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Jet areas as a tool for background subtraction
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Abstract. In all modern hadronic colliders, jets recieve a large contribution
from a soft background: pileup in the case of proton-proton collisions at the
LHC, or the underlying event for heavy-ion collisions at RHIC or the LHC. In
these proceedings, we present a generic and simple method, based on jet areas,
to subtract the contribution of the soft background from the jets. This allows
for more precise kinematic reconstruction of jets in dense environments.
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1. Introduction

In all recent colliders, jets have been useful objects in numerous analysis involving
large-pt hadrons in the final state. However, with the high-luminosity expected at
the LHC as well as with the large multiplicities obtained in heavy-ion collisions at
RHIC, jets get significant contributions from the soft background leading to biased
measures of their momentum.

For all the analysis involving jets, it is important to determine as well as possible
their kinematic properties. therefore, one has to develop techniques allowing to deal
with the soft-background contribution to the jet.

In these proceedings, we discuss soft background subtraction using jet areas.
The underlying idea to this method is that, by suitably defining what the area of a
jet is, the contamination due to soft background will be proportional to it.

We shall start by giving two possible definitions of the concept of the area of a
jet and show that those definitions allow for analytic computations in perturbative
QCD. We shall then explain how one can use the jet area to subtract background
contamination.

Details concerning the definition of jet areas and their properties can be found
in [ 1], and the application to background subtraction in [ 2].
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2. Jet areas

2.1. Definition

Keeping in mind that we ultimately want to use jet areas in order to correct from
soft-background contamination, we aim at a definition that mimics the reaction
of the jet to soft particles. To do that in practice, we will introduce additional,
infinitely soft, particles that we shall refer to as ghosts. For infrared-safe algorithm,
the addition of ghosts will not alter the clustering. We can then define the area of
a jet as the region in rapidity-azimuth where it catches ghosts.

We can consider two different ways of doing this:

• Passive area: the passive area is defined as the region in which a jet would
catch a single ghost added to the event.

• Active area: in this case, we add to the event a set of ghosts {gi}, with
density per unit area νg. If nJ ghosts are clustered with a jet J , its area w.r.t.
to that set of ghosts will be nJ/νg. We then define the active jet area of J as
the limit of 〈nJ/νg〉, averaged over all ghosts distributions, when νg goes to
infinity, i.e. in the limit of infinitely dense ghost coverage. Note that in this
case, one can also end up with jets only made of ghosts.

Both the passive and the active area can easily be defined as 4-vectors. Those
are formally defined by summing (or more precisely integrating) the momenta of
all the ghosts contributing to the area of a jet, normalised in such a way that its
transverse momentum corresponds to the scalar area.

Physically speaking, the passive area which clusters a single ghost at a time has
similar behaviours as a point-like background, while the active areas correspond to
diffuse, uniform, backgrounds.

A final comment concerns the jet algorithm choice. Since the definitions of jet
areas given in this Section involve adding soft particles, it is of prime importance
that these ghosts do not modify the clustering of the hard particles in the original
event, a property known as infrared-safety. In what follows, we shall consider 4
infrared-and-collinear-safe algorithms: the kt [ 4], Aachen/Cambridge [ 5] and anti-
kt [ 6] algorithms as well as SISCone [ 7].

2.2. Perturbative properties

In this Section, we briefly highlight some nice perturbative properties that can be
explicitly computed for jet areas. The quantity we shall be interested in is the
average active and passive area of a jet at the first non-trivial order in αs i.e.

including the radiation of a gluon. We will work in the soft-collinear limit that is
relevant for small values of R and properly take into account the running of the
QCD coupling constant.

The first step is to start with the area of a hard jet made of a single particle of
transverse momentum pt1. The case of passive areas is particularly simple: for every
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Fig. 1. Distribution of the active areas for a hard jet made of a single hard particle
and the pure-ghost jets. Left: kt and Aachen/Cambridge, right: SISCone.

algorithm, an infinitely soft particle will be clustered with the hard one if-and-only-if
it is at most at a distance R from it, hence an area of πR2.

The case of active areas is a bit more subtle. For the anti-kt algorithm, ghost
recombinations with the hard particle will happen at the very beginning of the
cluster sequence, resulting in a area of πR2. For SISCone, one first has to notice
that the stable cones in the event made with a single hard particle and a dense ghost
coverage are (i) the cone centred on the hard particles and (ii) any cone made only
of ghosts. Through the split–merge phase, the overlapping between the hard stable
cone and all the pure-ghost ones, with centres approaching the hard one up to a
distance R, will lead to a splitting (for f & 0.4), leading to a cone of radius R/2 as
the final jet, hence an area of πR2/4. Finally, in the case of the kt and Cambridge
algorithms, ghosts will also cluster among themselves leading to different areas for
different sets of ghosts. On average, one finds an area around 0.81πR2 for both kt

and Aachen/Cambridge (with respective dispersions of 0.28πR2 and 0.26πR2).
The distribution areas for the hard jet and the pure-ghost jets are presented in

Figure 1. Note that for SISCone, for small values of the overlap threshold there is
a substantial probability that pure-ghost jets become very large (known as monster

jets). To avoid this, larger values of f can be chosen. This kind of arguments
suggests f = 0.75 as a sensitive default.

Next, we proceed with the computation of jet areas for situations with a hard
particle of transverse momentum pt1 and a softer one with transverse momentum
pt2 ≪ pt1 located at a distance ∆ from the first one. The calculation of the area
as a function of ∆ goes typically as for the 1-particle case, though with slightly
more involved geometry, so we will not detail the results here (see [ 1] for details).
In the case of the passive area, one can perform all the computations analytically,
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aJA,1hard dJA

passive active passive active
kt 1 0.81 0.56 0.52
Cam/Aachen 1 0.81 0.08 0.08
anti-kt 1 1 0 0
SISCone 1 1/4 -0.06 0.12

Table 1. Summary table giving the one-particle average area and the scaling
violation coefficients for the passive and active areas and for various jet algorithms.
All quantities correspond to an area divided by πR2.

while for passive areas, anti-kt and SISCone are treatable analytically but we once
again have to rely on numerical simulations to account for the ghost-distribution
dependence in the two remaining cases.

The important point is that, once we have the results for 1 and 2 particle jets,
we can compute the average area of a jet perturbatively at order αs. At leading
order, a jet is made of a single parton, while at next-to-leading order in αs, an extra
gluon can be radiated. For a jet definition JD one thus has

〈AJD〉 ≃ 〈AJD〉1hard +

∫

d∆

∫ pt1

Q0/∆

dpt2
dP

d∆ dpt2

(

〈AJD(∆)〉2part. − 〈AJD(0)〉2part.

)

,

where the last term receives a 2-particle contribution from real-gluon emissions and
a 1-particle virtual correction. Since the pt2 integration has a soft divergence —
coming from the gluon-radiation probability — one has to introduce a cut-off. The
value Q0/∆ above comes by requiring that the transverse momentum of the emitted
gluon relative to its parent, i.e. pt2∆ in the small-angle approximation, is larger
that the soft cut-off Q0. We will come back to the importance of this cut-off later
on.

In the soft and collinear approximation, the probability for gluon emissions is

dP

d∆ dpt2
= CR

2αs(pt2∆)

π

1

∆

1

pt2

with the colour factor CR is CF or CA for quark and gluon jets respectively. Again,
the argument of the coupling is the transverse momentum of the second particle
relative to the first one.

The final result, normalised by πR2, can be cast under the form

〈AJD〉

πR2
≃ aJA,1hard + dJA

CR

b0π
log

(

αs(Q0)

αs(Rpt1)

)

, (1)

where b0 = (11CA − 2nf)/(12π) is the one-loop QCD beta-function, and we have
neglected terms that were not logarithmically enhanced. To grasp the physical
content of this equation, a few comments are in order:
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• The coefficients aJA,1hard and dJA, related to the one-particle area and the
one-gluon emission corrections respectively, depend on the chosen algorithm
JA and area type. They can both be analytically computed from the one and
two-particle situations mentioned above. A summary of the relevant values is
presented in Table 1.

• Not only the area of a jet is not always πR2 as one might naively expect —
we already noticed that earlier — but eq. (1) shows that the jet substructure
generates some scaling violations.

• Because of the prefactor CR, the scaling violations will be larger for gluon jets
than for quark jets.

• The cut-off Q0 is a non-perturbative scale. It is the trace that, since the
addition of a soft particle can modify them, jet areas are not infrared-safe
quantities. Physically, they should be regularised by a scale related to the
underlying event density in pp or heavy-ion collisions, or by the pileup density
in the presence of pileup. It is interesting to notice that, as long as we keep the
limit pt1 ≫ Q0, the scaling violations reduce when increasing the background
density.

• In the specific case of the anti-kt algorithm, the coefficient danti−kt
vanishes.

Actually, in the limit of soft emissions, this is true at any order and the
area remains πR2, a fact reminiscent of the rigidity of the algorithm. The
correction to that result will only come with power-suppressed factors, without
logarithmic enhancement.

2.3. Implementation

In practice, jet areas have been implemented in FastJet[ 3]. Ghosts are placed on a
square grid with each node slightly shifted. The binning of that grid, corresponding
to the quantum of area carried by each ghost, can be specified to achieve the desired
accuracy. The computation can also be averaged over different ghosts distributions,
i.e. different shifts of the grid.

3. Background subtraction

We finally come to the question of how jet areas can be used to subtract jet con-
tamination from soft background. For simplicity, we shall concentrate on the case
of a background uniform over a rapidity range |y| ≤ ymax. If the background has a
density per unit area ρ, the subtraction formula for a given jet is the following:

pµ
subtracted = pµ

jet − ρAµ
jet, (2)

where Aµ is the jet 4-vector area. We discuss below the two building blocks of this
formula, namely the jet area and the background density.
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Fig. 2. Example of the distribution of pt/area of the jets for one specific example.
The lower points are pure-background jets while the 2 upper ones are the hard jets.

3.1. The jet area

This point has already been addressed in Section 2. Given the fact that the back-
ground is uniform, active areas are a natural choice. However, for large multiplici-
ties, the passive area tends to the active one, so the passive area can also be used.
This might be relevant e.g. for SISCone as the computation of passive areas is much
less time-consuming than the one of active areas.

3.2. The medium density per unit area

We are left with the estimation of the background density per unit area. The
estimation we propose here is based on the observation that the ratio of the pt of a
jet divided by its area can behave in two distinctive ways: it will be around ρ for
the many jets made purely of background, and much larger for the few hard jets.
As a consequence, the median of the set of pt/area for all the jets in the event gives
an estimate of the background density ρ. This is illustrated in Figure 2.

A tricky point here is that we optimally want to avoid having too many jets
with small area as it would lead to large uncertainties in pt/area. In that respect,
the kt and Cambridge/Aachen algorithms are the best suited choices. This means
that, whatever algorithm you plan on using and apply the subtraction method, it is
advised to pre-estimate ρ using kt or Cambridge/Aachen, and then use that value
of ρ to perform the subtraction with the chosen algorithm.
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Fig. 3. Left: reconstruction of the Z ′ mass peak without pileup (dashed lines) and
with pileup without applying subtraction (solid lines). Right: same except that our
subtraction method has been applied in the case where pileup was added. Both
cases are presented for the kt and SISCone algorithms with a radius of 0.6.

3.3. Properties and applications

An essential point here is that this subtraction method can be applied individually
for each event. The main advantage is that it significantly reduces the event-by-
event fluctuations of the density of the background, reducing its smearing effects.

In addition, the method is simple and general enough to have a broad range
of applications, ranging from pileup subtraction in pp collisions to underlying-event
subtraction in pp or AA collisions. See e.g. [ 8] for an explicit experimental appli-
cation by STAR for AA collisions at RHIC.

Finally, let us illustrate the effects of subtraction on a simple example. We
have generated with Pythia 6.4 (tune DWT), a set of fictitious Z ′ events, where
the Z ′ has a mass fixed to 300 GeV (with a narrow width of less that 1 GeV) and
decays into a qq̄ pairb. The events are clustered and the two hardest of the resulting
jets, the best candidates to match the original quark and anti-quark, are used to
reconstruct the Z ′. We can study how the mass peak of the Z ′ is reproduced in 3
different cases:

1. without pileup addition,

2. with pileup, simulated by adding minimum bias events with a Poisonian distri-
bution corresponding to a luminosity of 0.25 mb−1 per bunch crossing (LHC
at designed luminosity),

3. with pileup and applying the subtraction method presented here.

The results of the reconstruction of the Z ′ mass peak are presented in figure 3
without pileup subtraction on the left and with pileup subtraction on the right. In
both cases, we show the results when the kt and SISCone algorithms with a radius
of 0.6 are used for the clustering. The subtraction on the right plot has been done
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using (2) where ρ is estimated using the kt algorithm with a radius of 0.5, keeping
all the jets with |y| < 5. While without subtraction the position of the peak is
severely shifted towards larger masses and its width is much larger, after applying
our subtraction technique, the peak comes back to a good position and its width,
though a bit larger than without pileup, is much reduced compared to what we had
before subtraction.
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