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Chapter 1

Introduction

As soon as QCD was born [1-5], theoretical physicists faced the problem of computing
physical quantities in strong interaction processes. Actually, the asymptotic freedom
[4,6] of QCD, telling that the coupling constants goes to zero as the momentum scale
goes to infinity, implies a pole at small scale (of order 220 MeV), known as the Landau
pole. This means that the perturbative theory breaks down for soft particles.

In this document, we will attach ourselves to the QCD implications in Deep Inelastic
Scattering (DIS) i.e. ep — eX collisions. Experimental measurements of the F, struc-
ture function through these collisions! are available from various experiments around the
world [7-18]. The most important source of Fy values are certainly the HERA experi-
ments (ZEUS [10,11] and H1 [7-9]). Their latest sets of experimental data reached a level
of precision very useful for theoretical tests.

In this type of collision, when we compute the proton structure function in the QED
framework, by a single photon exchange, we obtain the well known Bjorken scaling [19]:
the structure functions are independent of the virtuality Q? of the exchanged photon. If we
compute QCD corrections in the large @? limit, we meet collinear divergences, appearing
through log(Q?/u?) corrections [20]. This is known as scaling violation. Dealing with
these divergences is a typical example where resummation of perturbation theory is to be
considered.

The scaling violation implies that parton densities inside the proton become -
dependent and the resummation of the collinear divergences in the framework of per-
turbative QCD leads to Q? evolution equations for these parton densities. These equa-
tions, called the DGLAP? equations [20], were found independently by Gribov-Lipatov
in 1972, Altarelli-Parisi and Dokshitzer in 1977. Due to their very good agreement with
experiment [21], the DGLAP equations are considered as one of the best successes of
pQCD.

We will start this report by establishing the DGLAP equations. This will be done in
two steps. The first one shows how to deal with collinear divergences and how resum-
mation of the perturbative expansion and reabsorbtion of these divergences in physical

1Some experiments, like E665 [15], use muons instead of electrons.
2Some authors refer to these equations as the GLAP equations or the Altarelli-Parisi equations.
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quantities, like in renormalization techniques, leads to scaling violation. The development
we will show can be applied to any order of perturbation theory and is mainly the fac-
torisation theorem [22]. In the second step, we will calculate the correction due to one
gluon emission (OGE) and obtain the DGLAP evolution equations at leading order.

Once the evolution equations are established, we will study their analytical properties.
This suggests to go to Mellin space where the structure of the equation become much
simpler. Studying the solutions in Mellin space, we will link our results with analytical
S-matrix theory. Precisely, we will show that at small zp (large s), the DGLAP analytical
solutions behave like an essential singularity, appearing at the factorisation scale, in Regge
theory [23,24]. We will cite some development, in QCD theory and phenomenological
models, trying to solve that problem. We will conclude the chapter by a comment on
eigenfunctions of the evolution kernel.

Since no analytical solution of the DGLAP equations exists in z-space for an arbitrary
given initial condition , we must solve them numerically. The main task of this work
consist in writing an algorithm to solve the DGLAP equations, from a given x behaviour
at an initial scale, up to a final scale. Our algorithm works directly in z-space and we
will explain the main tools, such as z-space discretization which we used. We show, by
comparison with the GRV [28,29] parton densities, that our algorithm works with a good
precision.

Such an evolution algorithm can find a lot of application in systematic studies of the
DGLAP equations. We chose to present one of them in this report. Since we have quite a
lot of experimental measurements of the F5 structure function, we can compare them with
the DGLAP predictions. This task consists in starting with a parametric initial condition,
evolving it with our evolution algorithm, compare prediction with the data, and find the
best values for the parameters. We will describe how this has been implemented. Finally,
we will give an example of fit to F, structure function, obtained with our application,
using the MRST parametrization [21] for the initial condition.



Chapter 2

The DGLAP Equation

The DGLAP evolution equation and its implications on scaling violation are considered as
one of the most famous success of QCD and, more precisely, perturbative QCD (pQCD).
Its agreement with experimental measurements of structure functions has already been
tested successfully at leading order (LO), next-to-leading order (NLO) and next-to-next-
leading order (NNLO) in perturbation theory.

In this chapter, I will start with a short derivation of the DGLAP equation. Since
this equation is based on the factorisation theorem, which is by itself a powerful result,
I will firstly explain how to obtain that theorem. I will then extract the LO splitting by
calculating the first order QCD corrections.

2.1 Framework
We will place ourselves in the framework of Deep Inelastic Scattering (DIS). We thus

consider scattering of a positron on a proton by exchange of a virtual photon, as shown
on the figure below.

¢ = -Q°<0
s = (p+k)?
wW? = (p+q)?
v = pg
2
s = &
2v
Yy = P4q
p.k
The differential-cross section can be written
d?o 2ma?
— 1 1— 2 E 2\ 2F 2 21
dzdQ? ~ Q4 {[ + y)} 2(2,Q°) —y L(%Q)} (2.1)
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At lowest order, the photon directly interacts with a quark from the proton and

Py, @) =2 Y e lae) +q(@)]. (22)

9,9

F, is therefore scale-independent. This is known as Bjorken scaling [19].

However, when we try to compute QCD corrections, we face collinear divergences of
the form o In"(Q?/k?), where k* is an infra-red cut-off. This implies that we need to
resum the perturbation theory expansion and ¢(z) in (2.2) will also depend on Q*. We
will do this in the next pages, considering the regime where Q? — oc.

2.2 Factorisation theorem

2.2.1 Factorising the v*¢ amplitude

We will only consider the non-singlet case [22]. Since the detailed proof of the factorisation
theorem is quite tedious, we will only outline the salient points without entering much
into the calculational details.

Our task is to extract the collinear singularities out of the vy*p interaction. These
correspond to logarithmic divergences of the form In(Q?/p?). Thus, the large Q% limit
corresponds to the small p? one, and divergences are also called mass singularities.

First of all, let us consider the squared matrix element for v*q interaction, denoted by
M. We want to extract mass singularities of M in the axial gauge'. M can be expanded
in terms of the 2-particle-irreducible (2PI) kernels K, and Cj as follow

That ladder expansion gives

M:CO®(]I+KO+K0®K0+):C()® :C()@F(], (23)

I-K,

where convolution contains spin sums and phase space integrals.
Factorisation of M is then performed by introducing a projector IP = IP, x IP,, where

1. IP,, decouples Cy and I’y in spinor indices

1Using the axial gauge n.A = 0 allows to keep the probabilistic interpretation when going from leading
order to next-to-leading order, to simplify callculations and to compare results with the Operator Product
Expansion techniques.
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2. IP, extract the collinear singularities out of the phase space integrations. These
singularities behave like 1/ and arise from the dk?/k? integration in 4+¢ dimensions.

We must use this projector to carry mass singularities out of the ladder expansion.
By an easy recurrence, we find

M= (CO I— (1 1— ]P)K()) (]1 —1]PK> (24)

where

K = KO(]I—(]Il—]P)K()) (2.5)

1
e = 1HPK+(PE)PK)+.... (2.6)

We thus have rewritten M

-

is free of mass singularity and I' = 5 L 7 also includes Zp,

1 —_—
- -P

where C' = Com
the residue of the po&e of2 the full quark propagator.

Physically, T'(Q?/u?, x,«,1/¢) can be seen as a parton density in the parent quark,
while C(Q?/u?, z, ) appears as a short-distance cross-section.

Before going into the consequences of this result, it is interesting to note that, in
Mellin space?, factorisation is written as a simple product instead of the convolution in

momentum space

M(Q?, j, . 1/e) = C(Q*/u?, j, )T (Q%, j, o, 1 /). (2.7)

2.2.2 Renormalization group techniques

In another way, eq. (2.4), can be written M (I — IPK) = C, which looks like a mass
renormalization My,..Z = M,. The main difference in our case is that I', and thus T-IP K,

2Mellin space corresponds to & moments.

10)= [(der g@, o s = [ s,

c—ioco

where the integration contour stands at the right of all f singularities.
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seems to depend on Q?/u?. One of the important result of the factorisation theorem is
that I' is actually independent of Q*/u?. To see this, start from the fact that one can
show that the 2PI kernel is finite. Since the projector IP extract the 1/e divergences, K
and K [(T — IP)K,]|" are finite when £ — 0 before the last dk?/k? integration. Thus

F(Q2/:u2a €, 1/8) = (5(1-.@)—{—2 éPZ(Q2/:U’2a ZE) = 5(1_$)+/;Q2 %(I)(k2/u21 Z, ‘S)’ (28)

where @ is finite when ¢ — 0. Differentiating both sides with respect to Q? and comparing
coefficients gives 0g2I'; = 0 for all ¢, and thus

9T = 0. (2.9)

as stated.
This proves that we can apply the well-known renormalization group techniques to
our problem. Let D denote the total derivative with respect to u?

D = i, + [B(g) n ;g} . (2.10)

Being a physical quantity, M must be py-independent. So, working in Mellin space, we
have from (2.7)
DIn(M) =DIn(C)+ DIn(T") = 0. (2.11)

If we introduce
i0,6) = =DIn(l) = = [B0) + 5o | O, TG/, (212

we have the following “renormalization group equation”

[D - 7(]7 OJ)] C(Q2//L2, ja «, ‘S) =0. (213)

The key point of this expression is the fact that, since both D and C don’t contain poles
in g, 7 is itself free of poles in e. Expanding I'(j) = 1+ Y, Txe™*, we get v = —ad Iy
which is useful to calculate 7.

Finally, if we integrate (2.12), we have

. *dx (5 A) ]
I'(j,a,1/e) = - — =, 2.14
Gron1/e) =ewp |- [T DB (2.14)
with B(a) = £5(g).
Using the p-independence of M, we can write
“@dr (5N
M(Q2j,0,1/2) = C (1,5, (@ - / ALY 2.1
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2.2.3 The full v*p case : parton densities

The last step in order to recover the full DIS properties is to consider an incoming proton
instead of a single quark. The total yv*p square amplitude, will be the v*¢q square amplitude
we just calculated, convoluted with the quark bare density inside the proton.

Let us call H the 2PI p — ¢ kernel. If we assume that H is tempered i.e. H(p? z) <
C |p?|" when | p? |— oo for some C and 7 > 0, the bare parton density becomes®

qbare(x,oz,l/s):/o d—ffH(pZ,x)=/°° %H(pQ,x)-i—O[(u—Z)n}. (2.16)

—Q2 P Q2

The lower limit in this integral will generate the mass divergences which, due to the
KLN theorem [25], must cancel the ones from the y*g interaction. This allows us to define
the dressed density through

. AV A (5, N)
2 — R
q(4,Q%) = exp [ /0

TW qbare(ja QQ)- (2-17)

Diagramatically, the process of factorisation for v*p interaction can be summarise like

_ e I !

SN N

2.2.4 Parton density evolution

With all the calculations performed since the beginning of this section, the DGLAP
evolution equation is directly obtained by differentiating eq (2.17) with respect to Q2.
This gives*

Q0ga), Q) = —57 (1-(Q") . @) (2.18)

with the solution

@) drq(j, M)
MY, . 2.19
@ A 2603 (2:19)

3Contributions from the last term, going to 0 like a power of 2, are called a higher twists and are

neglected here.
4The —% factor in the RHS is often absorbed into ~.

(4, Q%) = q(4, Q5) exp [—/
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2.3 First order corrections and LO DGLAP

If we go back to momentum space, the evolution equation (2.18) becomes

Q*0g2q(z,Q°) = /zl %P (?%(QQ)) q(&, Q). (2.20)

P(z) is called the splitting function, and its Mellin transform

1
(7, ozs):/ dx 277 P(x, ay), (2.21)
0

is known as the anomalous dimension.
From the point of view of perturbative QCD, we can expand P(z,qay) as a series of
the strong coupling constant a

O

%)2 PO(z) + ... (2.22)

P(z,q,) = ;—;P(O)(x) + (
In this section we will show how to obtain the non-singlet splitting function, at leading
order, from QCD calculations.
The collinear divergences arise from gluons emissions and in the large @Q? limit, we
will have to resum contributions proportional to o In"(Q?/u?). Starting from the bare
density, gy(z), we want to calculate

b
b

If we use the dressed parton densities, the Q? corrections appear clearer

1@ q(z, u?) q(§, Q%)

This means that we only need to calculate the one gluon emission (OGE) diagram, which
is of order as. The diagrams corresponding to real gluon emission are shown in figure 2.1

Since we are only interested by the large Q? corrections, we can consider that the
incoming quark is on its mass-shell (p?> = 0) and neglect all the quark masses. Those will
actually lead to subleading corrections or higher twists.
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Figure 2.1: Diagrams for real gluon emission at order a.

To perform calculations, we will place ourselves in the light-cone frame. This is done
by introducing a second light-like 4-vector n satisfying

n*=0 and n.p = 1. (2.23)

Using this new vector, the ¢ and k& impulsions can be written

¢ = vn*+¢/, (2.24)
ki B |k2| w
ku = é’pu + TTLH + kJ_' (2.25)
This parametrization for ¢ satisfies ¢> = —¢2 = —Q? and p.g = v. One can easily check

that the jacobian of such a parametrization gives
d
=24 |k?| dk? db. (2.26)
48
Summing over polarisation states, the amplitude of the first Feynman graph is

IM™ =3 quCF k4ztr (PEXEY" (K + " HES) (2.27)

We use the light-cone gauge n.A = 0. In this gauge, if we have a gluon of impulsion [,
the sum over its polarisation states gives

n*l¥ + I#n¥

D e () = —g + ——. (2.28)

l.n

To fully calculate the contribution to F; from the OGE diagram we also need to
integrate over phase space and project the result on the F, part of the cross-section. In
our particular case, the phase space can be written

d*k

6 = (%)4(%)6* (0= 1?) (2m)3* ((k+)?)

2| + 27,k
= 167r2 dedk?dk? ds (k3 — (1 —€) |k?]) o (g—x—‘k‘g—yq““), (2.29)
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while to project out the F, contribution, we have to multiply the result by an overall

Inserting the relation (2.28) in the amplitude expression and using our parametrization
for k, we can compute the projected amplitude. After a little bit of algebra, we find

n#n” 2 9 O
—_— =8 P 2.31
47T |M|;“/ eq|k2|§ (g)’ ( )
with ) )
+x
P(z) =Cp 1 — 2 (2.32)

We are left with the phase space integration. The first step is to remove the k% and
f integrations using the on-shell conditions®. This leads to

oy (AR [ eP(
rese ] W)t Te—aes (259

where the limits on |k?| come from energy positivity and the limits on &, which are

(z = [k*| /(2v))

fe=x+2— 2124 \/4r(1 — 2)2(1 — 2), (2.34)
are obtained by imposing —1 < cos(f) < 1.
Expanding the £ integral in series of z, we find
¢ EP(E) ¢ P()
d¢ = d§ +
/6— V(E-9E-¢&) /6 V(& -9E-¢&)

= wzP(z)+ O (W|) (2.35)

2v

O(z)

We can keep only the first term since we are interested in the leading Q? contribution.
The |k?| integral is divergent®. We will thus introduce a small infra-red cut-off £? in order
to make it finite. The contribution of the first diagram is then

2 Qs

Fy = &5 aP(x)In (”). (2.36)

K2

The second diagram, contains a 1/(p+ ¢)? from the quark propagator instead of 1/k2,
thus its contribution is proportional to 1 compared with In(Q?/x?). The third one leads
to the same kind of subleading corrections. Note that, in the same order of idea, we can
replace In(2v/k?%) by In(Q?/k?) and neglect the In(1/z) contribution which is subleading
too.

k2 is extracted out of the first § condition and cos(6) out of the second one.
6This corresponds to the collinear divergences we met in the factorisation theorem.
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We still need to compute the virtual diagrams. These are vertex and propagator
corrections. However, we can do this without entering the details if we simply note that
virtual corrections have the same behaviour in x than the Oth order contributions and are
thus proportional to 6(1—x). Therefore, their effect is to replace P(z) by P(z)+Kd§(1—x).
The constant K is fixed by asking that P(x) integrate to 0 which is a consequence of quark
number conservation. If we introduce the plus distribution defined through”

1 1
A=, = 1= for 0<2 <1, (2.37)
oSt fe) - f()
/0 dx Qoo /0 dx P (2.38)
the final splitting is \
1+z 3

Taking into account the virtual corrections, we must replace the unrenormalized o by
the running coupling®.

Our last task in this section is to remove the infra-red cut-off. This is done by going
from the bare to the dressed parton density. Actually, the computed correction has to be
convoluted by the bare quark density. The contribution up to first order in «y is

Fy(z,Q%) = 2o /; % [5 (1 - %) + ;‘—W In (f—j) P (g)] (). (2.40)

We can introduce a factorisation scale  and define a dressed density at that point

o) =l + 22 () [ SR (2) ate) (2.41)

If we write Fy(z, Q%) = elzq(z,Q?), we can remove the bare density dependence

i@ = o+ (L) [Lr (%) ao

2 Qg 2 ! dé- x 2 2
— e+ 2w ( L) [ (5)aen o). @
The factorisation allows us to replace the divergent bare density by the finite dressed one,
introducing a scale dependence.

Since g(z, Q?) is a physical quantity, it may not depend on the factorisation scale p?.
The derivative of equation (2.42) with respect to y? has thus to vanish. This gives the
well-known DGLAP evolution equation

"We will discuss briefly in the next section how it appears from regularization of the divergences
8Since we consider first order corrections, we must use the first order running coupling.
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2\l
@ogale, @) = ) [ Ep () a0 (2.43)
In all these calculations, we have limited ourselves to the case of gluon emission by a
quark coming out the proton. In that case, P(z) = P,,(x) describe the probability density
to find a quark of impulsion xp into a quark of impulsion p, emitting a gluon of impulsion
(1 — z)p. This can be generalised to the probability density to find a parton a (quark or
gluon) into a parton b by emission of a third parton. The four cases are summarised in
the table below [26]

Diagram Splitting

Py = Cr |55 + 3001~ 2)|

(1—z)+

Py =CFr [71—1—(1—;5)2}

z

Pyg =Tr [352 +(1— x)Q]

Pog =204 |7 + (1—2)(z+ %)] —{—%5(1_@

T T

Prg = DPgg = Piqdis- (2.44)
Py; = 0, (2.45)
Pq == qu, (246)
Py = Py, (2.47)

The quark, antiquark and gluon densities are then coupled and the full set of DGLAP
equations is

' o ()0 R g
oo (158 e 0 | (168
2 = -
9(z, Q%) P, (%) Py, (g) P, (%) 9(z, Q%)
(

Beyond leading order, due to effects like
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s

the splitting P,z does not vanish anymore. However, if we introduce

¢* (2, Q) = (2, Q) £ 4(z,Q%), (2-49)

using flavour symmetry, we can construct 11 non-singlet densities : V* = ¢, and’

T3 = U,+ — d+,
Ty = u™+dt —2st,
Tis = ut+d"+st =3¢, (2.50)

Toy = ut+d"+sT+ct —4b",
Tys = u' +dt+sT+ct+07 =5t
All these quantities evolve independently from one another.

The gluon distribution is part of the singlet densities and is coupled with the flavor
singlet quark density

S, Q%) = [alz, Q%) + q(=,Q%)] . (2.51)

q

Besides the 11 uncoupled equations, we have the evolution equation for the flavor
singlet

2 E(%QZ)) _ o 1% Py
Q 6Q2 (g(.T,QQ) - 27_‘_/3; 5 qu

2.4 Divergences and the plus distribution

0P (¢) | (56, @)
P, (zs) (o) @

M8 M8

To conclude this chapter, we will shortly explain where the divergences comes from in
virtual and emission diagrams, and how the plus distribution arises from the calculations.
Since our aim is simply to tell what kind of divergences appear in the diagrams we met
and to underline, how the plus distribution comes out of the divergences cancellation, we
won’t enter into the details of calculations in dimensional regularization.

Let us take, for example, the case of ¢q¢ — W™. If we want to compute the first order
QCD corrections, we have two diagrams for real gluon emission

9indices are the order of the representation of the flavour symmetry group.
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and three for virtual corrections

One can easily check, by power counting for example, that these diagrams are diver-
gent. The real emissions contains infra-red and collinear divergences, corresponding to
soft gluon emission and to emission parallel to the initial quark; while virtual correction
are both infra-red and ultra-violet (hard gluon) divergent. If we use dimensional regular-
ization to deal with them, we first look at the UV divergences in the virtual diagrams.
Working with d = 4 — 2¢yy, one can show that divergences cancel between propagator
and vertex corrections.

One can then go to dimension 4 + 2¢;; and deal with the soft divergences. The KLN
(Kinoshita-Lee-Nauenberg) theorem [25] tells us that these cancel when we add virtual
corrections to real emission diagrams.

We are then left with the collinear divergences in the real gluon emissions. If p de-
notes the initial quark impulsion and xp its impulsion after emission, the gluon emission
amplitude contains terms proportional to (1 — x)'~2¢, which leads to both collinear and
soft divergences. To isolate the pole in this expression, one can write

(1—315)”25 = (1—310)”25 1
—{5(1—36)/0 @fiﬁ”“‘xé]

{UJW} . - %5(1 —z)

_ (1:@);25 [w};;—gm_@,

The last divergent term corresponds to IR divergences and is cancelled by virtual correc-
tions. We are thus left with collinear divergences

1(1+a?
o~ = ( Rk ) + finite. (2.53)
e\l—=x n

This clearly shown how the plus distribution allows us to isolate the collinear diver-
gences in gluon emission diagram from the soft singularities, cancelled by virtual diagram.



Chapter 3

Analytical Properties

This chapter will be devoted to the study of the main analytical properties of the DGLAP
evolution equation. Basically, we will look at the analytical behavior of the solutions of
the equation, particularly at small z.

3.1 Solution in Mellin space

When dealing with the DGLAP equation, it is often useful to work in Mellin space. In that
case, the z-convolution in the RHS of the equation simply become an algebraic product

Qs (QQ)

o V()40 Q). (3.1)

Q28Q2q(j7 QQ) =

The Mellin transforms of the splitting functions, called anomalous dimensions, are

3 .
= Cr[3=1G-1-10+1)] (32)
2+j+5° }
_ 3.3
T R[j(j+1)(j+2) 59
245+ 42 }
Toa "G -G +1) (34)
11C, — 4n; T 111 1 |
- 2 LI .
- S e )] T
where!
I()\)—/dl_xA +¢/\+1~§:1 (3.6)

Jj=1

They are shown in fig. 3.1.

Ly is the Euler constant and 1)(z) is the poly-gamma function, which is the logarithmic derivative of
the Euler gamma, function.

15
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0.35 ——————y

0.3
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0.1 1 10 0.1 1 10
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60 ——ry

20 R e
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1

(d)

Figure 3.1: Anomalous dimensions for : (a) ¢ — ¢, (b) g = ¢, (¢) ¢ — g, (d) g — g.

Using a,(Q?) = (3372nf)11n2(7222/%01)), we can easily check that the solution of (3.1) is

@] = an

o, (Q?)
For the non-singlet case, the Mellin space expression still contains a matrix product.

We first diagonalize the anomalous dimensions matrix and then solve it like in the singlet
case.

1G.0?) = 4G, @2) [

3.2 Analytical behavior

It is of prime importance to study the analytical singularity structure of the DGLAP
solutions, particularly for z < 1 where the Regge theory applies. At small x, the rightmost
singularities in the Mellin plane dominates. So, as one can directly see from anomalous
dimensions expressions, the dominant contribution at small z will come from the 3%1
terms. Therefore

0.0 ~ G @Rexn (-7, (39
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which suffers from two problems

1. it is an essential singularity, which is not the kind of singularity we expect from
Regge theory,

2. it appears at the scale Q3. A singularity appearing at the factorization scale, i.e. at
an arbitrary and non-physical scale is far from being a good analytical behavior.

The first problem can be solved by resumming the perturbation theory in the large s
limit. Although it suffers infra-red problems, this is done by the BFKL equation. That
equation predicts that

(3.9)

FQN

V1/x) h 7T

Unfortunately, the BFKL prediction for structure function is unable to reproduce the
data and its NLO corrections even may lead to negative cross-sections.

To avoid the second problem, one should try to modify the @? dependence, which is
only valid in the large 2 limit, in such a way that the singularity appears over the whole

Q? range.

3.3 Eigenfunctions

We would like to find eigenfunctions of the DGLAP equation, i.e. particular solutions

satisfying .
| & (5) 10 =2 (3.10)

We will give two different proofs that this equation has no non-trivial solution.

3.3.1 Volterra equations

Let uw = In(1/z), this equation can be rewritten
/u doP(u— v)f(v) = Af(u). (3.11)
0
If we look in mathematical books reference, we find that equations of the form
oa) = [y (@ )ot) = £(o) (3.12)

are Volterra integral equations of the second kind. If f(z) = 0, we call it homogeneous.
For those integral equations, we have the general result [27]
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Theorem 3.1. The Volterra integral equation of the second kind
o(a) = A [y (s, )6l0) = F(o),
0

where the kernel K(x,y) and the function f(z) belong to the class Ly has one and es-
sentially one (up to a function vanishing almost everywhere) solution in the same class
Lo.

This theorem admits the following corollary

Corrollary 3.2. The homogeneous Volterra integral equation of the second kind

B(z) — A / " dyK (2, )d(y) = 0,

where the Kernel K(x,y) belong to the class Lo, admits only almost everywhere vanishing
solutions.

Since the DGLAP equation is obviously a homogeneous Volterra integral equation of
the second kind, we deduce from that corollary that it has no non-trivial eigenfunctions.

3.3.2 Mellin space

For those who are not satisfied with the requirement that K(z,y) must belong to the
L, class, we shall give another proof that (3.10) has no non-trivial solution. If we go to
Mellin space, (3.10) becomes

v F(I) = Af(5)- (3.13)
If we want a non-vanishing solution f(z), we will also have a non-vanishing solution f(j)

and thus
7)) = A= (3.14)

Converting this back into z-space leads to
P(z) = Ad(1 — x). (3.15)

This is clearly not the case for the physical splitting functions, hence the expected result.

To conclude this section, we must make the important remark that this result is not
restricted to the LO DGLAP equation. It is valid with the full splittings. Actually, we can
write an equation like (3.10) for each Q%. The parton distributions have thus to vanish
for each Q?, whatever the Q? dependence of P(z,Q?) is.



Chapter 4

Numerical Resolution

An interesting thing to do with the DGLAP evolution equations, is to compare their
predictions on the F; values with the experimental measurements. This is done by starting
from a given distribution at an initial scale Q% (for every z) and evolving up to higher
Q? using DGLAP. This task is however impossible analytically, and we need to process
evolution numerically. To achieve this, two kinds of tools are needed:

1. a numerical resolver for the DGLAP equation,
2. a comparison of the evolution result with the experimental data.

This chapter will describe both these subjects, explaining the programs we wrote.
Some important parts of the source code are joined in appendix and the full application
is available on the Internet at the address

http://virtual.theo.phys.ulg.ac.be/physics/dglap

4.1 Numerical DGLAP resolution

4.1.1 Generalities

Defining

(2,Q%) = q(z,Q*) +q(z,Q),

(@,Q) = z(u(z,Q") —d"(z,Q) — s (z,Q") + ¢ (z,Q),

Sz, Q%) = z(ut(z,Q*) +d"(z,Q%) + st (z,Q%) + ¢t (z,Q%),

(2,Q%) = zg(z,Q%), (4.1)

the proton structure function becomes

3T +58

FQ(xaQ2) 18

19
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The DGLAP evolution equation for 7" and S can be written

1
0T (z,t) = ;‘—W Ly, (g) T(€, 1)
Hqg

Hgg

a, [1dg (11
2r J, &

N——

Il

=
Q <
< <
M8 o
M8 M8
N
Q W
—_
Mmoo
N
N———

where ¢t = In(Q?) and Il,(z) = 2Py ().

We thus have implemented two DGLAP modules, for single DGLAP evolution and
for two coupled DGLAP equations. We solved directly the DGLAP equation in z-space
by estimating, as precisely as possible, the integral in the RHS and considering the whole
equation as a set of coupled differential equations. The values of T', S and G are calculated
for 2y <7 <1 and Q% < Q* < Q?%,.... More precisely, the points where evolution is
calculated form a grid with NB_X values in z ans NB_Q2 values in Q2. The values of z and
Q? are chosen equally distributed respectively in In(x) and In(Q?).

4.1.2 Splittings

Since TG ~ zq and G ~ xg, the splitting used in the evolution equations are also
multiplied by z, compared with the usual DGLAP splittings.
Practically, each splitting is given by Pg, P,, Ps and DP; defined through

P,
P=P —— 4+ P5(1 — 4.
R+ (1 — $)+ + 65( .T), ( 3)

and DP, = 0P, |,.

4.1.3 Integration

Due to the fact that we work with a grid, we have to discretize the integral in the RHS
of the DGLAP equations. In that integral, only the densities depend on Q?; this allow us
to cast it in the following discretized form

1 Ng
| %r (g) 06,0 ~ S Kiyalz;, Q). (4.4
x; j=i

The main advantage of that expression is that we can compute the integration kernel i,
which is Q2-independent, once for all before starting the evolution itself. The estimation
of the RHS term during the differential equation resolution will therefore be limited to a
matricial product instead of the full integration calculation.

Evaluation of the integral in the evolution equations has been performed by the Bode
algorithm [36] when it is allowed. When the number of points over which integration is
performed is too small to apply the Bode method (i.e. at large z), we use Simpson or
trapezoidal rules.
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To enter a little bit more in details, we explain the main steps of discretization of the
integral in the case of trapezoidal integration. Generalisation to more precise algorithms

follows directly. Let .
_as(t) [T dE
et =52 [ Er (%) ren (45)

We consecutively have

= [ (e

d§ (1 B _) 1)+ Z x]+1 ; [PR(xi/xj)fj N (xz/$J+1)f] o

T; f Z; Tj

~ ng¢+2_: xj“ [PR( ’/xj)fj Prle ’/x’“)f, ] I (4.6)

Tj Tj+1

Q

j=i

The remaining part I, constituting the plus prescription part, can be simplified in
the following way '

tdef(§)  _ [Tdu f(3)
L5

T 5(1_%)4- 1—’LL)_|_
Lde f(§) — £/ (2)
=/ ?—1 _Z + f(z)In(1 — )
- [ ETE s s -,

which can be directly inserted into (4.6) except for £ = x where we have

CFO -2 1 ogf(e)
e, T o e sz

In our case, f(§) = P(z/&)f(£,1) so

. flO) -~ §f@) _Pfi fimn—fi 1 0Py
M g z; + P )xi+1—xi_x_i O

fi-

=1

'We have
/:d”’uf—(?n - (/ /)d”“"l—fc) /d e /dl_x
- /d 1—3: /d l—x /d + f(1)In(1 - 2).
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Finally,
o NX_:Q 21 —x; | Pr@i/zg) f — 2P (1) f; N Py(zi/2j1) fin — o5 Pr (1) i
' =it 2 Tj — Xy Tjt1 — L4
it1 — @i | Pr(1)f; i1 — i 1
z; Tiy1 — T Ty
P(xi/wi1) firn — 2=P(1)fi 1
+ L m T AP () In(1 = 3),

4.1.4 Differential equation

A differential equation solver contains 3 parts :
e an algorithm which evolves from a given initial value up to a given upper value.

e a stepper, which estimates errors of the previous algorithm and calculates the steps
to pass to it, in order to minimise errors.

e a general function, dealing with the stepper, which really performs the evolution at
the values you want it to. This is called the driver.

For our purposes, we used a 4th order Runge-Kutta method as evolution algorithm, the
Bulirsch-Stoer stepper and the ODEInt driver, all three are described in from Numerical
Recipes [36].

4.2 Testing the evolution

In order to test the efficiency of our evolution algorithm, we compared its results with
the GRV [28] leading order evolution. We started et Q% = 20 GeV? with the GRV parton
densities? and let them evolve with our algorithm. We then compared our results with the
GRYV one at various Q% up to 10000 GeV2. The Q? range was chosen to have a constant
number of active flavours. We used n;y = 5, and Agep = 132 MeV. The densities we
obtained using our evolution algorithm are shown in figure 4.1. The relative error with
the GRV results is presented in fugure 4.2.

2We used the GRV98 densities [29].
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Figure 4.1: Parton densities obtained with our evolution algorithm starting at Q? =

20 GeV? with the GRV densities.
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Figure 4.2: Relative error between our evolution and the GRV98 one (at leading order)
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4.3 Comparison with experiment

Once we have an algorithm to evolve DGLAP numerically, one of the interesting things to
do is to compare evolution results with experimental measurements® of F,. This is done
by choosing an initial density ¢(z, Q%) as a function of z depending on some parameters
ag, a1, - ..,0a,—1. For each value of the parameters, we can evolve and compare with the
experimental data. We then have to fit the parameters a; to produce a good x?.

The only tool we need, in addition to the ones we used in DGLAP resolution, is a
minimization algorithm. In our program, we used the MINUIT program from the CERN
library. It is used in batch mode and we refer to the CERN documentation [37] for more
information about MINUIT and its usage.

4.4 Application to F; fit

4.4.1 Description

Basically, we applied our DGLAP [20] evolution equations solver to fit the Fy structure
function. Starting from some given parametrization at an initial scale, we evolve the
proton distribution functions using DGLAP and compare with experimental values of F5.

4.4.2 Installation
Requirements
This program requires
e a C++ compiler like gee [30],
e the PACKLIB library from CERNLIB [31],

e OpenGL libraries (if you want to use the GL [32] extension) and the glut toolkit
from Mesa [33]

Compilation
The CERNLIB libraries are supposed to be installed in the following directories

e libraries in /usr/local/cern/lib,

e C headers in /usr/local/cern/include.

If it is not the case, you can change the library path through the CERNLIB variable. It is
defined at the beginning of the file /src/Makefile. The header directory is controlled by
CERN_INCDIR in the src/base Makefile.

Once the path is correctly configured, simply type make in the main directory. This
will output the binary file Solve in the main directory.

3See a little bit below for experiments involved.
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Platforms

I have tested installation for the following platforms
e Linux RedHat 7.1 [34]
e Linux Debian 2.2 [35]

The OpenGL module have been tested both with the Mesa library and GL library for
NVIDIA GeForce2.

Please let me know if you have any comment for other platforms.

4.4.3 Execution and results
Execution

Executing Solve should launch Minuit in batch mode. If one enabled the OpenGL Applet,
a new window should appear with the fit graphic. One can close it at the end of the
program by pressing the ESC key.

Output

Once the program execution is finished, it produces 2 outputs:
e The fit result is in the file Fit.dat,
e The fit result at experimental data points is saved in ResAtExp.dat,
e The final value of the parameters is in param.dat.

You can change these filenames in setup.h.

4.4.4 Data

The experimental points should be located in the ExpData directory. The F2p.dat file
contains 5 columns which are z, Q*(GeV?), Fy, AF,, and an index corresponding to the
experiment as stated in the following table [38]

Index | Experiment
1 BCDMS

E665

EMC

H1

NMC

SLAC

WA25

ZEUS

O IO Ot i W N
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4.4.5 OpenGL applet

In order to visualise graphically the fit evolution, a 3D-plot of the fit is shown in real-
time. Since it depends on the OpenGL library, it is available optionally. If you want
to enable (disable) the visualisation plug-in, you simply have to set USE_OPENGL = 1
(USE_OPENGL = 0) in the file src/Makefile. By default, the plug-in is unabled. To
compile the OpenGL files, you should also need to specify the X-Windows and OpenGL
libraries location. If they are in unusual directories, you can set this through the GLLIBS
variable in the same file.

Basically, the applet consists of a second window showing the current state of the fit
through a surface in blue and the experimental points with error bars in red. When the
windows appear, the vertical axis shows the F3 value. It has been bounded between 0 and
2 to avoid divergences. The two horizontal axis are In(z) and In(Q?). The point closest
from the viewpoint corresponds to z = 1 and Q? = Q3. The axis on the left corresponds
to In(z) and the one on the right to In(Q?).

The applet allows you to move around the plot. When the window is active, the keys
are the following

Key | movement description
7 | positive y translation | move up
1 | negative y translation | move down
4 | negative x translation | move left
6 | positive x translation | move right
8 | positive z translation | move forward
5 | negative z translation | move backward
— | positive y rotation turn right
< | negative y rotation turn left
T | positive x rotation lower head
4 | negative x rotation raise head
a | positive z rotation balance left
7z | negative z rotation balance right

To quit the plug-in, simply click the Esc key. As usual in 3D rendering programs, for the
observer reference frame, x-axis points to the right of the observer, y-axis to his head and
z-axis in front of him as shown in the figure 4.3%

The source code for the OpenGL module can be found in the src/gl directory.

4.4.6 Personalization

Although some default parameters are set, you can widely modify the existing program.
I will shortly describe here the main parameters you can easily change. Most of the
constants on which the fit depend are defined in src/base/setup.h.

4This is a left-handed reference frame. Therefore, a positive z rotation, putting x onto y, is opposite
to the usual interpretation.
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Figure 4.3: Reference frames used in OpenGL application.

Grid

The number of points in the (z, @?) grid are defined through NB_X and NB_Q2 in src/base/setup.h.
Default values are 104 and 32.

The minimal and maximal values of  and Q? are defined by X_MIN, Q2_MIN and
Q2_MAX in the same file. Default values are 107, 5 GeV? and 30000 GeV2.

QCD

The QCD parameters such as the number of flavors (Ny) and the QCD scale Agep are
defined in src/dglap/QCD.h.

Splittings

The DGLAP evolution splittings are defined in src/dglap/Splitting.cpp. They are
cast on the form described by eq (4.3).

Parametrization

In order to apply DGLAP evolution, you need an initial condition. This is given by the
distributions, as functions of z, at the initial scale Q..

These three functions are called TDistrib, SDistrib and GDistrib and are defined
in the source file src/base/param.cpp. They take as argument the z value and the
parameter values (as a zero-based indexed array).

The number of parameters is NB_PARAM, defined in setup.h.

Data set

The functions reading the experimental data file are grouped in the src/base/readdata. cpp
file. The actual configuration accept the file format described before and only read the
points inside the (z, @*) domain.
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4.4.7 Future

Some tasks are planned for next release of this program. As example, we can consider

e using parametrizations using Dynamic Libraries,

e allowing a formula interpreter for parametrization,

e changing the grid size without recompiling,

e adding a DGLAP module to deal with an arbitrary number of equations,

e adding a minimization module independent from MINUIT,

e write a configuration script,

e NLO corrections to the DGLAP equations,

e adding an automatic backup of parameters value during the fit,

e considering Agcp as a free parameter for the fit.

4.4.8 Contact

Please send Bugs or Reports at

4.4.9 License

g.soyezQulg.ac.be

This program is under GPL version 2 [39]. A copy of the license should be given with the

source code.

4.5 Example

To conclude this chapter, we will give an example of a fit produced by our application.
We will produce an F? fit using the MRST [21] initial parametrization. This means that
we adopt the following initial condition

TUYy
xdy
xS
g
TA

Ay(1 4 Byv/z + Cuz)z®™ (1 — z)™,

Ad( + Bd\/E + Cdﬂf)ﬂﬁ(sd(l - Jf)nd,

As(1+ BsVz + Csz)a’ (1 — z)", (4.7)
Ay(1 4 By/z + Cyz)z’s (1 — 2)™ — ALz’ (1 — z)",

AA(1 + Bavz + Cax)z®2 (1 — z)™8,

1
1
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with

2
2u = =S—-—A
U : ,

- 2
2d = SS + A,

_ 1

§s=8§ = ES.

For the QCD parameters, we used 4 flavors and Agep = 220 MeV.
Using the ¢*(z, Q?) densities, one can easily show that

d+(:1:a QZ) o U+(£C, QZ) = dv(.’L', QQ) - UV(.’L', QQ) + QA(;C, QZ)

Since both d* — ut = —T3, dy and uy evolve like flavor non-singlet densities, i.e. non-
coupled to the gluon density, the sea asymmetry A(z, Q?) also evolves as a non-singlet
quantity. Using these MRST definitions, the singlet density becomes

% :m(uv+dv+5),

and if we introduce
T= $(3UV — de — 5A)

which evolves like a non-singlet density, the proton structure function can be written

11X + 3T

FQ(vaQ) = 45

(4.8)

We started with the initial parametrization (4.7) at Q> = 1 GeV? and evolved using
our algorithm®. The grid had 36 points in Q? going from 1 to 30 000 GeV? and 118 points
in z going from 2.0107° to 1. Like for the MRST parametrization, we have only fitted
the experimental points in the region

Q? > 2GeV? and W? > 12.5GeV2.

This gives us 2054 experimental points.
After fitting the parameters of the initial distributions, we obtain the following x?2

‘ Experiment ‘ x? ‘ Nb points ‘ x2/N ‘
H1 435.734069 567 [ 0.768490
ZEUS 634.954397 564 | 1.125806
BCDMS 227.721101 166 | 1.371814
E665 60.071223 53 1.133419
NMC 524.933698 494 | 1.062619
SLAC 181.578714 210 | 0.864661

| Total | 2064.993202 | 2054 [ 1.005352

5We extended the evolution, which by default starts at 5 GeV2 down to 1 GeV2.
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This fit is realized with the following parameter values

‘ Parameter H Value ‘ Error ‘
A, 1.4794e+00 | 9.7348e-03
B, 8.9827e-07 | 1.6634e-01
Chu 1.5015e-01 | 2.2200e-02
Ou 1.8443e-01 | 2.2454e-03
T 1.6766e+00 | 1.4843e-02
Ay 4.7855e+00 | 2.1556e-02
By 1.9998e+03 | 2.0490e+02
Cq 4.3475e+04 | 2.2252e+02
04 2.3942e+00 | 1.8802e-03
Nd 2.7464e+01 | 3.1999¢-02
Ag 8.1010e-01 | 3.5729e-02
Bg -1.8385e+01 | 9.2034e-01
Cg 2.9507e+02 | 2.2296e+01
0g -1.2304e-01 | 4.7450e-03
s 2.9502e+02 | 1.3852e+01
Ag 5.0429e+00 | 1.8724e-01
B, 8.2058e+01 | 1.6733e-01
Cy -9.7547e+01 | 2.0025e-01
dg 3.4205e+00 | 3.5513e-02
Mg 1.1812e+00 | 2.5991e-02
A; -4.4882e-01 | 2.3079e-02
5_; -1.8167e-01 | 1.0538e-02
77; 4.9056e+00 | 7.2829e-01
A 5.0000e+04 | 1.7502e+03
Ba 4.0808e+00 | 5.3084e-02
Ca -2.6877e+00 | 3.0569e-01
N 3.1073e+00 | 1.8243e-03
N 2.7911e+01 | 3.1682e-02

31

The figures of the next pages show the experimental points and the fit for F;, as a
function of z for several values of Q%. It is important to underline the fact that this is
just an illustration of our fit application, a simple example whose only objective is to
show that we can effectively fit F, experimental data with an initial condition and the
DGLAP evolution. The exact value of the fitted parameters is totally irrelevant since the
contributions of the different quark densities can’t be precise if we do not fit the neutron
and deuteron structure functions, as done by MRST. These experiments, actually, force
to consider the uy, dy and A distributions independently and thus constraints deeply
their relative contributions to the 7" distribution.
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Figure 4.4: DGLAP fit with MRST parametrization. This shows F, as a function of x
for low Q? values
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Figure 4.5: DGLAP fit with MRST parametrization.

for middle Q? values

This shows F; as a function of z
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Figure 4.6: DGLAP fit with MRST parametrization. This shows F, as a function of x
for high Q? values
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Conclusion

This report has presented an overview of all the main features of the DGLAP evolution
equations.

After placing these equations in the context of perturbative QQCD theory and of Deep
Inelastic Scattering, we gave their derivation. We started our approach by an overview
of the factorization theorem. This gives us a typical example where resummation of the
perturbative expansion is required. The large Q? limit of the v*q interaction gave rise to
collinear divergences. By resumming these divergences, we could factorize the amplitude
in a finite and a divergent part. Introducing a factorization scale in the divergent part,
we have shown that renormalization group techniques were applicable to the factorized
amplitude. The v*p case was obtained by convoluting the y*q with the bare parton
densities. Reabsorption of the v*q divergences into quark densities introduced the dressed
densities and the anomalous dimensions. Finally, the requirement that the physical v*p
amplitude does not depend on the factorization scale directly lead to the DGLAP evolution
equations for parton densities. These results are applicable at any order in perturbation
theory. As an example of QCD calculation, we found the gq splitting functions at leading
order. This was done by calculating the first order corrections to the y*q amplitude,
corresponding to the one-gluon-emission diagrams. We also gave the full set of splittings
at leading order and introduced the non-singlet densities evolving alone, and the singlet
density, evolving coupled with the gluon density. We ended that chapter by showing how
the plus distribution is useful to separate the infra-red divergences, cancelled by virtual
diagrams, from the collinear divergences.

In the next chapter, we discussed briefly the analytical properties of the DGLAP
equations. This discussion was composed of two salient points. The analytical solution in
Mellin space clearly highlighted the presence of an essential singularity above the factor-
ization scale, in the small z limit. We then proved, in two different ways that the DGLAP
kernel had no eigenfunctions.

Since, given a general initial condition in x space, we cannot find the analytical solution
of the DGLAP equations at every %, we developped an algorithm to perform that evo-
lution numerically. After having explained the techniques used to evolve parton densities
in = space, we have checked that our algorithm was correct and precise. This verification

35
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was completed by starting the evolution at Q%> = 1GeV? with the GRV densities, and
by comparing the densities obtained from their evolution to the one obtained from our
evolution. The result shows a good agreement over the physical region considered.

With that algorithm at hand, we decided to apply DGLAP evolution to fit the ex-
perimental measurements of the F, structure function. We described in details how this
application was written. We explained how to install, use and personalise it, and how to
follow in real-time the evolution of the fit through an OpenGL applet. We also gave a
list of the possible extensions of both our evolution algorithm and the fit application. As
an example, we shown that, using the MRST initial parametrization at Q% = 1GeV?, we
were able to fit the F, experimental data with a very good accuracy.

ACKNOWLEDGMENTS

This work was supported by National Fund for Scientific Research, Belgium. I would like
to thank J.R. Cudell for a lot of fruitful discussions as well as for correcting some english
mistakes in this document. I also thank R.S. Thorne for interesting information about
DGLAP fits to experimental data, and G. Sterman for discussion about the factorization
theorem.



Appendix A

Code for Evolution

We present here the interesting parts of the C code that performs the DGLAP evolution
resolution.

A.1 QCD constants

This is simply a header file defining QCD usefull constants.

[ e e //
// File: QCD.h //
// Description: QCD constants definition //
// Version: 2.0 //
// Author: G. Soyez //
// e-mail: G.SoyezQulg.ac.be //
// //
// Copyright (C) 2002 G. Soyez //
//===—————— //

#ifndef __QCD_H__
t#tdefine __QCD_H__

#include <math.h>

##define Nf 4

##define CA 3.0

#define CF 4.0/3.0
#define TR 0.5

#define LAMBDA_QCD 0.1763

inline double AlphaS(double Q2){

37



APPENDIX A. CODE FOR EVOLUTION 38

return 12.0%M_PI/(33.0-2.0%*Nf)/(Q2-1og(LAMBDA_QCD*LAMBDA_QCD)) ;
}

#tendif

A.2 Splittings declaration

The C-source file implements the CSplitting object and the DGLAP LO Splittings.

//====mmmm //
// File: Splitting.cpp //
// Description: DGLAP splittings definition //
// Version: 2.0 //
// Author: G. Soyez //
// e-mail: G.Soyez@ulg.ac.be //
// //
// Copyright (C) 2002 G. Soyez //
e //

#include "Splitting.h"
#include "QCD.h"

// CSplitting Class implementation //
// See CSplitting.h for details //

CSplitting::CSplitting(){
IsInit=0;
}

CSplitting::CSplitting(ptrfunc InitRegul, ptrfunc InitDPlus, double InitDelta,
double InitDerP1){
IsInit=Init(InitRegul, InitDPlus, InitDelta, InitDerP1);
}

CSplitting::~CSplitting(){
}
int CSplitting::Init(ptrfunc InitRegul, ptrfunc InitDPlus, double InitDelta,

double InitDerP1){
Regul=InitRegul;
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DPlus=InitDPlus;
Delta=InitDelta;
DerP1=InitDerP1;
return 1;

// Declaration of all splitting functions used //
// '! WARNING !! we calculate x q(x,t), so we //
// use x P(x) as Splitting //

// Leading Log
//

// The nonsinglet-nonsinglet contribution (non-singlet is alone in the DGLAP
// equation) !!!

double PTT_Regul(double x){ return 0.0; }
double PTT_DPlus(double x){ return CF+*(1.0+x*x)*x; }

double PTT_Delta(){ return 1.5%CF; }
double PTT_DerP1(){ return 4.0%CF; }

// The singlet contribution (two coupled equations)

// singlet-singlet
double PSS_Regul(double x){ return 0.0; }
double PSS_DPlus(double x){ return CF*(1.0+x*x)*x; }

double PSS_Delta(){ return 1.5%CF; }

double PSS_DerP1(){ return 4.0xCF; }

// singlet-gluon

double PSG_Regul(double x){ return 2.0*Nf*TR*(2.0*x*(x-1.0)+1.0)*x; 2}
double PSG_DPlus(double x){ return 0.0; }

double PSG_Delta(){ return 0.0; }
double PSG_DerP1(){ return 0.0; }

// gluon-singlet
double PGS_Regul(double x){ return CFx(x*(x-2.0)+2.0); }
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double PGS_DPlus(double x){ return 0.0; }

double PGS_Delta(){ return 0.0; }
double PGS_DerP1(){ return 0.0; }

// gluon-gluon
double PGG_Regul(double x){ return 2.0%CA*(1.0-x)*(1.0+x*x); %}
double PGG_DPlus(double x){ return 2.0%CA*xx*x; }

double PGG_Delta(){ return (11.0%CA-4.0%xNf*TR)/6.0; }
double PGG_DerP1(){ return 4.0%CA; }

// Nul distrib

double PO_Regul(double x){ return 0.0; }
double PO_DPlus(double x){ return 0.0; }

double PO_Delta(){ return 0.0; }
double PO_DerP1(){ return 0.0; }

A.3 ODE integration

The file ODEint . cpp contains the code needed to integrate the sets of ordinary differential
equations. Since they are extremely close to the ones found in the Numerical Recipes
manual, we won’t give them explicitely here.

A.4 DGLAP evolution main file

A.4.1 Single equation

The "public’ functions really performing the DGLAP evolution, which are the ones you
need to call if you want to use the evolution in your own code, are defined in the header
file evolve.h.

//====mmmm //
// File: evolve.h //
// Description: DGLAP evolution for a single equation //
// Version: 2.0 //
// Author: G. Soyez //
// e-mail: G.SoyezQulg.ac.be //

// //
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// Copyright (C) 2002 G. Soyez //

#ifndef __EVOLVE_H__
#define __EVOLVE_H__

#include "Splitting.h"

typedef struct{

CSplitting *P; // The Splitting function for the DGLAP equation
int Nb_x, Nb_Q2; // number of x’s, Q2’s

double Deltax; // Space between 1n(x) values

double *x; // Set of x values

double *Q2; // set of Q2 values

double **Res; // result

// integral variables
double **KerR;
double **KerP;

// differential equation variables
int iQ; // index of Q2 while solving EqDiff
double *yODE;

} DGLAP_Evolution_1;

// initialize splittings
int InitSplitting(ptrfunc, ptrfunc, double, double, DGLAP_Evolution_1x);

// initialize evolution
// you must allocate arrays and Nb* before calling this function

int InitEvolution(DGLAP_Evolution_1%);

// perform evolution
int Evolve(DGLAP_Evolution_1%);

// close evolution
int EndEvolve(DGLAP_Evolution_1%);

#tendif
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//
//
//
//
//
//
//

The C-source file evolve.cpp implements these functions

File: evolve.cpp

Description: DGLAP evolution for a single equation
Version: 2.0

Author: G. Soyez

e-mail: G.Soyez@ulg.ac.be

Copyright (C) 2002 G. Soyez

#include "evolve.h"
#include "QCD.h"

#include "ODEInt.h"
#include <stdio.h>

##define EPS_ODE le-5

//
DG

Global variables for evolution
LAP_Evolution_1 *Current_Evolution;

int InitKernel (DGLAP_Evolution_1 *e){

int 1i,j;
double deltax, weight;

CSplitting *P;

double *x, **xKerP, **KerR;
double Deltax;

int Nb_x;

Deltax=e->Deltax;
Nb_x=e->Nb_x;
X=e—>X;

P=e->P;

KerR=new (doublex) [Nb_x];
KerP=new (doublex) [Nb_x];
for (i=0;i<Nb_x;i++){
KerR[i]=new double[Nb_x];
KerP[i]l=new double[Nb_x];
for (j=0;j<Nb_x;j++){
KerR[i] [j1=0.0;

42

//
//
//
//
//
//
//
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KerP[i]1[j1=0.0;
}
}

/*
We use Simpson 3/8 integration.

*/

for(i=0;i<Nb_x;i++){
// Delta contribution
KerR[i] [i]+=P->Delta;

if (i!=Nb_x-1){
// inferior bound contribution

deltax=x[i+1]-x[i];

// weight coefficient at x[i] and x[N-1]

if (i==Nb_x-2) weight=0.5; // trapezoidal rule
else if (i==Nb_x-3) weight=1.0/3.0; // Simpson

else if (i==Nb_x-4) weight=0.375; // Simpson 3/8
else if (i==Nb_x-5) weight=14.0/45.0; // Bode

else weight=0.375; // Simpson 3/8

// P_Reg contribution at x[i]
KerR[i] [i]+=0.5%P->Regul (1.0) *(deltax/x[i]);

// P_Reg contribution at x[i+1]
KerR[i] [i+1]1+=0.5%P->Regul (x[i]/x[i+1])*(deltax/x[i+1]);

// P_+ contribution at x[i]

KerP[i] [i]+=Deltax* (P->DPlus(1.0)* (x[i+1]-2.0*x[1i])/(x[i+1]-x[i])
-P->DerP1) *weight;

KerP[i] [i+1]+=Deltax*P->DPlus(1.0)*x[i]/(x[i+1]-x[i]) *weight;

// weight coefficient at x[N-1]

if (i==Nb_x-2) weight=0.5;

else if (i==Nb_x-4) weight=0.375; // exactly one Simpson’s 3/8 rule
else weight=1.0/3.0;

// P_+ contribution at x[N-1]
KerP[i] [Nb_x-1]+=Deltax*P->DPlus(x[i])/(1.0-x[i])*weight;
KerP[Nb_x-1] [i]-=Deltax*P->DPlus(1.0)*(x[i]/(1.0-x[i]))*weight;
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// extra P_+ contribution
KerP[i] [i]+=P->DPlus(1.0)*log(1.0-x[il);

// the remaining integral
for (j=i+1;j<Nb_x-1;j++){
deltax=x[j+1]1-x[j];

// weight coefficient at x[j]
if (i==Nb_x-3) weight=4.0/3.0; // Simpson
else if (i==Nb_x-4) weight=1.125; // Simpson 3/8
else if (i==Nb_x-5){
if (j==i+2) weight=24.0/45.0; else weight=64.0/45.0; // Bode
} else { // Simpson 3/8
if ((j==i+1) || (j==Nb_x-2)) weight=7.0/6.0;
else if ((j==i+2) || (j==Nb_x-3)) weight=23.0/24.0;
else weight=1.0;
}

// P_Reg contribution at x[j]
KerR[i] [j1+=0.5xP->Regul (x[i]1/x[j])*(deltax/x[j]1);

// P_+ contribution at x[j]
KerP[i] [jl+=Deltax*P->DPlus (x[i]/x[j])*(x[j1/(x[jl-x[i]))*weight;
KerP[j] [i]-=Deltax*P->DPlus (1.0)*(x[1]/(x[j1-x[i]))*weight;

// P_Reg contribution at x[j]
KerR[i] [j+1]+=0.5%P->Regul (x[i]/x[j+1])*(deltax/x[j+1]);

e—->KerP=KerP;
e->KerR=KerR;

return O;

}

int InitSplitting(ptrfunc Regul, ptrfunc DPlus, double Delta, double DerP1,
DGLAP_Evolution_1 *e){
e->P=new CSplitting();
return e->P->Init(Regul, DPlus, Delta, DerP1);
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}

int InitEvolution(DGLAP_Evolution_1 *e){
e—>Deltax = log(1.0/e->x[0])/(e->Nb_x-1.0);
e->y0DE=new double[e->Nb_x];

InitKernel (e);
e—>iQ=0;

return O;

}

// this function uses Current_Evolution as evolution structure
int Integre(double Q2, double *f, double *out){

int 1i,j,nmax;

double **KerR, **KerP;

KerR=Current_Evolution->KerR;
KerP=Current_Evolution->KerP;

nmax = Current_Evolution->Nb_x;
for(i=0;i<Current_Evolution->Nb_x;i++)q{
out [i]=(KerR[i] [i]+KerP[i] [i])*£f[i];
for (j=nmax-1;j>i;j--)
out [i]1+=(KerR[i] [j1*£[j1)+(KerP[i]l [j1*£f[jl+KerP[j][i1*£[i]);
out [i]*=AlphaS(Q2)/2.0/M_PI;
}

return 1;

}
int Diff(double Step, DGLAP_Evolution_1 *e){
static int i, kount, nok, nbad;

for (i=0;i<e->Nb_x;i++)
e->y0DE[i]=e->Res[e->iQ-1] [i];

Current_Evolution=e;
if (lodeint(e->yODE, e->Nb_x, e->Q2[e->iQ-1], e->Q2[e->iQ], EPS_ODE, Step,
0.0, &nok, &nbad, Integre, -1, &kount, NULL, NULL, 0.0))
return 1;

for (i=0;i<e->Nb_x;i++)
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e->Res[e->iQ] [1]1=e->y0DE[i];

return O;

}

int Evolve(DGLAP_Evolution_1 *e){
int i;

for (i=1;i<e->Nb_Q2;i++){
e->iQ=1i;
Diff (e->Q2[i]-e->Q2[i-1], e);
}

return O;

}

int EndEvolve(DGLAP_Evolution_1 *e){
int i;

delete e->P;

delete[] e->yODE;

for (i=0;i<e->Nb_x;i++){
delete[] e—>KerR[il;
delete[] e->KerP[il;

}

delete[] e->KerR;

delete[] e->KerP;

return 0;

A.4.2 Two coupled equations

46

This is the generalization of the previous files to a set of two coupled DGLAP equations.
Further extensions to more than two equations can easily be performed from these two

files. Here are the functions declaration in evolve2.h

// File: evolve2.h

// Description: DGLAP evolution for 2 coupled equations
// Version: 2.0

// Author: G. Soyez

// e-mail: G.SoyezQulg.ac.be

//
//
//
//
//
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// //
// Copyright (C) 2002 G. Soyez //
[ == //

#ifndef __EVOLVE2_H__
#define __EVOLVE2_H

#include "Splitting.h"

typedef struct{
CSplitting *P[2][2]; // The Splitting function for the DGLAP equation

int Nb_x, Nb_Q2; // number of x’s, Q2’s

double Deltax; // Space between 1ln(x) values
double *x; // Set of x values

double *Q2; // set of Q2 values

double **Res[2]; // result

// integral variables
double **KerR[2][2];
double **KerP[2][2];

// differential equation variables
int iQ; // index of Q2 while solving EqDiff
double *yODE;

} DGLAP_Evolution_2;

// initialize splittings

int InitSplitting2(ptrfunc, ptrfunc, double, double,
ptrfunc, ptrfunc, double, double,
ptrfunc, ptrfunc, double, double,
ptrfunc, ptrfunc, double, double,
DGLAP_Evolution_2%) ;

// initialize evolution
// you must allocate arrays and Nbx before calling this function

int InitEvolution2(DGLAP_Evolution_2%);

// perform evolution
int Evolve2(DGLAP_Evolution_2x*);

// close evolution
int EndEvolve2(DGLAP_Evolution_2%);

#tendif
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//
//
//
//
//
//
//

#i
#i
#i
#i

The C-source file evolve2.cpp implements these functions

File: evolve2.cpp

Description: DGLAP evolution for 2 coupled equations
Version: 2.0

Author: G. Soyez

e-mail: G.Soyez@ulg.ac.be

Copyright (C) 2002 G. Soyez

nclude "evolve2.h"
nclude "QCD.h"
nclude "ODEInt.h"
nclude <stdio.h>

##define EPS_ODE le-5

//

Global variables for evolution

DGLAP_Evolution_2 *Current_Evolution2;

int InitKernel2(DGLAP_Evolution_2 *e){

int 1i,j;
int qi, qj;
double deltax, weight;

CSplitting *P;

double *x, **KerP[2][2], **KerR[2][2];
double Deltax;

int Nb_x;

Deltax=e->Deltax;
Nb_x=e->Nb_x;
X=e->X;

for (qi=0;qi<2;qi++){
for (qj=0;q9j<2;qj++){
P=e->P[qil [qj];

KerR[qil [qjl=new (doublex) [Nb_x];
KerP[qi] [qj]l=new (doublex) [Nb_x];
for (i=0;i<Nb_x;i++){

48

//
//
//
//
//
//
//
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KerR[qil [qj] [i]=new double[Nb_x];
KerP[qil [qj] [i]l=new double[Nb_x];
for (j=0;j<Nb_x;j++){
KerR[qil [qjl1[i][j]1=0.0;
KerP[qil [qj1[i1[j1=0.0;
}
}

/*
We use Simpson 3/8 integration.

*/

for(i=0;i<Nb_x;i++){
// Delta contribution
KerR[qil [qj] [i] [i]+=P->Delta;

if (i!=Nb_x-1){
// inferior bound contribution

deltax=x[i+1]-x[i];

// weight coefficient at x[i] and x[N-1]

if (i==Nb_x-2) weight=0.5; // trapezoidal rule
else if (i==Nb_x-3) weight=1.0/3.0; // Simpson

else if (i==Nb_x-4) weight=0.375; // Simpson 3/8

else if (i==Nb_x-5) weight=14.0/45.0; // Bode

else weight=0.375; // Simpson 3/8

// P_Reg contribution at x[il]
KerR[qil [qj][i] [1]+=0.5*P->Regul (1.0)*(deltax/x[i]);

// P_Reg contribution at x[i+1]
KerR[qil [qj] [i] [i+1]1+=0.5%P->Regul (x[i]/x[i+1])*(deltax/x[i+1]);

// P_+ contribution at x[il]
KerP[qil [qj] [i] [i]1+=Deltax* (P->DPlus(1.0)*(x[i+1]-2.0*x[i])
/(x[i+1]-x[i])-P->DerP1) *weight;
KerP[qi] [qj] [i] [i+1]+=Deltax*P->DP1lus(1.0)*x[i]
/(x[i+1]-x[i]) *weight;

// weight coefficient at x[N-1]
if (i==Nb_x-2) weight=0.5;
else if (i==Nb_x-4) weight=0.375; // exactly one Simpson’s 3/8 rule
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else weight=1.0/3.0;

// P_+ contribution at x[N-1]

KerP[qil [qj] [i] [Nb_x-1]+=Deltax*P->DPlus(x[i])/(1.0-x[i])*weight;

KerP[qi] [qj] [Nb_x-1] [i]-=Deltax*P->DPlus(1.0)
*x(x[1]/(1.0-x[i]))*weight;

// extra P_+ contribution
KerP[qil [qj][i] [i]1+=P->DP1lus(1.0)*log(1.0-x[i]);

// the remaining integral
for (j=i+1;j<Nb_x-1;j++){
deltax=x[j+1]1-x[j];

// weight coefficient at x[j]
if (i==Nb_x-3) weight=4.0/3.0; // Simpson
else if (i==Nb_x-4) weight=1.125; // Simpson 3/8
else if (i==Nb_x-5){
if (j==i+2) weight=24.0/45.0; else weight=64.0/45.0; // Bode
} else { // Simpson 3/8
if ((j==i+1) || (j==Nb_x-2)) weight=7.0/6.0;
else if ((j==i+2) || (j==Nb_x-3)) weight=23.0/24.0;
else weight=1.0;
}

// P_Reg contribution at x[j]
KerR[qil [qj1[1] [j]1+=0.5%P->Regul(x[i]l/x[j])*(deltax/x[j]);

// P_+ contribution at x[j]

KerP[qil [qj][i] [j]+=Deltax*P->DPlus(x[i1/x[j1)
*x(x[j1/(x[jl1-x[i]))*weight;

KerP[qil [qj] [j][i]-=Deltax*P->DPlus(1.0)
*x(x[1]/(x[j1-x[i]))*weight;

// P_Reg contribution at x[j]
KerR[qil [qj][i] [j+1]1+=0.5%P->Regul (x[i]l/x[j+1])*(deltax/x[j+1]);

b
}
}

e—>KerP[qil [qj]=KerP[qil [qj];
e->KerR[qil [qjl=KerR[qil [qj];
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return O;

}

int InitSplitting2(ptrfunc Regulll, ptrfunc DPlusii,

double Deltall, double DerPiii,
ptrfunc Regull2, ptrfunc DPlusil2,
double Deltal2, double DerP112,
ptrfunc Regul2l, ptrfunc DPlus2i,
double Delta21, double DerP121,
ptrfunc Regul22, ptrfunc DPlus22,
double Delta22, double DerP122,
DGLAP_Evolution_2 *e){

e—>P[0] [0]=new CSplitting();

e—>P[0] [1]=new CSplitting();

e—>P[1]1[0]=new CSplitting();

e->P[1] [1]=new CSplitting();

e->P[0] [0]->Init(Regulll, DPlusil, Deltall, DerP111);

e->P[0] [1]1->Init(Regull2, DPlus12, Deltal2, DerP112);

e->P[1] [0]->Init (Regul2l, DPlus21, Delta21, DerP121);

e->P[1] [1]1->Init (Regul22, DPlus22, Delta22, DerP122);

return 0;

int InitEvolution2(DGLAP_Evolution_2 *e){

e—>Deltax = log(1.0/e->x[0])/(e->Nb_x-1.0);
e->y0DE=new double[2*e->Nb_x];
InitKernel2(e);

e—>iQ=0;

return O;

// this function uses Current_Evolution as evolution structure
int Integre2(double Q2, double *f, double *out){

int i,j,nmax;

int qi, qj;

double **KerR[2][2], #**KerP[2][2];

for (qi=0;qi<2;qi++){

o1
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for (qj=0;q9j<2;qj++){
KerR[qi] [qj]=Current_Evolution2->KerR[qil [qj];
KerP[qil [qj]1=Current_Evolution2->KerP[qil [qj];
}
}

for (qi=0;qi<2;qi++)
for(i=0;i<Current_Evolution2->Nb_x;i++)
out [i+qi*Current_Evolution2->Nb_x]=0.0;

nmax = Current_Evolution2->Nb_x;
for (qi=0;qi<2;qi++){
for(i=0;i<Current_Evolution2->Nb_x;i++)q{
for (qj=0;qj<2;qj++H){
out [i+qi*Current_Evolution2->Nb_x]+=
(KerR[qil [qjl [il [il+KerP[qi] [qj] [i] [il)
xf [i+qj*Current_Evolution2->Nb_x];
for (j=nmax-1;j>i;j--)
out [i+gi*Current_Evolution2->Nb_x]+=
(KerR[qil [qj][i] [jl1*f[j+qj*Current_Evolution2->Nb_x])
+(KerP[qil [qj] [i] [jl1*f[j+qj*Current_Evolution2->Nb_x]
+KerP[qil [qj] [j1 [i]*f[i+qj*Current_Evolution2->Nb_x]);
}
out [i+qi*Current_Evolution2->Nb_x]*=AlphaS(Q2)/2.0/M_PI;
}
}

return 1;

}
int Diff2(double Step, DGLAP_Evolution_2 *e){
static int i, qi, kount, nok, nbad;

for (qi=0;qi<2;qi++)
for (i=0;i<e->Nb_x;i++)
e->y0DE[i+qi*e->Nb_x]=e->Res[qi] [e->iQ-1] [i];

Current_Evolution2=e;
if (lodeint(e->y0DE, 2*e->Nb_x, e->Q2[e->iQ-1], e->Q2[e->iQ], EPS_ODE, Step,
0.0, &nok, &nbad, Integre2, -1, &kount, NULL, NULL, 0.0))
return 1;
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for (qi=0;qi<2;qi++)
for (i=0;i<e->Nb_x;i++)
e->Res[qi] [e->iQ] [i]=e->y0ODE[i+qi*e->Nb_x];

return O;

}

int Evolve2(DGLAP_Evolution_2 *e){
int i;

for (i=1;i<e->Nb_Q2;i++){
e->iQ=1;
Diff2(e->Q2[i]-e->Q2[i-1], e);
}

return O;

}

int EndEvolve2(DGLAP_Evolution_2 *e){
int i, qi, qj;

for (qi=0;qi<2;qi++){
for (qj=0;q9j<2;qj++){

delete e->P[qil[qjl;

for (i=0;i<e->Nb_x;i++){
delete[] e->KerR[qil[qjl[il;
delete[] e—>KerP[qil[qjl[il;

}

delete[] e->KerR[qil[qjl;

delete[] e->KerP[qillqjl;
}

3

delete[] e->yODE;
return O;

93
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