Fast clustering of jets

Grégory Soyez

IPhT, CEA Saclay

GDR QCD — progress in algorithms and numerical tools May 16 2017

Brief plan

- Brief intro about the physics concepts: what are jets
- Clustering algorithms: Cambridge/Aachen, k_t , anti- k_t
- Main part: Nearest-neighours and fast clustering
- If time left: Enumerating circles

Jets

• Final-state events are pencil-like already observed in e^+e^- collisions:

• Consequence of the collinear divergence QCD (quark & gluon) branching proba: $\frac{dP}{d\theta} \propto \frac{\alpha_s}{\theta}$

Jets

• Final-state events are pencil-like already observed in e^+e^- collisions:

• Consequence of the collinear divergence QCD (quark & gluon) branching proba: $\frac{dP}{d\theta} \propto \frac{\alpha_s}{\theta}$

"Jets" ≡ bunch of collimated particles

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Jets

• Final-state events are pencil-like already observed in e^+e^- collisions:

• Consequence of the collinear divergence QCD (quark & gluon) branching proba: $\frac{dP}{d\theta} \propto \frac{\alpha_s}{\theta}$

"Jets" \equiv bunch of collimated particles \cong hard partons

"Jets" \equiv bunch of collimated particles \cong hard partons

How many jets?

"Jets" \equiv bunch of collimated particles \cong hard partons

obviously 2 jets

"Jets" \equiv bunch of collimated particles \cong hard partons

How many jets

"Jets" \equiv bunch of collimated particles \cong hard partons

3 jets

"Jets" \equiv bunch of collimated particles \cong hard partons

3 jets... or 4?

"Jets" \equiv bunch of collimated particles \cong hard partons

3 jets... or 4?

- "collinear" is arbitrary
- "parton" concept strictly valid only at LO

Jet definition

A bit of useful kinematics

[Both: ATLAS public events ($H \rightarrow 2\mu 2e$ & 4 jets)]

- Rapidity y: longitudinal component (along the beam axis)
- Azimuthal angle ϕ : around the beam axis
- Transverse momentum p_t : "energy" transverse to the beam

2 big approaches to jet clustering

- 30 years of history and debates
- All introduce a parameter R
 - "Jet radius"
 - distance of "collinearity" in $y \phi$
- 2 big categories:
 - find circles (cones) containing flows of energy
 - undo a branching process by successive pairwise recombinations
- See Gavin's review from 2009 for details

Most common approach today: recombination algorithms

Generalised- k_t algorithm

• From all the objects to cluster, define the distances

$$d_{ij} = \min(p_{t,i}^{2p}, p_{t,j}^{2p})(\Delta y_{ij}^2 + \Delta \phi_{ij}^2), \qquad d_{iB} = p_{t,i}^{2p}R^2$$

repeatedly find the minimal distance

```
if d_{ij}: recombine i and j into k = i + j
```

if d_{iB} : call i a jet

Most common approach today: recombination algorithms

Generalised- k_t algorithm

• From all the objects to cluster, define the distances

$$d_{ij} = \min(p_{t,i}^{2p}, p_{t,j}^{2p})(\Delta y_{ij}^2 + \Delta \phi_{ij}^2), \qquad d_{iB} = p_{t,i}^{2p}R^2$$

repeatedly find the minimal distance

```
if d_{ij}: recombine i and j into k = i + j if d_{iB}: call i a jet
```

- Parameter p is (typically) one of
 - ▶ p = 1: k_t algorithm (closest to QCD) [Catani,Dokshitzer,Seymour,Weber,Ellis,Soper,1993]
 - p = 0: Cambridge/Aachen (geometrical distance) [Dokshitzer,Leder,Moretti,Webber,1997]
 - ▶ p = -1: anti- k_t (the LHC choice) [M.Cacciari,G.Salam,GS,2008]

Main question for today

1. Cambridge/Aachen

Given a set of N points (with weights p_t) in a plane $(y - \phi)$ repeatedly find the closest pair

2. $(anti-)k_t$

Same, but use (anti)- k_t distance for measuring closeness

Things to keep in mind

- *N* is in the 1000-50000 range \Rightarrow look at large *N*
- stopping distance R

Geometrical (Camb./Aachen) case: Naive approach

compute all d_{ij}	N^2
find minimum	N^2
recombine $i + j$	1
iterate	$\times N$
total	$\mathcal{O}(N^3)$

- works for all algs
- prohibitively slow

Geometrical (Camb./Aachen) case: Nearest neighbours

Observations:

• No need to keep track of all the distances:

$$\min_{i,j} \{d_{ij}\} = \min_i \{d_{i,NN(i)}\}$$
 with $NN(i) = \min_j \{d_{ij}\}$ only keep track of the nearest neighbour (NN) of each particle

• Do not recalculate all NNs at each step; if $i+j \to k$, we need NN(k) and $NN(\ell)$ when $NN(\ell)=i$ or j

Geometrical (Camb./Aachen) case: Nearest neighbours

Observations:

• No need to keep track of all the distances:

$$\min_{i,j} \{d_{ij}\} = \min_i \{d_{i,NN(i)}\}$$
 with $NN(i) = \min_j \{d_{ij}\}$ only keep track of the nearest neighbour (NN) of each particle

• Do not recalculate all NNs at each step; if $i+j \to k$, we need NN(k) and $NN(\ell)$ when $NN(\ell) = i$ or j

New implementation:

Init: compute all $NN(i)$	N^2
find smallest $d_{i,NN(i)}$	Ν
recombine $i + j$	1
compute $\mathit{NN}(k)$ and $\mathit{NN}(\ell)$'s	Ν
iterate	$\times N$
total	$\mathcal{O}\left(N^2\right)$

- works for all algs
- efficient for N not too large

- NN only in current or neighbouring tile
- \Rightarrow *NN* search is $\mathcal{O}(n = N/N_{\text{tiles}})$

Init: create tiling	Ν
Init: compute all $NN(i)$	Nn
Init: sort the $d_{i,NN(i)}$	$N \log(N)$
find smallest $d_{i,NN(i)}$	1
recombine $i + j$	1
compute $NN(k)$ and $NN(\ell)$'s	n
iterate	$\times N$
total	$\mathcal{O}(Nn)$

- NN only in current or neighbouring tile
- \Rightarrow *NN* search is $\mathcal{O}(n = N/N_{\text{tiles}})$

Init: create tiling	Ν
Init: compute all $NN(i)$	Nn
Init: sort the $d_{i,NN(i)}$	$N\log(N)$
find smallest $d_{i,NN(i)}$	1
recombine $i + j$	1
compute $\mathit{NN}(k)$ and $\mathit{NN}(\ell)$'s	n
iterate	$\times N$
total	$\mathcal{O}(Nn)$

- NN only in current or neighbouring tile
- \Rightarrow *NN* search is $\mathcal{O}(n = N/N_{\text{tiles}})$
- Valid for Cambr./Aachen $(d_{ij} = \Delta R_{ij}^2)$
- Variants for finding min{d_{i,NN(i)}}.
- Tricks to avoid neighbour tiles when possible

Init: create tiling	Ν
Init: compute all $NN(i)$	Nn
Init: sort the $d_{i,NN(i)}$	$N\log(N)$
find smallest $d_{i,NN(i)}$	1
recombine $i + j$	1
compute $NN(k)$ and $NN(\ell)$'s	n
iterate	×N
total	$\mathcal{O}(Nn)$

- NN only in current or neighbouring tile
- \Rightarrow *NN* search is $\mathcal{O}(n = N/N_{\text{tiles}})$
- Valid for Cambr./Aachen $(d_{ij} = \Delta R_{ii}^2)$
- Variants for finding min{d_{i,NN(i)}}.
- Tricks to avoid neighbour tiles when possible
- Optimal for $30 \lesssim N \lesssim 5 \, 10^5$

[M.Cacciari, G.Salam, 2005]

- Voronoi graph: bisectors between pairs of points
- NN(i) is one of the $O(\log N)$ adjacent cells
- Construct: $\mathcal{O}(N \log N)$
- Add/remove: O (log N)

[M.Cacciari, G.Salam, 2005]

Init: create Voronoi graph	$N \log(N)$
compute&sort $NN(i)$	$N \log(N)$
find smallest $d_{i,NN(i)}$	1
recombine $i + j$	1
update Voronoi	log N
iterate	×N
total	$\mathcal{O}(N \log N)$

- Voronoi graph: bisectors between pairs of points
- NN(i) is one of the
 O(log N) adjacent cells
- Construct: $\mathcal{O}(N \log N)$
- Add/remove: $\mathcal{O}(\log N)$

Uses http://www.ccgal.org (divide-and-conquer) [alternative: sweep line]

[M.Cacciari, G.Salam, 2005]

Init: create Voronoi graph	$N \log(N)$
compute&sort $NN(i)$	$N \log(N)$
find smallest $d_{i,NN(i)}$	1
recombine $i + j$	1
update Voronoi	log N
iterate	$\times N$
total	$\mathcal{O}(N \log N)$

- Voronoi graph: bisectors between pairs of points
- NN(i) is one of the
 O(log N) adjacent cells
- Construct: $\mathcal{O}(N \log N)$
- Add/remove: O (log N)
- Theoretical bound
- Variants according to treatment of periodicity
- Alternative: T. Chan's closest pair algorithm

Uses http://www.ccgal.org (divide-and-conquer) [alternative: sweep line]

[M.Cacciari, G.Salam, 2005]

Init: create Voronoi graph	$N \log(N)$
compute&sort $NN(i)$	$N \log(N)$
find smallest $d_{i,NN(i)}$	1
recombine $i + j$	1
update Voronoi	log N
iterate	×N
total	$\mathcal{O}(N \log N)$

- Voronoi graph: bisectors between pairs of points
- NN(i) is one of the
 O(log N) adjacent cells
- Construct: $\mathcal{O}(N \log N)$
- Add/remove: O (log N)
- Theoretical bound
- Variants according to treatment of periodicity
- Alternative: T. Chan's closest pair algorithm
- Optimal for large *N*

Uses http://www.ccgal.org (divide-and-conquer) [alternative: sweep line]

Other algorithms

What about
$$d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \Delta R_{ij}^2$$
 ?

Other algorithms

What about
$$d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \Delta R_{ij}^2$$
?

FastJet lemma

If the pair (i,j) minimises d_{ij} and $p_{ti}^{2p} < p_{tj}^{2p}$, then j is the geometrical NN of i.

<u>Proof.</u> Assume there is k s.t. $\Delta R_{ik} < \Delta R_{ij}$. We would have

$$d_{ik} = \min(p_{ti}^{2p}, p_{tk}^{2p}) \Delta R_{ik}^{2}$$

 $< p_{ti}^{2p} \Delta R_{ij}^{2} = d_{ij},$

a contradiction.

Other algorithms

What about
$$d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \Delta R_{ij}^2$$
?

FastJet lemma

If the pair (i,j) minimises d_{ij} and $p_{ti}^{2p} < p_{tj}^{2p}$, then j is the geometrical NN of i.

<u>Proof.</u> Assume there is k s.t. $\Delta R_{ik} < \Delta R_{ij}$. We would have

$$d_{ik} = \min(p_{ti}^{2p}, p_{tk}^{2p}) \Delta R_{ik}^{2}$$

 $< p_{ti}^{2p} \Delta R_{ij}^{2} = d_{ij},$

a contradiction.

 \Rightarrow all the above strategy (working with geometrical NN) work

```
[M.Cacciari, G.Salam, 2005]
[M.Cacciari, G.Salam, GS, 2011]
```

- Matteo Cacciari and Gavin Salam in 2005; I joined in 2008.
- http://www.fastjet.fr
- Software for fast jet clustering
- ullet Now extended to reference software for jet clustering + manipulations
- Used by the whole LHC community

[M.Cacciari, G.Salam, 2005] [M.Cacciari, G.Salam, GS, 2011]

• N^2 and tiling helps

[M.Cacciari, G.Salam, 2005] [M.Cacciari, G.Salam, GS, 2011]

- N^2 and tiling helps
- tiled variant

[M.Cacciari, G.Salam, 2005] [M.Cacciari, G.Salam, GS, 2011]

- N^2 and tiling helps
- tiled variant
- "lazy" version (9 or 25 tiles) New in FJ-3.1

[M.Cacciari, G.Salam, 2005] [M.Cacciari, G.Salam, GS, 2011]

- N^2 and tiling helps
- tiled variant
- "lazy" version (9 or 25 tiles) New in FJ-3.1
- CGAL, N In N

http://www.fastjet.fr (2/2)

[M.Cacciari, G.Salam, 2005] [M.Cacciari, G.Salam, GS, 2011]

- works for $k_t(N \ln N)$ and antik- $k_t(N^{3/2})$
- SISCone: see next slides
- ullet at LHC: 1000 imes faster than "KtJet"

• Cone algorithm: find directions of energy flow

- Cone algorithm: find directions of energy flow
- Stable cone: circle of radius R (in $y \phi$ plane) s.t. sum of momenta in the cone points towards the centre.

- Cone algorithm: find directions of energy flow
- <u>Stable cone</u>: circle of radius R (in $y \phi$ plane) s.t. sum of momenta in the cone points towards the centre.
- Big question: how to find the stable cones?

- Cone algorithm: find directions of energy flow
- <u>Stable cone</u>: circle of radius R (in $y \phi$ plane) s.t. sum of momenta in the cone points towards the centre.
- Big question: how to find the stable cones?
- <u>Similar ptoblems</u>: other similar problems where one partition the plane with a circle or a line and check for a condition. (Example: thrust)

- Cone algorithm: find directions of energy flow
- <u>Stable cone</u>: circle of radius R (in $y \phi$ plane) s.t. sum of momenta in the cone points towards the centre.
- Big question: how to find the stable cones?
- <u>Similar ptoblems</u>: other similar problems where one partition the plane with a circle or a line and check for a condition. (Example: thrust)
- Naive approach: test every possile partition $\Rightarrow \mathcal{O}(N2^N)$

- Cone algorithm: find directions of energy flow
- <u>Stable cone</u>: circle of radius R (in $y \phi$ plane) s.t. sum of momenta in the cone points towards the centre.
- Big question: how to find the stable cones?
- <u>Similar ptoblems</u>: other similar problems where one partition the plane with a circle or a line and check for a condition. (Example: thrust)
- Naive approach: test every possile partition $\Rightarrow \mathcal{O}(N2^N)$
- <u>Tevatron solution</u>: iterative approach starting from a set of "seeds"

- Cone algorithm: find directions of energy flow
- Stable cone: circle of radius R (in $y \phi$ plane) s.t. sum of momenta in the cone points towards the centre.
- Big question: how to find the stable cones?
- <u>Similar ptoblems</u>: other similar problems where one partition the plane with a circle or a line and check for a condition. (Example: thrust)
- Naive approach: test every possile partition $\Rightarrow \mathcal{O}(N2^N)$
- <u>Tevatron solution</u>: iterative approach starting from a set of "seeds"
 - reasonable speed $(\mathcal{O}(N^3))$

- Cone algorithm: find directions of energy flow
- <u>Stable cone</u>: circle of radius R (in $y \phi$ plane) s.t. sum of momenta in the cone points towards the centre.
- Big question: how to find the stable cones?
- <u>Similar ptoblems</u>: other similar problems where one partition the plane with a circle or a line and check for a condition. (Example: thrust)
- Naive approach: test every possile partition $\Rightarrow \mathcal{O}(N2^N)$
- <u>Tevatron solution</u>: iterative approach starting from a set of "seeds"
 - reasonable speed $(\mathcal{O}(N^3))$
 - ▶ Infrared (or collinear) unsafe \Rightarrow not good for theory

[G.Salam, GS, 2007]

(a) start with a circle

[G.Salam, GS, 2007]

- (a) start with a circle
- (b) it can be moved until it hits a first point

- (a) start with a circle
- (b) it can be moved until it hits a first point
- (c) it can e rotated until it touches a second \Rightarrow enumerate circles by enumerating pairs of points enumerate pairs: N^2 , check stability: $N \Rightarrow \mathcal{O}(N^3)$

- (a) start with a circle
- (b) it can be moved until it hits a first point
- (c) it can e rotated until it touches a second \Rightarrow enumerate circles by enumerating pairs of points enumerate pairs: N^2 , check stability: $N \Rightarrow \mathcal{O}(N^3)$
- (d) order the circles in angle $N \Rightarrow \mathcal{O}(N^2 \ln N)$

Conclusions

Geometrical constructions can help designing powerful algorithms

- tilings, Voronoi graphs for iterative clustering
- circles enumeration for cone algorithms

Thank You!