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Abstract

High-energy collisions in particle physics experiments produce complex events
with large numbers, N , of particles. A widely advocated approach to the analysis
of these events involves an agglomerative clustering procedure (known as the kt jet
finder) to identify clusters of particles, jets, which have a direct connection with the
underlying particle physics reaction. The clustering uses a distance measure that can
be factorised into geometrical and non-geometrical components, allowing the problem
to be reduced to the dynamic maintenance, across O(N) updates, of a planar nearest-
neighbour graph and a priority queue. The former can be implemented with CGAL’s
hierarchical Delaunay triangulation module, allowing the clustering to be carried out
in expected (and measured) O(N log N) time, a practically important improvement
relative to the O

(

N3
)

of the previously standard brute-force approach.

1 Introduction

Particle physics [4, 47] seeks to identify the fundamental constituents of matter and un-
derstand the interactions between them. Currently several classes of elementary particles
are known: leptons, such as electrons and neutrinos; quarks, which are the constituents
of protons and neutrons, and vector bosons, which mediate forces between these particles,
such as photons (responsible for the electromagnetic force), W and Z bosons (the weak
force) and gluons (the strong force).

In order to discover new very massive particles or establish whether the above particles
might be composite, i.e. made of some other yet smaller, more fundamental particles, par-
ticle physicists carry out experiments in which they collide beams of high energy electrons
or protons. By virtue of Einstein’s famous E = mc2 relation between energy E, and mass
m (with c the speed of light), a high collision energy makes it possible to probe high mass
scales. At the same time, because of the Heisenberg uncertainty principle (∆x∆p ≃ ~/2,
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Figure 1: (a) Theoretical interpretation of a proton-proton collision: each proton consists
of three quarks and in the collision there is a large exchange of momentum (mediated by the
gluon, the curly line) between a quark in each proton, causing them to be strongly deviated;
(b) a schematic representation of a real event as seen in a particle physics detector.

where ∆x represents a length, ∆p a transferred momentum and ~ is Planck’s constant di-
vided by 2π), a large energy (i.e. possibly large momentum transfer) means that extremely
small length scales can be probed.

A typical high-energy physics collision is represented in fig. 1a, in which two protons
(each made of three quarks) collide and a gluon transfers a large amount of momentum
from a quark in one proton to a quark in the other proton. These two quarks are strongly
deviated, exiting the collision region at large angle, while the other remnants of the two
protons carry on essentially in their original direction. The distributions for the energy and
angle of the scattered quarks can be predicted theoretically. To test whether the theory
is complete, or whether instead some other as yet unknown particle can be exchanged in
addition to the gluon, one needs to compare the theoretically predicted distribution to
experimental measurements.

Though reactions such as those in fig. 1a take place on extremely small length scales (≪
10−15 m), the actual measurements of the results of collision are carried with sophisticated
multi-layered detectors built on human scales, roughly 1 cm − 10 m. On these scales the
collision looks like fig. 1b, with each quark having been replaced by a multitude (10− 100)
of ‘hadrons’ (objects, such as such as protons, neutrons and pions, that are composed of
quarks, antiquarks and gluons). The reason for this is that quarks and gluons, as they
leave the collision point, start to fragment: initially they emit gluons, which can split into
quark-antiquark pairs, or themselves emit further gluons, and so forth — in other words
there is a cascade of emissions, first at small distance scales, then at progressively larger
distances, up to about 10−15 m. Beyond this scale a transition takes place in which hadrons
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are formed from the quarks and gluons, and it is these hadrons that are observed in the
detectors.

The theory that determines the pattern of quark-quark scattering and the subsequent
cascading is known as Quantum Chromodynamics (QCD) [3]. Though it can be sum-
marised in one main equation, finding solutions to that equation is often extremely com-
plex. In particular, while the initial quark-quark scattering in fig. 1a can be well predicted,
and there is some reasonable understanding of the cascading to produce multiple quarks
and gluons, there is currently no first-principles understanding of how to calculate the
transition from quarks and gluons to hadrons. However, in a seminal paper in 1977, Ster-
man and Weinberg were able to show [19] that one could ignore much of the cascading
and the transition to hadrons, if instead of examining individual particles, one clusters
bunches of particles together as ‘jets’ and examines the distributions in energy and angle
of these jets. This idea, applied both to the theoretical predictions and to the experimental
measurements, has been enormously successful [34].

The original proposal for finding jets was based on the identification of cones which con-
tain most of the energy-momentum flow in the event. Since then approaches that relate to
those in the general pattern classification literature [2] have been also investigated, notably
K-means (the so called ‘optimal’ jet finder [20]) and hierarchical agglomerative clustering
(the Jade [6], Durham/kt [10], Cambridge/Aachen [13] and flavour [37] jet finders). In
agglomerative clustering one introduces a distance measure between particles, searches for
the closest pair of particles, merges them into a single particle, and then repeats the pro-
cedure until all pair distances are larger than some threshold. Because the cascade that
produced the multitude of particles in the first place was a form of hierarchical branch-
ing, agglomerative clustering is particularly suited for trying to reconstruct the ‘original’
particle, since it works ‘backwards’ through the branching. For this reason it has been
the preferred jet-finding procedure in the majority of recent experiments, in particular in
electron-positron collisions at the Large Electron Positron collider (LEP, CERN, Geneva)
and the Stanford Linear Collider (SLC, SLAC, Stanford), and in electron-proton collisions
at HERA (DESY, Hamburg).

In some experiments, notably at the Fermilab Tevatron proton-antiproton collider
(Batavia, Illinois) it is still a variant of the original ‘cone-based’ jet finding procedure
that is more commonly used (except in [25, 43]). The reasons for this are complex, how-
ever one relevant issue is that collisions at the Tevatron tend to produce larger numbers
(N) of particles than at other colliders1 (a few hundred rather than about fifty, and the
effective number can increase to several thousand depending on the manner in which the
detector information is read out). This is a problem because the codes for agglomerative
jet clustering [17] all use a brute force algorithm, which scales as N3. It will become a
much more severe issue at the upcoming Large Hadron Collider, a proton-proton collider
due to start operating at CERN (Geneva) in 2007: N will be larger there both because of

1Since both colliding beams at the Tevatron are (anti)protons, these interact via the strong force (QCD)
and produce many particles, whereas other recent experiments have electrons (or positrons) in at least one
of the beams, and these do not interact via the strong force.
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a sevenfold increase in energy relative to the Tevatron (giving a factor of two in N) and
because there will be multiple simultaneous interactions (a factor of 10 − 20 in N). The
LHC will also collide lead ions, leading to N ∼ 50000 (a similar experiment, RHIC, at
lower energy, is currently running at Brookhaven National Laboratory, on Long Island).
Overall one expects datasets of about ∼ 109 events with a few thousand particles [36] and
∼ 107 events with many tens of thousands of particles [44], which translates to 102 − 104

CPU years with the brute force algorithms. Processing time is therefore a central issue.
According to a survey in an article by Eppstein [14], the use of the brute force algorithm

for agglomerative clustering is not uncommon, especially in situations where, as for jet
finding, the distance measure is non-geometrical. Better procedures are known in such
cases [1, 14, 42] however at best they are O(N2).

In the specific context of the jet finding we recently observed in a short letter [40]2 that
for the most commonly used distance measure in agglomerative jet finding, the longitudi-
nally invariant kt distance [10], it is possible to separate the problem into a part involving
a priority queue and another involving a nearest-neighbour graph on a cylinder (which in
turn can be reduced to a plane). Both need to be kept up to date with respect to deletions
and insertions as the clustering proceeds through its O(N) steps.

Priority queues are sufficiently widely-used that they are provided in the C++ Stan-
dard Template Library; their construction and maintenance during the clustering will be
associated with a cost of O(N log N).

Dynamic planar nearest neighbour graphs in contrast are a subject of current research.
It is still not known [46] if there exists an algorithm that allows for O(log N) worst case time
per update and per query for the simpler but related problem of nearest-neighbour finding
in a dynamic set of points. Recalling that the nearest-neighbour graph is a subgraph of
the Delaunay Triangulation (DT), here we shall investigate the use of the triangulations
component [9] of CGAL [15], which provides a fully dynamic Delaunay Triangulation,
based on the hierarchical structure of Devillers [23, 24]. Updates to the hierarchy take
expected O(log N + k log k) time where k is the degree of the vertex being updated [23],
which reduces to expected O(log N) insofar as k is expected O(1) for our application. Thus,
given that there are O(N) updates to the DT hierarchy during clustering, the clustering
will run in expected O(N log N) time.

The structure of this paper is as follows. In section 2 we shall present the longitudinally
invariant kt clustering jet finder, and discuss briefly the brute force algorithm that is
currently in use, as well as more efficient algorithms [1, 14, 42] for agglomerative clustering
with general distance measures. In section 3 we shall then show how the problem reduces
to a priority queue and dynamic maintenance of a nearest-neighbour graph, and examine
current approaches, in particular CGAL, for dealing with the second of these problems. In
section 4 we shall consider how the CGAL based solution performs in practice, comparing
it both to the original N3 brute force method and to N2 methods for dealing with the
nearest-neighbour graph.

2Aimed at the particle physics community, and on which this article elaborates.
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2 The longitudinally invariant kt jet-finder

2.1 Definition

The most widely studied agglomerative clustering jet finder for proton-(anti)proton colli-
sions is the so-called longitudinally invariant kt jet finder. Its name stems from the set
of variables it uses for representing particle momenta and distances between them. To
understand how the geometrical problem will arise later, we need to examine these kine-
matic variables (for simplicity we restrict ourselves to the approximation that particles

are massless). A particle momentum vector ~k can be represented in polar coordinates,
~k = (kx, ky, kz) = E/c× (sin θ cos φ, sin θ sin φ, cos θ), where E is the particle’s energy. The
incoming (anti)protons enter conventionally along the ±z direction.

Though a polar coordinate system has the advantage of being familiar, it turns out that
it is not the most natural for describing proton-proton collisions. The reason is related to
special relativity, which implies that many (average) aspects of the collision should look
the same to a ‘laboratory-frame’ observer and to one who is travelling fast alongside one
of the protons (i.e. longitudinally). Some kinematic quantities are invariant with respect
to such longitudinal frame changes, in particular the transverse momentum kt =

√

k2
x + k2

y

and the azimuthal angle φ. The polar angle in contrast transforms in a more complicated
manner, so instead one considers a quantity called (pseudo)rapidity,3

η = − ln tan
θ

2
. (1)

An observer travelling with the proton sees all rapidities shifted by a constant amount
compared to a lab-frame observer. This implies that if he or she defines a distance measure
in terms of differences in rapidity, then that distance measure will give the same result
independently of the longitudinal frame choice — this is the meaning of ‘longitudinally
invariant.’ Note that the region θ = 0 . . . π stretches out to become η = ∞ . . . − ∞, i.e.
whereas θ, φ describe a point on the surface of a sphere, η, φ describe a point on the surface
of a cylinder.

Given these kinematic variables, the longitudinally invariant kt jet finder [10] is essen-
tially an agglomerative hierarchical clustering procedure [2] with a distance measure

dij = min(k2

ti, k
2

tj)R
2

ij , R2

ij = (ηi − ηj)
2 + (φi − φj)

2 , (2)

which is a product of a momentum and a geometrical distance on the surface of a cylinder,
Rij . Very roughly speaking this specific form is motivated by the fact that long distance
scales (relating to particles that should be clustered first when working backwards through
the QCD branching) can correspond either to emissions with small transverse momenta
(kt) or emissions close in angle to a quark or gluon. The detailed definition of the jet
finder is given as algorithm 1. Note that in addition to the inter-particle distance dij, the
procedure also makes use of a particle-beam distance diB ≡ k2

ti, and the clustering that

3More generally, for massive particles, one uses a definition of rapidity η = 1

2
log E+kzc

E−kzc
.
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occurs depends on whether it is a dij or a diB that is smallest. When a diB the smallest
distance, then all j 6= i have Rij > 1.

Algorithm 1 Generic definition of the longitudinally invariant kt jet finder
1: repeat

2: For each pair of particles i, j work out the so-called longitudinally invariant kt

distance dij = min(k2
ti, k

2
tj)R

2
ij with R2

ij = (ηi − ηj)
2 + (φi − φj)

2, where kti, ηi and φi

are the transverse momentum, rapidity and azimuth of particle i; for each parton i
also work out the beam distance diB = k2

ti.
3: Find the minimum dmin of all the dij, diB.
4: if dmin is a dij then

5: Merge particles i and j into a new single particle ℓ, summing their ‘four-momenta’:
Eℓ = Ei + Ej , ~kℓ = ~ki + ~kj (alternative recombination schemes are possible).

6: else [dmin is a diB]
7: Declare particle i to be a final-state jet and remove it from the list.
8: end if

9: until No particles remain.

There exist extensions of the basic procedure of algorithm 1, (a) where dij is rescaled
relative to diB by a user-chosen factor 1/R2 ∼ 1 or (b) where clustering is stopped when all
dij, diB are above a jet resolution threshold dcut (as with usual agglomerative clustering).
We here consider only the simplest version, but the arguments below are identical for the
general case.

2.2 Brute force and beyond

Algorithm 2 Standard brute-force implementation of kt clustering

1: Given the initial set of particles, construct a table of all the dij, diB.
[O(N2) operations]

2: repeat [Will be done N times]
3: Scan the table to find the minimal value dmin of the dij, diB. [O(N2) operations]
4: Merge or remove the particles corresponding to dmin as appropriate.
5: Update the table of dij, diB to take into account the merging or removal.

[O(N) operations]
6: until No particles remain.

The standard reference implementations of the kt jet finder use a brute-force approach,
algorithm 2 [17]. Step 3 dominates, requiring O(N2 × N = N3) operations and there is an
O(N2) storage requirement for the table of dij. One obvious way of improving the speed
would be to store the dij in a balanced binary tree (or some other structure that can act as
a priority queue), so that finding the minimum of the dij at each iteration would have an
O(log N) cost. There would then be two limiting steps: the construction of the tree would
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involve N2 log N operations; furthermore after each merging or removal operation, O(N)
of the dij’s change and accounting for this in the tree structure would involve O(N log N)
steps at each iteration. Therefore such an algorithm would scale as N2 log N . Tests using
STL priority queues indicate that, in practice, for N of the order of a few thousand, this
is no faster than the brute-force N3 approach.

Since agglomerative clustering with non-geometrical measures is a procedure that is
used in a range of fields, a certain amount of work has been carried out to improve on the
N3 algorithm. The earliest dates to Anderberg in 1973 [1] which uses a “nearest neighbour
heuristic” (NNH) in which for each i one stores the index j of the closest dij and then
updates this as particles are added and removed. The initialisation for N particles takes
O(N2) time and adding a particle takes O(N) time. Removal is more delicate and takes
O(kN) time where k is the number of particles that had the removed particle as their
nearest neighbour. In good cases k ∼ 1 giving an O(N2) algorithm, however in the worst
case k ∼ N leading to an O(N3) algorithm.

It turns out that the combination of the distance measure eq. (2) and the structure
of radiation in QCD leads to k often being quite high.4 Therefore the nearest neigh-
bour heuristic, though it improves significantly over the brute force approach, does not
in practice behave as an N2 algorithm. This drawback of the nearest neighbour heuristic
is known and a number of approaches for addressing it have been presented in [14, 42],
working in O(N2) time with O(N2) storage, or O(N2 log N) time with O(N). In our initial
investigations we also examined two improvements on the NNH.

Rather than storing just the closest particle to each i, one can introduce a structure of
size N1/2 for each i, which indicates the nearest neighbour among groups of particles num-
bered 1 . . . N1/2, (N1/2 + 1) . . . 2N1/2 and so forth. Though initialisation of this structure
for all particles takes O(N2) time, as for the NNH, recalculating the nearest neighbour
of a particle that has lost its current nearest neighbour takes O(N1/2) time. So overall,
the algorithm has a worst case clustering time of O(N5/2), while in good cases the time
remains O(N2), with O(N3/2) storage. This worst and good case time scaling and the
need for significant storage are reminiscent of the SuperConga approach of [14].

The second improvement of the NNH is specific to jet clustering and based on the
observation that only particles j with Rij ≤ 1 can lead to a dij < diB. Therefore one
can ‘bucket’ particles into a tiling of the cylinder based on η, φ rectangles with side ≥ 1
and only calculate the dij for particles j in the same bucket (tile) as i or in one of the 8
surrounding tiles.

The above two improvements lead to run times that are much faster than with the

4Specifically the distance measure allows the following worst case: all ηi are identical, the ∆φ are
‘strongly’ ordered, 1 ≫ ∆φN,N−1 ≫ ∆φN−1,N−2 . . . ≫ ∆φ2,1 (implying ∆φN,N−1 ≃ ∆φN,N−2 ≃ . . . ≃
∆φN,1), and the kt are even more strongly ordered kt,N ≪ kt,N−1 ≪ . . . kt,1 such that kt,i∆φi,j <

kt,i∆φi,j−1 ≪ kt,i−1∆φi−1,j−1 for all 2 < j < i ≤ N . In such a situation the smallest dij is dN,N−1 but
at the same time dNj is smaller than all dij for i 6= N , so the removal of N implies that all particles need
to have their nearest neighbour updated. Since QCD radiation tends to produce hierarchies of particles in
angles and transverse momenta (though not necessarily both in the order given just above) typically one
finds moderately large subsets of particles that fall into the worst case scenario.
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brute-force algorithm, and also a significant improvement relative to the NNH. However
they remain worse than those that can be obtained with N2 algorithms based on the
geometric separation to be discussed below, therefore we shall not elaborate on them
any further (nor have we investigated the full range of alternative algorithms discussed
in [14, 42] — from the relative timing results shown there, we suspect them to be similar
to ours, bearing in mind that our tiling improvement does not have a direct counterpart
in the more general algorithms).

3 Geometrical algorithms

We observe that given the specific form of the distance measure, a product of a momentum
scale and a geometrical distance, the following statement can be made:

Lemma: If i, j form the smallest dij, and kti < ktj , then Rij < Riℓ for all ℓ 6= j, i.e. j
is the (cylindrical) geometrical nearest neighbour of particle i.

Proof: Suppose the Lemma is wrong and that there exists a particle ℓ such that
Riℓ ≤ Rij : then diℓ = min(k2

ti, k
2
tℓ)R

2
iℓ and since min(k2

ti, k
2
tℓ) ≤ k2

ti, we have that diℓ ≤ dij,
in contradiction with the statement that i and j have the smallest dij.

Given this observation, one can formulate the kt jet finding problem in geometrical
terms, algorithm 3.

Algorithm 3 Geometrical formulation of the kt jet finder

1: For each particle i establish its cylindrical geometrical nearest neighbour Ci and calcu-
late the di = min(diCi, diB).

2: repeat

3: Find the minimal value dmin of the di.
4: Merge or remove the particles corresponding to dmin, as appropriate.
5: If a new particle ℓ has been created determine its cylindrical geometrical nearest

neighbour Ci.
6: Determine which other particles’ nearest neighbours have changed as the result of

the removal of i and j and addition of ℓ.
7: Determine the di for each particle whose nearest neighbour has changed and, where

relevant, for the new particle ℓ.
8: until No particles remain.

The crucial improvement here is that dmin no longer has to be searched for among O(N2)
dij entries, but only among O(N) di. The problem then has two separate components: that
of finding the minimum of the di and that of establishing and keeping track of all nearest
neighbours (or equivalently, that of maintaining the nearest neighbour graph).
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3.1 N
2 formulations

A formulation that has a worst-case O(N2) behaviour can be obtained based on the fol-
lowing observations. Finding the minimum of O(N) di values, N times is overall O(N2).
The initial set of geometrical cylindrical nearest neighbours (CNN) can be established in
time N2, and because no point can be the CNN of more than O(1) others (as discussed
below the cylindrical problem is similar to a planar one, where the limit is 6 [30]) we only
need to recalculate O(N) distances to reestablish the CNN information after an update.
Specifically when deleting i and j and inserting ℓ, one needs to scan all N points to see
which ones were the CNN of either i and j (their CNNs should then be recalculated) and
which ones have acquired ℓ as their CNN or become the CNN of ℓ. Repetition over N
iterations gives an O(N2) behaviour. We call this the naive N2 algorithm.

Following the discussion in section 2.2, we do not need to search for CNNs on the
whole cylinder, because if Rij > 1 then dij > diB and there will never be a recombination
between i and j. One can therefore tile the cylinder, as in section 2.2, and for a given
point, limit the search for CNNs to its own tile and the surrounding tiles. Asymptotically,
the algorithm will remain N2, both because of the search for dmin (though this is easily
improved) and because in practice, for large N the density of points on the cylinder is
proportional to N (and therefore so is the number of points in a tile). This will be called
the tiled N2 algorithm.

3.2 N log N formulation

Let us first reexamine the cost of finding the minimum of the di: in step 1 one can create
a priority queue containing all the di in time O(N log N). In step 3 finding the minimal
entry in the priority queue will take at most time O(log N). In step 7 (in the worst case
of there being a recombination) one needs to update the queue to account for the removal
of the particles that recombined, i and j, the addition of the new particle ℓ and also for
all particles whose CNN has changed due to the removal of i and j and the addition of ℓ.
As discussed just above, the number of points that can be the CNN of i, j or ℓ is O(1), so
updating the priority queue will take O(log N) time. Since steps 3 and 7 are to be repeated
N times, the overall cost of the handling of the di priority queue is O(N log N).

The geometrical nearest-neighbour graph part of the problem takes place on the surface
of a cylinder, since φ is periodic in 2π. It is straightforward to reduce this to a planar
problem, for which far more results are known, for example by unrolling the cylinder and
then making copies of points displaced by 2π so as to account for the proximity of points
near φ = 0 and φ = 2π.5 The overhead of making the copies is at most a factor of order 1
(and in practice, for uniformly distributed points, can be reduced to 1 + O(1/

√
N)).

The problem of searching for nearest neighbours on the plane has been extensively

5This procedure will misbehave if RiCi
> 2π, since i’s copy, i′, will be identified as a closer neighbour

of i at distance 2π. However, as we have already noted a couple of times, if RiCi
> 1 then diCi

> diB and
di = diB, so that we do not actually need to know Ci. In a sense, it is not the full nearest-neighbour graph
that interests us, but only a range-bounded nearest-neighbour graph.
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studied (in what follows, nearest neighbours will now always be meant with respect to the
planar geometrical distance, rather than dij or the cylindrical Rij). Various structures are
known for finding the nearest neighbours of all points on a plane, among them k-d trees [7]
and Delaunay triangulations (or their duals, Voronoi diagrams) [5]. Several codes and algo-
rithms exist for the creation both of static k-d trees (e.g. [35]) and static Voronoi/Delaunay
diagrams (e.g. [26, 38]) in N log N time. The determination of all nearest neighbours takes
at most a further time N log N (O(N) in the Delaunay case).

To maintain all necessary nearest neighbour information across the updates that will
occur during the clustering, additional features are required. Firstly, it should be possible
to both add and delete points in the structure. Secondly, in addition to being able to find
the nearest neighbour of a point in the structure, one needs to be able to carry out reverse

nearest neighbour queries [28], i.e. establish for a given point i, which other points in the
structure have i as their nearest neighbour. As pointed out in [28] this is sufficient in order
to maintain the nearest-neighbour graph.

The problem of maintaining dynamic structures that can answer such queries and be up-
dated efficiently (in O(log N) time) is a current one [46]. Given that the nearest-neighbour
graph is a subgraph of the Delaunay Triangulation (DT), one of the simplest approaches
to maintaining the nearest neighbour graph is to make use of methods that allow ef-
ficient dynamic updates of the DT, in particular those allowing for both insertion and
deletion [12, 11, 29, 32, 23, 24].6 The analyses of these structures involve some form of
assumption of randomisation, for example that one inserts points in random order and
that when deleting a point it is chosen at random from the point set. With such an as-
sumption it is possible to achieve average update times of O(log N). Recently an approach
has been developed that is more robust with respect to the randomness of insertions and
deletions [22] (see also [21]) however the maintenance of the nearest-neighbour graph takes
a time log6 N per update.

Of the above approaches, that of [24], the DT hierarchy, has been incorporated into
the triangulations component [9] of CGAL [15] and is therefore readily accessible. This
motivated us to choose the CGAL package for the computational geometry part of our jet
clustering application.

Within CGAL, initial nearest-neighbour information can be set up for each vertex i
by circulating over all of incident vertices in the DT and selecting the one that is closest.
When removing a point i, one should carry out a reverse nearest neighbour query, by
circulating over the incident vertices of i and establishing the subset {RNNi} that had i as
their nearest neighbour. After removal of i one should establish the new nearest neighbour
of each of the elements {RNNi} (by circulating over their incident vertices in the DT).
Finally, when a point i is added one should circulate over its incident vertices and establish
i’s nearest neighbour. In the process one should verify whether i is closer to any of incident
vertices than their currently recorded nearest neighbours and if so, rectify that information.

6There has also been work in the context of R-trees [27, 31] that does satisfy all our requirements
(notably [33, 45]), however with R-trees one of the main aims is to achieve efficiency when data is kept on
disk, which is not a concern in our case. In practice it seems that the CPU part of documented running
times [45] does not compare favourably with the results we shall show in section 4).

10



Given that the total number of vertices in the DT is bounded O(N), initially establishing
the nearest-neighbour information takes O(N) time. Reestablishing the nearest-neighbour
information takes a time O(k), with k, expected O(1), the degree of the vertices around
which one circulates in the DT. Therefore keeping track of nearest neighbour information
will take an overall time O(N), whereas creating and maintaining the DT hierarchy across
O(N) updates is expected O(N log N).

There are caveats related to the meaning of ‘expected’.7 The jet clustering procedure
removes and inserts points deterministically and one might worry about the existence
of pathological sets of input particle momenta that bring out the worst case of the DT
hierarchy updates. In particular it is known that the time for deletion is actually O(k log k)
[23], where k is the degree of the vertex being deleted. Large k (∼ N), corresponds to the
situation where one point is at the centre of a circle and all others on its circumference.
This is extremely unlikely among the configurations that will occur in particle physics,
where the distribution of k should not be too different from that in a random set of points.
Furthermore it would only be dangerous if the algorithm were then to repeatedly remove
and reinsert the central point, leading to an overall N2 log N cost. Detailed analysis of the
clustering procedure suggests that this cannot occur.8 Another potential problem with high
k relates to the maintenance of the nearest neighbour information. Even if the central point
is not directly involved in a recombination, it may have had as nearest neighbour a point
that was involved (and was removed). In such a case the central point’s nearest neighbour
has to be redetermined at cost O(k). One can devise extremely unlikely pathological
configurations9 where this will occur repeatedly across a sequence of recombinations of
length O(k), in which case if k ∼ N the overall cost will be O(N2).

These special cases aside, let us summarise the overall computation complexity of the
algorithm: the total time spent in setting up CGAL’s Delaunay Triangulation hierarchy is
expected O(N log N) and a further expected time O(N log N) is spent updating and ex-
tracting information from it during the iteration of the jet-finding procedure. Maintaining
the O(N) di entries in a priority queue for easy minimum searching also takes O(N log N)
time (in practice we actually use a balanced binary tree), so the overall time for running
the jet finding is expected O(N log N).

7We wish to thank O. Devillers for correspondence on this point.
8For the point i at the centre to be removed it must form a dmin with a point j on the circumference.

Two scenarios exist: Cj = i or Ci = j. The former is impossible in the limit of there being many points on
the circumference (since Cj will be another point on the circumference). Regarding the latter, dij can be a
dmin if k2

tiR
2
ij < k2

tjR
2
jCj

, however since there are many points on the circumference R2
jCj

≪ R2
ij , implying

k2
ti ≪ k2

tj . In such a case, if i and j recombine, then because kti ≪ ktj the new particle to be inserted will
be close to the original position of j (the position is approximately given by a kt-weighted average), and
therefore not in the centre of the circle.

9Let momentum k1 be the central point, with momenta k2 . . . kn distributed in a spiral around k1

such that R1,i+1 < R1,i and kt,i+1 ≪ kt,i. The nearest neighbour of the central point is kn and the
first recombination will be between kn and kn−1. Removing kn implies a redetermination of k1’s nearest
neighbour. This will turn out to be the recombined particle, which will have taken kn−1’s location. Thus
the clustering procedure will work its way around the spiral, recomputing the central point’s nearest
neighbour at each step.
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4 Timing measurements

While the CGAL-based algorithm is clearly expected to be the best for asymptotically large
N , it is necessary to examine how it fares for the values of N that are relevant at high-energy
colliders. A typical proton-proton collision produces a few hundred particles. Two factors
can lead to events having far more particles however. Firstly, in order to be able to search
for potentially very rare signatures of new particles, rather than having a single collision
at a time, the LHC will have about 20 collisions (proton-proton interactions) occurring
simultaneously, leading to a few thousand particles being produced per event; and in a
lead-lead (‘heavy-ion’) collision, there will be so many interactions between the individual
protons in the lead nuclei, that many tens of thousands of particles are expected to be
produced [44]. The second aspect is that some parts of the particle detectors are segmented
in a fine grid-like structure (in η and φ) and it can be simplest experimentally (e.g. due
to noise-related issues) to run the jet-finding as if each element of the grid represented a
particle in its own right. The number of grid elements in a typical detector ranges from
103 to 104 [39]. Therefore the overall range of N that needs to be studied is 102 to 105.
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CGAL N ln N
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tiled N
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Tevatron
LHC (single LHC (c. 20 LHCTevatron (D0)
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Figure 2: Timings of various algorithms for the kt jet-finder as a function of the number
of particles N , together with indications of the contexts in which various values of N can
arise. The events used for the jet finding were generated with the Pythia Monte Carlo
event generator [18]. Measurements were performed on a Pentium IV processor running
at 3.06 GHz with 1GB of memory.

The results for the timings might depend significantly on the structure of the events
being used, in particular if one deliberately includes worst-case events. To cover a large
range of N in a representative manner, we used the PYTHIA Monte Carlo program [18] to
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generate simulated proton-proton collision events. These simulations are in part based on
theoretical calculations, and in part on fits to real data. We build events by taking one
simulated event with pronounced jets (consisting of about 100 particles) and superimposing
varying numbers of simulated typical proton-proton collisions, known as ‘minimum-bias’
events. These do not usually have jets and are a form of background that will be present
when multiple proton-proton collisions occur simultaneously.

Figure 2 shows timings for implementations of the kt jet finder with various algorithms:
KtJet [17] codes the N3 algorithm described in section 2. The FastJet algorithms are
those based on the geometrical approach of section 3 in the implementation available from
[48]. One sees that the geometrical algorithms all run substantially faster than the original
N3 algorithm and their N -dependences coincide approximately with the expected scalings.
The CGAL based N log N algorithm becomes better than the naive N2 algorithm for
N & 2000 and better than the tiled N2 algorithm for N & 104. Systematically taking the
best of the various algorithms brings overall computation time for dealing with 109 LHC
proton-proton events or for 107 heavy-ion events into the ballpark of a few months of CPU
time. In the heavy-ion case, CGAL allows an improvement over the tiled N2 algorithm by
about an order of magnitude.

The above timings are eminently manageable by LHC standards. In contrast, with the
original brute force N3 algorithm, processing times would have been in the range 102−104

CPU years, which would have represented a non-negligible burden even given the extensive
grid computing facilities that will be available to the LHC experiments.10

Concentrating specifically on the N log N CGAL-based algorithm it is interesting to
examine which parts are the most time consuming. Considering N = 104, the two N log N
parts are the priority queue, which consumes about 5% of the time and CGAL which takes
about 65%. The latter breaks down into about 30% each for insertion and deletion and 5%
for circulation. Of the remaining 30%, about half is directly associated with maintenance
of the nearest neighbour information. One notes that for this value of N , parts expected
to scale as N log N (insertion and the priority queue) take about the same amount of time
as parts that scale as N .

Given that the N log N behaviour is only an expectation, based on the assumption
of insertion and deletion being sufficiently random, it is interesting to verify whether the
measured timings do actually follow this expectation. To this end, figure 3 shows timings
divided by N for the CGAL-based algorithm — the result should be linear in log N . The
two event samples used here extend to much larger N than that of fig. 2, so as to provide
a clear view of the asymptotic region. One event sample superimposes multiple minimum
bias events (as in fig. 2), while the other adds particles on a grid that is made progressively
finer towards large N , mimicking the structure of a detector. In both cases there is strong
evidence for N log N behaviour, though the specific structure of the events does affect
the coefficient of N log N . Thus, despite general worries that the non-random nature of a

10One should bear in mind also that it will be interesting to the run the jet-finder more than once,
for example on real data and multiple simulated datasets, and also examining the variants mentioned in
section 2
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Figure 3: Verification of the N log N behaviour of the CGAL based algorithm. The points
are measured timings t (divided by N), while the lines correspond to fits of the form
t = (a+ b log N)N for N > 3000. Two simulated sets of momenta have been used for these
tests, both described in the text.

procedure such as clustering might be fatal to the assumptions behind the expectation of
N log N timing (as expressed for example in [22]), for jet clustering this does not seem to
be an issue.

5 Conclusions

Jet-finding in high-energy particle collisions with the widely advocated longitudinally in-
variant kt agglomerative clustering jet finder is highly CPU intensive with the brute force
N3 approach used up to now. Our geometrical reformulation of the problem, in terms of a
planar nearest neighbour graph, leads to practical improvements of several orders of magni-
tude in speed. For moderately large N the resulting simple N2 algorithms are remarkably
efficient. For very large N , the methods of computational geometry, in particular CGAL’s
implementation of the Hierarchical Delaunay Triangulation, make it possible to construct
a dynamic planar nearest-neighbour graph with expected O(log N) update time. This is
the key non-trivial ingredient in reducing the complexity of the problem from O(N2) to
expected O(N log N). The impact of the use of CGAL will be most significant for heavy-
ion collisions, where N ≃ 50000 and the CGAL N log N algorithm is an order magnitude
faster than all others.

To our knowledge this is the first use of computational geometry in the study of particle
physics event properties. We suspect that there may also exist other applications. In
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particular to account for the contamination from minimum bias events (a form of noise)
it will be important to be able to provide an estimate of the area of a jet and it can
be shown that for this purpose the Voronoi diagram has a special correspondence to the
underlying physics [41]. Additionally there exist agglomerative clustering jet finders with
other distance measures, notably the Cambridge/Aachen variant [13] which has a purely
geometrical (cylindrical) measure and so could be dealt with in a manner similar to that
described here, or alternatively using dedicated planar closest pair algorithms such as [16,
8].
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