larkoski, S.Marzani, GS, J.Thaler, 14]

Vienna, 16/01/2018

Study radiation: *N*-subjettiness

Given N axes/prongs in a jet (axes) $[\neq$ options, e.g. k_t subjets]

$$\tau_N^{(\beta)} = \frac{1}{p_T R^{\beta}} \sum_{i \in \text{jet}} p_{t,i} \min(\theta_{i,a_1}^{\beta}, \dots, \theta_{i,a_n}^{\beta})$$

Study radiation: N-subjettiness

Given N axes/prongs in a jet (axes) \neq options, e.g. k_t subjets

$$\tau_{N}^{(\beta)} = \frac{1}{p_{T}R^{\beta}} \sum_{i \in \text{jet}} p_{t,i} \min(\theta_{i,a_{1}}^{\beta}, \dots, \theta_{i,a_{n}}^{\beta})$$

- Measures the radiation from N prongs
- $\tau_{N,N-1} = \tau_N/\tau_{N-1}$ discriminates N-prong v. QCD
- τ_{21} smaller for W than for QCD
- τ_{32} smaller for top than for QCD

Several alternatives similar to τ_N

Expanding in new directions

Latest playground: deep learning

Machine Learning has become a major player

Many architectures:

ANN Artificial Neural Network

DNN Dense Neural Network

CNN Convolutional Neural Network

GANN Generative Adversarial Neural Network

LSTM Long Short-Term Memory Neural Network

- Many approaches:
 Feed jet variables, jet constituents, jet images, ...
- Many applications: q/g, b, W, H, t tagging, pileup-mitigation, detector sim, ...

Latest playground: deep learning

Example 1: jet image for W vs. QCD jets using Convolutional/Dense NN

Improvement compared to standard approach

Expanding in new directions Heavy-Ion collisions

Measuring the splitting function

- Take a jet with large p_t
- ullet apply mMDT o hard splitting
- $z_g \equiv$ mom fraction of that splitting

Measurement in *PbPb* shows quenching effects

Expect more to come in the (near) future...

Measuring the splitting function

First "analysis" using CMS Open Data

- Open data is a heated debate
- many interesting possibilities (incl. substructure)

[Larkoski, Marzani, Thaler, Thipathee, Xue, 17]

Rich QCD phenomenology

Substructure from first principles (1/2)

For a long time, it was thought that the complexity of substructure techniques implies throwing the ability to make analytic calculations

Substructure from first principles (1/2)

For a long time, it was thought that the complexity of substructure techniques implies throwing the ability to make analytic calculations

Proven wrong in 2013 by

M.Dasgupta, A.Fregoso S.Marzani and G.Salam (arXiv:1307.0007)

Substructure from first principles (1/2)

For a long time, it was thought that the complexity of substructure techniques implies throwing the ability to make analytic calculations

Proven wrong in 2013 by

M.Dasgupta, A.Fregoso S.Marzani and G.Salam (arXiv:1307.0007)

Main benefits of a first-principles understanding:

- understanding the dynamics at play in jet kinematics (example later)
- understand similarities and differences between methods e.g. trimming, prunng, mMDT similar at large mass, differ at low mass
- adjust substructure tools for better performance (e.g. modified MDT)
- understand parametric dependence, e.g. p_t (without generators)
- highlight a trade-off between performance and model-independence

Substructure from first principles (2/2)

- Several interesting directions (all overviewed below)
 - Understanding how the methods work
 - Building improved tools
 - Precision QCD at the LHC
 - Funny structures in pQCD

Substructure from first principles (2/2)

- Several interesting directions (all overviewed below)
 - Understanding how the methods work
 - Building improved tools
 - Precision QCD at the LHC
 - Funny structures in pQCD

Substantial progress in understanding substructure, e.g.:

	peak finder	radiation
W/Z/H	mMDT, trimming, pruning Dasgupta,Fregoso,Marzani,Salam,13	$ au_{21}^{(eta=2)}$, μ^2 , $D_2^{(eta=2)}$ Dasgupta,Schunk,GS,15
	SoftDrop Larkoski,Marzani,GS,Thaler,14	$D_2^{(eta)}$ Larkoski,Moult,Neill,15-16
top	CMSTopTagger, Y-splitter Dasgupta,Guzzi,Rawling,GS,soon	next task Cacciari,Napoletano,GS,Stagnitto,18-20

Main idea:

Boosted jet
$$\Rightarrow p_t \gg m$$

$$\Rightarrow \rho \equiv \frac{m^2}{p_t^2 R^2} \ll 1$$

$$\Rightarrow \text{expect log } \rho \text{ coming with } \alpha_s$$

$$\Rightarrow \text{need for all-order resummation}$$

Main idea:

Boosted jet
$$\Rightarrow p_t \gg m$$

$$\Rightarrow \rho \equiv \frac{m^2}{p_t^2 R^2} \ll 1$$

$$\Rightarrow \text{expect log } \rho \text{ coming with } \alpha_s$$

$$\Rightarrow \text{need for all-order resummation}$$

• Example: jet mass with one (soft-and-collinear) gluon emission

$$\begin{aligned} \mathsf{Prob}_1(>\rho) &\simeq \int_0^1 \frac{d\theta^2}{\theta^2} \frac{dz}{z} \frac{\alpha_s \, \mathsf{C}_R}{\pi} \Theta(z\theta^2 > \rho) \\ &\simeq \frac{\alpha_s \, \mathsf{C}_R}{2\pi} \log^2(1/\rho) \end{aligned} \longrightarrow 0$$

• (plain) jet mass again:

$$\mathsf{Prob}_{1}^{(\mathsf{plain})}(>\rho) \simeq \int_{0}^{1} \frac{d\theta^{2}}{\theta^{2}} \frac{dz}{z} \frac{\alpha_{s} C_{R}}{\pi} \Theta(z\theta^{2} > \rho)$$

$$\simeq \frac{\alpha_{s} C_{R}}{2\pi} \log^{2}(1/\rho)$$

• (plain) jet mass again:

$$\mathsf{Prob}_{1}^{(\mathsf{plain})}(>\rho) \simeq \int_{0}^{1} \frac{d\theta^{2}}{\theta^{2}} \frac{dz}{z} \frac{\alpha_{s} C_{R}}{\pi} \Theta(z\theta^{2} > \rho)$$

$$\simeq \frac{\alpha_{s} C_{R}}{2\pi} \log^{2}(1/\rho)$$

• mMDT jet mass:

$$\begin{split} \mathsf{Prob}_1^{\mathsf{(mMDT)}}(>\rho) &\simeq \int_0^1 \frac{d\theta^2}{\theta^2} \frac{dz}{z} \frac{\alpha_s \, \mathsf{C}_R}{\pi} \Theta(z\theta^2 > \rho) \, \Theta(z > z_{\mathsf{cut}}) \\ &\simeq \frac{\alpha_s \, \mathsf{C}_R}{\pi} \Big[\log(1/\rho) \log(1/z_{\mathsf{cut}}) - \frac{1}{2} \log^2(1/z_{\mathsf{cut}}) \Big] \end{split}$$

• (plain) jet mass again:

$$\mathsf{Prob}_{1}^{(\mathsf{plain})}(>\rho) \simeq \int_{0}^{1} \frac{d\theta^{2}}{\theta^{2}} \frac{dz}{z} \frac{\alpha_{s} C_{R}}{\pi} \Theta(z\theta^{2} > \rho)$$

$$\simeq \frac{\alpha_{s} C_{R}}{2\pi} \log^{2}(1/\rho)$$

• mMDT jet mass:

$$\begin{split} \mathsf{Prob}_1^{\mathsf{(mMDT)}}(>\rho) &\simeq \int_0^1 \frac{d\theta^2}{\theta^2} \frac{dz}{z} \frac{\alpha_{\mathsf{s}} \mathsf{C}_R}{\pi} \Theta(z\theta^2 > \rho) \, \Theta(z > z_{\mathsf{cut}}) \\ &\simeq \frac{\alpha_{\mathsf{s}} \, \mathsf{C}_R}{\pi} \Big[\log(1/\rho) \log(1/z_{\mathsf{cut}}) - \frac{1}{2} \log^2(1/z_{\mathsf{cut}}) \Big] \end{split}$$

all-order result (Leading-Log): for both the "plain" jet and mMDT

$$\mathsf{Prob}_{\mathsf{LL}}(<\rho) = \exp[-\mathsf{Prob}_1(<\rho)]$$

Rich QCD phenomenology Explicit examples at LL

- Understanding jet substructure: revisited jet mass (plain and mMDT)
- Understanding jet substructure: N-subjettiness
- Designing new tools: Dichroic N-subjettiness

Observables in the soft-collinear limit

Jet "mass":
$$(z_1\theta_1^2 \gg z_2\theta_2^2 \gg ...)$$

$$\rho \equiv \frac{m^2}{p_t^2 R^2} = \sum_{i \in \text{jet}} z_i \theta_i^2 \approx z_1 \theta_1^2$$

N-subjettiness:

$$\tau_1 = \rho$$

$$\tau_2 = \sum_{i=2}^n z_i \theta_i^2 \approx z_2 \theta_2^2$$

(plain) jet mass spectrum at LL

$$\frac{\rho}{\sigma} \frac{d\sigma}{d\rho} = R'_{\text{plain}} \, \exp(-R_{\text{plain}})$$

1 veto on larger-mass (Sudakov)

$$R_{
m plain} \simeq rac{lpha_s \, C_R}{2\pi} \log^2(1/
ho)$$

emission of given mass

$$R'_{\mathsf{plain}} \simeq rac{lpha_{\mathsf{s}} \mathsf{C}_{R}}{\pi} \log(1/
ho)$$

(mMDT) jet mass spectrum at LL

$$\frac{\rho}{\sigma} \frac{d\sigma}{d\rho} = R'_{\text{mMDT}} \exp(-R_{\text{mMDT}})$$

veto on larger-mass (Sudakov)

$$R_{ extsf{mMDT}} \sim rac{lpha_s \, \mathcal{C}_R}{\pi} \log(1/
ho) \log(1/z_{ extsf{cut}})$$

emission of given mass

$$R'_{
m mMDT} \sim rac{lpha_s \mathcal{C}_R}{\pi} \log(1/z_{
m cut})$$

Smaller $R \longrightarrow \text{less bkg suppression}$ Smaller $R' \longrightarrow \text{more bkg suppression}$

 $[\mathsf{M.Dasgupta}, \mathsf{A.Fregoso}, \mathsf{S.Marzani}, \mathsf{G.Salam}]$

jet mass with a cut $\tau_{21} < \tau$:

$$\left. \frac{\rho}{\sigma} \frac{d\sigma}{d\rho} \right|_{<\tau} = R'_{\text{full}} \, \exp(-R_{\text{full}} - R_{\tau})$$

The Sudakov is (roughly) changed from

$$R_{\mathsf{full}} \sim rac{lpha_{\mathsf{s}} \, \mathsf{C}_{R}}{2\pi} \, \mathsf{log}^{2}(1/
ho)$$

to

$$rac{ extcolor{R}_{ extcolor{full}} + extcolor{R}_{ au} \sim rac{lpha_s extcolor{C}_R}{2\pi} \log^2(1/
ho au)$$

i.e. extra Sudakov suppression

 $[\mathsf{M}.\mathsf{Dasgupta}, \mathsf{L}.\mathsf{Schunk}, \mathsf{GS}]$

Ideally we would want:

- a large R Sudakov (like for N-subjettiness)
- a small R' pre-factor (like for mMDT)

Ideally we would want:

- a large R Sudakov (like for N-subjettiness)
- a small R' pre-factor (like for mMDT)

Achieved by Dichroic N-subjettiness:

$$\tau_{21}^{(\text{dichroic})} = \frac{\tau_2^{(\text{plain})}}{\tau_2^{(\text{mMDT})}}$$

 $[\mathsf{G}.\mathsf{Salam}, \mathsf{L}.\mathsf{Schunk}, \mathsf{GS}]$

WATH OUT:

sensitivity to soft-large-angle i.e. UE, pileup, hadr., NGLs ⇒ poor control

SOLUTION:

"groom" (remove) that region

Can be done by "SoftDrop"

- smaller suppression
- better control

Understanding substructure tools

[M.Dasgupta, A.Fregoso S.Marzani, G.Salam, 13] [A.Larkoski, S.Marzani, GS, J.Thaler, 14]

qualitative features reproduced and understood

1000

0.1

Understanding substructure tools (cont'd)

qualitative features reproduced and understood

Improving substructure tools

More recently: use acquired understanding to develop improved tools

Examples:

- Y-splitter+groomong
 Dasgupta,Powling,Schunk,GS,16
- New angles on ECFs
 Moult, Necib, Thaler, 16
- Dichroic *N*-subjettiness

 Salam.Schunk.GS.16

Certainly more of these in the future!

Rich QCD phenomenology Towards precision physics

Precision physics

- tools like mMDT and Soft Drop cut soft radiation at large angles
 - \Rightarrow only sensitive to collinear branchings
 - ⇒ process-independent
 - \Rightarrow j in jj same as in Wj or Zj, ...
 - ⇒ small non-perturbative corrections
 - ⇒ amenable to precise calculations
- Recent precise calculations of the mMDDT/SD jet mass:
 - ► NNLL+LO in SCET

 (Frye,Larkoski,Schwartz,Yan; assumes small z_{cut})
 - NLL+NLO in "standard QCD" (Marzani,Schunk,GS; includes (LL) finite z_{cut} for mMDT)

Precision physics

Measurements at the LHC:

CMS-PAS-SMP-16-010

ATLAS(CERN-EP-2017-231)

good overall agreement with the data

Precision physics

Measurements at the LHC:

ATLAS(CERN-EP-2017-231)

good overall agreement with the data

Precise observable with limited sensitivity to NP effects

 \Rightarrow possibility to extract α_s (on-going study)

Rich QCD phenomenology Fun facts

Some observales are ill-defined in fixed-order pQCD:

- z_g not defined at $\mathcal{O}\left(\alpha_S^0\right)$ (only 1 particle in the jet)
- many ratios v_2/v_1 (like $au_{21}= au_2/ au_1$) have $v_2=v_1=0$ at $\mathcal{O}\left(lpha_s^0\right)$
- some observables are ill-defined at any fixed order (see next slide)

Some observales are ill-defined in fixed-order pQCD:

- z_g not defined at $\mathcal{O}\left(\alpha_S^0\right)$ (only 1 particle in the jet)
- many ratios v_2/v_1 (like $au_{21}= au_2/ au_1$) have $v_2=v_1=0$ at $\mathcal{O}\left(lpha_s^0\right)$
- some observables are ill-defined at any fixed order (see next slide)

but can still be computed perturbatively thanks to resummation

Some observales are ill-defined in fixed-order pQCD:

- z_g not defined at $\mathcal{O}\left(\alpha_S^0\right)$ (only 1 particle in the jet)
- many ratios v_2/v_1 (like $au_{21}= au_2/ au_1$) have $v_2=v_1=0$ at $\mathcal{O}\left(lpha_s^0\right)$
- some observables are ill-defined at any fixed order (see next slide)

but can still be computed perturbatively thanks to resummation Example: $r = e_{\alpha}/e_{\beta}$ with $e_{\alpha} = \sum_{i \in \text{iet}} z_i \theta_{i, \text{iet}}^{\alpha}$

We can write

$$\frac{dP}{dr} = \int de_{\alpha} de_{\beta} \frac{dP}{de_{\alpha}} \frac{dP}{de_{\beta}} \delta(r - e_{\alpha}/e_{\beta})$$

<u>Idea</u>: the dangerous case $e_{\beta}=0$ is absent because $\frac{dP}{de_{\beta}}\to 0$ in that limit (Sudakov exponential)

Some observales are ill-defined in fixed-order pQCD:

- z_g not defined at $\mathcal{O}\left(\alpha_S^0\right)$ (only 1 particle in the jet)
- many ratios v_2/v_1 (like $au_{21}= au_2/ au_1$) have $v_2=v_1=0$ at $\mathcal{O}\left(lpha_s^0\right)$
- some observables are ill-defined at any fixed order (see next slide)

but can still be computed perturbatively thanks to resummation Example: $r = e_{\alpha}/e_{\beta}$ with $e_{\alpha} = \sum_{i \in \text{iet}} z_i \theta_{i, \text{iet}}^{\alpha}$

We can write

$$rac{dP}{dr} = \int de_{lpha} \, de_{eta} \, rac{dP}{de_{lpha}} \, rac{dP}{de_{eta}} \, \delta(r - e_{lpha}/e_{eta})$$

<u>Idea</u>: the dangerous case $e_{\beta}=0$ is absent because $\frac{dP}{de_{\beta}}\to 0$ in that limit (Sudakov exponential)

A series of interesting results still many unknown to be explored

Curiosities (2/2): α_s independence

LL result:
$$Prob(<\Delta) = \frac{\log(z_{cut}) + \frac{3}{4}}{\log(\Delta) + \frac{3}{4}}$$

- What are we looking at?
 - jet with momentum p_{t,jet}
 - apply mMDT
 - ightharpoonup after, $p_t = p_{t, \text{mMDT}}$
 - measure $\Delta = \frac{p_{t,jet} p_{t,mMDT}}{p_{t,jet}}$ i.e. the lost p_t fraction
- Result: at LL and fixed coupling, the Δ distribution is α_s -independent

pQCD meets Machine Learning

QCD-motivated input to LSTM network shows great performance

Conclusions

Jet substructure has gained a lot of importance in the past decade

- Important tool for LHC physics
- exciting pQCD phenomenology
 - understanding and development of tools
 - precision pheno at the LHC
 - interesting structure emerging
- Expansion towards new horizons:
 - heavy-ion hard probes
 - machine learning

BOOST Annual meeting around 100 theorists and experimentalists discussing latest progress in substructure

BOOST Annual meeting around 100 theorists and experimentalists discussing latest progress in substructure

July 16-20: BOOST 2018 in Paris https://indico.cern.ch/e/boost2018

