Perturbative QCD for the LHC

Gavin P. Salam
LPTHE, UPMC Paris 6 & CNRS

ICHEP 2010
Paris, France, 22–28 July 2010
As the LHC programme gets going, what is the status of our QCD tools?

Are they where we thought they might be?

Are they where we’d like them to be?
As the LHC programme gets going, what is the status of our QCD tools?

Are they where we thought they might be?

Yes! With several major milestones reached in the past two years.

Are they where we’d like them to be?
As the LHC programme gets going, what is the status of our QCD tools?

Are they where we thought they might be?

Yes! With several major milestones reached in the past two years.

Are they where we’d like them to be?

There’s still ample room for progress.
What roles for QCD at the LHC?

The roles for QCD at the LHC include:
- Telling us what the background is, so we can see any excess.
- Teaching us how to reduce the background, sharpening the signal.
- Constraining any discoveries: mass, couplings, etc.
- As input to nearly all measurements.

![Diagram showing a plot of $d\sigma/dm$ (log scale) with a red shaded area labeled as 'Signal ?'.](image)
What roles for QCD at the LHC?

Telling us what the background is, so we can see any excess
What roles for QCD at the LHC?

Telling us what the background is, so we can see any excess.
What roles for QCD at the LHC?

- Telling us what the background is, so we can see any excess
- Teaching us how to reduce the background, sharpen the signal
What roles for QCD at the LHC?

- **Telling us what the background is, so we can see any excess**
- **Teaching us how to reduce the background, sharpen the signal**
- **Constraining any discoveries:**
 - mass
 - couplings
 - etc.
[Introduction]

What roles for QCD at the LHC?

Telling us what the background is, so we can see any excess

Teaching us how to reduce the background, sharpen the signal

Constraining any discoveries: mass, couplings, etc.

And as input to nearly all measurements

Gavin Salam (LPTHE, Paris)
Monte Carlos

Monte Carlo → NLO → NNLO, etc. → Jets
The most pervasive role of QCD at LHC

Every paper that comes out from the LHC pp physics programme will involve the use of one or more QCD-based parton-shower Monte Carlo event generators: *Pythia, Herwig, Sherpa, ... *

For simulating physics signals.

For simulating background signals.

For simulating pileup.

As input to simulating detector response.
Generations of generators

Original Fortran (77) Generation
Has served us well since 1980’s, but now reaching end-of-life

- Herwig 6.5: 11 authors, 60k lines
- Pythia 6.4: 3 + N authors, 80k lines Still the most widely used
- Supplemented with Alpgen/Madgraph (tree-level ME), or MC@NLO/POWHEG (NLO)

New (C++) Generation
After 5–10 years’ work, codes now entering early adulthood.

- HERWIG++ 2.4: 14 authors, 250k lines + ThePEG, 3 authors, 110k lines
- PYTHIA 8.1: 5 authors, 70k lines
- SHERPA 1.2: 11 authors, 250k lines
Generations of generators

Original Fortran (77) Generation
Has served us well since 1980’s, but now reaching end-of-life

- Herwig 6.5: 11 authors, 60k lines
- Pythia 6.4: $3 + N$ authors, 80k lines
 Still the most widely used
- Supplemented with Alpgen/Madgraph (tree-level ME), or
 MC@NLO/POWHEG (NLO)

New (C++) Generation
After 5–10 years’ work, codes now entering early adulthood.

- HERWIG++ 2.4: 14 authors, 250k lines + ThePEG, 3 authors, 110k lines
- PYTHIA 8.1: 5 authors, 70k lines
- SHERPA 1.2: 11 authors, 250k lines
F77 → C++; but also improved physics

Pythia 6.4 → Pythia 8.1
- New p_t ordered shower (mass-ordered shower removed)
- Numerous new features for multiple interactions

Herwig 6.5 → Herwig++ 2.4
- New angular ordered shower, including better mass treatment
- Several processes at NLO with POWHEG
- Incorporates multiple interactions model

[no F77 version] → Sherpa 1.2
- Dipole shower
- Efficient multileg matrix-elements (COMIX), CKKW matching
- Now has own multiple interactions, hadronisation, etc.
All 3 show good agreement for this basic observable
The C++ codes are the future of LHC event generation
Now’s the time to start using them.

All 3 show good agreement for this basic observable
NLO calculations

Monte Carlo → NLO → NNLO, etc. → Jets
How accurate is perturbative QCD?

\[\sigma = c_0 + c_1 \alpha_s + c_2 \alpha_s^2 + \ldots \]

\[\alpha_s \simeq 0.1 \]

That implies LO QCD (just \(c_0 \)) should be accurate to within 10%

It isn’t

Need NLO in order to have a good guess at normalisation and uncertainties in backgrounds
How accurate is perturbative QCD?

\[\sigma = c_0 + c_1 \alpha_s + c_2 \alpha_s^2 + \ldots \]

\[\alpha_s \approx 0.1 \]

That implies LO QCD (just \(c_0 \)) should be accurate to within 10%

It isn’t

Need NLO in order to have a good guess at normalisation and uncertainties in backgrounds
How accurate is perturbative QCD?

\[\sigma = c_0 + c_1 \alpha_s + c_2 \alpha_s^2 + \ldots \]

\[\alpha_s \approx 0.1 \]

That implies LO QCD (just \(c_0 \)) should be accurate to within 10%

It isn’t

Need NLO in order to have a good guess at normalisation and uncertainties in backgrounds

Gavin Salam (LPTHE, Paris)
One of the motivations for NLO multijet

SUSY particles often have cascade decays
→ multijet + Missing $E_T + X$

Signal is broad excess ($\sim \times 5$) over expected (LO) background
One of the motivations for NLO multijet SUSY SIGNAL

SUSY particles often have cascade decays → multijet + Missing $E_T + X$

Signal is broad excess ($\sim \times 5$) over expected (LO) background
One of the motivations for NLO multijet

SUSY particles often have cascade decays
\[\rightarrow \text{multijet} + \text{Missing } E_T + X \]

Signal is broad excess (\(\sim \times 5\)) over expected (LO) background.
One of the motivations for NLO multijet

SUSY particles often have cascade decays → multijet + Missing $E_T + X$

Signal is broad excess ($\sim \times 5$) over expected (LO) background
One of the motivations for NLO multijet

SUSY particles often have cascade decays

\[\chi \rightarrow g q \chi \]

Signal is broad excess (~ × 5) over expected (LO) background

Gavin Salam (LPTHE, Paris)

pQCD for LHC

ICHEP 2010, July 27 / 30
Traditional

Draw all Feynman diagrams with 1 loop. Work out formulae for them.

Work hard to reduce integrals to known forms (+ tricks).

Recursive/unitarity methods

Assemble loop-diagrams from individual tree-level diagrams.

Build trees by sticking together simpler tree-level diagrams.
Traditional

Draw all Feynman diagrams with 1 loop. Work out formulae for them.

Work hard to reduce integrals to known forms (+ tricks).

Recursive/unitarity methods

Assemble loop-diagrams from individual tree-level diagrams.

Build trees by sticking together simpler tree-level diagrams.

Some main ideas:

- Bern, Dixon & Kosower '93 [sewing together trees]
- Britto, Cachazo & Feng '04 [on-shell complex loop momenta]
- Ossola, Pittau & Papadopoulos '06 [handful of loop momentum choices give full amplitude]
The NLO revolution
1979: NLO Drell-Yan [Altarelli, Ellis & Martinelli]
1987: NLO high-p_t photoproduction [Aurenche et al]
1988: NLO $b\bar{b}$, $t\bar{t}$ [Nason et al]
1993: dijets, Vj [JETRAD, Giele, Glover & Kosower]
1988: NLO $Wb\bar{b}$ [MCFM: Ellis & Veseli]
2000: NLO $Zb\bar{b}$ [MCFM: Campbell & Ellis]
2001: NLO 3j [NLOJet++: Nagy]
...
2007: NLO $t\bar{t}j$ [Dittmaier, Uwer & Weinzierl ’07]
...
The NLO revolution

1 2 3 4

→

W/Z+3j, ttbb, ttjj
The NLO revolution

2009: NLO $W+3j$ [Rocket: Ellis, Melnikov & Zanderighi] [unitarity]
2009: NLO $W+3j$ [BlackHat: Berger et al] [unitarity]
2009: NLO $t\bar{t}b\bar{b}$ [Bredenstein et al] [traditional]
2009: NLO $t\bar{t}b\bar{b}$ [HELAC-NLO: Bevilacqua et al] [unitarity]
2009: NLO $q\bar{q} \rightarrow b\bar{b}b\bar{b}$ [Golem: Binoth et al] [traditional]
2010: NLO $t\bar{t}jj$ [HELAC-NLO: Bevilacqua et al] [unitarity]
2010: NLO $Z+3j$ [BlackHat: Berger et al] [unitarity]
The NLO revolution

[unitarity]
NLO $pp \rightarrow W + 4$ jets

First (nearly) complete $2 \rightarrow 5$ computation
(as needed in our SUSY example)

NLO spectrum of 4th jet!

[Currently, leading colour & missing W+6q diags]
Automation:

A large number of $2 \rightarrow 3$ processes have been done manually. Only some public; e.g. MCFM, NLOJet++

For $2 \rightarrow 4, 2 \rightarrow 5$, far too many processes for all to be handled manually.

Among the challenges, **efficiency**, which becomes limiting factor as complexity increases

1 histogram $\sim \mathcal{O}(100)$ CPU days

- because you need to integrate over “more” phase space
- because the amplitudes themselves take longer to evaluate

Or get efficiency gain from graphics cards?

Hagiwara et al ’09

Giele, Stavenga & Winter ’09-10
Exclusive (hadron-level) quality of Monte Carlo and accuracy of NLO together?

like MC@NLO, POWHEG
Exclusive (hadron-level) quality of Monte Carlo and accuracy of NLO together?

like MC@NLO, POWHEG

2 developments

MENLOPS: e.g. NLO:Z, LO:Z+1/2/3/... + parton shower
 Hamilton & Nason ’10; + work in progress SHERPA

simultaneously NLO:Z & NLO:Z+j + parton shower
 Alioli et al, prelim

Generalising this is the current frontier

Monte Carlo ↔ NLO → NNLO, etc. → Jets
Precision QCD
(\textit{NNLO, etc.})

\textbf{Monte Carlo} \rightarrow \textbf{NLO} \rightarrow \textbf{NNLO, etc.} \rightarrow \textbf{Jets}
To get precision for the fundamental particles we’re studying:

- To better study top, W/Z [Higgs]
- Extract their masses, couplings,
- etc.

For cases where NLO seems crazy

- As can occur for $p_t \gg m_{EW}$ (LHC!)
- In general, with large ratios of scales

Here, concentrate on first case, specifically top

Vector Boson Fusion @ NNLO: Bolzoni et al ’10

[For more detailed review, see talk by Gehrmann de Ridder]
Why NNLO / resummation / etc.?

To get precision for the fundamental particles we’re studying:
- To better study top, W/Z [Higgs]
- Extract their masses, couplings,
- etc.

For cases where NLO seems crazy
- As can occur for $p_t \gg m_{EW}$ (LHC!)
- In general, with large ratios of scales

Here, concentrate on first case, specifically top

Vector Boson Fusion @ NNLO: Bolzoni et al ’10

[For more detailed review, see talk by Gehrmann de Ridder]
To get precision for the fundamental particles we’re studying:

- To better study top, W/Z [Higgs]
- Extract their masses, couplings,
- etc.

For cases where NLO seems crazy

- As can occur for \(p_t \gg m_{EW} \) (LHC!)
- In general, with large ratios of scales

Here, concentrate on first case, specifically top

Vector Boson Fusion @ NNLO: Bolzoni et al ’10

[For more detailed review, see talk by Gehrmann de Ridder]
“The most interesting known unknown”

in someone’s slides (or blog?) — tell me if they were yours

- [Won’t talk about:] forward-backward asymmetry, single top
- Mass: nice ideas for a well-defined extraction (because MC extractions give \(\sim \) pole mass, but not obvious how exactly)
 - From NLO distribution, Biswas, Melnikov, Schulze ’10
 - From \(\sigma_{\bar{t}t} \), proposal @ Moriond ’08; + Moch & Uwer ’09

- Huge effort to calculate cross section accurately
"The most interesting known unknown"

in someone’s slides (or blog?) — tell me if they were yours

- [Won’t talk about:] forward-backward asymmetry, single top
- Mass: nice ideas for a well-defined extraction (because MC extractions give \sim pole mass, but not obvious how exactly)

 From NLO distribution, Biswas, Melnikov, Schulze ’10
 From $\sigma_{t\bar{t}}$, proposal @ Moriond ’08; + Moch & Uwer ’09

- Huge effort to calculate cross section accurately
Towards a high precision $t\bar{t}$ cross section

NNLO

- **Two-loop diagrams**
 - high-energy limit:
 - Czakon, Mitov & Moch '07
 - numerical $q\bar{q} \to t\bar{t}$, Czakon '08
 - analytical $q\bar{q} \to t\bar{t}$ (part):
 - Bonciani et al '08–'09
 - all two-loop poles: Ferroglia et al '09
- **One-loop squared**
 - Körner et al '08, Anastasiou & Aybat '08
- **1-loop $t\bar{t}j$ and real $t\bar{t}jj$**
 - Dittmaier, Uwer & Weinzierl '07
 - Bevilacqua et al '10, Melnikov & Schulze '10
- **Learning how to combine terms**
 - Czakon '10

Alternatively, identify physically relevant contributions:

NNLL (threshold logs)

- **Soft $2 \to 2$ structure (massless)**
 - Mert Aybat, Dixon & Sterman '06
 - Becher & Neubert '09
 - Gardi & Magnea '09
- **Soft $2 \to 2$ structure (massive)**
 - Kidonakis '09
 - Mitov, Sterman & Sung '09
 - Becher & Neubert '09
 - Beneke, Falgari & Schwinn '09
 - Czakon, Mitov & Sterman '09
- **Expansion to NNLO**
 - Beneke et al '09
Towards a high precision $t\bar{t}$ cross section

NNLO

- Two-loop diagrams
 - high-energy limit:
 - Czakon, Mitov & Moch '07
 - numerical $q\bar{q} \rightarrow t\bar{t}$, Czakon '08
 - analytical $q\bar{q} \rightarrow t\bar{t}$ (part):
 - Bonciani et al '08–'09
 - all two-loop poles: Ferroglia et al '09

- One-loop squared
 - Körner et al '08, Anastasiou & Aybat '08

- 1-loop $t\bar{t}j$ and real $t\bar{t}jj$
 - Dittmaier, Uwer & Weinzierl '07
 - Bevilacqua et al '10, Melnikov & Schulze '10

- Learning how to combine terms
 - Czakon '10

All this just part-way to NNLO!

Alternatively, identify physically relevant contributions:

NNLL (threshold logs)

- Soft $2 \rightarrow 2$ structure (massless)
 - Mert Aybat, Dixon & Sterman '06
 - Becher & Neubert '09
 - Gardi & Magnea '09

- Soft $2 \rightarrow 2$ structure (massive)
 - Kidonakis '09
 - Mitov, Sterman & Sung '09
 - Becher & Neubert '09
 - Beneke, Falgari & Schwinn '09
 - Czakon, Mitov & Sterman '09

- Expansion to NNLO
 - Beneke et al '09
Towards a high precision $t\bar{t}$ cross section

NNLO

- Two-loop diagrams
 - high-energy limit:
 - Czakon, Mitov & Moch '07
 - numerical $q\bar{q} \to t\bar{t}$, Czakon '08
 - analytical $q\bar{q} \to t\bar{t}$ (part):
 - Bonciani et al '08–’09
 - all two-loop poles: Ferroglia et al '09
- One-loop squared
 - Körner et al '08, Anastasiou & Aybat '08
- 1-loop $t\bar{t}j$ and real $t\bar{t}jj$
 - Dittmaier, Uwer & Weinzierl '07
 - Bevilacqua et al '10, Melnikov & Schulze '10
- Learning how to combine terms
 - Czakon '10

All this just part-way to NNLO!

Alternatively, identify physically relevant contributions:

NNLL (threshold logs)

- Soft $2 \to 2$ structure (massless)
 - Mert Aybat, Dixon & Sterman '06
 - Becher & Neubert '09
 - Gardi & Magnea '09
- Soft $2 \to 2$ structure (massive)
 - Kidonakis '09
 - Mitov, Sterman & Sung '09
 - Becher & Neubert '09
 - Beneke, Falgari & Schwinn '09
 - Czakon, Mitov & Sterman '09
- Expansion to NNLO
 - Beneke et al '09

Gavin Salam (LPTHE, Paris)
t\bar{t} cross sections

Tevatron 1.96 TeV

<table>
<thead>
<tr>
<th>Theory</th>
<th>Tevatron 1.96 TeV</th>
<th>MSTW2008NNLO m_{t\bar{t}}^{pole} = 173 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO (Hathor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLO (Hathor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidonakis (approx NNLO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aliev et al (Hathor, approx NNLO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ahrens et al (NLO+NNLL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cacciari et al (NLO+NNLL)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{t\bar{t}} [pb]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LHC 7 TeV

<table>
<thead>
<tr>
<th>Theory</th>
<th>LHC 7 TeV</th>
<th>MSTW2008NNLO m_{t\bar{t}}^{pole} = 173 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO (Hathor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLO (Hathor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidonakis (approx NNLO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aliev et al (Hathor, approx NNLO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ahrens et al (NLO+NNLL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cacciari et al (NLO+NNLL)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>60</th>
<th>80</th>
<th>100</th>
<th>120</th>
<th>140</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{t\bar{t}} [pb]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Uncertainties shown are theory (scale) only; no PDF uncertainties

The kinds of differences that are present:

- **Ahrens et al ’10, NNLL+NLO**: threshold around $m_{t\bar{t}}$
- **Aliev et al ’10 (Hathor), NNLO approx**: threshold around $2m_t$

Procedures for scale dependence and estimating unknown NNLO terms
Much has been learnt about $t\bar{t}$ near threshold

But consensus on cross section & errors not yet reached.
An aside (not directly LHC):
NNLO event shapes in e^+e^-
Big theory progress and much activity for e^+e^- event shapes

- **NNLO** Gehrmann, Gehrmann de Ridder, Glover & Heinrich ’07; Weinzierl ’08
- **N^3LL (thrust, heavy-jet mass)** Becher & Schwartz ’08, Chien & Schwartz ’10

NNLO α_s fits to e^+e^- event shapes

- NNLO event shape moments, analytic power corr. (JADE/OPAL: Gehrmann, Jaquier, Luisoni)
- NNLO+N3LLA thrust, shape function (LEP: Abbate et al.)
- NNLO+N3LLA heavy jet mass (ALEPH/OPAL: Chien, Schwartz)
- NNLO+N3LLA thrust (ALEPH/OPAL: Becher, Schwartz)
- NNLO three-jet rate (ALEPH: Dissertori et al.)
- NNLO+NLLA event shapes (JADE: Bethke et al.)
- NNLO+NLLA event shapes (ALEPH: Dissertori et al.)
- PDG 2010: 0.1184 ± 0.0007
Big theory progress and much activity for e^+e^- event shapes

- **NNLO** Gehrmann, Gehrmann de Ridder, Glover & Heinrich ’07; Weinzierl ’08
- **N^3LL (thrust, heavy-jet mass)** Becher & Schwartz ’08, Chien & Schwartz ’10

NNLO α_s fits to e^+e^- event shapes

<table>
<thead>
<tr>
<th>Comparison</th>
<th>PDG 2010: 0.1184 ± 0.0007</th>
<th>$\alpha_s \simeq 0.113$</th>
<th>$\alpha_s \simeq 0.124$</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNLO event shape moments, analytic power correction (JADE/OPAL: Gehrmann, Jaquier, Luisoni)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNLO+N3LLA thrust, shape function (LEP: Abbate et al.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNLO+N3LLA heavy jet mass (ALEPH/OPAL: Chien, Schwartz)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNLO+N3LLA thrust (ALEPH/OPAL: Becher, Schwartz)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNLO three-jet rate (ALEPH: Dissertori et al.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNLO+NLLA event shapes (JADE: Bethke et al.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNLO+NLLA event shapes (ALEPH: Dissertori et al.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNLO event shapes (ALEPH: Dissertori et al.)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Is non-perturbative QCD the biggest systematic? Are there lessons for precision pp/$p\bar{p}$ physics?
Jets

Monte Carlo \rightarrow NLO \rightarrow NNLO, etc. \rightarrow Jets
Jets as projections

LO partons

NLO partons

parton shower

hadron level

Projection to jets provides “universal” view of event
A new general-purpose jet algorithm

anti-k_t: repeatedly recombine pair of objects with smallest

\[
d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}
\]

Hard stuff clusters with nearest neighbour
Cacciari, GPS & Soyez '08
[included in FastJet]
anti-k_t: repeatedly recombine pair of objects with smallest $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$

Hard stuff clusters with nearest neighbour
Cacciari, GPS & Soyez '08
[included in FastJet]
A new general-purpose jet algorithm

anti-k_t**: repeatedly recombine pair of objects with smallest

$$d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$$

Hard stuff clusters with nearest neighbour

Cacciari, GPS & Soyez '08

[included in FastJet]
A new general-purpose jet algorithm

anti-\(k_t\): repeatedly recombine pair of objects with smallest

\[\Delta R_{ij}^2 = \frac{k_{ti}^2 + k_{tj}^2}{\max(k_{ti}^2, k_{tj}^2)} \]

Hard stuff clusters with nearest neighbour

Cacciari, GPS & Soyez '08

[included in FastJet]
A new general-purpose jet algorithm

anti-\(k_t\): repeatedly recombine pair of objects with smallest

\[
d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}
\]

Hard stuff clusters with nearest neighbour

Cacciari, GPS & Soyez '08

[included in FastJet]
anti-\(k_t\): repeatedly recombine pair of objects with smallest

\[
d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}
\]

Hard stuff clusters with nearest neighbour

Cacciari, GPS & Soyez '08

[included in FastJet]
A new general-purpose jet algorithm

anti-k_t: repeatedly recombine pair of objects with smallest

\[d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)} \]

Hard stuff clusters with nearest neighbour

Cacciari, GPS & Soyez '08
[included in FastJet]
A new general-purpose jet algorithm

anti-k_t: repeatedly recombine pair of objects with smallest

$$d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$$

Hard stuff clusters with nearest neighbour

Cacciari, GPS & Soyez '08
[included in FastJet]
A new general-purpose jet algorithm

anti-\(k_t\): repeatedly recombine pair of objects with smallest

\[
d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}
\]

Hard stuff clusters with nearest neighbour

Cacciari, GPS & Soyez '08

[included in FastJet]
anti-k_t: repeatedly recombine pair of objects with smallest

$$d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$$

Hard stuff clusters with nearest neighbour
Cacciari, GPS & Soyez '08
[included in FastJet]
A new general-purpose jet algorithm

anti-k_t: repeatedly recombine pair of objects with smallest

\[
d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}
\]

Hard stuff clusters with nearest neighbour
Cacciari, GPS & Soyez '08
[included in FastJet]
A new general-purpose jet algorithm

anti-\(k_t\): repeatedly recombine pair of objects with smallest

\[
d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}
\]

Hard stuff clusters with nearest neighbour
Cacciari, GPS & Soyez '08
[included in FastJet]

anti-\(k_t\) gives cone-like jets without using cones

And is infrared & collinear safe
ATLAS and CMS have shown all jet results with an infrared and collinear safe jet finder, \textit{anti}-k_t;
ATLAS and CMS have shown all jet results with an infrared and collinear safe jet finder, **anti-\(k_t\);**

soft junk doesn’t change hard jets

NLO calculations are finite
ATLAS and CMS have shown all jet results with an infrared and collinear safe jet finder, \textit{anti-}k_t; also used at HERA!

soft junk doesn’t change hard jets
NLO calculations are finite
ATLAS and CMS have shown all jet results with an infrared and collinear safe jet finder, \(\text{anti-}k_T\); also used at HERA!

Infrared-safe jet finding had never happened before, systematically, at a hadron collider.

This development will be crucial in enabling LHC to benefit from QCD’s progress in recent years.

ATLAS and CMS have shown all jet results with an infrared and collinear safe jet finder, \(\text{anti-}k_T\); also used at HERA!

soft junk doesn’t change hard jets

NLO calculations are finite
Jets & boosted searches: \mathcal{X} with $p_{t\mathcal{X}} \gtrsim m_{\mathcal{X}}$

From standard plots like this

ATLAS TDR $WH, H \rightarrow b\bar{b}$

1) $WH, H \rightarrow b\bar{b}$, ATLAS TDR;
Jets & boosted searches: X with $p_{tx} \gtrsim m_X$

ATLAS TDR $WH, H \rightarrow b\bar{b}$

From standard plots like this to boosted searches like this.

1) $WH, H \rightarrow b\bar{b}$, ATLAS TDR; 2) $WH, H \rightarrow b\bar{b}$, Butterworth et al '08 & ATLAS '09; 3) Buried Higgs, Falkowski et al '10; 4) $\tilde{\chi}^0 \rightarrow qqq$, Butterworth et al '09; 5) $t\bar{t}H, H \rightarrow b\bar{b}$, Plen et al '09; 6) Buried Higgs, Chen et al '10; and many more...
Conclusions
Conclusions

Several major long-term projects now close to maturity

- The C++ event generators: Herwig++, Sherpa and Pythia 8
- NNPDF global fit with robust error estimates

Breakthroughs:

- NLO calculations, first 2 → 5 results (W+4j)
 Next step: automation
- Jet finding — IR safety; pulling out hadronic signals previously thought impossible

High accuracy:

- Much work on NNLO t\bar{t} and (NNLL) approximations
 And several other processes, e.g. Z/W/H, γj, jj, Vj
- Open questions: estimation of uncertainties; impact of hadronisation

And much else that could not be covered in 30 minutes!

Gavin Salam (LPTHE, Paris)
Several major long-term projects now close to maturity

- The C++ event generators: Herwig++, Sherpa and Pythia 8
- NNPDF global fit with robust error estimates

Breakthroughs:

- NLO calculations, first $2 \rightarrow 5$ results ($W+4j$)
 Next step: automation
- Jet finding — IR safety; pulling out hadronic signals previously thought impossible

High accuracy:

- Much work on NNLO $t\bar{t}$ and (NNLL) approximations
 And several other processes, e.g. $Z/W/H$, γj, jj, Vj
- Open questions: estimation of uncertainties; impact of hadronisation

And much else that could not be covered in 30 minutes!
Several major long-term projects now close to maturity

- The C++ event generators: Herwig++, Sherpa and Pythia 8
- NNPDF global fit with robust error estimates

Breakthroughs:

- NLO calculations, first $2 \rightarrow 5$ results ($W+4j$)
 Next step: automation
- Jet finding — IR safety; pulling out hadronic signals previously thought impossible

High accuracy:

- Much work on NNLO $t\bar{t}$ and (NNLL) approximations
 And several other processes, e.g. $Z/W/H$, γj, jj, Vj
- Open questions: estimation of uncertainties; impact of hadronisation

And much else that could not be covered in 30 minutes!
Several major long-term projects now close to maturity

- The C++ event generators: Herwig++, Sherpa and Pythia 8
- NNPDF global fit with robust error estimates

Breakthroughs:

- NLO calculations, first $2 \rightarrow 5$ results ($W+4j$) Next step: automation
- Jet finding — IR safety; pulling out hadronic signals previously thought impossible

High accuracy:

- Much work on NNLO $t\bar{t}$ and (NNLL) approximations
 And several other processes, e.g. $Z/W/H, \gamma j, jj, Vj$
- Open questions: estimation of uncertainties; impact of hadronisation

And much else that could not be covered in 30 minutes!
With thanks for comments, suggestions, conversations and information:

Matteo Cacciari, Aude Gehrmann de Ridder, Gudrun Heinrich, Nikolaos Kidonakis, Giulia Zanderighi
EXTRAS
Key differences between PYTHIA 6.4 and 8.1

Old features definitely removed include, among others:
- independent fragmentation
- mass-ordered showers

Features omitted so far include, among others:
- ep, γp and γγ beam configurations
- several processes, especially Technicolor, partly SUSY

New features, not found in 6.4 (∗ = see below):
- interleaved p_\perp-ordered MI + ISR + FSR evolution
- richer mix of underlying-event processes (γ, J/ψ, DY, …)
- possibility for two selected hard interactions in same event
- allow rescattering in MI framework
- hard scattering in diffractive systems
- several new processes, within and beyond SM
- possibility to use one PDF set for hard process and another for rest
- up-to-date decay data and LO PDF sets
Herwig++

- The new Herwig++ program now provides a full simulation of lepton-lepton, lepton-hadron and hadron-hadron collisions with many improvements over its FORTRAN predecessor:
 - New angular ordered parton shower with better theoretical control and mass treatment;
 - Many processes at NLO in the POWHEG approach;
 - Multiple scattering model of the underlying event;
 - Better treatment of BSM physics models;
 - Improved simulation of tau and hadron decays.
A brief introduction

SHERPA has been under development since the late 1990’s

- In the beginning, borrowed and re-implemented physics from others:
 - virtuality-ordered parton shower - APAC+++, underlying event like PYTHIA 6.2
 - Helicity amplitudes for matrix elements - AMEGIC++
 - Fragmentation/hadron decays through link to PYTHIA routines

- Constructed from scratch, in C++
 - Mainly done by diploma and PhD students

- Replaced physics modules one-by-one.

- Status in SHERPA 1.2: by now independent of other code
 - Virtuality-ordered shower replaced by dipole shower,
 - Berends-Giele matrix elements,
 - Own version of cluster fragmentation AHADIC++,
 - Huge own library of hadron and τ-decays,
 - QED radiation through YFS formalism,
 - Only UE modelling still along the line of Sjostyrand-van der Zijl, PYTHIA 6.2.

- A full-fledged independent event generator
A trend towards more elements included exactly in Monte Carlo

- **PS: the original**
 - ME+PS: Ideas from mid ’90’s
 - CKKW ’01, MLM
 - NLO+PS: MC@NLO ’02, POWHEG ’04

What’s new?
- **ME + NLO + PS (MENLOPS)**
 - Hamilton & Nason ’10

What’s still unsolved?
- **NLO + NLO + (...) + PS**
 - Specific implementations: Lavesson & Lonnblad ’08 (e+e–)
 - Alioli et al [prelim, Z&Z+j]
A trend towards more elements included exactly in Monte Carlo

- PS: the original
- ME+PS Ideas from mid '90's CKKW '01, MLM

- NLO+PS MC@NLO '02, POWHEG '04

What’s new?
- ME + NLO + PS (MENLOPS) Hamilton & Nason '10

What’s still unsolved?
- NLO + NLO + (...) + PS specific implementations: Lavesson & Lonnblad '08 (e+e−) Alioli et al [prelim, Z&Z+j]
A trend towards more elements included **exactly** in Monte Carlo

- **PS**: the original
- **ME+PS**
 Ideas from mid ’90’s
 CKKW ’01, MLM
- **NLO+PS**
 MC@NLO ’02, POWHEG ’04

What’s new?

- **ME + NLO + PS (MENLOPS)**
 Hamilton & Nason ’10

What’s still unsolved?

- **NLO + NLO + (...) + PS**
 specific implementations: Lavesson & Lonnblad ’08 \(e^+e^-\)
 Alioli et al [prelim, Z&Z+j]
A trend towards more elements included exactly in Monte Carlo

- PS: the original
- ME+PS\hspace{1cm} Ideas from mid ’90’s
 - CKKW ’01, MLM
- NLO+PS\hspace{1cm} MC@NLO ’02, POWHEG ’04

What’s new?

- ME + NLO + PS (MENLOPS)\hspace{1cm} Hamilton & Nason ’10

What’s still unsolved?

- NLO + NLO + (...) + PS

Specific implementations: Lavesson & Lonnblad ’08 (e^+e^-)
Alioli et al [prelim, Z&Z+j]
NLO and Monte Carlo?

A trend towards more elements included **exactly** in Monte Carlo

- PS: the original
- ME+PS Ideas from mid ’90’s CKKW ’01, MLM
- NLO+PS MC@NLO ’02, POWHEG ’04

What’s new?

- ME + NLO + PS (MENLOPS) Hamilton & Nason ’10

What’s still unsolved?

- NLO + NLO + (...) + PS specific implementations: Lavesson & Lonnblad ’08 (e^+e^-) Alioli et al [prelim, Z&Z+j]

Hamilton & Nason ’10

NLO + NLO + (...) + PS

1 2 3 4 5 6

exact PS approx

N powers of coupling

particles in final state
Parton Distribution Functions (PDFs)
PDFs go into every LHC prediction and calculation, from Monte Carlo event generation, through to precision studies.

Protons are the initial state; quarks and gluons interact

Of several groups, so far CTEQ and MSTW have dominated the Global Fit Industry, albeit with a decade-old worry about their procedures:

How well-founded are their uncertainty estimates? (δχ² choice, parametrisations, . . .)

The barrier to entry for new players is high:

- PDF evolution
- Calculation of cross sections for many DIS and _pp_ observables
- Proper statistical treatment of all (correlated) experimental errors
- Fitting a couple of thousand data points, from myriad sources
PDFs go into every LHC prediction and calculation, from Monte Carlo event generation, through to precision studies.

Protons are the initial state; quarks and gluons interact

Of several groups, so far CTEQ and MSTW have dominated the Global Fit Industry, albeit with a decade-old worry about their procedures:

How well-founded are their uncertainty estimates?

\((\delta \chi^2 \text{ choice, parametrisations, } \ldots)\)

The barrier to entry for new players is high:

- PDF evolution
- Calculation of cross sections for many DIS and \(pp \) observables
- Proper statistical treatment of all (correlated) experimental errors
- Fitting a couple of thousand data points, from myriad sources
2010: NNPDF goes global + adds heavy quarks

Statistical treatment is transparent
Generate ‘replica’ datasets.
For each one, fit a replica PDF
Sample over ensemble of PDFs to get error on cross section.

Neural networks provide flexible parametrisation of the PDFs
Avoid biases from manual choice of functional form

Genetic algorithms to handle fits with large numbers of parameters

Provides significant added confidence in our understanding of PDF uncertainties
Theory uncertainties

For a wide range of experimentally well-measured observables, theory uncertainties are limiting factor in extracting parameters of the theory (masses, couplings, etc.).

Theory uncertainties are currently being left out from global PDF fits

I would be surprised if NLO theory uncertainties ≪ exp. ones

Maybe not a problem at NNLO?

Only MSTW have NNLO right now

This should (in my opinion) become a high priority for PDF fits.