Theory of Fat Jets and Jet Substructure

Gavin Salam

CERN, Princeton University & LPTHE/CNRS (Paris)

Higgs Hunting 2012 Orsay, France, 18–20 July 2012 Normal analyses: two quarks from $X \rightarrow q\bar{q}$ reconstructed as two jets

Normal analyses: two quarks from $X \rightarrow q\bar{q}$ reconstructed as two jets

High- p_t regime: EW object X is boosted, decay is collimated, $q\bar{q}$ both in same jet

Happens for $p_t\gtrsim 2m/R$ $p_t\gtrsim 320$ GeV for $m=m_W,~R=0.5$

As LHC explores far above EW scale, such configurations become of interest

- New heavy particles can decay to boosted W, Z, H, top, χ^0 (RPV); WW scattering at high ρ_t
- Ieptonic decays easily tagged, but rare and/or have MET
- hadronic decays more common and fully reconstructible

not especially Higgs oriented, except e.g. SUSY cascades \rightarrow Higgs: Butterworth, Ellis & Raklev '07 + Kribs, Martin, Roy & Spannowsky '09, '10

or $H \rightarrow 2a \rightarrow 4g$: Chen, Nojiri & Sreethawong '10 + Falkowski et al '10

Hadronic decays of new EW-scale particles may be *easier* to see at high p_t

e.g. 125 GeV Higgs with 60% BR for $H \rightarrow b\bar{b}$ decay

v. 0.2% for $\gamma\gamma$ and 2.6% for $Z\!Z$

Specifically for VH and $t\bar{t}H$:

- Some relevant fraction produced at high p_t ($\sqrt{s_{LHC}} \gg m_{EW}$)
- Backgrounds often fall faster than signal at high p_t
- Jet combinatorics are easier at high p_t — cleaner events
- Easier to organise cuts so as not to sculpt backgrounds

Example improvement from boosted regime

Search for main decay of light Higgs boson in W/Z+H, H \rightarrow $b\bar{b}$

restricting search to $p_{tH} > 200$ GeV, using the method from Butterworth, Davison, Rubin & GPS '08

Example improvement from boosted regime

Search for main decay of light Higgs boson in $t\bar{t}+H,\,H\to b\bar{b}$

restricting search to $p_{t,H} > 200 \text{ GeV}$, $p_{t,t \rightarrow hadrons} > 200 \text{ GeV}$, one leptonic top Plehn, GPS & Spannowsky '09

Key element #1 Leading Order Structure

QCD principle: soft divergence

Background

Splitting probability for Higgs:

 $P(z) \propto 1$

Splitting probability for quark:

 $P(z) \propto rac{1+z^2}{1-z}$

1/(1-z) divergence enhances background

Remove divergence in bkdg with cut on z Can choose cut analytically so as to maximise S/\sqrt{B}

Originally: cut on opening angle (Seymour '93) or k_t -distance (Butterworth, Cox & Forshaw '02)

Gavin Salam (CERN/Princeton/CNRS)

Theory of Fat Jets

Higgs Hunting 2012-07-19

8 / 28

First proposed for W's by Seymour '93 Refined by Butterworth, Cox & Forshaw '02

Refined more + showed how to use it to find $H \rightarrow b\bar{b}$ at LHC, Butterworth, Davison, Rubin & GPS '08

Later in '08: extended to top quarks by ATLAS; Thaler & Wang; Kaplan, Rehermann, Schwartz & Tweedie [Johns Hopkins top tagger].

First proposed for W's by Seymour '93 Refined by Butterworth, Cox & Forshaw '02

Refined more + showed how to use it to find $H \rightarrow b\bar{b}$ at LHC, Butterworth, Davison, Rubin & GPS '08

Later in '08: extended to top quarks by ATLAS; Thaler & Wang; Kaplan, Rehermann, Schwartz & Tweedie [Johns Hopkins top tagger].

First proposed for W's by Seymour '93 Refined by Butterworth, Cox & Forshaw '02

Refined more + showed how to use it to find $H \rightarrow b\bar{b}$ at LHC, Butterworth, Davison, Rubin & GPS '08

Later in '08: extended to top quarks by ATLAS; Thaler & Wang; Kaplan, Rehermann, Schwartz & Tweedie [Johns Hopkins top tagger].

Noise reduction

Noise & different kinds of event

Noise & different kinds of event

^[Noise reduction] Noise removal from jets — a boosted top example

Key idea:

- Look at jet on smaller angular scale
- Discard its softer parts

- Filtering
- Pruning
- Trimming

80 Butterworth et al 209 Ellis, Vermillion and Walsh

Krohn, Thaler & Wang '09

^[Noise reduction] Noise removal from jets — a boosted top example

Key idea:

- Look at jet on smaller angular scale
- Discard its softer parts

- Filtering
- Pruning
- Trimming

Butterworth et al '08 Ellis, Vermillion and Walsh '09 Krohn, Thaler & Wang '09

Key idea:

- Look at jet on smaller angular scale
- Discard its softer parts

- Filtering
- Pruning
- Trimming

80 Butterworth et al Ellis, Vermillion and Walsh

Krohn, Thaler & Wang '09

^[Noise reduction] Noise removal from jets — a boosted top example

- Filtering
- Pruning
- Trimming

Butterworth et al '08 Ellis, Vermillion and Walsh '09 Krohn, Thaler & Wang '09

Overview of methods

Some taggers and jet-substructure observables

[NB: many of the tools available in FastJet & SpartyJet]

[Methods]

Handles for distinguishing signal v. background

softer prong mom. fraction z					
boosted X	radiation off prongs sensitive to their colour (q v. g)				
	large–angle (>> 2m/p _t) radiation off X sensitive to its colour charge				
	$g_{ ightarrow gg(g)}$	$q_{ ightarrow qg(g)}$	$g_{ ightarrow bar{b}}$	$H_{ ightarrow bar{b}}$	$t_{ ightarrow qqar{q}}$
softer prong z	soft	soft	hard	hard	hard
prong colour factors	$2 \times C_A$	$C_F + C_A$	$2 \times C_F$	$2 \times C_F$	$3 \times C_F$
system colour factor	CA	C _F	CA	0	C _F
Background-like Signal-like					

Gavin Salam (CERN/Princeton/CNRS)

Comparing top taggers: QCD fakes rate v. signal eff.

From the extensive "Boost 2011" report, which reviewed taggers discussed software, determined performance on MC, etc.

Bottom line: some taggers clearly better than others. But many taggers behave similarly & details depend on analysis (+ MC choice)

[Methods]

Matrix-element method on steroids

For each event estimate the probability that event is signal-like or background like.

Break event into many mini-jets; use Monte-Carlo type Sudakovs and splitting functions to get estimate of multi-parton matrix element for S & B hypotheses.

Intelligently combines full info about LO splitting, radiation, b-tags, etc.

Soper & Spannowsky '11

cf. also multivariate (BDT) type methods from Cui & Schwartz '10

Experimental validation (two brief examples)

CMS single-jet W mass peak in events with a lepton and separate b-tagged jet.

Uses pruning (+ mass-drop condition on split jet)

ATLAS validation showing average MD-F (BDRS) jet mass as robust against pileup.

Trimming, with suitable parameters, is also robust.

> NB: Pileup now $2 \times$ higher Could get $4 \times$ worse?

Further improvements maybe needed (and possible)

Calculations

(Just those for VH & for single-jet properties)

WH production with $H o b ar{b}$

Fat-jet pt distribution at LO NLO NNLO

shows good stability from NLO to NNLO

it's the top-killing jet veto that causes the K-factor to be <1

[Calculations]

WH @ NLO in production and decays

[Calculations]

Precise resummed calculations for thrust $e^+e^- \rightarrow Z \rightarrow q\bar{q}$ can be carried over to hadronic boosted Z τ_{21} subjettiness ratio (because it's basically the same observable)

Calculations of backgrounds

Oleari & Reina '11

Dasgupta et al '12

[Calculations]

Long term aim? Concordance of different tools

Illustrate with an example from standard $gg \rightarrow H$: jet veto efficiency, where various tools agree well:

pure NNLO NNLL+NNLO jet-veto resummation

POWHEG reweighted with HqT NNLL+NNLO

Outlook

The next two talks will probably not show fat jet $H \rightarrow b\bar{b}$ searches!

- (a) they do use the boosted Higgs idea (i.e. high p_t), but lumi so far insufficiect to go to p_t 's where fat-jet methods perform well.
- (b) at intermediate p_t 's "traditional" jet analyses can be adapted to mimic fat-jet searches.

Recent experimental validation has provided maturity needed for fat-jet methods to come "on-line" as higher luminosities are delivered to ATLAS and CMS.

Advanced theory tools not always as mature as for $gg \rightarrow H$, but developing rapidly.