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Plan

s generic introduction: QCD and strong interactions
What is QCD? Why do we need it (at the LHC)?

s heavy flavour:
Why is it special, important, interesting?
What are the main issues?

s |ets:
Why is it important? What are the main issues?
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Strong interactions
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Quantum Chromodynamics: basics

QCD is the guantum theory for string interactions

QED QCD
matter e, 1, T 6 quarks flavours
u,d,s,c,b,t
vector photon gluon
guantum nr charge colour
sym. group U(1) SU(3)

Notes:
s quarks also carry elm charge/interact with photons

s SU(3): 3 fundamental colours (RGB) i.e. 3 for
guarks, 8 for gluons

s SU(3) is non-abelian
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Quantum Chromodynamics: a non-abelian theory

2 main consequences:

s the gluons interact together

TTTX
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Quantum Chromodynamics: a non-abelian theory

2 main consequences:

s the gluons interact together

» The “running” coupling constant (o = g2/ (4r))
decreases with energy

mmgmm@m
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Ol =
Pr= bolog(p 2/AQCD) R

bp > 0for No=3and n;y =3...6.
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Quantum Chromodynamics: a non-abelian theory

2 main consequences:

s the gluons interact together

» The “running” coupling constant (o, = gZ/(4))
decreases with energy 05
adQ)

July 2009

a a Deep Inelastic Scattering

04| oe €'€ Annihilation
o® Heavy Quarkonia

03}

02t

01}

= QCD 04(M) =0.1184 + 0.0007

10 Q[GeV] 100

-p.5



Quantum Chromodynamics: a non-abelian theory

2 main consequences:

s the gluons interact together

» The “running” coupling constant (o, = ¢*/(4n))

decreases with energy  ©s
aqQ)

04t

Note:

® o, ~02>a,
perturbarive corrections larger

#» Non-perturnative in the infrared
(<1GeV)

01}

03}

02t
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QCD at hadron colliders

Why Is it important at the LHC?

Protons made of quarks and gluons
= Interact mostly through string interactions

= QCD needed for any single event
even for electro-weak, Higgs or BSM!
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QCD at hadron colliders

> v )

Typical example: QCD needed for the PDF
i.e. the quark and gluon contents of the proton
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The more realistic version

o Hard ME

perturbative
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The more realistic version

» Hard ME

perturbative

» Parton branching

initial+final state radiation
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The more realistic version

o Hard ME

perturbative

» Parton branching

5 O d
s s 5 ° " Initial+final state radiation
° N » Hadronisation
B N 9 9~ \K{{& q, g — hadrons
< <G O O A
° '
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The more realistic version

o Hard ME

perturbative

» Parton branching

initial+final state radiation

» Hadronisation

q, g — hadrons

» Multiple interactions

Underlying event (UE)
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Heavy quarks



Light and heavy quarks

6 quark flavours:
® u,d,s. mass ~ 0

s c.mn~ 1.5 GeV
Etat typique: J/V¥ = cc

o b:m~ 4.5 GeV
Etats typiques: B, T

s t:m~ 172 GeV
Decay into W and b
W — qq (= 66%), W — /v (~ 33%)
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Why am | here?

s mep > Aqeop: we may apply perturbation theory
® b
. could be tagged: displaced vertex

s SM: b production vs. QCD, top decay

s nNew physics search:

. DO: like-sign uu charge asym (from b decay)
. H — bb dominant at low Higgs mass

s top:
. top Iin the standard model e.g. mass
measurement
. BSM: coupling o< m
= modifications in the top sector
= very important at the LHC
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Perturbative QCD: charm

J/W production: J¥ from b decay

do/dpyld/¥) BR(I/¥~pp) (nb/GeV)
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- Solid histogram: MCBNLO, 17.2 nb,

- Dashed histogram: MC@NLO, 16.4 rfh
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Perturbative QCD: charm

J/W production: Not the best agreement ever

10 B — .
| BRUJAp—p' W) do(pp—=Jap+X)/dp, (nb/GeV) -
Vs =18 TeV; n|<0.6

- LO colour-singlet
-+ colour-singlet frag.

[M. Kraemer, 1999](2)
-3 ;

10

5 10 15
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Perturbative QCD: charm

J /W production: better with higher-order corrections*

10 - T T T T | T T T T | T T T T ]
§-4j~_\:‘ BR(J/y—u' 1) do(pp—J/y+X)/dp... (nb/GeV) 3
I Vs=1.8 TeV;|n| < 0.6 i
4 N
]. = 2] total =
- - -- colour-octet ISD + BP] B
- e colour-octet 351 ]
] . . . LO colour-singlet |
g i WL e colour-singlet frag.
I = ‘ =
2l I
10 = ; =
: ., © (d)
3 [M.Kraemer, 1999] . 7
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5 10 15
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¥ agreement not 100% understood
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Perturbative QCD: charm

J /W production: room for improvement

i
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Perturbative QCD: bottom

J/W¥ production: again, higher-order important
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top physics

s Production:
s Mostly gg — tt
. Tevatron: o; ~ 10 pb: discovery!
s LHC: 0 = 1 nb: = 10/s LHC= top factory

» Decay:

» Mostly t — Wb
t — qgb (= 66%) or t — lvb (=~ 33%)
. for tt: 3 options
. leptonic: not-so-easy because 2 neutrinos
. semi-leptonic: ¢, 4 jets (2b) and Z;
(the most convenient)
. hadronic: 6 jets i.e. technical to reconstruct
but ~ 45% of the stat!
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Top discovery

“discovery” at the Tevatron
FERMILAB-PUB-94/097-F

Evidence for Top Quark Production in pp
Collisions at /3 = 1.8 TeV

Absiract

We present the results of a search for the top quark in 19.3 pb ! of pF
collisions at +/a = 1.8 TeV. The data were collected at the Fermilab Tevairon
collider using the Collider Detector at Fermilab {CDF). The search includes
Standard Model # decays to final states eevr, epvr, and purvv as well as & + ¢
+ jets or g +v + jets. In the (e, #) +v + jets channel we search for & quarks
from ¢ decays via secondary-vertex identification and via semileptonic decays of
the & and cascade ¢ quarks. In the dilepton final atates we find two events with a
background of 0.567023 events. Inthee, g +v + jeta channel with a b identified
via a secondary vertex, we find six evenis with a hackﬁraund of 2.34+0.3. With
a b identified via a semileptonic decay, we find seven events with a backsround
of 3.1+0.3 . The secondary-vertex and semileptonic-decay samples have three
events in common. The probability that the observed yield is consistent with
the background is estimated to be 0.28%. The statistics are too limited to
firmly establish the existence of the top quark, however a natural interpretation
of the excess ia that it is due to # production. We present several cross checks.
Some support this hypothesis, others do not. Under the assumption that the
excess yield over background is due to #, consirained fitting on a subset of the
events yields a mass of 174 + 10773 GeV/c? for the top quark. The ¢ croas
section, using this top quark masa to compute the acceptance, is measured to
be 13.9757 ph.
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Top mass today

CDF Top Quark mass (*Preliminary) C D F tOd ay
°
Ao 186.0+10.0+ 5.7
(Run'l)
°
Dilepton
(Run 1) 167.4+10.3+£4.9
°
Lepton+jets
(Run I 176.1+ 5.1+ 5.3
* _._
Dilepton 170.6£22+31
(4.8fb™) 6+2.2+3.
°
Lepton+Jets (Lxy+lepton p_)
(1.9 fb™ i 175.3+6.2+ 3.0
-®=
Lepton+Jets
(5.6 fb) 173.0x0.7+1.1
o @ et
All-hadronic
(2.9 7 1748+1.7+1.9
@
CDF Summer '10
1 173.1+£ 0.7+ 0.9
(P to 5617 (stat.) £ (syst.)
X?/dof = 3.8/6 (70%)
| | | | | |

150 160 170 180 190 200
m,,, (GeV/c?)
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top physics

top very important at the LHC

s precision mass measurement

s Mmany new physics scenario involve the top (mostly
because of its large mass)

= need to reconstruct as many tops as possible
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top physics

top very important at the LHC

s precision mass measurement

s Mmany new physics scenario involve the top (mostly
because of Iits large mass)

= need to reconstruct as many tops as possible

ISsues:

» W+jets background

s b mis-tagging

s combinatorial background (especially for full hadr.)
» efforts e.g. In boosted-top reconstruction
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Jets
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Jets

» Final-state events are pencil-like (already
observed in ete™ collisions)

» Consequence of the collinear divergence
QCD branchings are most likely collinear
(dP/df x o /)
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Jets

» Final-state events are pencil-like (already
observed in ete™ collisions)

» Consequence of the collinear divergence
QCD branchings are most likely collinear
(dP/df x o /)

“Jets” = bunch of collimated particles = hard partons
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Jets

» Final-state events are pencil-like (already
observed in ete™ collisions)

» Consequence of the collinear divergence
QCD branchings are most likely collinear
(dP/df x o /)

“Jets” = bunch of collimated particles = hard partons
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Why worry

“Jets” = bunch of collimated particles = hard partons

= whenever you have QCD In the final state, you have
jets In the final states!

i.e. jets useful mostly everywhere

-p.23



Jets and partons

“Jets” = bunch of collimated particles = hard partons

obviously 2 jets
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Jets and partons

“Jets” = bunch of collimated particles = hard partons

3 jets
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Jets and partons

“Jets” = bunch of collimated particles = hard partons

3 jets... or 47

s “collinear” is arbitrary
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Jets and partons

“Jets” = bunch of collimated particles = hard partons

3 jets... or 47

s “collinear” is arbitrary
s “parton” concept strictly valid only at LO
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Jets

(Partons/ParticIes/Canrimeter towers/Tracks)

l

( e )
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Jets

A jet definiton Is supposed to be (as) consistent (as
possible) across different view of an event

Y g

LO partons NLO partons parton shower hadron level
Jet l Def" Jet l Def" Jet l Def " Jet l Def "
jet 1 jet 2 jet 1 jet 2 jet 1 jet 2 jet 1 jet 2

VO N
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Jet definitions: constraints

SNOWMASS accords (FermiLab, 1990)

Several important prup_erti_u_ that should be met by a jet definition are
[3]:
1. Simple to implement in an experimental analysis;
2. Simple to implement in the theoretical calculation;
3. Defined at any order of perturbation theory;
4. Yields finite cross section at any order of perturbation theory;

5. Yields a cross section that is relatively insensitive to hadronization.
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Jet definitions: constraints

SNOWMASS accords (FermiLab, 1990)

Several important prup-erti_ﬂ_ that should be met by a jet definition are
[3]:

1. Simple to implement in an experimental analysis;

2. Simple to implement in the theoretical calculation;

3. Defined at any order of perturbation theory;

4. Yields finite cross section at any order of perturbation theory;

5. Yields a cross section that is relatively insensitive to hadronization.

30 years later, these are only recently satisfied!!!
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Jet definitions for the LHC

Proposal:
hire (many) PhD students
to look at the (many) millions of events
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Jet definitions for the LHC

Proposal:
hire (many) Phb-students grad students
to look at the (many) millions of events



Jet definitions for the LHC

Proposal:
hire (many) PhD students
to look at the (many) millions of events

Unless you have a better proposal?
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Jet definition: successive recombinations

ldea: Undo the QCD cascade

» Define an inter-particle distance d;;
and a beam distance d;z

s Successively
. Find the minimum of all d;;, d;p

. If d;;, recombine i + j — k (remove ¢, j; add k)
. If d;g, call i a jet (remove 7)

s Until all particles have been clustered
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Jet definition: successive recombinations

Typical choice of distances:

. 2 2
d?j = min(k;}, kt,];)(Ayin T Aﬁb?j)
2
dzzB — kt,ZZRQ
s p=1: K algorithm (1993)
(as close as possible to pQCD)

s p = 0: Cambridge-Aachen algorithm (1997)
(close to pQCD; useful for substructure)

s p = —1: anti-k; algorithm (2008)
(circular/soft-resilient jets)
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Jet definition at the LHC

d20/dedy [pb/GeV]
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Jets are alive

Still room for improvement:

s Experimentally:
jet energy scale

s Theoretically/Experimentally:
handle UE/pileup contamination

s Theoretically/Experimentally:
Tag boosted objects
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Don’t leave now...
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...especially if you're on this list

s Sequential calibration (GSC) in ATLAS at the LHC
Reina CAMACHO

s \Vers une mesure de la section efficace de
production de paires des guarks top dans les
canaux multileptons dans I'expérience ATLAS

Timothée THEVENEAUX-PELZER

» Mesure de l'efficacitée de I'étiquetage de jets beaux
dans I'expérience ATLAS Nancy TANNOURY

» Recherche de nouvelle physique avec ATLAS au
LHC grace a l'identification des jets de saveur b
Nicolas BOUSSON

s Four top events at the LHC from top-philic new
physics Léa GAUTHIER
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