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Plan

Foreword: why jets? what are they?
introducing the basic concepts

Part 1: recent progresses in building a solid toolkit
jet definitions meeting the fundamental requirements

Part 2: jets in pp collisions

Choosing the adapted jet definition
which jet algorithm is best suited?

Subtracting pileup background using jet areas
defining areas
analytic control
using them for pileup subtraction
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Foreword: why jets? what are they?
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General (over)simplified picture

Hard scattering (2 → n)
computed exactly at O(αp

s)

gg → gg, gg → ggg,
gg → gggg,
gg → H → bb̄,
gg → tt̄ → µνµbb̄qq̄,
gg → Z ′ → qq̄, ...
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General (over)simplified picture

Hard scattering (2 → n)

Parton level
≈ resummed collinear div.
∑

i αi
s logi(p2

t /µ
2)

Hadron level: hadronisation

Underlying event
beam remnants interactions
⇒ soft background
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Hadron level: hadronisation

Underlying event
beam remnants interactions
⇒ soft background

Pileup
≈ uniform soft background
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General (over)simplified picture

Hard scattering (2 → n)

Parton level
≈ resummed collinear div.
∑

i αi
s logi(p2

t /µ
2)

Hadron level: hadronisation

Underlying event
beam remnants interactions
⇒ soft background

Pileup
≈ uniform soft background

“Jets” ≡ hard partons

Parton ambiguous
⇒ multiple jet definitions

Grégory Soyez Ringberg Castle, Germany, October 5-10 2008 Jets at the LHC era – p. 4/39



Two classes of algorithms

Class 1: recombination Cass 2: cone

Successive recombinations of the find directions of energy flow

“closest”(a) pair of particle ≡ stable cones(b)

Nice perturbative behaviour Small sensitivity to soft radiation (UE,PU)

Often used in e±e±, e±p Often used in pp

(a) Distance: (stop when dmin > R)

kt: di,j = min(k2
t,i, k

2
t,j)(∆φ2

i,j + ∆y2
i,j)

Aachen/Cam.: di,j = ∆φ2
i,j + ∆y2

i,j

(b) stable cones (radius R) such that:
the total momentum of its contents points in the direction of its centre
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How the cone works...

Seeded (iterative) approaches: iterate from an initial position until stable

seed = initial particle

seed = midpoint between stable cones found at first step

One has to deal with overlapping stable cones: 2 subclasses
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How the cone works...

Seeded (iterative) approaches: iterate from an initial position until stable

seed = initial particle

seed = midpoint between stable cones found at first step

Class 2(a): cone with split-merge (ex.: JetClu, Atlas, MidPoint):
p̃t,shared > fp̃t,min

p̃t,shared ≤ fp̃t,min
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How the cone works...

Seeded (iterative) approaches: iterate from an initial position until stable

seed = initial particle

seed = midpoint between stable cones found at first step

Class 2(a): cone with split-merge (ex.: JetClu, Atlas, MidPoint):
p̃t,shared > fp̃t,min

p̃t,shared ≤ fp̃t,min

Class 2(b): cone with progressive removal (ex.: Iterative Cone)

iterate from the hardest seed

remove the stable cone as a jet and start again

Idea: “regular/circular” jets
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20th century jet finders

Recombination: Cone:
kt algorithm

Cambridge/Aachen alg.

a

CDF JetClu

CDF MidPoint

D0 (run II) Cone

PxCone

ATLAS Cone

CMS Iterative Cone

PyCell/CellJet

GetJet
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Part 1
21st century: towards a solid toolkit
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1990: fixing the rules

SNOWMASS accords, Tevatron 1990 (i.e. old!):

i.e. usable by theoreticians (e.g. finite perturbative results)
and experimentalists (e.g. fast enough, not much UE sensitivity)
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Speed improvement

[M. Cacciari, G. Salam, 06]

Speeding up the kt and Cam/Aachen algorithms

using computational-geometry techniques: O
`

N3
´

→ O (N log N)

C++ implementation in FastJet

10-5

10-4

10-3

10-2

10-1

100

101

102 103 104 105

t (
s)

N

KtJet

FastJet N
2

FastJet

N ln N
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Filtering using jet substructure

More refined clustering (“2nd generation of algorithms”)

Cambridge+Filtering algorithm:

Cluster with Aachen/Cambridge and radius R

For each jet, recluster it with Aachen/Cambridge and radius Rsub

keep only nsub hardest sub-jets of the initial jet
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Filtering using jet substructure

More refined clustering (“2nd generation of algorithms”)

Cambridge+Filtering algorithm:

Cluster with Aachen/Cambridge and radius R

For each jet, recluster it with Aachen/Cambridge and radius Rsub

keep only nsub hardest sub-jets of the initial jet

Aim: remove the soft background

Properties:

Proven to improve jet reconstruction, in H → bb̄

[J.Butterworth, A.Davison, M.Rubin, G.Salam, 08]

Additional parameters that deserve appropriate studies

We will use the simplest choice: Rsub = R/2, nsub = 2
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QCD divergences

QCD probability for gluon bremsstrahlung at angle θ and ⊥-mom. kt:

dP ∝ αs

dθ

θ

dkt

kt

Two divergences:

θ ≈ 0
pt

kt ≪ pt

Collinear Soft
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QCD divergences

QCD probability for gluon bremsstrahlung at angle θ and ⊥-mom. kt:

dP ∝ αs

dθ

θ

dkt

kt

Two divergences:

θ ≈ 0
pt

kt ≪ pt

Collinear Soft

For pQCD to make sense, the (hard) jets should not change when

one has a collinear splitting
i.e. replaces one parton by two at the same place (η, φ)

one has a soft emission i.e. adds a very soft gluon
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IR unsafety of the Midpoint alg
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IR unsafety of the Midpoint alg
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Stable cones:
Midpoint: {1,2} & {3} {1,2} & {3} & {2,3}
Seedless: {1,2} & {3} & {2,3} {1,2} & {3} & {2,3}

Jets: (f = 0.5)
Midpoint: {1,2} & {3} {1,2,3}
Seedless: {1,2,3} {1,2,3}
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IR unsafety of the Midpoint alg
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Stable cones:
Midpoint: {1,2} & {3} {1,2} & {3} & {2,3}
Seedless: {1,2} & {3} & {2,3} {1,2} & {3} & {2,3}

Jets: (f = 0.5)
Midpoint: {1,2} & {3} {1,2,3}
Seedless: {1,2,3} {1,2,3}

Stable cone missed −→ IR unsafety of the midpoint algorithm
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Solution: SISCone

Solution: use a seedless approach, find ALL stable cones

Naive approach: check stability of each subset of particle
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Solution: SISCone

Solution: use a seedless approach, find ALL stable cones

Naive approach: check stability of each subset of particle
Complexity is O

(

N2N
)

⇒ definitely unrealistic: 1017 years for N = 100

Midpoint complexity: O
(

N3
)
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Solution: SISCone

Solution: use a seedless approach, find ALL stable cones

Midpoint complexity: O
(

N3
)

Idea: use geometric arguments
(c)(b)(a)

Each enclosure can be moved (in any direction) until it touches a point

... then rotated until it touches a second one

⇒ Enumerate all pairs of particles
⇒ with 2 circle orientations and 4 possible inclusion/exclusion
−→ find all enclosures
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Solution: SISCone

Solution: use a seedless approach, find ALL stable cones

Midpoint complexity: O
(

N3
)

Idea: use geometric arguments

⇒ Enumerate all pairs of particles
⇒ with 2 circle orientations and 4 possible inclusion/exclusion
−→ find all enclosures

Complexity: O
(

N3
)

, with improvements: O
(

N2 log(N)
)

−→ C++ implementation: Seedless Infrared-Safe Cone algorithm (SISCone)
G.Salam, G.S., JHEP 04 (2007) 086; http://projects.hepforge.org/siscone

NB.: also available from FastJet
[M.Cacciari, G.Salam, G.S.]; http://www.fastjet.fr
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C++


Physical impact

Execution timings:

 0.001

 0.01

 0.1

 1

 10

 100  1000  10000

ru
n 

tim
e 

(s
)

N

CDF midpoint (s=0 GeV)

CDF midpoint (s=1 GeV)

PxCone

SISCone

faster than midpoint without seed threshold

at least as fast as as midpoint with seed threshols
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Physical impact (2)

(Midpoint-SISCone)/SISCone
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pp    √s = 14 TeV
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(b) hadron-level (with UE)

hadron-level (no UE)

parton-level

Inclusive cross-section:

effect of a few %

less UE sensitivity
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R=0.7, f=0.5
∆ R23 < 1.4

Masses in 3-jet events:

effects ∼ 45%

Important for LHC!
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Coll. unsafety of the iterative cone
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Coll. unsafety of the iterative cone
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Before collinear spliting: 1 jet

After collinear spliting: 2 jets

−→ collinear unsafety of the iterative cone algorithm
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Anti- kt

Come back to recombination-type algorithms:

dij = min(k2p
t,i, k

2p
t,j)

(

∆φ2
ij + ∆η2

ij

)

p = 1: kt algorithm

p = 0: Aachen/Cambridge algorithm
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Anti- kt

Come back to recombination-type algorithms:

dij = min(k2p
t,i, k

2p
t,j)

(

∆φ2
ij + ∆η2

ij

)

p = 1: kt algorithm

p = 0: Aachen/Cambridge algorithm

p = −1: anti-kt algorithm [M.Cacciari, G.Salam, G.S.,JHEP 04 (08) 063]
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Anti- kt

Come back to recombination-type algorithms:

dij = min(k2p
t,i, k

2p
t,j)

(

∆φ2
ij + ∆η2

ij

)

p = 1: kt algorithm

p = 0: Aachen/Cambridge algorithm

p = −1: anti-kt algorithm [M.Cacciari, G.Salam, G.S.,JHEP 04 (08) 063]

Why should that be related to the iterative cone ?!?

“large kt ⇒ small distance”
i.e. hard partons “eat” everything up to a distance R

i.e. circular/regular jets, jet borders unmodified by soft radiation

infrared and collinear safe
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anti- kt

Hard event + homogeneous soft background

anti-kt is soft-resilient

more later in this talk...
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anti- kt

Execution timings:

 0.001

 0.01

 0.1

 1

 10

 100  1000  10000

ru
n 

tim
e 

(s
)

N

CDF midpoint (s=0 GeV)

CDF midpoint (s=1 GeV)

PxCone

SISCone
anti-kt (fastjet)

As fast as the (fast) kt ([M. Cacciari, G. Salam, 06])
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21st century jet finders

Recombination: Cone:
kt algorithm

Cambridge/Aachen alg.

anti-kt algorithm

a

CDF JetClu

CDF MidPoint

D0 (run II) Cone

PxCone

ATLAS Cone

CMS Iterative Cone

PyCell/CellJet

GetJet

SISCone

4 available
safe algorithms

All part of FastJet

[M.Cacciari,G.Salam,G.S.]
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Part 2
Jets in pp collisions

Choosing the adapted jet definition

[M.Cacciari,J.Rojo,G.Salam.G.S., to appear]
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Sample processes to study

We analyse 3 processes:

Z ′ → qq̄ →2 jets and H → gg →2 jets:
simple environment: identify 2 jets and reconstruct MZ′,H

source of monochromatic quark/gluon jets
scale dependence: mass of the Z′/H varied between 100 GeV and 4 TeV
ficticious narrow Z′, H

tt̄ → W+bW−b̄ → qq̄bqq̄b̄ →6 jets:
complex environment: identify 6 jets and reconstruct 2 top
balance between reconstruction efficiency and identification

with

the 5 IRC-safe algorithms: kt, Cambridge, anti-kt, SISCone, Cam+filtering

jet radius varied between 0.1 and 1.5
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figure of merit for quality measure

Measure of the jet reconstruction efficiency

Forget about measures related to parton-jet matching,
−→ use the reconstructed mass peak

Forget about fits depending on the shape of the peak

⇒ maximise the signal over background ratio (S/
√

B):
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figure of merit for quality measure

Qw
f=z(JA, R) = minimal width of a window containing

Qw
f=z(JA, R) = a fraction f = z of the events

1/
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figure of merit for quality measure

Qw=x
√

M
f (JA, R) = (1/) maximal number of events

Qw=x
√

M
f (JA, R) = in a window of width x
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figure of merit for quality measure

it intuitively does what it should

relates to a signal significance(assuming constant background)

Σ(JD1)

Σ(JD2)
=

[

Nsignal
√

Nbkg

]

JD

=

√

Qw
f=z(JD2)

Qw
f=z(JD1)

=
Qw=x

√
M

f (JD2)

Qw=x
√

M
f (JD1)

minmimal Q ≡ better signal-to-background ratio

we can associate an effective luminosity ratio

ρL =
L1

L2
=

[

Σ(JD1)

Σ(JD2)

]2

e.g. if JD1 has half the significance of JD2, it will require 4 times the
integrated luminosity to achieve the same discriminative power.
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Examples: best quality measures
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Allows to

extract the best radius Rbest

compare the different algorithm

Grégory Soyez Ringberg Castle, Germany, October 5-10 2008 Jets at the LHC era – p. 28/39



Best choices
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SISCone and Cam+filtering perform better

Rbest strongly depends on the mass
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Quarks vs. gluons
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Same conclusions for gluon jets with slightly larger R
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Luminosity ratios
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Part 1
Jets in pp collisions

Subtracting pileup background using jet areas
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Need for subtraction

Pileup ≈ uniform soft background that shifts jets to higher pt
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... that needs to be subtracted!

⇒ Using jet areas!
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Pileup subtraction

Basic idea: [M.Cacciari, G.Salam, 08]

pt,subtracted = pt,jet − ρpileup × Areajet
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Pileup subtraction

Basic idea: [M.Cacciari, G.Salam, 08]

pt,subtracted = pt,jet − ρpileup × Areajet

Jet area: [M.Cacciari, G.Salam, G.S., 08]

region where the jet catches infinitely soft particles

tractable analytically in pQCD

〈A(pt,1, R)〉 = A1hard(R) +
CF,A

πb0
log

(

αs(Q0)

αs(Rpt)

)

πR2 d
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Pileup subtraction

Basic idea: [M.Cacciari, G.Salam, 08]

pt,subtracted = pt,jet − ρpileup × Areajet

Jet area: [M.Cacciari, G.Salam, G.S., 08]

region where the jet catches infinitely soft particles

tractable analytically in pQCD

Pileup density per unit area: ρpileup

e.g. estimated from the median
e.g. of pt,jet/Areajet
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implemented in FastJet
on an event-by-event basis
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Subtraction at work
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PU effects summary
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Subtraction ⇒ (i) large improvement, (ii) Rbest ∼ unchanged
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Back-reaction

Additional soft background has 2 effects:

Throw soft particles in the hard jet: dealt with by subtraction

Modify the hard scattering (back-reaction)

can be pointlike or diffuse

gain: p2 gained when adding pm

1 2m

loss: p2 lost when adding pm

1 2 m
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Back-reaction

Additional soft background has 2 effects:

Throw soft particles in the hard jet: dealt with by subtraction

Modify the hard scattering (back-reaction)

can be pointlike or diffuse

tractable analytically (similar to areas)

kt & Cambridge > SISCone ≫ anti-kt
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Conclusions

Message 1: IRC safety is mandatory

Midpoint and the iterative cone IR or Collinear unsafe (at O(α4
s))

Observable 1st miss cones at Last meaningful order

Inclusive jet cross section NNLO NLO
3 jet cross section NLO LO (NLO in NLOJet)
W/Z/H + 2 jet cross sect. NLO LO (NLO in MCFM)
jet masses in 3 jets LO none (LO in NLOJet)

+ We do not want the theoretical efforts to be wasted

Note: 1 order worse for JetClu of the ATLAS Cone!

All IRC-safe algorithms available from FastJet (http://www.fastjet.fr)

Grégory Soyez Ringberg Castle, Germany, October 5-10 2008 Jets at the LHC era – p. 38/39



Conclusions

Message 2: flexibility in jet finding at the LHC

Optimal jet definition (see also http://quality.fastjet.fr)

Rbest ∼ 0.5 at 100 GeV, Rbest ∼ 1 at 1 TeV

important to choose Rbest, SISCone and Cam+filt. slightly better

same for quark and gluon jets, larger Rbest for gluons

TODO: understand this analytically/ improve clustering (e.g. filtering)

Pileup subtraction using jet areas

Jet areas: clearly defined, analytic control

Simple systematic pileup subtraction

Same conclusions as without pileup

TODO: deal with fluctuating backgroubd (e.g. heavy ions)
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