Jets and heavy flavours: an introduction

Grégory Soyez

IPhT, CEA Saclay

Journées Jeunes Chercheurs 2010 — Nov 22-26 2010

generic introduction: QCD and strong interactions What is QCD? Why do we need it (at the LHC)?

heavy flavour:

Why is it special, important, interesting? What are the main issues?

jets:

Why is it important? What are the main issues?

Strong interactions

Quantum Chromodynamics: basics

QCD is the quantum theory for string interactions

	QED	QCD
matter	e, μ, au	6 quarks flavours
		u,d,s,c,b,t
vector	photon	gluon
quantum nr	charge	colour
sym. group	U(1)	SU(3)

Notes:

- quarks also carry elm charge/interact with photons
- SU(3): 3 fundamental colours (RGB) *i.e.* 3 for quarks, 8 for gluons
- SU(3) is non-abelian

2 main consequences:

the gluons interact together

2 main consequences:

- the gluons interact together
- The "running" coupling constant ($\alpha_s = g_s^2/(4\pi)$) decreases with energy

 $b_0 > 0$ for $N_c = 3$ and $n_f = 3...6$.

2 main consequences:

the gluons interact together

2 main consequences:

- the gluons interact together
- The "running" coupling constant ($\alpha_s = g_s^2/(4\pi)$) decreases with energy 0.5 July 2009 $\alpha_{s}(Q)$ △ ▲ Deep Inelastic Scattering $\circ \bullet e^+e^-$ Annihilation 0.4 □
 Heavy Quarkonia Note: 0.3 • $\alpha_s \sim 0.2 \gg \alpha_e$ perturbarive corrections larger 0.2 Non-perturnative in the infrared $(\leq 1 \text{ GeV})$ 0.1 \equiv OCD $\alpha_s(M_Z) = 0.1184 \pm 0.0007$ 10 1 100 O [GeV

Why is it important at the LHC?

Protons made of quarks and gluons

- \Rightarrow interact mostly through string interactions
- ⇒ QCD needed for any single event even for electro-weak, Higgs or BSM!

QCD at hadron colliders

Typical example: QCD needed for the PDF *i.e.* the quark and gluon contents of the proton

Hard ME

perturbative

Parton branching

initial+final state radiation

- Hard ME perturbative
- Parton branching

initial+final state radiation

- Hadronisation
 - $q,g \rightarrow \text{hadrons}$

- Hard ME perturbative
- Parton branching

initial+final state radiation

- Hadronisation
 - $q, g \rightarrow hadrons$
- Multiple interactions
 Underlying event (UE)

Heavy quarks

6 quark flavours:

- u, d, s: mass ≈ 0
- $c: m \sim 1.5 \text{ GeV}$ Etat typique: $J/\Psi \equiv c\bar{c}$
- **b**: $m \sim 4.5$ GeV Etats typiques: B, Υ
- t: $m \sim 172 \text{ GeV}$ Decay into W and b $W \rightarrow q\bar{q} \ (\approx 66\%), W \rightarrow \ell\nu \ (\approx 33\%)$

- $m_{c,b,t} \gg \Lambda_{\text{QCD}}$: we may apply perturbation theory
- b:
 - could be tagged: displaced vertex
 - SM: b production vs. QCD, top decay
 - new physics search:
 - **DO:** like-sign $\mu\mu$ charge asym (from *b* decay)
 - $H \to b\bar{b}$ dominant at low Higgs mass
- top:
 - top in the standard model e.g. mass measurement
 - $\ensuremath{\,{\rm s}}$ BSM: coupling $\propto m$
 - \Rightarrow modifications in the top sector
 - \Rightarrow very important at the LHC

 J/Ψ production: $J\Psi$ from b decay

J/Ψ production: Not the best agreement ever

 J/Ψ production: better with higher-order corrections*

* agreement not 100% understood

J/Ψ production: room for improvement

Perturbative QCD: bottom

J/Ψ production: again, higher-order important

Production:

- Mostly $gg \to t\bar{t}$
- Tevatron: $\sigma_t \approx 10$ pb: discovery!
- LHC: $\sigma_t \approx 1 \text{ nb:} \approx 10/\text{s LHC} \equiv \text{top factory}$
- Decay:
 - Mostly $t \to Wb$
 - $t \rightarrow q\bar{q}b \ (\approx 66\%) \ \text{or} \ t \rightarrow \ell\nu_\ell b \ (\approx 33\%)$
 - for $t\bar{t}$: 3 options
 - Jeptonic: not-so-easy because 2 neutrinos
 - semi-leptonic: ℓ , 4 jets (2b) and $\not\!\!E_t$ (the most convenient)
 - **hadronic:** 6 jets *i.e.* technical to reconstruct but \approx 45% of the stat!

"discovery" at the Tevatron

FERMILAB-PUB-94/097-E

Evidence for Top Quark Production in $\bar{p}p$ Collisions at $\sqrt{s} = 1.8$ TeV

Abstract

We present the results of a search for the top quark in 19.3 pb⁻¹ of $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV. The data were collected at the Fermilab Tevatron collider using the Collider Detector at Fermilab (CDF). The search includes Standard Model $t\bar{t}$ decays to final states $ee\nu\bar{\nu}$, $e\mu\nu\bar{\nu}$, and $\mu\mu\nu\bar{\nu}$ as well as $e+\nu$ + jets or $\mu + \nu$ + jets. In the (e, μ) + ν + jets channel we search for b quarks from t decays via secondary-vertex identification and via semileptonic decays of the b and cascade c quarks. In the dilepton final states we find two events with a background of $0.56^{+0.25}_{-0.13}$ events. In the e, μ + ν + jets channel with a b identified via a secondary vertex, we find six events with a background of 2.3 ± 0.3 . With a b identified via a semileptonic decay, we find seven events with a background of 3.1 ± 0.3 . The secondary-vertex and semileptonic-decay samples have three events in common. The probability that the observed yield is consistent with the background is estimated to be 0.26%. The statistics are too limited to firmly establish the existence of the top quark, however a natural interpretation of the excess is that it is due to *tt* production. We present several cross checks. Some support this hypothesis, others do not. Under the assumption that the excess yield over background is due to $t\bar{t}$, constrained fitting on a subset of the events yields a mass of $174 \pm 10^{+13}_{-12} \text{ GeV}/c^2$ for the top quark. The $t\bar{t}$ cross section, using this top quark mass to compute the acceptance, is measured to be $13.9^{+6.1}_{-4.8}$ pb.

PACS Numbers: 14.80.Dq, 13.85.Qk, 13.85.Ni

Top mass today

CDF today

top very important at the LHC

- precision mass measurement
- many new physics scenario involve the top (mostly because of its large mass)

 \Rightarrow need to reconstruct as many tops as possible

top very important at the LHC

- precision mass measurement
- many new physics scenario involve the top (mostly because of its large mass)

 \Rightarrow need to reconstruct as many tops as possible

Issues:

- W+jets background
- *b* mis-tagging
- combinatorial background (especially for full hadr.)
- efforts e.g. in boosted-top reconstruction

• Final-state events are pencil-like (already observed in e^+e^- collisions)

• Consequence of the collinear divergence QCD branchings are most likely collinear $(dP/d\theta \propto \alpha_s/\theta)$

• Final-state events are pencil-like (already observed in e^+e^- collisions)

• Consequence of the collinear divergence QCD branchings are most likely collinear $(dP/d\theta \propto \alpha_s/\theta)$

"Jets" \equiv bunch of collimated particles \cong hard partons

• Final-state events are pencil-like (already observed in e^+e^- collisions)

• Consequence of the collinear divergence QCD branchings are most likely collinear $(dP/d\theta \propto \alpha_s/\theta)$

"Jets" \equiv bunch of collimated particles \cong hard partons

"Jets" \equiv bunch of collimated particles \cong hard partons

 \Rightarrow whenever you have QCD in the final state, you have jets in the final states!

i.e. jets useful mostly everywhere

"Jets" \equiv bunch of collimated particles \cong hard partons

 \rightarrow

obviously 2 jets

Jets and partons

"Jets" \equiv bunch of collimated particles \cong hard partons

3 jets

"Jets" \equiv bunch of collimated particles \cong hard partons

3 jets... or 4?

• "collinear" is arbitrary

"Jets" \equiv bunch of collimated particles \cong hard partons

3 jets... or 4?

- "collinear" is arbitrary
- "parton" concept strictly valid only at LO

Jets

A jet definiton is supposed to be (as) consistent (as possible) across different view of an event

SNOWMASS accords (FermiLab, 1990)

Several important properties that should be met by a jet definition are [3]:

1. Simple to implement in an experimental analysis;

- 2. Simple to implement in the theoretical calculation;
- 3. Defined at any order of perturbation theory;
- 4. Yields finite cross section at any order of perturbation theory;
- 5. Yields a cross section that is relatively insensitive to hadronization.

SNOWMASS accords (FermiLab, 1990)

Several important properties that should be met by a jet definition are [3]:

1. Simple to implement in an experimental analysis;

- 2. Simple to implement in the theoretical calculation;
- 3. Defined at any order of perturbation theory;
- 4. Yields finite cross section at any order of perturbation theory;
- 5. Yields a cross section that is relatively insensitive to hadronization.

30 years later, these are only recently satisfied!!!

Proposal: hire (many) PhD students to look at the (many) millions of events Proposal: hire (many) PhD students grad students to look at the (many) millions of events

Proposal: hire (many) PhD students to look at the (many) millions of events

Unless you have a better proposal?

Jet definition: successive recombinations

Idea: Undo the QCD cascade

- Define an inter-particle distance d_{ij} and a beam distance d_{iB}
- Successively
 - Find the minimum of all d_{ij} , d_{iB}
 - If d_{ij} , recombine $i + j \rightarrow k$ (remove i, j; add k)
 - If d_{iB} , call i a jet (remove i)
- Until all particles have been clustered

Jet definition: successive recombinations

Typical choice of distances:

$$d_{ij}^{2} = \min(k_{t,i}^{2p}, k_{t,j}^{2p})(\Delta y_{ij}^{2} + \Delta \phi_{ij}^{2})$$

$$d_{iB}^{2} = k_{t,i}^{2p} R^{2}$$

- p = 1: k_t algorithm (1993)
 (as close as possible to pQCD)
- p = 0: Cambridge-Aachen algorithm (1997)
 (close to pQCD; useful for substructure)
- p = -1: anti- k_t algorithm (2008) (circular/soft-resilient jets)

Jet definition at the LHC

Still room for improvement:

- Experimentally:
 jet energy scale
- Theoretically/Experimentally: handle UE/pileup contamination
- Theoretically/Experimentally: Tag boosted objects

Don't leave now...

...especially if you're on this list

- Sequential calibration (GSC) in ATLAS at the LHC Reina CAMACHO
- Vers une mesure de la section efficace de production de paires des quarks top dans les canaux multileptons dans l'expérience ATLAS Timothée THEVENEAUX-PELZER
- Mesure de l'efficacité de l'étiquetage de jets beaux dans l'expérience ATLAS
 Nancy TANNOURY
- Recherche de nouvelle physique avec ATLAS au LHC grace à l'identification des jets de saveur b Nicolas BOUSSON
- Four top events at the LHC from top-philic new physics
 Léa GAUTHIER