Feynman Rules & other bits and pieces

For the QCD course (G. Salam & M. Cacciari in the parcours théorique of the M2 Concepts
Fondamentauz de la Physique). Information about the course, book recommendations, exact
timetable, etc., can be accessed at http://tinyurl.com/atktmk

(http://www.lpthe. jussieu.fr/~salam/teaching/M2-CFP-QCD.html).

The Feynman rules here are mostly taken from Peskin & Schroeder, second edition.
The one difference is that capital letters are used to represent adjoint (gluon/ghost) colour
indices, while fundamental representation indices are made explicit as small letters (fol-
lowing Ellis, Kunszt & Stirling). Note that P&S contains a whole bunch of other useful
things in its appendix A.

External particles

We’ll start with the rules for external quarks and gluons:

External quarks: ’ p =u(p) (initial) (1)
i 0 = u(p) (final) (2)
External antiquarks: ’ - p =(p) (initial) (3)
i o - =wv(p) (final) (4)
>W =¢€,(p) (initial) (5)
External gluons: -—p
W =¢,(p) (final) (6)

For reference, recall certain basic spinor properties
0= (¥ —mulp) =ulp)(y —m),
= (F+m)uv(p) = v(p)(¥ + m),

and if we assign a spin s to the spinors and sum over spins,

> ui(p)at(p) = p+m, > vt (p)et(p) =p—m (7)

Remember also that there is a symmetry factor associated with each diagram (e.g. two

final gluons — 7).
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Internal components
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e Loops are associated with an integral over the loop momena [ %.
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e Fermion and ghost loops are associated with an extra factor of —1.

Colour algebra

In SU(N), we have the matrices t& in fundamental representation, normalised so that
1
Tr (t4P) = TR 042 = 55/*3 : (15)

We’ve suppressed the 4, indices here (and elsewhere) to aid readability.
The commutation relation of the group is

(t4, 7] = i fABCC (16)

where the fAPC are the (real, antisymmetric) structure constants of the group.
The casimirs of the group arise in the following relations:

N2 -1
(tAtA)ab = CF(Sab, CF = ON (17&)
FACD $BCD _ (v 5AB Cy=N (17b)
Another useful identity is the Fierz identity:
1 1
%%=§CM%—N%@). (18)
Finally, anticommutation relations:
1
{t4,¢8) = I+ e (19a)
N? —4
dABC'dABD — 5C’D dAAC’ =0. 19h
> —0", (19D)

A,B

Specifics for SU(3)

SU(3) local gauge symmetry < 8 (= 3> —1) generators t, ...t3, corresponding to 8 gluons
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A representation is: t4 = 5)\A,
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Dirac algebra shortcuts

Start from the § and o (both Hermitian) of the Dirac equation;
=0 F=1L =0 (20a)
(Vs wt =2¢" =77 (20Db)

Check last one since 7} = i} = Y2 = Y0V
Basic identities for traces:

Tr(1) = (21a)

Tr (odd number of v’s) =0 (21Db)

Tr (y#4") = 4g" (21c)

Tr (7" v V7)) = 4g"g” + 9" g™ — g""g") (21d)

Tr(v*) =0 (21e)

Tr (v#9"7°) = 0 (21f)

Tr (Y"9"7Py7°) = —4ie?” (21g)

Note: extension to d # 4 is non-trivial for expressions involving ~v° = iy%y'4%43. Cyclic

permutations and reversal of order of v matrices leave traces unchanged. Some common
manipulations of v matrices in d dimensions are:

Y, =d (22a)
VY Y = —(d —2)7" (22b)

VIV APy = 4g7 — (4 — d)y"y” (22¢)
YV AT Y = =297y + (4 = d)y P (22d)

Cross-sections, etc.

Cross sections are given by

1 d3pf 2 44
do = 2EA2EB|UA — UB| (];[ (271_)3 2Ef> |M(pA>pB — {pf})| (27T) ) (PA ‘l’pB - zf:pf),

(23)

in terms of the matrix element M. Decay rates are given by

! d3 2 4¢4
dl’ = ) (1;[ (QW)ngf> ‘M(mA — {pf})‘ (27T) 1) (pA—zf:pf)_ (24>

2m

The two-body phase-space can be written as

d3p 4 ¢4 - dQcm 1 2|Z51
(1;[ (2@35@) (2m)°8 <;pi_zf:pf>_/ it ST <Em) ’ 29)

where p'is the 3-momentum of either of the outgoing particles in the centre-of-mass frame.
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Loop integrals

Feynman parametrisation:

1 ! 1
AB /0 AT (1= 2)BP (26)

Inside symmetric integrals, one can replace

o — 2629’“’ (27a)
1
Wy pppo 2\2( uv  po Up VO o VP 27h
eerere d(d+2)(f)(gg+gggg) (27Db)
Actual integrations are performed by Wick-rotating to Euclidean space, with the substi-
tution ¢V = if%, (> = —¢%, but for the purposes of the course, the following table should
be enough to get you going:
/ a1 (-)"T(n-df2) (1\" (28a)
Cnd(@—Ar ~ 'Umi? Tm) \A
d 2 _1\n—1 T'(n — 21 1 n—g—l
/ ae/ l _ Z( 1) d (n—d/ ) 1 (28b)
(2m) (02 — A)m (4m)d/2 2 ['(n) A
/ a0 (P (C)"dd+2)T(n—d/2-2) (1" (289
Cni (@ —Ay ~ Umiz T 4 T(n) A
Relevant expansion coefficients:
o_4d
Y i e-Yma, Tt =li-wiow (20)
A N 9/ e PEETE *

with vz ~ 0.5772. A common combination is:

% (%) 2 _ (4;)2 <§ —InA — yg + In(47) +O(e)) , e=4—d (30)




