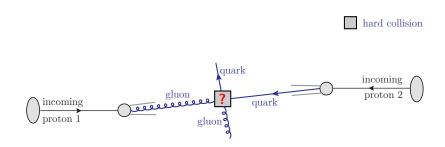
Jets at the LHC: from Run I to Run II and beyond Towards an optimal use of jet substructure

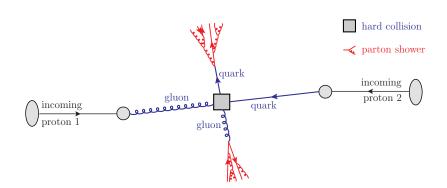
Grégory Soyez


IPhT, CEA Saclay

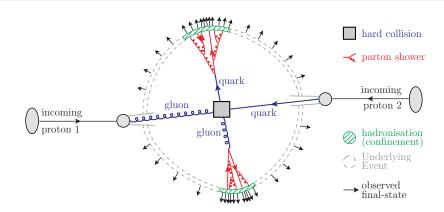
Université de Liège April 27 2016

Brief plan

- Introduction: "standard" jets at the LHC
 Jets at the LHC, anti-k_t algorithm, FastJet
- Boosted jets and jet substructure
 - New paradigm for jets
 - several methods/tools for a few ideas
 - what can pQCD tell us?


Handle on fundamental interactions

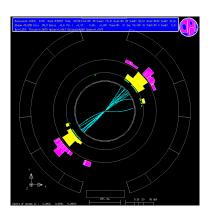
Learn about fundamental interactions by collising objects (protons) and study what comes out



Handle on fundamental interactions

- Leptons and photons are directly observed, neutrinos escape
- Quarks and gluons undergo more complex dynamics
- \bullet H/Z/W/t decay in leptons/neutrinos/photons/quarks

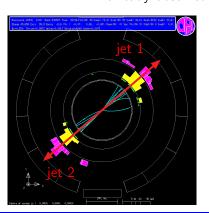
Handle on fundamental interactions




- Partially perturative/partially non-perturbative
- collimated structures in complex final statee
- Has to be reconstructed precisely to learn abouthard interactions

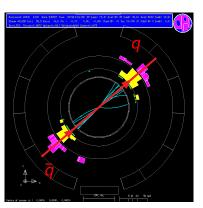
Jets: basic concepts

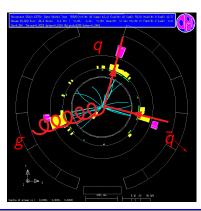
Jets


Final-state events are pencil-like already observed in e^+e^- collisions:

Jets

Final-state events are pencil-like already observed in e^+e^- collisions:

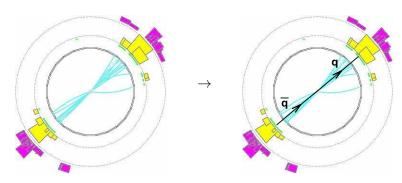




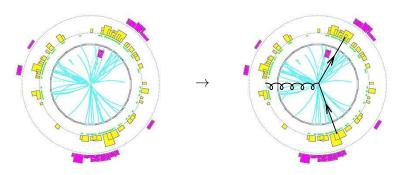
"Jets" ≡ bunch of collimated particles

Jets

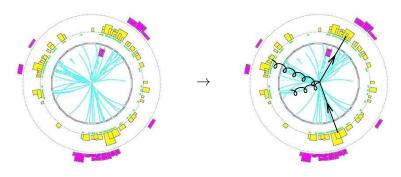
Final-state events are pencil-like already observed in e^+e^- collisions:



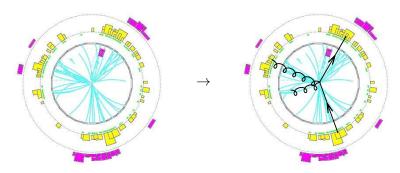
"Jets" \equiv bunch of collimated particles \cong hard partons


"Jets" \equiv bunch of collimated particles \cong hard partons

"obviously" 2 jets

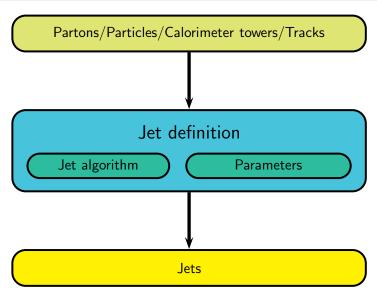

"Jets" \equiv bunch of collimated particles \cong hard partons

3 jets?


"Jets" \equiv bunch of collimated particles \cong hard partons

3 jets... or 4?

"Jets" \equiv bunch of collimated particles \cong hard partons


3 jets... or 4?

- "collinear" is arbitrary (typically needs a resolution parameter)
- "parton" concept strictly valid only at LO

Jet definition

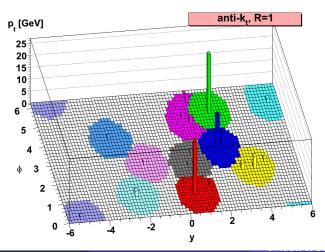
Recombination algorithms

[M.Cacciari, G.Salam, GS, 2008]

(Anti- k_t) algorithm

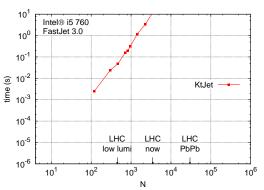
From all the objects, define the distances

$$d_{ij} = \min(p_{t,i}^{-2}, p_{t,j}^{-2})(\Delta y_{ij}^2 + \Delta \phi_{ij}^2), \qquad d_{iB} = p_{t,i}^{-2}R^2$$


- repeatedly find the minimal distance if d_{ij} : recombine i and j into k = i + j if d_{iB} : call i a jet
- One parameters: *R* ("jet radius").

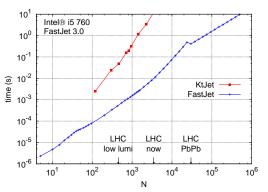
Notes

- Different *R* at the LHC. CMS: 0.5,0.7,0.4(soon); ATLAS: 0.4,0.6
- Several nice properties:
 - IRC-safe (i.e. can be computed theoretically in pQCD)
 - produces cone-like (circular) jets
 - fast


The anti- k_t jets

Main property: hard jets are circular

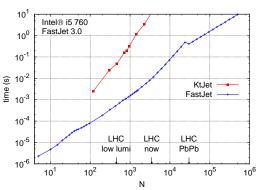
FastJet


[M.Cacciari, G.Salam, 2005; M.Cacciari, G.Salam, GS, 2007-2015]

• Tevatron era: k_t too slow: $\mathcal{O}(N^3)$ for N particles

FastJet

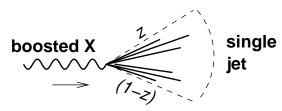
[M.Cacciari, G.Salam, 2005; M.Cacciari, G.Salam, GS, 2007-2015]



- Tevatron era: k_t too slow: $\mathcal{O}(N^3)$ for N particles
- Now: (anti-) k_t very fast: $\mathcal{O}(N^2)$ or even $\mathcal{O}(N \log(N))$

FastJet

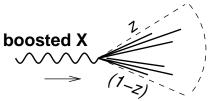
[M.Cacciari, G.Salam, 2005; M.Cacciari, G.Salam, GS, 2007-2015]



- Tevatron era: k_t too slow: $\mathcal{O}(N^3)$ for N particles
- Now: (anti-) k_t very fast: $\mathcal{O}(N^2)$ or even $\mathcal{O}(N \log(N))$
- Fastjet 3.1: typically 5-50ms for LHC (with pileup and areas)

Boosted jets

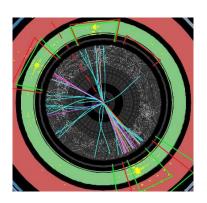
Boosted jets: main idea


Object X decaying to hadrons

$$R \gtrsim \frac{m}{p_t} \frac{1}{\sqrt{z(1-z)}}$$

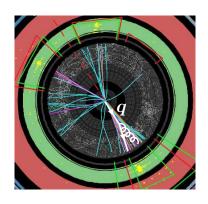
Boosted jets: main idea

Object X decaying to hadrons

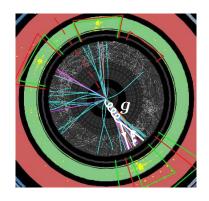


single jet

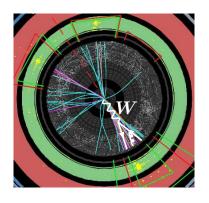
$$R \gtrsim \frac{m}{p_t} \frac{1}{\sqrt{z(1-z)}}$$

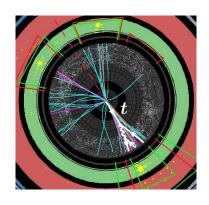

If $p_t \gg m$, reconstructed as a single jet

How to disentangle that from a QCD jet?

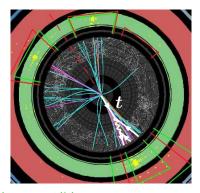


What jet do we have here?

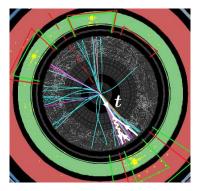

• a quark?


- a quark?
- a gluon?

- a quark?
- a gluon?
- a W/Z (or a Higgs)?



- a quark?
- a gluon?
- a W/Z (or a Higgs)?
- a top quark?


What jet do we have here?

- a quark?
- a gluon?
- a W/Z (or a Higgs)?
- a top quark?

Source: ATLAS boosted top candidate

- a quark?
- a gluon?
- a W/Z (or a Higgs)?
- a top quark?

Source: ATLAS boosted top candidate

Paradigm shift: a jet can be more than a quark or gluon

Boosted jets: applications

Many applications: (examples)

- ullet 2-pronged decay: W o qar q, H o bar b
- ullet 3-pronged decay: t o qqb, $ilde{\chi} o qqq$
- busier combinations: ttH
- ullet new physics: e.g. R-parity violating $\chi o qqq$, boosted tops in SUSY

Boosted jets: applications

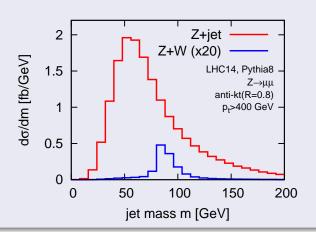
Many applications: (examples)

- ullet 2-pronged decay: W o qar q, H o bar b
- ullet 3-pronged decay: t o qqb, $ilde{\chi} o qqq$
- busier combinations: ttH
- new physics: e.g. R-parity violating $\chi \to qqq$, boosted tops in SUSY

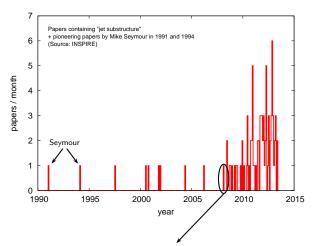
Increasingly important:

- Increasing LHC energy
- Increasing bounds/scales
- More-and-more discussions about yet higher-energy colliders

More and more boosted jets Needs to be under control



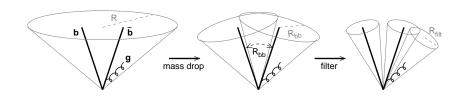
Boosted jets


How to proceed?

Naive ideas do not work!

Looking at the jet mass is not enough

A lot of activity since 2008



Jet substructure as a new Higgs search channel at the LHC

Jon Butterworth, Adam Davison, Mathieu Rubin, Gavin Salam, 0802.2470

A lot of activity since 2008

Many tools:

mass drop; filtering, trimming, pruning; soft drop, *Y*-splitter; *N*-subjettiness, planar flow, energy correlations, pull; Q-jets, ScJets; shower deconstruction; template methods; Johns Hopkins top tagger, HEPTopTagger, CASubjet tagging; ...

Implementation: Mostly in FastJet, fastjet-contrib and 3rd-party codes
See www.fastjet.fr and http://fastjet.hepforge.org/contrib

Two major ideas

Idea 1:

Find N = 2, 3, ... hard cores

Works because different splitting

QCD jets: $P(z) \propto 1/z$

- ⇒ dominated by soft emissions
- ⇒ "single" hard core

Two major ideas

ldea 1:

Find N = 2, 3, ... hard cores Constrain radiation patterns

Works because different splitting

QCD jets: $P(z) \propto 1/z$

- ⇒ dominated by soft emissions
- ⇒ "single" hard core

ldea 2:

Works because different colours

Radiation pattern is different for

- colourless $W \to q\bar{q}$
- coloured $g \rightarrow q\bar{q}$

Two major ideas

Idea 1:

Find N = 2, 3, ... hard cores Constrain radiation patterns

ldea 2:

Works because different splitting

QCD jets: $P(z) \propto 1/z$

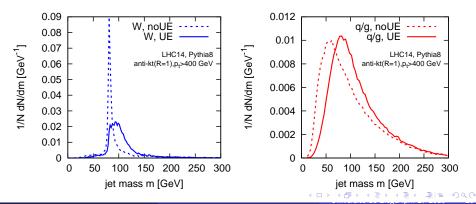
- ⇒ dominated by soft emissions
- ⇒ "single" hard core

Works because different colours

Radiation pattern is different for

- colourless $W \to q\bar{q}$
- coloured $g \rightarrow q\bar{q}$

A few key approaches:


- uncluster the jet into subjets/investigate the clustering history
- 2 use jet shapes (functions of jet constituents),...

Grooming

Fat Jets

One usually work with large-R jets $(R \sim 0.8 - 1.5)$

⇒ large sensitivity to UE (and pileup)

Grooming

Fat Jets

One usually work with large-R jets ($R \sim 0.8-1.5$)

⇒ large sensitivity to UE (and pileup)

"grooming" techniques reduce sensitivity to soft-and-large-angle

Example 1: Filtering/trimming

- re-cluster the jet with the k_t algorithm, $R = R_{\rm sub}$
- Filtering: keep the $n_{\rm filt}$ hardest subjets

[J. Buterworth, A. Davison, M. Rubin, G. Salam, 08]

ullet Trimming: keep subjets with $p_t > f_{
m trim} p_{t,
m jet}$ [D.Krohn,J.Thaler,L-T.Wang,10]

Methods for finding hard cores

Example 2: (modified) mass-drop tagger ((m)MDT)

- start with a jet clustered with Cambridge/Aachen
- ullet undo the last splitting $j
 ightarrow j_1 + j_2$
- if $\max(p_{t1}, p_{t2}) > z_{\text{cut}}p_t$, j_1 and j_2 are the 2 hard cores otherwise, continue with the hardest subjet
- Original version also imposed a mass-drop: $\max(m_1, m_2) < \mu m$

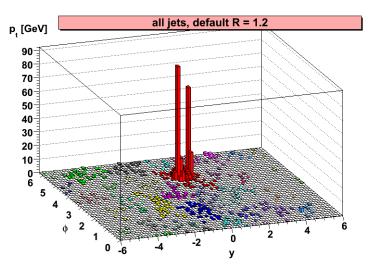
[J.Buterworth, A.Davison, M.Rubin, G.Salam, 08; M.Dasgupta, A.Fregoso, S.Marzani, G.Salam, 13]

Methods for finding hard cores

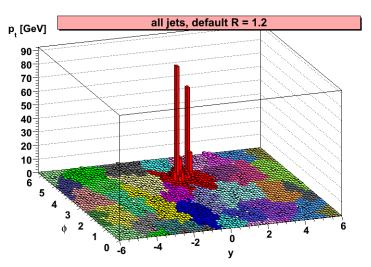
Example 2: (modified) mass-drop tagger ((m)MDT)

- start with a jet clustered with Cambridge/Aachen
- ullet undo the last splitting $j
 ightarrow j_1 + j_2$
- if $\max(p_{t1}, p_{t2}) > z_{\text{cut}}p_t$, j_1 and j_2 are the 2 hard cores otherwise, continue with the hardest subjet
- Original version also imposed a mass-drop: $\max(m_1, m_2) < \mu m$

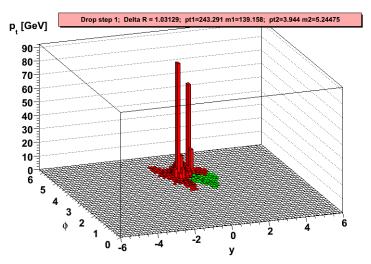
[J.Buterworth, A.Davison, M.Rubin, G.Salam, 08; M.Dasgupta, A.Fregoso, S.Marzani, G.Salam, 13]

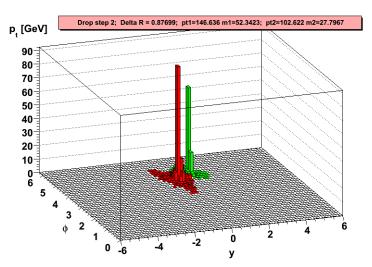

SoftDrop

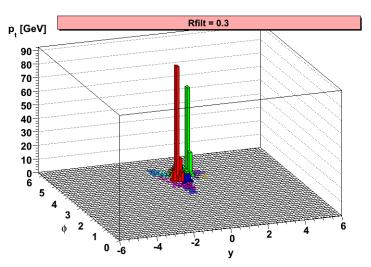
Same de-clustering procedure as the mMDT but angular-dependent cut

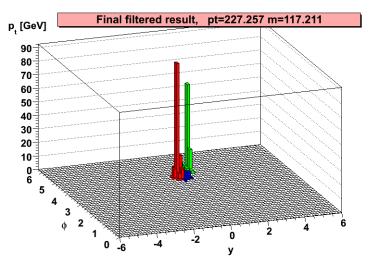

$$\max(p_{t1},p_{t2})>z_{\mathrm{cut}}p_t(\theta_{12}/R)^{\beta}$$

[A. Larkoski, S. Marzani, J. Thaler, GS, 14]

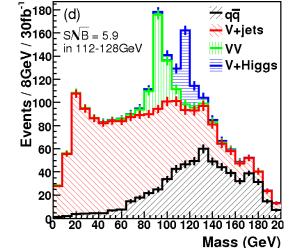

Start with the jets in an event

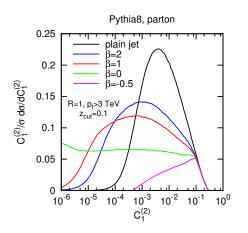

This is what they look like with their area


Take the hardest, apply a step of mass-drop


Failed... iterate the mass drop

Good... Now recluster what is left with a smaller R


And keep only the 3 hardest


MassDrop for $H o bar{b}$ searches

[J. Buterworth, A. Davison, M. Rubin, G. Salam, 08]

This is the kind of Higgs reconstruction one would get

MassDrop and SoftDrop

 β in SoftDrop can be seen as a control over the aggressivity

Constraining radiation

Example 3: N-subjettiness

Given N directions in a jet (axes) [\neq options, e.g. k_t subjets or optimal]

$$\tau_N^{(\beta)} = \frac{1}{p_T R^{\beta}} \sum_{i \in \text{jet}} p_{t,i} \min(\theta_{i,a_1}^{\beta}, \dots, \theta_{i,a_n}^{\beta})$$

- Measure of the radiation from N prongs
- $\tau_{N,N-1} = \tau_N/\tau_{N-1}$ is a good variable for N-prong v. QCD

Constraining radiation

Example 3: N-subjettiness

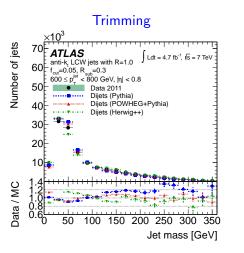
Given N directions in a jet (axes) [\neq options, e.g. k_t subjets or optimal]

$$\tau_N^{(\beta)} = \frac{1}{p_T R^{\beta}} \sum_{i \in \text{jet}} p_{t,i} \min(\theta_{i,a_1}^{\beta}, \dots, \theta_{i,a_n}^{\beta})$$

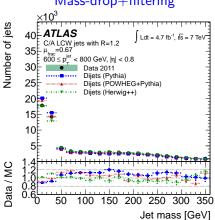
- Measure of the radiation from N prongs
- $\tau_{N,N-1} = \tau_N/\tau_{N-1}$ is a good variable for N-prong v. QCD

Alternative: Energy-Correlation Functions (ECFs)

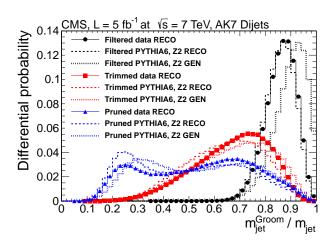
$$e_2^{(\beta)} = \frac{1}{p_t^2} \sum_{i < i} p_{t,i} p_{t,j} \theta_{ij}^\beta, \qquad e_3^{(\beta)} = \frac{1}{p_t^3} \sum_{i < i < k} p_{t,i} p_{t,j} p_{t,k} \theta_{ij}^\beta \theta_{jk}^\beta \theta_{ik}^\beta$$

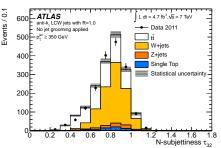


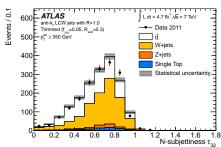
In practice...

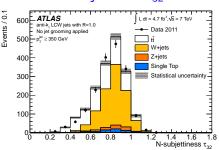

Typical workflow

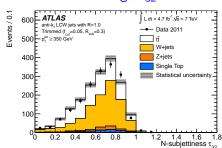
Tools are


- developed/tested on Monte-Carlo simulations
- validated at the LHC (QCD backgrounds)


Mass-drop+filtering

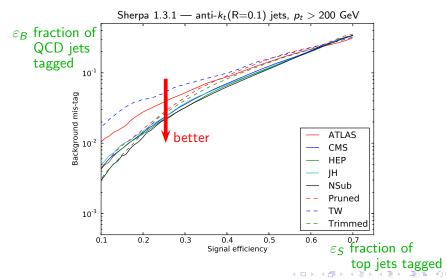

("Groomed" mass)/(plain mass)


N-subjettiness τ_{32}


trimming+ τ_{32}

N-subjettiness τ_{32}

trimming $+\tau_{32}$



In a nutshell

- decent agreement between data and Monte-Carlo
- but some differences are observed

Example 2: top tagging MC study

[Boost 2011 proceedings]

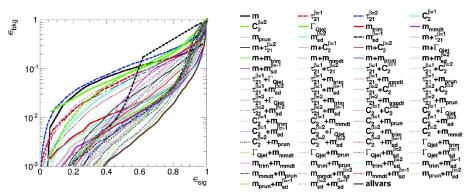
Now,... one can get creative...

Finding *N* prongs works

Constraining radiation works

Now,... one can get creative...

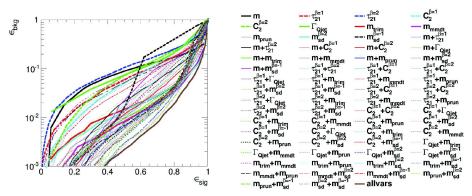
Finding *N* prongs works


Constraining radiation works

Why not combining the two?

... or not?

[Boost 2013 WG]


W v. q jets: combination of "2-core finder" + "radiation constraint"

... or not?

[Boost 2013 WG]

W v. q jets: combination of "2-core finder" + "radiation constraint"

- Combination largely helps
- details not so obvious

STOP and think

can we stop blindly running Monte-Carlo and understand things better (from first-principle QCD)?

Idea

Empirical Monte-Carlo approach is limited

- Hard to extrapolate parameters
- No understanding of the details

Idea

Empirical Monte-Carlo approach is limited

- Hard to extrapolate parameters
- No understanding of the details

Analytic/first-principle tools have a larege potential

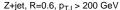
- Understand the underlying physics
- Infer how to improve things further
- provide robust theory uncertainties (competition with performance?)

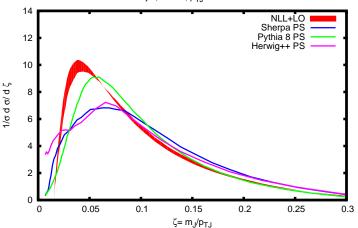
Idea

Empirical Monte-Carlo approach is limited

- Hard to extrapolate parameters
- No understanding of the details

Analytic/first-principle tools have a larege potential


- Understand the underlying physics
- Infer how to improve things further
- provide robust theory uncertainties (competition with performance?)

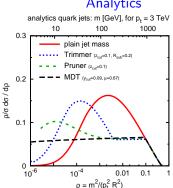

Requires QCD techniques

- $\rho = m/(p_t R) \ll 1 \Rightarrow \text{we get } \alpha_S \log^{(2)}(1/\rho)$ $\Rightarrow \text{need resummation}$
- matching with fixed-order for precision
- some nice QCD structures around the corner

Example 1:: the jet mass

Can reach high precision

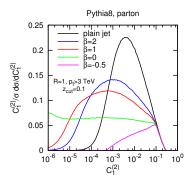
Monte-Carlo v. analytic

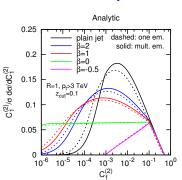

[M.Dasgupta, A.Fregoso, S.Marzani, G.Salam, 13]

First analytic understanding of jet substructure:

Monte Carlo

quark jets: m[GeV], for p+=3 TeV 100 1000 0.3 ο/σ ασ/αρ 0.2 0.1 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ $\rho=m^2/(p_tR)^2$


Analytics


- Similar behaviour at large mass/small boost (region tested so far)
- Significant differences at larger boost

SoftDrop

Monte Carlo

Analytics

Again, analytic calculation reproduces MC features

Analytic example: mass drop

• Boosted limit: $p_t \gg m$ or $\rho = m^2/(p_t R)^2 \ll 1$

Analytic example: mass drop

- Boosted limit: $p_t \gg m$ or $\rho = m^2/(p_t R)^2 \ll 1$
- Perturbation theory will give you $\alpha_s log^{(2)}(1/\rho)$

Analytic example: mass drop

- Boosted limit: $p_t \gg m$ or $\rho = m^2/(p_t R)^2 \ll 1$
- Perturbation theory will give you $\alpha_s log^{(2)}(1/\rho)$
- Plain jet mass: leading logs

$$P(<\rho) = \exp\left[-\frac{\alpha_s C_F}{2\pi} \log^2(1/\rho)\right]$$

- Boosted limit: $p_t \gg m$ or $\rho = m^2/(p_t R)^2 \ll 1$
- Perturbation theory will give you $\alpha_s log^{(2)}(1/\rho)$
- Plain jet mass: leading logs

$$P(<\rho) = \exp\left[-\frac{\alpha_s C_F}{2\pi} \log^2(1/\rho)\right]$$

Various subleading $(\alpha_s \log(1/\rho),...)$ corrections:

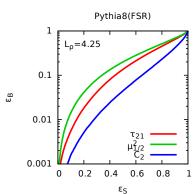
- Running coupling (fairly trivial/universal)
- Hard collinear splitting (fairly trivial/universal)
- Multiple emissions (fairly trivial/universal)
- Soft-large-angle (not so trivial + process-dependent)
- Non-global logs (nasty)

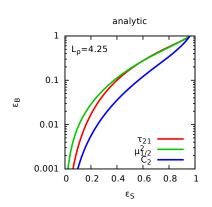
- Boosted limit: $p_t \gg m$ or $\rho = m^2/(p_t R)^2 \ll 1$
- Perturbation theory will give you $\alpha_s log^{(2)}(1/\rho)$
- Plain jet mass: leading logs

$$P(<\rho) = \exp\left[-\frac{\alpha_s C_F}{2\pi} \log^2(1/\rho)\right]$$

(modified)MassDrop has a similar but simpler structure:

$$P(<
ho) = \exp\left[-rac{lpha_s C_F}{\pi} \log(1/z_{
m cut}) \log(1/
ho)
ight]$$


- \bullet single log in ρ
- no Soft-large-angle and no non-global logs (*)
- smaller non-perturbative corrections (*)
- (*) also true for Soft Drop.



Monte-Carlo v. analytic

 $[\mathsf{M.Dasgupta}, \mathsf{L.Sarem\text{-}Schunk}, \mathsf{GS}, \mathsf{15}]$

For jet shapes ($\beta = 2$):

Monte-Carlo v. analytic

The situation/prospect today

- We start getting a basic understanding of some of the main tools
- both in terms of calculation techniques and in terms of physics understanding
- To come: more precise treatment
- To come: more basic tools
- To come: combination of tools
- To come: new improved tool (efficient, controlled, robust)

Summary: take-home messages

Generic jet concepts

- \bullet anti- k_t used almost everywhere, IRC-safe and fast
- alternatives for specific cases
- FastJet used as the default (fast+flexible) interface

Boosted jets

- More and more relevant
- Many techniques around, validated at Run I
- Many available in FastJet or fastjet-contrib
- Combining tools helps
- First-principle understanding has a large potential for more surprises

Tools: who? where?

Tool	Who ¹	Where
Mass-Drop	†Butterworth, Davison, Rubin, Salam	fj::MassDropTagger
	†Dasgupta, Fregoso, Marzani, Salam	fj::contrib::ModifiedMassDropTagger
Filtering	†Butterworth, Davison, Rubin, Salam	fj::Filter
Trimming	†Krohn, Thaler, Wang	fj::Filter
Pruning	†Ellis, Vermilion, Walsh	fj::Pruner
SoftDrop	†Larkoski, Marzani, Soyez, Thaler	fj::contrib::SoftDrop
N-subjettiness	†Thaler, Van Tilburg, Vermilion, Wilkinson	fj::contrib::Nsubjettiness
	†Jihun Kim	fj::RestFrameNSubjettinessTagger
Energy correlations	†Larkoski,Salam,Thaler	fj::contrib::EnergyCorrelator
Variable R	†Krohn, Thaler, Wang	fj::contrib::VariableR
ScJets	†Tseng, Evans	fj::contrib::VariableR
Johns Hopkins top tag	†Kaplan, Rehermann, Schwartz, Tweedie	fj::JHTopTagger
Jets without jets	†Bertolini, Chan, Thaler	fj::contrib::
CASubjet tagging	†Salam	fj::CASubJetTagger
Y-splitter	†Butterworth, Cox, Forshaw	fj::ClusterSequence::exclusive_subdmerge()
Planar flow	†Almeida, Lee, Perez, Sterman, Sung, Virzi	3 rd party
Pull	†Gallicchio, Schwartz	3 rd party
Q-jets	†Ellis, Hornig, Krohn, Roy and Schwartz	3 rd party
HEPTopTagger	†Plehn, Salam, Spannowsky, Takeuchi	3 rd party
TemplateTagger	†Backovic, Juknevic, Perez	3 rd party
shower deconstruction	†Soper, Spannowsky	$3^{ m rd}$ party

¹References are incomplete

Backup slides

$$\frac{1}{\sigma}\frac{d\sigma}{dm^2} = \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, P(z) \frac{\alpha_s}{2\pi} \delta(m^2 - z(1-z)\theta^2 p_t^2)$$

• We focus on small-R, $p_t R \gg m$

$$\frac{1}{\sigma} \frac{d\sigma}{dm^2} = \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, P(z) \frac{\alpha_s}{2\pi} \delta(m^2 - z(1-z)\theta^2 p_t^2)$$
$$\approx \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, \frac{2C_R}{z} \frac{\alpha_s}{2\pi} \delta(m^2 - z\theta^2 p_t^2)$$

- We focus on small-R, $p_t R \gg m$
- $P(z) = 2C_R/z$ up to subleading (log) corrections
- (1-z) only need to power (of $m/(p_tR)$) corrections

$$\frac{1}{\sigma} \frac{d\sigma}{dm^2} = \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, P(z) \frac{\alpha_s}{2\pi} \delta(m^2 - z(1-z)\theta^2 p_t^2)$$

$$\approx \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, \frac{2C_R}{z} \frac{\alpha_s}{2\pi} \delta(m^2 - z\theta^2 p_t^2)$$

$$\approx \frac{\alpha_s C_R}{\pi} \frac{1}{m^2} \log(p_t^2 R^2 / m^2)$$

- We focus on small-R, $p_t R \gg m$
- $P(z) = 2C_R/z$ up to subleading (log) corrections
- \bullet (1-z) only need to power (of $m/(p_tR)$) corrections
- we get a logarithmic enhancement

$$\frac{1}{\sigma} \frac{d\sigma}{dm^2} = \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, P(z) \frac{\alpha_s}{2\pi} \delta(m^2 - z(1-z)\theta^2 p_t^2)$$

$$\approx \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, \frac{2C_R}{z} \frac{\alpha_s}{2\pi} \delta(m^2 - z\theta^2 p_t^2)$$

$$\approx \frac{\alpha_s C_R}{\pi} \frac{1}{m^2} \log(p_t^2 R^2 / m^2)$$

- We focus on small-R, $p_t R \gg m$
- $P(z) = 2C_R/z$ up to subleading (log) corrections
- (1-z) only need to power (of $m/(p_tR)$) corrections
- we get a logarithmic enhancement
- ullet Or, for the integrated distribution, using $ho=m^2/(p_t^2R^2)$

$$P_1(>\rho) = \int_{\rho}^{1} dx \, \frac{1}{\sigma} \frac{d\sigma}{dx} = \alpha_s C_R \pi \, \frac{1}{2} \log^2(1/\rho)$$

$$P_1(>\rho) = \alpha_s C_R \pi \frac{1}{2} \log^2(1/\rho)$$

$$P_1(>\rho) = \alpha_s C_R \pi \frac{1}{2} \log^2(1/\rho)$$

For small enough $\rho=m^2/(p_t^2R^2)$, $\alpha_s\log^2(\rho)\sim 1$: no more perturbative!

$$P_1(>\rho) = \alpha_s C_R \pi \frac{1}{2} \log^2(1/\rho)$$

For small enough $\rho = m^2/(p_t^2R^2)$, $\alpha_s \log^2(\rho) \sim 1$: no more perturbative! \Rightarrow resum contributions at all orders

$$P_1(>\rho) = \alpha_s C_R \pi \frac{1}{2} \log^2(1/\rho)$$

For small enough $\rho = m^2/(p_t^2R^2)$, $\alpha_s \log^2(\rho) \sim 1$: no more perturbative! \Rightarrow resum contributions at all orders

$$P(<\rho) = \sum_{n=0}^{\infty} \frac{1}{n!} \int_0^{R^2} \frac{d\theta_i^2}{\theta_i^2} \int_0^1 dz_i P(z_i) \left(\frac{\alpha_s}{2\pi}\right)^n \left[\Theta(m_{12...n}^2 < \rho) + \text{virtual}\right]$$

"virtual" includes any number of the n gluons being virtual

$$P_1(>\rho) = \alpha_s C_R \pi \frac{1}{2} \log^2(1/\rho)$$

For small enough $\rho = m^2/(p_t^2R^2)$, $\alpha_s \log^2(\rho) \sim 1$: no more perturbative! \Rightarrow resum contributions at all orders

$$P(<\rho) = \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{R^{2}} \frac{d\theta_{i}^{2}}{\theta_{i}^{2}} \int_{0}^{1} dz_{i} P(z_{i}) \left(\frac{\alpha_{s}}{2\pi}\right)^{n} \left[\Theta(m_{12...n}^{2} < \rho) + \text{virtual}\right]$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{R^{2}} \frac{d\theta_{i}^{2}}{\theta_{i}^{2}} \int_{0}^{1} dz_{i} P(z_{i}) \left(\frac{\alpha_{s}}{2\pi}\right)^{n} \prod_{i=1}^{n} \left[\Theta(z_{i}\theta_{i}^{2} < \rho R^{2}) - 1\right]$$

- "virtual" includes any number of the n gluons being virtual
- Leading term: independent emissions

$$P_1(>\rho) = \alpha_s C_R \pi \frac{1}{2} \log^2(1/\rho)$$

For small enough $\rho = m^2/(p_t^2R^2)$, $\alpha_s \log^2(\rho) \sim 1$: no more perturbative! \Rightarrow resum contributions at all orders

$$P(<\rho) = \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{R^{2}} \frac{d\theta_{i}^{2}}{\theta_{i}^{2}} \int_{0}^{1} dz_{i} P(z_{i}) \left(\frac{\alpha_{s}}{2\pi}\right)^{n} \left[\Theta(m_{12...n}^{2} < \rho) + \text{virtual}\right]$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{R^{2}} \frac{d\theta_{i}^{2}}{\theta_{i}^{2}} \int_{0}^{1} dz_{i} P(z_{i}) \left(\frac{\alpha_{s}}{2\pi}\right)^{n} \prod_{i=1}^{n} \left[\Theta(z_{i}\theta_{i}^{2} < \rho R^{2}) - 1\right]$$

$$= \exp\left[-P_{1}(>\rho)\right]$$

- "virtual" includes any number of the *n* gluons being virtual
- Leading term: independent emissions
- Sudakov exponentiation

A much more general situation

For a jet shape v we will get terms enhanced by $\log^{(2)}(1/v)$ that have to be resummed at all orders

A much more general situation

For a jet shape v we will get terms enhanced by $\log^{(2)}(1/v)$ that have to be resummed at all orders

Leading log (LL)

Resums double logs $(\alpha_s \log^2(1/v))^n = (\alpha_s L^2)^n$:

$$P(<\mathbf{v}) = \exp\left[-P_1(>\rho)\right]$$

Note: including running-coupling corrections: $P_1 = \sum_{k=1}^{n} (\alpha_s L)^k L$

A much more general situation

For a jet shape v we will get terms enhanced by $\log^{(2)}(1/v)$ that have to be resummed at all orders

Leading log (LL)

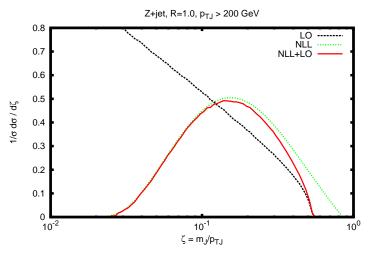
Resums double logs $(\alpha_s \log^2(1/\nu))^n = (\alpha_s L^2)^n$:

$$P(< v) = \exp\left[-P_1(> \rho)\right]$$

Note: including running-coupling corrections: $P_1 = \sum_{k=1}^{n} (\alpha_s L)^k L$

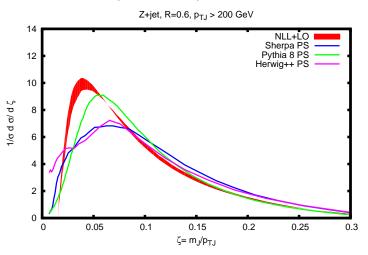
Physics idea

- Remember: (i) independent emissions, (ii) real and virtual emissions
- emissions "smaller" than v: do not contribute: real and virtual cancel
- emissions "larger" than v: real are vetoed
 ⇒ we are left with virtuals(=-real)


Next-to-leading log (NLL)

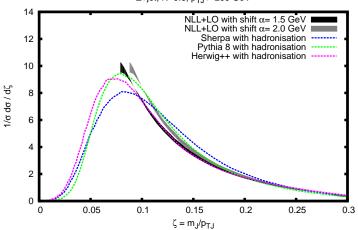
$$P(\langle v) = \exp\left[-g_1(\alpha_s L)L - g_2(\alpha_s L)\right]$$

- g₁ includes double logs (with running coupling)
- g₂ includes single logs
 - Finite piece in P(z)
 - ullet Multiple (not independent) emissions contributing to v
 - 2-loop running coupling (+ scheme dependence)
 - Nasty non-global logs (out-of-jet emissions emitting back in)
- Can be matched to a fixed-order calculation


A few plots to illustrate what is going on

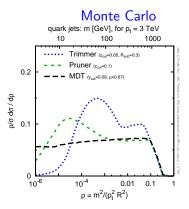
matching LO fixed-order with NLL resummation

A few plots to illustrate what is going on


Comparison with parton shower

A few plots to illustrate what is going on

Including hadronisation



same approach for jet-substructure tools

Monte-Carlo v. analytic

[M.Dasgupta, A.Fregoso, S.Marzani, G.Salam, 13]

First analytic understanding of jet substructure:

Analytics analytics quark jets: m [GeV], for pt = 3 TeV 10 100 1000 plain jet mass Trimmer (Z_{0.0}=0.1, R_{0.0}=0.2) Pruner (Z-u=0.1) MDT (v_{cur}=0.09, µ=0.67) 0.2 dp / dp o/c 0.1 10⁻⁶ 10⁻⁴ 0.01 0.1 $\rho = m^2/(p_t^2 R^2)$

- Similar behaviour at large mass/small boost (region tested so far)
- Significant differences at larger boost

- Boosted limit: $p_t \gg m$ or $\rho = m^2/(p_t R)^2 \ll 1$
- Emission of one gluon:

$$P_1(>\rho) = \frac{\alpha_s C_F}{\pi} \int \frac{d\theta^2}{\theta^2} dz \, P_{gq}(z) \underbrace{\Theta(z > z_{\text{cut}})}_{\text{sym. cut}} \underbrace{\Theta(z(1-z)\theta^2 > \rho R^2)}_{\text{mass}}$$

- Boosted limit: $p_t \gg m$ or $\rho = m^2/(p_t R)^2 \ll 1$
- Emission of one gluon:

$$P_1(>\rho) = \frac{\alpha_s C_F}{\pi} \int \frac{d\theta^2}{\theta^2} dz \, P_{gq}(z) \underbrace{\Theta(z > z_{\rm cut})}_{\text{sym. cut}} \underbrace{\Theta(z(1-z)\theta^2 > \rho R^2)}_{\text{mass}}$$

Focus on logarithmically enhanced terms

$$P_1(>
ho) = rac{lpha_s C_F}{\pi} \left[\log(1/
ho) \log(1/z_{
m cut}) - rac{3}{4} \log(1/
ho) - rac{1}{2} \log^2(1/z_{
m cut})
ight]$$

- Boosted limit: $p_t \gg m$ or $\rho = m^2/(p_t R)^2 \ll 1$
- Emission of one gluon:

$$P_1(>\rho) = \frac{\alpha_s C_F}{\pi} \int \frac{d\theta^2}{\theta^2} dz \, P_{gq}(z) \underbrace{\Theta(z > z_{\rm cut})}_{\text{sym. cut}} \underbrace{\Theta(z(1-z)\theta^2 > \rho R^2)}_{\text{mass}}$$

Focus on logarithmically enhanced terms

$$P_1(>
ho) = rac{lpha_s C_F}{\pi} \left[\log(1/
ho) \log(1/z_{
m cut}) - rac{3}{4} \log(1/
ho) - rac{1}{2} \log^2(1/z_{
m cut})
ight]$$

• All-order resummation: exponentiation!

$$P_{\text{all orders}}(<\rho) = \exp\left[-P_1(>\rho)\right]$$

- Boosted limit: $p_t \gg m$ or $\rho = m^2/(p_t R)^2 \ll 1$
- Emission of one gluon:

$$P_1(>\rho) = \frac{\alpha_s C_F}{\pi} \int \frac{d\theta^2}{\theta^2} dz \, P_{gq}(z) \underbrace{\Theta(z > z_{\text{cut}})}_{\text{sym. cut}} \underbrace{\Theta(z(1-z)\theta^2 > \rho R^2)}_{\text{mass}}$$

Focus on logarithmically enhanced terms

$$P_1(>
ho) = rac{lpha_s C_F}{\pi} \left[\log(1/
ho) \log(1/z_{
m cut}) - rac{3}{4} \log(1/
ho) - rac{1}{2} \log^2(1/z_{
m cut})
ight]$$

• All-order resummation: exponentiation!

$$P_{\text{all orders}}(<\rho) = \exp\left[-P_1(>\rho)\right]$$

• single log in ρ !

- Original mass-drop tagger had an extra "mass-drop" condition: no contribution at this order (+work in progress)
- Original mass-drop tagger had an extra "filtering" step: no contribution at this order

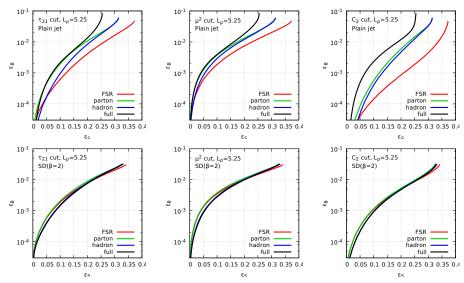
- Original mass-drop tagger had an extra "mass-drop" condition: no contribution at this order (+work in progress)
- Original mass-drop tagger had an extra "filtering" step: no contribution at this order
- Original mass-drop tagger recursed into most massive branch: looses direct exponentiation!

- Original mass-drop tagger had an extra "mass-drop" condition: no contribution at this order (+work in progress)
- Original mass-drop tagger had an extra "filtering" step: no contribution at this order
- Original mass-drop tagger recursed into most massive branch: looses direct exponentiation!
- Absence of problematic non-global logs

- Original mass-drop tagger had an extra "mass-drop" condition: no contribution at this order (+work in progress)
- Original mass-drop tagger had an extra "filtering" step: no contribution at this order
- Original mass-drop tagger recursed into most massive branch: looses direct exponentiation!
- Absence of problematic non-global logs
- Non-perturbative corrections using similar techniques than previously

- Trimming:
 - Same as mass-drop for $\rho \geq f_{\rm filt}(R_{\rm filt}/R)^2$
 - ullet double log behaviour $(\log^2(1/
 ho)$ of plain jet mass for $ho < f_{\mathrm{filt}}(R_{\mathrm{filt}}/R)^2$

- Trimming:
 - Same as mass-drop for $\rho \geq f_{\rm filt}(R_{\rm filt}/R)^2$
 - double log behaviour $(\log^2(1/\rho))$ of plain jet mass for $\rho < f_{\rm filt}(R_{\rm filt}/R)^2$
- SoftDrop: essentially the same as mMDT but with double logs


- Trimming:
 - Same as mass-drop for $\rho \geq f_{\rm filt}(R_{\rm filt}/R)^2$
 - double log behaviour $(\log^2(1/\rho))$ of plain jet mass for $\rho < f_{\rm filt}(R_{\rm filt}/R)^2$
- SoftDrop: essentially the same as mMDT but with double logs

Stay tuned

First-principle understanding of jet substructure

- is still a young field but looks promising
- allows to understand what is going on
- allows control over th. uncertainties
- allows to introduce new, better, tools

NP effects and grooming for shapes

Grooming kills NP effects at a price in terms of efficiency