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Abstract

FastJet provides fast (N lnN,N2) implementations of the longitudinally invariant kt, anti-
kt and Cambridge/Aachen jet algorithms for pp collisions, based in part on tools and methods
from the Computational Geometry community, as well as a native implementation of the e+e−

kt algorithm. Further jet algorithms, including most of the other commonly used pp and e+e−

algorithms, can be accessed from the FastJet interface using a plugin mechanism. FastJet also
provides ways of determining jet areas.
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1 Introduction

This note documents the FastJet package, which provides efficient geometrically-based implemen-
tations [1] for the longitudinally invariant kt [2, 3], inclusive Cambridge/Aachen [4, 5] and anti-kt[6]
jet algorithms. It also provides access to tools that allow one to determine the areas of individual
jets, which is of importance when correcting for underlying event and pileup contamination. Finally
external jet algorithms can be accessed through the fastjet interface using a “plugin” facility.

The implementation of the inclusive Cambridge algorithm and of jet areas are new features of
version 2 of FastJet; other changes include a new interface,1 and new algorithmic strategies that can
provide a factor of two improvement in speed for events whose number N of particles ∼ 104. Choices of
recombination schemes and plugins are new features of version 2.1. Version 2.2 introduces a broader
set of area measures and the anti-kt algorithm [6]. A plugin facility allows one to access external
jet algorithms through the FastJet interface, and overlays FastJet features such as areas onto the
external jet algorithms. Plugins are included for the fortran PxCone code and for the CDF C++
JetClu and MidPoint cone jet algorithms (all infrared unsafe), as well as the recent Seedless Infrared-
Safe Cone (SISCone) jet algorithm [7]. Version 2.3 introduced a new build system (GNU autotools),
a broader range of areas and tools to help navigate the ClusterSequence Version 2.4 includes the new
version 2.0 of SISCone, as well as plugins to the DØ Run II cone, the ATLAS cone, the CMS cone
and a range of e+e− algorithms, and also further tools to help investigate jet substructure. There is
also a wrapper to FastJet allowing one to run SISCone and iterfrom a Fortran program,

The current implementation of the pp sequential-recombinaion algorithms is restricted to the so-
called ∆R distance measure (recommended in [8]), with a choice of recombination schemes. The kt

algorithm has both exclusive [2] and inclusive modes [3], the latter currently being in more widespread
use, though the exclusive mode may have physical advantages in certain cases.

2 Quick-start guide

For the impatient, the FastJet package can be set up and run as follows.

• Download the code and the unpack it

wget http://www.lpthe.jussieu.fr/~salam/fastjet/repo/fastjet-X.Y.Z.tar.gz

tar zxvf fastjet-X.Y.Z.tar.gz<br>

cd fastjet-X.Y.Z/

• Compile and install (choose your own preferred prefix), and when you’re done go back to the
original directory

./configure --prefix=‘pwd‘/../fastjet-install

make

make check

make install

cd ..

1The old one though retained through v2 is deprecated and will be removed in v3
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• Now paste the following piece of code into a file called short-example.cc

#include "fastjet/ClusterSequence.hh"

#include <iostream>

using namespace fastjet;

using namespace std;

int main () {

vector<PseudoJet> particles;

// an event with two particles: px py pz E

particles.push_back( PseudoJet( 100.0, 0, 0, 100.0) );

particles.push_back( PseudoJet(-100.0, 0, 0, 100.0) );

// choose a jet definition

double R = 0.7;

JetDefinition jet_def(kt_algorithm, R);

// run the clustering, extract the jets

ClusterSequence cs(particles, jet_def);

vector<PseudoJet> jets = cs.inclusive_jets();

// print the jets

cout << " pt y phi" << endl;

for (unsigned i = 0; i < jets.size(); i++) {

cout << "jet " << i << ": "<< jets[i].perp() << " "

<< jets[i].rap() << " " << jets[i].phi() << endl;

}

}

• Then compile and run it with

g++ short-example.cc -o short-example \

‘fastjet-install/bin/fastjet-config --cxxflags‘ \

‘fastjet-install/bin/fastjet-config --libs‘

The output will consist of a banner, followed by the lines

pt y phi

jet 0: 100 0 3.14159

jet 1: 100 0 0

3 Jet-finding interface

The FastJet code is written in C++. From the point of view of simple usage its interface has a
number of similarities to that of KtJet [10], fundamental differences being highlighted below.

All classes are contained in the fastjet namespace. For basic usage, the user is exposed to three
main classes:
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class fastjet::PseudoJet;

class fastjet::JetDefinition;

class fastjet::ClusterSequence;

fastjet::PseudoJet provides a jet object with a four-momentum and some internal indices to situate
it in the context of a jet-clustering sequence. fastjet::ClusterSequence is the class that carries
out jet-clustering and provides access to the final jets.

The class fastjet::JetDefinition contains a specification of how jet clustering is to be per-
formed. Such a class was not present in version 1 of FastJet (nor in KtJet), but was found to be
useful to ‘contain’ the complexity of the interface as new features such as alternative jet algorithms
and jet-area determination were introduced.

3.1 fastjet::PseudoJet

All jets, as well as input particles to the clustering (optionally) are fastjet::PseudoJet objects.
They can be created using one of the following constructors

fastjet::PseudoJet (double px, double py, double pz, double E);

template<class T> fastjet::PseudoJet (const T & some_lorentz_vector);

where the second form allows the initialisation to be obtained from any class T that allows subscripting
to return the components of the momentum (running from 0 . . . 3 in the order px, py, pz, E), for example
the CLHEP HepLorentzVector class.2 It includes the following member functions for accessing the
components

double E() const ; // returns the energy component

double e() const ; // returns the energy component

double px() const ; // returns the x momentum component

double py() const ; // returns the y momentum component

double pz() const ; // returns the z momentum component

double phi() const ; // returns the azimuthal angle in range 0 . . . 2π
double phi_std() const ; // returns the azimuthal angle in range −π . . . π
double rap() const ; // returns the rapidity

double rapidity() const ; // returns the rapidity

double pseudorapidity() const ; // returns the pseudo-rapidity

double eta() const ; // returns the pseudo-rapidity

double kt2() const ; // returns the squared transverse momentum

double perp2() const ; // returns the squared transverse momentum

double perp() const ; // returns the transverse momentum

double m2() const ; // returns squared invariant mass

double m() const ; // returns invariant mass (−
√
−m2 if m2 < 0)

double mperp2() const ; // returns the squared transverse mass = k2
t + m2

double mperp() const ; // returns the transverse mass

double operator[] (int i) const; // returns component i

double operator() (int i) const; // returns component i

/// return a valarray containing the four-momentum (components 0--2

2 fastjet::PseudoJet is the analogue of KtJet’s KtLorentzVector. A significant difference is that it is not derived
from HepLorentzVector (so as to allow compilation even without CLHEP).
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/// are 3-momentum, component 3 is energy).

valarray<double> four_mom() const;

It also allows the user to set and access an index, in case the user wishes to keep track of the
identity of a fastjet::PseudoJet object

/// set the user_index, intended to allow the user to label the object

void set_user_index(const int index);

/// return the user_index

int user_index() const ;

A PseudoJet can be reset with

/// reset the 4-momentum according to the supplied components and

/// put the user and history indices back to their default values

inline void reset(double px, double py, double pz, double E);

and similarly taking as argument a templated some_lorentz_vector or a PseudoJet (in the latter
case, the user and internal indices are inherited).

Finally, the +, -, * and / operators are defined, with +, - acting on pairs of PseudoJets and *, /
acting on a PseudoJet and a double coefficient. Analogous +=, etc., operators, are also defined.

We also provide routines for taking an unsorted vector of fastjet::PseudoJets and returning a
sorted vector,

/// return a vector of jets sorted into decreasing transverse momentum

vector<fastjet::PseudoJet> sorted_by_pt(const vector<fastjet::PseudoJet> & jets);

/// return a vector of jets sorted into increasing rapidity

vector<fastjet::PseudoJet> sorted_by_rapidity(const vector<fastjet::PseudoJet> & jets);

/// return a vector of jets sorted into decreasing energy

vector<fastjet::PseudoJet> sorted_by_E(const vector<fastjet::PseudoJet> & jets);

These will typically be used on the jets returned by fastjet::ClusterSequence.

3.2 fastjet::JetDefinition

The class fastjet::JetDefinition contains a full specification of how to carry out the clustering.
According to the Les Houches convention detailed in [11], a ‘jet definition’ should include the jet
algorithm name, its parameters (often the radius R) and the recombination scheme. Its constructor
is3

fastjet::JetDefinition(fastjet::JetAlgorithm jet_algorithm,

double R,

fastjet::RecombinationScheme recomb_scheme = E_scheme,

fastjet::Strategy strategy = Best);

3The v. 2.0 constructor, without the recombination scheme argument, still remains valid.
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E_scheme

pt_scheme

pt2_scheme

Et_scheme

Et2_scheme

BIpt_scheme

BIpt2_scheme

Table 1: Members of the RecombinationScheme enum; the last two refer to boost-invariant version
of the pt and p2

t schemes (as defined in section 5.6).

The jet algorithm is one of the entries of the fastjet::JetAlgorithm enum4:

enum JetAlgorithm {kt_algorithm, cambridge_algorithm,

antikt_algorithm, genkt_algorithm,

ee_kt_algorithm, ee_genkt_algorithm, ...};

where the . . . represent additional values that are present for internal or testing purposes. R specifies
the value of R that appears in eqs. (1,2,3,4,5). The recombination scheme should be one of those
listed in table 1. If it is omitted the E-scheme is chosen.

For one algorihm, ee_kt_algorithm, there is no R parameter, so the constructor is to be called
without the R argument:

fastjet::JetDefinition(fastjet::JetAlgorithm jet_algorithm,

fastjet::RecombinationScheme recomb_scheme = E_scheme,

fastjet::Strategy strategy = Best);

For the generalised kt algorithm and its e+e− version, one requires R and an extra parameter p, and
the following constructor should then be used

fastjet::JetDefinition(fastjet::JetAlgorithm jet_algorithm,

double R,

double p,

fastjet::RecombinationScheme recomb_scheme = E_scheme,

fastjet::Strategy strategy = Best);

If the user calls a constructor with the incorrect number of arguments for the requested jet algorithm,
a fastjet::Error() exception will be thrown with an explanatory message.

The default constructor for JetDefinition provides the kt algorithm with R = 1; the default
constructor is there for programming convenience and should not be taken to constitute a default
recommendation for physics analyses.

The strategy selects the algorithmic strategy to use while clustering and is an enum of type
fastjet::Strategy with potentially interesting values listed in table 2. Nearly all strategies are
based on the factorisation of energy and geometrical distance components of the dij measure [1]. In
particular they involve the dynamic maintenance of a nearest-neighbour graph for the geometrical

4As of v2.3, the JetAlgorithm name replaces the old JetFinder one, in keeping with the Les Houches convention.
Backward compatibility is assured at the user level by a typedef and a doubling of the methods names. Backward com-
patibility (with versions < 2.3) is however broken for user-written derived classes of ClusterSequence, as the protected
variables default jet finder and jet finder have been replaced by default jet algorithm and jet algorithm.
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N2Plain a plain N2 algorithm (fastest for N . 50)
N2Tiled a tiled N2 algorithm (fastest for 50 . N . 400)
N2MinHeapTiled a tiled N2 algorithm with a heap for tracking the minimum of

dij (fastest for 400 . N . 15000)
NlnN the Voronoi-based N ln N algorithm (fastest for N & 15000)
NlnNCam based on Chan’s N ln N closest pairs algorithm (fastest for

N & 6000), suitable only for the Cambridge jet algorithm
Best automatic selection of the best of these based on N and R

Table 2: The more interesting of the various algorithmic strategies for clustering. Other strategies are
given JetDefinition.hh — note however that strategies not listed in the above table may disappear
in future releases. For jet algorithms with spherical distance measures (those whose name starts with
“ee ”), only the N2Plain strategy is available.

distances. They apply equally well to any of the internally implemented jet algorithms. The one ex-
ception is NlnNCam, which is based on a computational geometry algorithm for dynamic maintenance
of closest pairs [12] (rather than the more involved nearest neighbour graph), and is suitable only for
the Cambridge algorithm whose distance measure is purely geometrical.

The N2Plain strategy uses a “nearest-neighbour heuristic” [13] approach to maintaining the ge-
ometrical nearest-neighbour graph; N2Tiled tiles the y − φ cylinder to limit the set of points over
which nearest-neighbours are searched for,5 and N2MinHeapTiled differs only in that it uses an N ln N
(rather than N2) data structure for maintaining in order the subset of the dij that involves nearest
neighbours. The NlnN strategy uses CGAL’s Delaunay Triangulation [15] for the maintenance of
the nearest-neighbour graph. Note that N ln N performance of is an expected result, and it holds in
practice for the kt and Cambridge algorithms, while for anti-kt and generalised-kt with p < 0, hub-
and-spoke (bicycle-wheel!) type configurations emerge dynamically during the clustering and these
break the conditions needed for the expected result to hold (this however has a significant impact
only for N & 105).

If strategy is omitted then the Best option is set. Note that the N ranges quoted above for
which a given strategy is optimal hold for R = 1; the general R dependence can be significant (and
non-trivial), for example for the Cambridge/Aachen jet algorithm with R = 0.4, NlnNCam beats the
N2MinHeapTiled strategy only for N & 37000. While some attempt has been made to account for the
R-dependence in the choice of the strategy with the “Best” option, there may exist specific regions
of N and R in which a manual choice of strategy can give faster execution. Furthermore the NlnNCam

strategy’s timings may depend strongly on the size of the cache, and the transitions that have been
adopted are based on a cache size of 2 MB. Finally for a given N and R, the optimal strategy may
also depend on the event structure.

A textual description of the jet definition can be obtained by a call to the member function

std::string description();

5Tiling is a textbook approach in computational geometry, where it is often referred to as bucketing. It has been
used also in certain cone jet algorithms, notably at trigger level and in [14].
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3.3 fastjet::ClusterSequence

To run the jet clustering, create a fastjet::ClusterSequence object,6 through the following con-
structor

template<class L> fastjet::ClusterSequence

(const std::vector<L> & input_particles,

const fastjet::JetDefinition & jet_def);

where input particles is the vector of initial particles of any type (fastjet::PseudoJet,
HepLorentzVector, etc.) that can be used to initialise a fastjet::PseudoJet and jet def

contains the full specification of the clustering (see Section 3.2).

If the user wishes to access inclusive jets, the following member function should be used

/// return a vector of all jets (in the sense of the inclusive

/// algorithm) with pt >= ptmin.

vector<fastjet::PseudoJet> inclusive_jets (const double & ptmin = 0.0) const;

where ptmin may be omitted (then implicitly taking value 0).

There are two ways of accessing exclusive jets,7 one where one specifies dcut, the other where one
specifies that the clustering is taken to be stopped once it reaches the specified number of jets.

/// return a vector of all jets (in the sense of the exclusive

/// algorithm) that would be obtained when running the algorithm

/// with the given dcut.

vector<fastjet::PseudoJet> exclusive_jets (const double & dcut) const;

/// return a vector of all jets when the event is clustered (in the

/// exclusive sense) to exactly njets.

vector<fastjet::PseudoJet> exclusive_jets (const int & njets) const;

Note that these two member functions have the same name, and the compiler selects the correct
one based on the type of the arguments, as is standard in C++. The fastjet::PseudoJet vectors
returned by the above routines can all be sorted with the routines described at the end of section 3.1.

The user may also wish just to obtain information about the number of jets in the exclusive
algorithm:

/// return the number of jets (in the sense of the exclusive

/// algorithm) that would be obtained when running the algorithm

/// with the given dcut.

int n_exclusive_jets (const double & dcut) const;

Another common query is to establish the dmin value associated with merging from n + 1 to n jets.
Two member functions are available for determining this:

/// return the dmin corresponding to the recombination that went from

/// n+1 to n jets (sometimes known as d_{n n+1}).

double exclusive_dmerge (const int & njets) const;

6The analogue of KtJet’s KtEvent.
7In contrast to KtJet the class constructor is the same for the inclusive and exclusive cases. This choice has been

made because the clustering sequence is identical in the two cases.
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/// return the maximum of the dmin encountered during all recombinations

/// up to the one that led to an n-jet final state; identical to

/// exclusive_dmerge, except in cases where the dmin do not increase

/// monotonically.

double exclusive_dmerge_max (const int & njets) const;

The first returns the dmin in going from n + 1 to n jets. Occasionally however the dmin value does not
increase monotonically during successive mergings and using a dcut smaller than the return value from
exclusive dmerge does not guarantee an event with more than njets jets. For this reason the second
function exclusive dmerge max is provided — using a dcut below its return value is guaranteed to
provide a final state with more than n jets, while using a larger value will return a final state with n
or fewer jets.

For e+e− collisions, where it is usual to refer to yij = dij/Q
2 (Q is the total (visible) energy)

FastJet provides the following methods:

double exclusive_ymerge (int njets);

double exclusive_ymerge_max (int njets);

int n_exclusive_jets_ycut (double ycut);

std::vector<PseudoJet> exclusive_jets_ycut (double ycut);

which are relevant for use with the e+e− kt algorithm and with the Jade plugin (section 7.4.2).

Finally the user may obtain the constituent particles of a given jet, via

/// return a vector of the particles that make up jet

vector<fastjet::PseudoJet> constituents (const fastjet::PseudoJet & jet);

Note that this is a member function of the fastjet::ClusterSequence and not of
fastjet::PseudoJet, because jets are only meaningful when referred to a given
fastjet::ClusterSequence.8 If the user wishes to identify the constituents with the original
particles provided to fastjet::ClusterSequence she or he should have set a unique index for each
of the original particles with the fastjet::PseudoJet::set user index function.

Subjet analysis. To obtain the set of subjets at a specific dcut scale inside a given jet, one may use
the following ClusterSequence member function:

/// return a vector of all subjets of the current jet (in the sense

/// of the exclusive algorithm) that would be obtained when running

/// the algorithm with the given dcut.

std::vector<PseudoJet> exclusive_subjets (const PseudoJet & jet,

const double & dcut) const;

If m jets are found, this takes a time O (m ln m) (owing to the internal use of a priority queue).
Alternatively one may obtain the jet’s constituents, cluster them separately and then carry out an
exclusive jets analysis on the resulting ClusterSequence. The results should be identical. This
second method is mandatory if one wishes to identify subjets with an algorithm that differs from the
one used to find the original jets.

One can also make use of the following methods, which allow one to follow the merging sequence
(and walk back through it):

8This is a further respect in which the interface differs from that of KtJet.
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/// if the jet has parents in the clustering, it returns true

/// and sets parent1 and parent2 equal to them.

///

/// if it has no parents it returns false and sets parent1 and

/// parent2 to zero

bool has_parents(const PseudoJet & jet, PseudoJet & parent1,

PseudoJet & parent2) const;

/// if the jet has a child then return true and give the child jet

/// otherwise return false and set the child to zero

bool has_child(const PseudoJet & jet, PseudoJet & child) const;

/// if this jet has a child (and so a partner) return true

/// and give the partner, otherwise return false and set the

/// partner to zero

bool has_partner(const PseudoJet & jet, PseudoJet & partner) const;

Unclustered particles. User-supplied plugin jet algorithms (see section 7) may have the property
that not all particles are clustered into jets. In such a case it can be useful to obtain the list of
unclustered particles. This can be done as follows:

vector<fastjet::PseudoJet> unclustered = clust_seq.unclustered_particles();

3.4 Version information

Information on the version of FastJet that is being run can be obtained by making a call to

std::string fastjet::fastjet_version_string();

(defined in fastjet/JetDefinition.hh). In line with recommendations for other programs in high-
energy physics, the user may wish to include this information in publications and plots so as to
facilitate reproducibility of the jet-finding.9 We recommend also that the main elements of the
jet def.description() be provided, together with citations to the original article that defines the
algorithm, as well as to the FastJet paper [1].

4 Example program

For full details see the example program example/fastjet example.cc that is distributed with the
FastJet code. For the reader who is familiar with KtJet [10], the example program is also given as
it would be written for KtJet, in the file example/ktjet example.cc.

A simplified version of the FastJet example program is given below.

#include "fastjet/PseudoJet.hh"

#include "fastjet/ClusterSequence.hh"

using namespace std;

9While we devote significant effort to ensuring that all versions of FastJet give identical, correct results, we are
obviously not able to completely guarantee the absence of bugs that might have an effect on the jet finding.

12



int main (int argc, char ** argv) {

vector<fastjet::PseudoJet> input_particles;

// read in input particles

double px, py , pz, E;

while (cin >> px >> py >> pz >> E) {

// push fastjet::PseudoJet of (px,py,pz,E) on back of input_particles

input_particles.push_back(fastjet::PseudoJet(px,py,pz,E));

}

// create an object that represents your choice of jet algorithm and

// its associated parameters

double Rparam = 1.0;

fastjet::Strategy strategy = fastjet::Best;

fastjet::JetDefinition jet_def(fastjet::kt_algorithm, Rparam, strategy);

// run the jet clustering with the above jet definition

fastjet::ClusterSequence clust_seq(input_particles, jet_def);

// extract the inclusive jets with pt > 5 GeV

double ptmin = 5.0;

vector<fastjet::PseudoJet> inclusive_jets = clust_seq.inclusive_jets(ptmin);

// extract the exclusive jets with dcut = 25 GeV^2 and sort them

// in order of increasing pt

double dcut = 25.0;

vector<fastjet::PseudoJet> exclusive_jets = sorted_by_pt(

clust_seq.exclusive_jets(dcut));

// print out the details for each jet

for (unsigned int i = 0; i < exclusive_jets.size(); i++) {

// get constituents of the jet. NB this is through a member function

// of clust_seq because that is where the information is held.

vector<fastjet::PseudoJet> constituents =

clust_seq.constituents(exclusive_jets[i])

printf("%5u %15.8f %15.8f %15.8f %8u\n",

i, exclusive_jets[i].rap(), exclusive_jets[i].phi(),

exclusive_jets[i].perp(), constituents.size());

}

}
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5 FastJet native jet algorithms

5.1 kt jet algorithm

The definition of the inclusive kt jet algorithm that is coded is as follows (and corresponds to [3],
modulo small changes of notation):

1. For each pair of particles i, j work out the kt distance

dij = min(k2
ti, k

2
tj) ∆R2

ij/R
2 (1)

with ∆R2
ij = (yi − yj)

2 + (φi − φj)
2, where kti, yi and φi are the transverse momentum, rapidity

and azimuth of particle i and R is a jet-radius parameter usually taken of order 1; for each
parton i also work out the beam distance diB = k2

ti.

2. Find the minimum dmin of all the dij, diB. If dmin is a dij merge particles i and j into a single
particle, summing their four-momenta (this is E-scheme recombination); if it is a diB then
declare particle i to be a final jet and remove it from the list.

3. Repeat from step 1 until no particles are left.

The exclusive longitudinally invariant kt jet algorithm [2] is similar except that (a) when a diB is the
smallest value, that particle is considered to become part of the beam jet (i.e. is discarded) and (b)
clustering is stopped when all dij and diB are above some dcut. In the exclusive mode R is commonly
set to 1.

5.2 Cambridge/Aachen jet algorithm

Currently the Cambridge/Aachen jet algorithm is provided only in an inclusive version [5], whose
formulation is identical to that of the kt jet algorithm, except as regards the distance measures, which
are:

dij = ∆R2
ij/R

2 , (2a)

diB = 1 . (2b)

Attempting to extract exclusive jets from the Cambridge/Aachen with a dcut parameter simply pro-
vides the set of jets obtained up to the point where all dij , diB > dcut. Having clustered with some
given R, this can actually be an effective way of viewing the event at a smaller radius, Reff =

√
dcutR,

thus allowing a single event to be viewed at a continuous range of Reff within a single clustering.

We note that the true exclusive formulation of the Cambridge algorithm [4] instead makes use an
auxiliary (kt) distance measure and ‘freezes’ pseudojets whose recombination would involve too large
a value of the auxiliary distance measure.

5.3 Anti-kt jet algorithm

This new algorithm, introduced and studied in [6], is defined exactly like the standard kt algorithm,
except for the distance measures which are now given by

dij = min(1/k2
ti, 1/k

2
tj) ∆R2

ij/R
2 , (3a)

diB = 1/k2
ti . (3b)
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While being a sequential recombination algorithm like kt and Cambridge/Aachen, the anti-kt algorithm
behaves in some sense like a ‘perfect’ cone algorithm, in that its hard jets are exactly circular on the
y-φ cylinder [6].

5.4 Generalised kt jet algorithm

The “generalised kt” algorithm again follows the same procedure, but depends on an additional
continuous parameter p, with has the following distance measure:

dij = min(k2p
ti , k2p

tj ) ∆R2
ij/R

2 , (4a)

diB = k2p
ti . (4b)

For specific values of p, it reduces to one or other of the algorithms list above, kt (p = 1), Cam-
bridge/Aachen (p = 0) and anti-kt (p = −1).

5.5 Generalised kt algorithm for e+e− collisions

FastJet also provides native implementations of clustering algorithms in spherical coordinates (specif-
ically for e+e− collisions) along the lines of the original kt algorithms [9], but extended in analogy
with the generalised pp algorithm of [6] and section 5.4. We define the two following distances:

dij = min(E2p
i , E2p

j )
(1 − cos θij)

(1 − cos R)
, (5a)

diB = E2p
i , (5b)

for a general value of p and R. At a given stage of the clustering sequence, if a dij is smallest then i
and j are recombined, while if a diB is smallest then i is called an “inclusive jet”.

For values of R ≤ π in eq. (5), the generalised e+e− kt algorithm behaves in analogy with the pp
algorithms: when an object is at an angle θiX > R from all other objects X then it forms an inclusive
jet. With the choice p = −1 this provides a simple, infrared and collinear safe way of obtaining a
cone-like algorithm for e+e− collisions, since hard well-separated jets have a circular profile on the 3D
sphere, with opening half-angle R.

If one imagines a (complex) value of R such that (1−cosR) > 2, then the diB will be smallest only
if the event consists of a single particle, and thus with the additional choice of p = 1 the clustering
sequence will correspond to that of the e+e− kt algorithm [9], often referred to also as the Durham
algorithm, which has a single distance:

dij = 2 min(E2p
i , E2p

j )(1 − cos θij) . (6)

Note the difference in normalisation between the dij in eqs. (5) and (6), and the fact in neither case
have we normalised to the total energy Q in the event, contrary to the convention adopted originally
in [9] (where the distance measure was called yij).

5.6 Recombination schemes

When merging particles in step 2 of the clustering procedure, one must specify how to combine the
momenta. The simplest procedure (E-scheme) simply adds the four-vectors. This has been advocated
as a standard in [8], and is the default option in FastJet.
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Other schemes for pp collisions. Other schemes provided by earlier kt-clustering implementations
[10] are the pt, p2

t , Et and E2
t schemes. They all incorporate a ‘preprocessing’ stage to make the initial

momenta massless (rescaling the energy to be equal to the 3-momentum for the pt and p2
t schemes,

rescaling to the 3-momentum to be equal to the energy in the Et and E2
t schemes). Then for all

schemes the recombination pr of pi and pj is a massless 4-vector satisfying

pt,r = pt,i + pt,j , (7a)

φr = (wiφi + wjφj)/(wi + wj) , (7b)

yr = (wiyi + wjyj)/(wi + wj) , (7c)

where wi is pt,i for the pt and Et schemes, and is p2
t,i for the p2

t and E2
t schemes.

Note that for massive particles the schemes defined in the previous paragraph are not invariant
under longitudinal boosts. We therefore also introduce boost-invariant pt and p2

t schemes, which are
identical to the normal pt and p2

t schemes, except that they omit the preprocessing stage.

Other schemes for e+e− collisions. On request, we may in the future provide dedicated schemes
for e+e− collisions.

User-defined schemes. The user may define their own, custom recombination schemes, as de-
scribed in Appendix A.

6 Jet areas

Since a jet is made up of only a finite number of particles, one needs a specific definition in order to
make its area (i.e. the surface in the y-φ plane over which it extends) an unambiguous concept. Three
definitions of area have been proposed in [16] and they are implemented in FastJet:

• Active areas add a uniform background of extremely soft massless ‘ghost’ particles to the event
and allow them to participate in the clustering. The area of a given jet is proportional to the
number of ghosts it contains. Because the ghosts are extremely soft (and sensible jet algorithms
are infrared safe), the presence of the ghosts does not affect the set of user particles that end up
in a given jet.

• Passive areas are defined as follows. One adds a single randomly placed ghost at a time to the
event. One examines which jet (if any) the ghost ends up in. One repeats the procedure many
times and the passive area of a jet is then proportional to the probability of it containing the
ghost.

• The Voronoi area of a jet is the sum of the Voronoi areas of its constituent particles. The Voronoi
area of a particle is obtained by determining the Voronoi diagram for the event as a whole, and
intersecting the Voronoi cell of the particle with a circle of radius R centred on the particle.
Note that for the kt algorithm (but not for Cambridge/Aachen or anti-kt, nor in general for any
other algorithm) the Voronoi area of a jet coincides with its passive area.

The area can be calculated either as a scalar, or as a 4-vector. Essentially the scalar case corresponds
to counting the number of ghosts in the jet, while the 4-vector case corresponds to summing their
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4-vectors (normalised such that for a narrow jet, the transverse component of the 4-vector is equal to
the scalar area).

Jet areas are obtained by clustering with the class ClusterSequenceArea (rather than
ClusterSequence, from which it is derived). Its constructor takes an AreaDefinition argument in
addition to the list of particles and the JetDefinition.

It is worth noting that in the limit of very densely populated events, all area definitions tend to
the same value [16]. It might therefore be advantageous to select a Voronoi area type, rather than an
active one, when using areas for phenomenological tasks like pileup subtraction [17], as it generally
requires less CPU time to calculate.

To summarise, in order to access the areas of the jets the user is exposed to two main classes:

class fastjet::AreaDefinition;

class fastjet::ClusterSequenceArea;

If jet areas are to be used to study the level of a diffuse noise which might be present in the event
(like underlying event particles or pileup), a further specification, the phase space region over which
to study such noise, will have to be given via the class

class fastjet::RangeDefinition;

These classes are described in detail below, and an example program is given in section 6.4.

6.1 fastjet::AreaDefinition

Area definitions are contained in fastjet::AreaDefinition class. Its two main constructors are:

fastjet::AreaDefinition(fastjet::AreaType area_type,

fastjet::GhostedAreaSpec ghost_spec);

for the various active and passive areas (which all involve ghosts) and

fastjet::AreaDefinition(fastjet::VoronoiAreaSpec voronoi_spec);

for the Voronoi area. A default constructor exists, and provides an active area with a ghost spec

that is suitable for a majority of area measurements with clustering algorithms and typical Tevatron
and LHC rapidity coverage.

Information about the current AreaDefinition can be retrieved as follows:

/// return a description of the current area definition

std::string description() const ;

/// return info about the type of area being used by this defn

AreaType area_type() const ;

/// return a reference to the ghosted area spec (where relevant)

const GhostedAreaSpec & ghost_spec() const ;

/// return a reference to the voronoi area spec (where relevant)

const VoronoiAreaSpec & voronoi_spec() const ;
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6.1.1 Ghosted Areas (active and passive)

There are two variants each of the active and passive areas, as defined by the AreaType enum:

enum fastjet::AreaType{ [...],

active_area,

active_area_explicit_ghosts,

one_ghost_passive_area,

passive_area,

[...]};

The two active variants give identical results. The second one explicitly includes the ghosts when the
user requests the constituents of a jet. The first of the passive variants explicitly runs through the
procedure mentioned above, i.e. it clusters the events with one ghost at a time, and repeats this for
very many ghosts. This can be quite slow, so we also provide the passive area option, which makes
use of information specific to the jet algorithm in order to speed up the passive-area determination.10

In order to carry out a clustering with a ghosted area determination, the user should
also create an object that specifies how to distribute the ghosts.11 This is done via the class
fastjet::GhostedAreaSpec whose constructor is

fastjet::GhostedAreaSpec(double ghost_maxrap,

int repeat = 1,

double ghost_area = 0.01,

double grid_scatter = 1.0,

double kt_scatter = 0.1,

double mean_ghost_kt = 1e-100);

The ghosts are distributed on a uniform grid in y and φ, with small random fluctuations to avoid
degeneracies. The ghost maxrap defines the maximum rapidity up to which ghosts are generated —
typically jet areas will be reliable for jets up to rapidity |y| ≃ ghost maxrap−R. The ghost area is
the area associated with a single ghost. The number of ghosts is inversely proportional to the ghost
area, and so a smaller area leads to a longer CPU-time for clustering. However small ghost areas
give more accurate results. We have found the default ghost area given above to be suitable for most
applications.

For sparse events, the set of ghost particles that end up in a given jet is not unique, and depends
on the degeneracy-breaking random shifts added to the ghost positions, as compared to a perfect grid
distribution. To obtain a reliable area one may then repeat the area determination several times,
the number of times being specified by the repeat variable. For hadron-level events a value of 5
is sufficient to give jet areas that are determined to within a few percent. In practice it is usually
satisfactory even to set repeat = 1 and this is the default since it runs faster. For events with
a dense distribution of true particles, there is no degeneracy in the ghost clustering and there is
no need at all to use repeat > 1. If repeat > 1, a statistical uncertainty on the area, given by
σ/

√
repeat− 1, is provided for each jet. Note that the repeat value is ignored (i.e. taken to be 1)

for active area explicit ghosts and meaningless for the passive area in the kt algorithm, which
just calculates the Voronoi area discussed below (since they are identical).

10This ability is provided for kt, Cambridge/Aachen, anti-kt and the SISCone plugin. In the case of kt it is actually
a Voronoi area that is used, since this can be shown to be equivalent to the passive area [16]. For other algorithms it
defaults back to the one ghost passive area approach.

11Or accept a default — which uses the default values listed in the explicit constructor and ghost maxrap = 6
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Other variables that the user may wish to set are: grid scatter and kt scatter, which are
fractional random fluctuations of the position of the ghosts on the y-φ grid and of their transverse
momentum; and mean ghost kt which is the average transverse momentum of the ghosts.

Even after the initialisation, the parameters can be modified by

void set_ghost_area (double ) ;

void set_ghost_etamax (double ) ;

void set_ghost_maxrap (double ) ;

void set_grid_scatter (double ) ;

void set_kt_scatter (double ) ;

void set_mean_ghost_kt (double ) ;

void set_repeat (int ) ;

and information about the GhostedAreaSpec in use can be retrieved as follows:

/// for a summary

std::string description() const;

double ghost_etamax () const ;

double ghost_maxrap () const ;

double ghost_area () const ;

double grid_scatter () const ;

double kt_scatter () const ;

double mean_ghost_kt () const ;

int repeat () const ;

6.1.2 Voronoi Areas

The Voronoi areas of jets are evaluated by summing the corresponding Voronoi areas of the jets’
constituents. The latter are obtained by considering the intersection between the Voronoi cell of each
particle and a circle of radius R centred on the particle’s position in the rapidity-azimuth plane.

The jets’ Voronoi areas can be obtained from fastjet::ClusterSequenceArea by passing the
proper fastjet::VoronoiAreaSpec specification to fastjet::AreaDefinition. Its constuctors are

/// default constructor (effective_Rfact = 1)

fastjet::VoronoiAreaSpec() ;

/// constructor that allows you to set effective_Rfact

fastjet::VoronoiAreaSpec(double effective_Rfact) ;

The second constructor allows one to modify (by a multiplicative factor effective Rfact) the radius
of the circle which is intersected with the Voronoi cells. With effective Rfact = 1, for the kt

algorithm, the Voronoi area is equivalent to the passive area.

Information about the specification in use is returned by

/// return the value of effective_Rfact

double effective_Rfact() const ;

/// return a textual description of the area definition.

std::string description() const ;
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The Voronoi areas are calculated with the help of Fortune’s (N lnN) Voronoi diagram generator for
planar static point sets [18].

6.2 fastjet::ClusterSequenceArea

This is the main class12 to which the user is exposed for accessing cluster sequences that include
information about jet areas. It is derived from fastjet::ClusterSequenceAreaBase (itself derived
from fastjet::ClusterSequence) and includes the methods

/// return a reference to the area definition

virtual const fastjet::AreaDefinition & area_def() const ;

/// return the area associated with the given jet

virtual double area (const fastjet::PseudoJet & jet) const ;

/// return the error (uncertainty) associated with the determination

/// of the area of the jet; returns 0 when the repeat value = 1, and

/// also for the active_area_explicit_ghosts and certain passive areas

virtual double area_error (const fastjet::PseudoJet & jet) const ;

/// return a PseudoJet whose 4-vector is defined by the following integral

///

///
∫

dydφ PseudoJet(y,φ,pt = 1) * Θ("y, φ inside jet boundary")

///

/// where PseudoJet(y,φ,pt = 1) is a 4-vector with the given

/// rapidity (y), azimuth (φ) and pt = 1, while Θ("y, φ inside jet boundary")

/// is a function that is 1 when y, φ define a direction inside the

/// jet boundary and 0 otherwise.

///

virtual fastjet::PseudoJet area_4vector(const PseudoJet & jet) const ;

When the AreaType is active_area_explicit_ghosts, one may additionally use the following func-
tion

/// true if a jet is made exclusively of ghosts

virtual bool is_pure_ghost(const PseudoJet & jet) const;

to determine whether a jet is made purely of ghosts. Its argument can also be one of the constituents
of a jet, in which case it will return true if that constituent is a ghost.

6.3 Areas and background subtraction

Jet areas can be used to study the level of a randomly distributed diffuse background which might
be present together with the hard event of interest. After selecting a phase space region over which
to analyse the jets, one can determine the average level rho (transverse momentum per unit area) of

12 ClusterSequenceArea makes use of one among ClusterSequenceActiveArea,
ClusterSequenceActiveAreaExplicitGhosts, ClusterSequencePassiveArea, ClusterSequence1GhostPassiveArea
or ClusterSequenceVoronoiArea (all of them in the fastjet namespace of course), according to the choice made
with AreaDefinition. The user might of course also use these classes directly.
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the background, and also subtract it from the hard jets. This way of using jets to determine the noise
level on an event-by-event basis was introduced and described in [17].

Note that we recommend that you use only the kt or Cambridge/Aachen algorithms for calculating
the UE/pileup density ρ. In fact, it is important to avoid algorithms with extreme behaviours for
the areas. In particular one should not use anti-kt (which has many jets with near-zero area) or
SISCone (which can have jets with near-zero area, as well as monster jets with huge areas if the
overlap parameter f is too small). In contrast the kt and Cambridge/Aachen algorithms are suitable.

Once ρ has been determined using kt or Cambridge/Aachen (and an appropriate value of R, typi-
cally of order 0.4–0.6, see [17] for more details), its value can then be used for UE/pileup subtraction
in an analysis using any jet algorithm.

6.3.1 Fixed range

The fastjet::RangeDefinition class allows the user to set the rapidity-azimuth range over which
he/she wishes to study the areas of the jets. It has two constructors. The first is

/// constructor for a range definition given by |y|<rapmax

fastjet::RangeDefinition(double rapmax);

which defines a range inclusive in azimuth (0–2π), and bound by a maximum value for abs(y). The
second constructor,

/// constructor for a range definition given by

/// rapmin <= y <= rapmax, phimin <= phi <= phimax

fastjet::RangeDefinition(double rapmin, double rapmax,

double phimin = 0.0, double phimax = twopi);

allows one to fully specify a rectangle in the rapidity-azimuth plane.

fastjet::RangeDefinition contains

/// return bool according to whether the jet is within the given range

bool is_in_range(const PseudoJet & jet) const ;

/// return bool according to whether the (rap,phi) point is within the given range

virtual bool is_in_range(double rap, double phi) const ;

/// (scalar) area of the range region

virtual double area() const ;

/// return the minimal and maximal rapidity of this range

virtual inline void get_rap_limits(double & rapmin, double & rapmax) const;

/// textual description of the range

virtual std::string description() const ;

6.3.2 Local Ranges

The virtual functions above can be overloaded by the user in a derived class, where a different range
definition can be specified. An example can be found in CircularRange.hh, which implements a
circular range centred on a jet’s axis. Its constructors are
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/// initialise CircularRange with a jet

fastjet::CircularRange(const fastjet::PseudoJet & jet, double distance) ;

/// initialise CircularRange with a (rap,phi) point

fastjet::CircularRange(double rap, double phi, double distance) ;

/// initialise CircularRange with just the radius parameter

fastjet::CircularRange(double distance) ;

This local range makes use of two further methods. First, it overrides a virtual function already
present in RangeDefinition

/// For localizable classes override this function with a function

/// that returns true

virtual inline bool is_localizable() const ;

to return true. This causes the two following functions (present but disabled in the base class) to be
enabled:

/// place the range on the rap-phi position

inline void set_position(const double & rap, const double & phi);

/// place the range on the jet position

inline void set_position(const PseudoJet & jet);

They allow one to place an existing local range at the supplied position.

Note: we expect the interface for ranges to evolve significantly in releases subsequent to 2.4.

6.3.3 Background subtraction

Once a range has been specified, the following methods, belonging to the base class
ClusterSequenceAreaBase, are available for extracting the diffuse noise level and its fluctuations:

/// the median of (pt/area) for jets contained within range,

/// making use also of the info on n_empty_jets

double median_pt_per_unit_area(const RangeDefinition & range) const;

/// the median of (pt/area_4vector.perp()) for jets contained within range,

/// making use also of the info on n_empty_jets

double median_pt_per_unit_area_4vector(const RangeDefinition & range) const;

/// the function that does the work for median_pt_per_unit_area and

/// median_pt_per_unit_area_4vector:

/// - use_area_4vector = false -> use plain area

/// - use_area_4vector = true -> use 4-vector area

double median_pt_per_unit_something(

const & RangeDefinition range, bool use_area_4vector) const;

/// using jets within range (and with 4-vector areas if

/// use_area_4vector), calculate the median pt/area (ρ), as well as an

/// "error" (uncertainty), which is defined as the 1-sigma

/// half-width of the distribution of pt/A, obtained by looking for

/// the value σ such which a fraction (1-0.6827)/2 of the jets

/// (including empty jets) have pt/A < ρ − σ
√

〈A〉
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///

/// The subtraction for a jet with uncorrected pt, pU
t and area A is

///

/// pS
t = pU

t − ρA ± σ
√

A
///

/// where the error is only that associated with the fluctuations

/// in the noise and not that associated with the noise having

/// caused changes in the hard-particle content of the jet.

///

/// NB: subtraction may also be done with 4-vector area of course,

/// and this is recommended for jets with larger values of R, as

/// long as rho has also been determined with a 4-vector area;

/// using a scalar area causes one to neglect terms of relative

/// order R2/8 in the jet pt.

void get_median_rho_and_sigma(const RangeDefinition & range,

bool use_area_4vector,

double & median, double & sigma,

double & mean_area);

A version exists also without the last argument.

A final version that is present allows one to calculate the median based on an explicit li:st of jets,
rather than the cluster-sequence’s inclusive jets()

virtual void get_median_rho_and_sigma(const std::vector<PseudoJet> & all_jets,

const RangeDefinition & range,

bool use_area_4vector,

double & median, double & sigma,

double & mean_area,

bool all_are_inclusive = false) const;

There are at least two ways this might be used. One is if you want to exclude (say) some number of
hardest jets from the estimate of ρ:

// get list of jets

vector<PseudoJet> all_jets = sorted_by_pt(cs.inclusive_jets());

// remove the two hardest jets (you might do this more efficiently...)

all_jets.erase(all_jets.begin(), all_jets.begin()+2);

// Get rho based on all but the two hardest jets.

// The last argument MUST be set to true unless you are using explicit ghosts

cs.get_median_rho_and_sigma(all_jets, range, true, median, sigma, mean_area, true);

Another way it might be used is if you have the Cambridge/Aachen algorithm at some R value and
wish to determine ρ based on the jets it would provide at a different jet radius, R′ < R (without
rerunning the clustering):

// get list of jets at smaller R′ value

vector<PseudoJet> all_jets = cs.exclusive_jets(pow(R′/R,2)));

// The last argument MUST be set to false unless you are using explicit ghosts

cs.get_median_rho_and_sigma(all_jets, range, true, median, sigma, mean_area, false);

This is useful, for example, if you wish to determine ρ at a series of different angular resolutions R′.
It only works for the Cambridge/Aachen algorithm.
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Note: the all are inclusive argument relates to FastJet’s internal mechanism for dealing with
empty area. The treatment of empty area is much more robust if the area is based on explicit ghosts
(active_area_explicit_ghosts). Its use of strongly recommended for the above applications (in
which case the value of all are inclusive becomes irrelevant).

There is also a routine for estimating rapidity-dependent densities, intended for example for heavy-
ion events

/// fits a form pt_per_unit_area(y) = a + b*y2 in the given range.

/// exclude_above allows one to exclude large values of pt/area from fit.

/// use_area_4vector = true uses the 4vector areas.

void parabolic_pt_per_unit_area(double & a, double & b,

const RangeDefinition & range,

double exclude_above = -1.0,

bool use_area_4vector = false) const;

This method is now considered deprecated (it is too sensitive to contamination from hard jets). An
alternative is to use a local range definition, like the CircularRange mentioned above. Such a range
definition will of course lead to a different median ρ according to where the range is placed. It
is useful whenever the background distribution is expected to be non uniform in rapidity and, for
instance in the case of non-central collisions, also in azimuth. With a wise choice for the distance
d, CircularRange will then allow one to use ClusterSequenceArea::get median rho and sigma()

on a jet-by-jet basis. One can similarly also use a plain RangeDefinition in a limited rapidity and/or
azimuth region.

Note that more specialised methods for extracting the noise level might be present at the level of a
specific class, e.g. ClusterSequenceActiveArea. At least some of them should however be considered
obsolete, and might be removed in future releases of FastJet.

Finally, the base class ClusterSequenceAreaBase contains virtual methods (usually overloaded by
the derived classes) that deal with pure-ghost jets that might be formed when adding ghost particles
to the events in order to calculate ghosted areas:

/// return the total area, within range, that is free of jets

virtual double empty_area(const RangeDefinition & range) const;

/// return something similar to the number of pure ghost jets

/// in the given range in an active area case.

/// Note that the number returned is a double.

virtual double n_empty_jets(const RangeDefinition & range) const;

With active area definitions these are calculated based on the observed number of pure ghost jets
(and unclustered ghosts) in range; for Voronoi and passive and areas, they are calculated using the
difference between the total range area and the area of the jets contained in the range, with the
number of empty jets then being calculated based on the average jet area.

6.4 Example program with areas and subtraction

The following simplified example program clusters a series of input particles into jets, evaluates the
median transverse momentum per unit area of the event (both for the standard area, and the alter-
native 4-vector area), and performs the subtraction of the background noise from the hard jets.
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#include "fastjet/ClusterSequenceArea.hh"

namespace fj = fastjet;

using namespace std;

int main (int argc, char ** argv) {

// select the jet algorithm (kt with R=0.7)

double R = 0.7;

fj::JetDefinition jet_def(fj::kt_algorithm,R);

// select the area type (active area with default ghosts)

fj::AreaDefinition area_def(fj::active_area);

// read in input particles

double px, py , pz, E;

vector<fj::PseudoJet> input_particles;

while (cin >> px >> py >> pz >> E) {

input_particles.push_back(fj::PseudoJet(px,py,pz,E));

}

// cluster the event, also obtaining area information

fj::ClusterSequenceArea csa(input_particles,jet_def,area_def);

// get list of jets with pt > 5 GeV

vector<fj::PseudoJet> jets = csa.inclusive_jets(5.0);

// set the rapidity-azimuth range within which to study background

double rapmax = 4.0;

fj::RangeDefinition range(rapmax);

// get median pt of all jets using standard area

double median_pt = csa.median_pt_per_unit_area(range);

// get median pt of all jets using area_4vector

double median_pt_4vect = csa.median_pt_per_unit_area_4vector(range);

cout << "\n Median rho (pt per unit area) = " << median_pt << " GeV\n\n";

cout << " i rap phi pt area pt_sub pt_sub_4vect " << endl;

// perform subtraction, output results

for (unsigned i = 0; i < jets.size(); i++) {

// get area of jet i

double area = csa.area(jets[i]);

// get area_4vector of jet i

fj::PseudoJet area4vect = csa.area_4vector(jets[i]);

// standard subtraction

double pt_sub = jets[i].perp() - median_pt*area;

// 4-vector subtraction

fj::PseudoJet jet_sub = jets[i] - median_pt_4vect*area4vect;

// print out results
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printf("%2u %7.3f %7.3f %7.3f %7.3f %7.3f %7.3f\n",

i, jets[i].rap(), jets[i].phi(), jets[i].perp(), area,

pt_sub, jet_sub.perp());

}

}

Note that the above listing ignores the issue of cases where the transverse momentum to be subtracted
is larger than the jet’s pt. This occurs when the jet is not really a true hard jet, but rather mostly
composed of the background contamination. In such cases, the subtraction should not be performed,
and the jet should be instead be discarded.

For convenience, the above operations are pre-packaged together with a certain number of safety
checks (in particular if the subtracted transverse momentum is too large, routines that return a jet,
set all of its components to zero. Methods that are given a RangeDefinition object in input, and
therefore calculate ρ themselves, do it according to area 4vector, unless a further input flag is present
and false):

/// return a vector of all subtracted jets, using area_4vector, given rho.

/// Only inclusive_jets above ptmin are subtracted and returned.

/// The ordering is the same as that of sorted_by_pt(cs.inclusive_jets()),

/// i.e. not necessarily ordered in pt once subtracted

std::vector<PseudoJet> subtracted_jets(const double rho,

const double ptmin=0.0) const;

/// return a vector of subtracted jets, using area_4vector.

/// Only inclusive_jets above ptmin are subtracted and returned.

/// The ordering is the same as that of sorted_by_pt(cs.inclusive_jets()),

/// i.e. not necessarily ordered in pt once subtracted

std::vector<PseudoJet> subtracted_jets(const RangeDefinition & range,

const double ptmin=0.0) const;

/// return a subtracted jet, using area_4vector, given rho

PseudoJet subtracted_jet(const PseudoJet & jet, const double rho) const;

/// return a subtracted jet, using area_4vector; note

/// that this is potentially inefficient if repeatedly used for many

/// different jets, because rho will be recalculated each time around.

PseudoJet subtracted_jet(const PseudoJet & jet,

const RangeDefinition & range) const;

/// return the subtracted pt, given rho

double subtracted_pt(const PseudoJet & jet, const double rho,

bool use_area_4vector=false) const;

/// return the subtracted pt; note that this is

/// potentially inefficient if repeatedly used for many different

/// jets, because rho will be recalculated each time around.

double subtracted_pt(const PseudoJet & jet, const RangeDefinition & range,

bool use_area_4vector=false) const;
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7 Plugin jet algorithms

It can be useful to have a common interface for a range of jet algorithms beyond the native (kt, anti-kt

and Cambridge/Aachen) algorithms, and it can also be useful to use the area-measurement tools for
these other jet algorithms. In order to facilitate this, the FastJet package provides a plugin facility,
allowing almost any other jet algorithm13 to be used within the same framework.

7.1 Generic plugin use and construction

Any plugin is to be derived from the abstract base class fastjet::JetDefinition::Plugin,

class JetDefinition::Plugin{

public:

/// return a textual description of the jet-definition implemented

/// in this plugin

virtual std::string description() const = 0;

/// given a ClusterSequence that has been filled up with initial

/// particles, the following function should fill up the rest of the

/// ClusterSequence, using the following member functions of

/// ClusterSequence:

/// - plugin_do_ij_recombination(...)

/// - plugin_do_iB_recombination(...)

virtual void run_clustering(ClusterSequence &) const = 0;

/// a destructor to be replaced if necessary in derived classes...

virtual ~Plugin() {};

//------- ignore what follows for simple usage! ---------

/// return true if there is passive areas can be efficiently determined by

/// (a) setting the ghost_separation scale (see below)

/// (b) clustering with many ghosts with pt ≪ ghost_separation_scale

/// (c) counting how many ghosts end up in a given jet

virtual bool supports_ghosted_passive_areas() const {return false;}

/// set the ghost separation scale for passive area determinations

/// in future runs (NB: const, so should set internal mutable var)

virtual void set_ghost_separation_scale(double scale) const;

virtual double ghost_separation_scale() const;

};

A JetDefinition can be constructed by providing a pointer to a JetDefinition::Plugin; the
resulting JetDefinition object can then be used identically to the normal JetDefinition objects
used in the previous sections.

// have some plugin class derived from the Plugin base class

class CDFMidPointPlugin : public fastjet::JetDefinition::Plugin {...};

13Except those that perform 3 → 2 clusterings for which there is no unique mapping of particles into jets (some
particles are effectively shared among more than one jet).
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// create an instance of the CDFMidPointPlugin class

CDFMidPointPlugin cdf_midpoint( [... options ...] );

// create the jet definition

fastjet::JetDefinition jet_def = fastjet::JetDefinition( & cdf_midpoint);

// then create ClusterSequence with the input particles and jet_def,

// and use it to extract jets as usual

Any plugin class must define the description and run clustering member functions. The former
just returns a textual description of the jet algorithm and its options (e.g. radius, etc.), while the latter
does the hard work of running the user’s own jet algorithm and transferring the information to the
ClusterSequence class. This is best illustrated with an example:

using namespace fastjet;

void CDFMidPointPlugin::run_clustering(ClusterSequence & clust_seq) {

// when run_clustering is called, the clust_seq has already been

// filled with the initial particles, which are available through the

// jets() array

const vector<PseudoJet> & initial_particles = clust_seq.jets();

// it is up to the user to do their own clustering on these initial

// particles

// ...

Once the plugin has run its own clustering it must transfer the information back to the clust seq.
This is done by recording mergings between pairs of particles or between a particle and the beam.
The new momenta are stored in the clust seq.jets() vector, after the initial particles. Note though
that the plugin is not allowed to modify clust seq.jets() itself. Instead it must tell clust seq

what recombinations have occurred, via the following (ClusterSequence member) functions

/// record the fact that there has been a recombination between

/// jets()[jet_i] and jets()[jet_k], with the specified dij, and

/// return the index (newjet_k) allocated to the new jet, whose

/// momentum is assumed to be the 4-vector sum of that of jet_i and

/// jet_j

void plugin_record_ij_recombination(int jet_i, int jet_j, double dij,

int & newjet_k);

/// as for the simpler variant of plugin_record_ij_recombination,

/// except that the new jet is attributed the momentum and

/// user_index of newjet

void plugin_record_ij_recombination(int jet_i, int jet_j, double dij,

const PseudoJet & newjet,

int & newjet_k);

/// record the fact that there has been a recombination between

/// jets()[jet_i] and the beam, with the specified diB; when looking
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/// for inclusive jets, any iB recombination will returned to the user

/// as a jet.

void plugin_record_iB_recombination(int jet_i, double diB);

These dij recombination functions return the index newjet k of the newly formed pseudojet. The
plugin may need to keep track of this index in order to specify subsequent recombinations.

Certain (cone) jet algorithms do not perform pairwise clustering — in these cases the plugin
must invent a ficititious series of pairwise recombinations that leads to the same final jets. Such jet
algorithms may also produce extra information that cannot be encoded in this way (for example a list of
stable cones), but to which one may still want access. For this purpose, during run_clustering(...),
the plugin may call the ClusterSequence member function:

inline void plugin_associate_extras(std::auto_ptr<ClusterSequence::Extras> extras);

where ClusterSequence::Extras is a dummy class which the plugin should extend so as to provide
the relevant information:

class ClusterSequence::Extras {

public:

virtual ~Extras() {}

virtual std::string description() const;

};

A method of ClusterSequence then provides the user with access to the extra information:

/// returns a pointer to the extras object (may be null) const

Extras * extras() const;

The user should carry out a dynamic cast so as to convert the extras back to the specific plugin extras
class, as illustrated later for SISCone.

Example plugin jet algorithms that are provided with FastJet are the CDFMidPointPlugin illus-
trated above and also a CDFJetCluPlugin. These interface code available at [19]. The PxConePlugin

interfaces the PxCone code [20]. All three of these cone jet algorithms, though widely used, are in-
frared or collinear unsafe (depending on the parameters). The SISConePlugin, described in detail
below, interfaces the infrared safe seedless cone algorithm of [7]. Examples using these plugins and
some further documentation are provided in the plugins/ directory.

7.2 SISCone Plugin

SISCone [7] is an implementation of a cone type jet algorithm. As with most modern cone algorithms,
it is divided into two parts: first it searches for stable cones; then, because a particle can appear in
more than one stable cone, a ‘split–merge’ procedure is applied, which ensures that no particle ends
up in more than one jet. The stable cones are identified using an O (N2 ln N) seedless approach. This
(and some care in the the ‘split–merge’ procedure) ensures that the jets it produces are insensitive to
additional soft particles and collinear splittings (i.e. the jets are infrared and collinear safe).

The plugin library and include files are to be be found in the plugins/SISCone directory, and the
main header file is SISConePlugin.hh. The SISConePlugin class has a constructor with the following
structure

SISConePlugin (double cone_radius,
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double overlap_threshold = 0.5,

int n_pass_max = 0,

double protojet_ptmin = 0.0,

bool caching = false,

SISConePlugin::SplitMergeScale

split_merge_scale = SISConePlugin::SM_pttilde);

A cone centered at yc, φc is stable if the sum of momenta of all particles i satisfying ∆y2
ic + ∆φ2

ic <
cone_radius2 has rapidity yc, φc. The overlap_threshold is the fraction of overlapping momentum
above which two protojets are merged in a Tevatron Run II type [8] split–merge procedure.14 The
radius and overlap parameters are a common feature of most modern cone algorithms. Because some
event particles are not to be found in any stable cone [21], SISCone can carry out multiple stable-cone
search passes (as advocated in [22]): in each pass one searches for stable cones using just the subset
of particles not present in any stable cone in earlier passes. Up to n_pass_max passes are carried out,
and the algorithm automatically stops at the highest pass that gives no new stable cones. The default
of n_pass_max = 0 is equivalent to setting it to ∞. Since concern has been expressed that an excessive
number of stable cones may complicate cone jets in events with high noise [8], the protojet_ptmin

parameter allows one to use only protojets with pt ≥ protojet_ptmin in the split–merge phase (all
others are thrown away).15

In many cases SISCone’s most time-consuming step is the search for stable cones. If one has
multiple SISConePlugin-based jet definitions, each with caching=true, a check will be carried out
whether the previously clustered event had the same set of particles and the same cone radius and
number of passes. If it did, the stable cones are simply reused from the previous event, rather than
being recalculated, and only the split–merge step is repeated, often leading to considerable speed
gains.

A final comment concerns the split_merge_scale parameter. This controls both the scale used for
ordering the protojets during the split–merge step during the split–merge step, and also the scale used
to measure the degree of overlap between protojets. While various options have been implemented,

enum SplitMergeScale {SM_pt, SM_Et, SM_mt, SM_pttilde };

we recommend using only the last of them p̃t =
∑

i∈jet |pt,i|, which is also the default scale. The
other scales are included only for historical comparison purposes: pt (used in several other codes) is
IR unsafe for events whose hadronic component conserves momentum, Et (advocated in [8]) is not

boost-invariant, and mt =
√

m2 + p2
t is IR unsafe for events whose hadronic component conserves

momentum and stems from the decay of two identical particles.

An example of the use of the SISCone plugin would be as follows:

// define a SISCone plugin pointer

fastjet::SISConePlugin * plugin;

// allocate a new plugin for SISCone

double cone_radius = 0.7;

14Though its default value is 0.5 (retained for backwards compatibility of the interface) we strongly recommend using
a higher value, e.g. 0.75, especially in high-noise environments, in order to disfavour the production of monster jets
through repeated merge operations.

15Early experience indicates that protojet ptmin is actually perfectly adequate and that potential problems of
massively agglomerated jets that can occur in high-noise environments (for a wide range of cone algorithms) can be
addressed with a slightly larger value of the overlap threshold, & 0.6.

30



double overlap_threshold = 0.5;

plugin = new fastjet::SISConePlugin (cone_radius, overlap_threshold);

// create a jet-definition based on the plugin

fastjet::JetDefinition jet_def(plugin);

// prepare the set of particles

vector<fastjet::PseudoJet> particles;

read_input_particles(cin, particles); // or whatever you want here

// run the jet algorithm and look at the jets

fastjet::ClusterSequence clust_seq(particles, jet_def);

vector<fastjet::PseudoJet> inclusive_jets = clust_seq.inclusive_jets();

// then analyse the jets as for native FastJet jets

// only when you will no longer be using the jet definition, or

// ClusterSequence objects that involve it, may you delete the

// plugin

delete plugin;

Note that the it makes no sense to ask for exclusive jets from a SISCone based ClusterSequence.

Some extra output information is appropriate for a cone algorithm that is not of relevance in
clustering algorithms, through the extras resource,

const fastjet::SISConeExtras * extras =

dynamic_cast<const fastjet::SISConeExtras *>(clust_seq.extras());

To determine the pass at which a given jet was found, one does the following

int pass = extras->pass(jet);

The user may also obtain a list of the positions of original stable cones as follows:

vector<fastjet::PseudoJet> stable_cones(extras->stable_cones());

The stable cones are represented as four-momenta, for which only the rapidity and azimuth are
meaningful. The user_index() indicates the pass at which a given stable cone was found.

In the current version of SISCone, the user_index() of a jet also corresponds to the pass at which
it was found, however this manner of accessing the pass for a jet is deprecated (for reasons related
to the internal representation of jets, it fails for single-particle jets). It is retained in version 2.4 for
backwards compatibility, but will be removed at some stage in the future.

SISCone uses E-scheme recombination internally and also for constructing the final jets from the
list of constituents. For the latter task, the user may instead instruct SISCone to use the jet-definition’s
own recombiner, with the command

plugin->set_use_jet_def_recombiner(true);

In this case the user_index() no longer contains the information about the pass.

Since SISCone is infrared safe, it may meaningfully be used also with the ClusterSequenceArea

class. Note however that in that case ones loses the cone-specific information from
the jets, because of the way FastJet filters out the information relating to ghosts in the
clustering. If the user needs both areas and cone-specific information, she/he may use the
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ClusterSequenceActiveAreaExplicitGhosts class (for usage information, see the corresponding
.hh file).

A final remark concerns speed and memory requirements: as mentioned above, SISCone takes
O (N2 ln N) time to find jets, and the memory use is O (N2); taking N = 103 as a reference point, it
runs in a few tenths of a second, making it about 100 times slower than native FastJet algorithms.
These are ‘expected’ results, i.e. valid for a suitably random set of particles. In area determinations,
the ghost particles are anything but random, and run times and memory usage are, in practice,
somewhat larger than for a normal QCD event with the same number of particles. We therefore
recommend running with not too small a ghost_area (e.g. ∼ 0.05) and using grid_scatter = 1,
which helps to reduce the number of stable cones (and correspondingly, the time and memory usage
of the subsequent split–merge step). An alternative, which has been found to be acceptable in most
situations, is to use a passive area, since this is relatively fast to calculate with SISCone.

7.3 Other plugins for pp

Not all plugins are enabled by default in FastJet. At configuration time ./configure.sh --help will
indicate which ones get enabled by default. To enable all plugins, run configure with the argument
--enable-allplugins, while to enable all but PxCone (which requires fortran, and can introduce
link-time issues) use --enable-allcxxplugins.

All plugins are in the fastjet namespace. Below we show the file that needs to be included and
the constructor for each plugin.

Except where stated, the usual way to access jets from these plugins is through
ClusterSequence::inclusive_jets().

Most of the algorithms listed below are either infrared (IR) or collinear unsafe. The details are
indicated for each algorithm as follows: IRn+1 means that the hard jets may be modified if, to an
ensemble of n hard particles in a common neighbourhood, one adds a single soft particle; Colln+1

means that for n hard particles in a common neighbourhood, the collinear splitting of one of them
may modify the hard jets. The FastJet authors (and numerous theory-experiment accords) advise
against the use IR and collinear safe jet algorithms. Interfaces to these algorithms have been provided
mainly for legacy comparison purposes.

As of FastJet version 2.4, this section is partially incomplete (in particular it misses many refer-
ences). This will hopefully evolve for future versions.

7.3.1 CDF Midpoint.

One of the two algorithms used by CDF in Run II of the Tevatron, based on [8]. It is a midpoint-type
iterative cone with a split–merge step.

#include ‘‘fastjet/CDFCones.hh’’

///...

CDFMidPointPlugin(double R,

double overlap_threshold,

double seed_threshold = 1.0,

double cone_area_fraction = 1.0);

The overlap threshold (f) used by CDF is usually 0.5, the seed threshold is 1GeV and in most
measurements the cone area fraction is 1. With an area fraction < 1 this becomes the searchcone
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algorithm of [21].

Further control over the plugin can be obtained by consulting the header file.

The underlying code for this algorithm was taken from a webpage provided by Joey Huston (with
minor modifications to ensure reasonable run times with optimising compilers for 32-bit intel processors
— these modifications do not affect the final jets).

Note: this algorithm is IR3+1 unsafe (in the limit of zero seed threshold [7]; with
cone_area_fraction6= 1 it becomes IR2+1 unsafe [22]). It is to be deprecated for new experimental
or theoretical analyses.

7.3.2 CDF JetClu.

The other algorithm used by CDF during Run II, as well as their main algorithm during Run I.

#include ‘‘fastjet/CDFCones.hh’’

///...

CDFJetCluPlugin (double cone_radius,

double overlap_threshold,

double seed_threshold = 1.0,

int iratch = 1);

This is an iterative cone with split-merge and optional “ratcheting” if iratch == 1 (particles that
appear in one iteration fo a cone are retained in future iterations). The overlap threshold is usually
set to 0.75 in CDF analyses.

Further control over the plugin can be obtained by consulting the header file.

The underlying code for this algorithm was taken from a webpage provided by Joey Huston.

Note: this algorithm is IR2+1 unsafe (and some IR unsafety persists with non-zero seed threshold).
It is to be deprecated for new experimental or theoretical analyses. Note also that the underlying
implementation groups particles ogether into calorimeter towers (with CDF-type geometry) before
running the jet algorithm.

7.3.3 DØ Run II cone

The main algorithm used by DØ in Run II of the Tevatron, which is a midpoint type iterative cone
with split-merge.

#include ‘‘fastjet/D0RunIIConePlugin.hh’’

///...

D0RunIIConePlugin (double R,

double min_jet_Et,

double split_ratio = 0.5);

Instead of a seed threshold, the algorithm places a cut on the minimum Et of the cones during iteration
(related to min_jet_Et). The split_ratio is the same as the overlap threshold in other split-merge
based algorithms (DØ usually use 0.5). It is the FastJet authors’ understanding that two values have
been used for min_jet_Et, 8GeV (in earlier publications) and 6GeV (in more recent publications).

The underlying code for this algorithm was provided by Lars Sonnenschein.

Note: this algorithm is IR3+1 unsafe (IR2+1 for jets with energy too close to min_jet_Et). It is to
be deprecated for new experimental or theoretical analyses.
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7.3.4 ATLAS iterative cone

The (iterative) cone (with split-merge) algorithm used by ATLAS during the preparation for the LHC.

#include ‘‘fastjet/AtlasConePlugin.hh’’

///...

ATLASConePlugin (double R,

double seedPt = 2.0,

double f = 0.5);

f is the overlap threshold

The underlying code for this algorithm was extracted from SpartyJet [27].

Note: this algorithm is IR2+1 unsafe (in the limit of zero seed threshold). It is to be deprecated
for new experimental or theoretical analyses.

7.3.5 CMS iterative cone

The (iterative) cone (with progressive removal) algorithm used by CMS during the preparation for
the LHC.

#include ‘‘fastjet/CMSIterativeConePlugin.hh’’

///...

CMSIterativeConePlugin (double ConeRadius, double SeedThreshold=0.0);

The underlying code for this algorithm was extracted from the CMSSW web site, with certain
small service routines having been rewritten by the FastJet authors. The resulting code was validated
by clustering 1000 events with the original version of the CMS software and comparing the output
to the clustering performed with the FastJet plugin. The jet contents were identical in all cases.
However the jet momenta differed at a relative precision level of 10−7, related to the use of single-
precision arithmetic at some internal stage of the CMS software (while the FastJet version is in double
precision).

Note: this algorithm is Coll3+1 unsafe [6]. It is to be deprecated for new experimental or theoretical
analyses.

7.3.6 PxCone

A fortran plugin for the PxCone algorithm, which is an iterative cone with midpoints and a split-drop
procedure

#include ‘‘fastjet/PxConePlugin.hh’’

///...

PxConePlugin (double cone_radius ,

double min_jet_energy = 5.0 ,

double overlap_threshold = 0.5,

bool E_scheme_jets = false);

with a threshold on the minimum cone transverse energy if it is to be included in the split-drop stage.
If E_scheme_jets is true then the plugin applies an E-scheme recombination to provide the momenta
of the final jets (by default an Et type recombination scheme is used).
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The base code for this plugin is written in Fortran and, on some systems, problems have been
reported at the link stage due to mixing Fortran and C++. The Fortran code has been modified
by the FastJet authors to provide the same jets regardless of the order of the input particles. This
involved a small modification of the midpoint procedure, which can have a minor effect on the final
jets and should make the algorithm correspond to the description of [24].

The underlying code for this algorithm was taken from a google search for PxCone!

Note: this algorithm is IR3+1 unsafe. It is to be deprecated for new experimental or theoretical
analyses.

7.3.7 TrackJet

This algorithm has been used at the Tevatron for identifying jets from charged-particle tracks in
underlying-event studies (a citation is needed here!).

#include ‘‘fastjet/TrackJetPlugin.hh’’

///...

TrackJetPlugin (double radius,

RecombinationScheme jet_recombination_scheme=pt_scheme,

RecombinationScheme track_recombination_scheme=pt_scheme);

Two recombination schemes are involved: the first one indicates how momenta are recombined to
provide the final jets (once particle-jet assignments are known), the second one indicates how momenta
are combined in the procedure that constructs the jets.

The underlying code for this algorithm was written by the FastJet authors, based on code extracts
from the Rivet implementation, written by Andy Buckley with input from Manuel Bahr and Rick Field.

Note: this algorithm is believed to be Coll3+1 unsafe. It is to be deprecated for new experimental
or theoretical analyses.

7.4 Other plugins for e+e−

7.4.1 Cambridge algorithm

The original e+e− cambridge [4] algorithm is provided as a plugin:

#include ‘‘fastjet/EECambridgePlugin.hh’’

///...

EECambridgePlugin (double ycut);

This algorithms performs sequential recombination of the pair of particles that is closest in angle,

except when yij =
2min(E2

i
,E2

j
)

Q2 (1− cos θ) > ycut, in which case the less energetic of i and j is labelled a
jet, and the other member of the pair remains free to cluster.

To access the jets, the user should use the inclusive_jets(), i.e. as they would for the majority
of the pp algorithms.

The underlying code for this algorithm was written by the FastJet authors.
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7.4.2 Jade algorithm

The JADE algorithm [25, 26], a sequential recombination algorithm with distance measure dij =
2EiEj(1 − cos θ), is available through

#include ‘‘fastjet/JadePlugin.hh’’

///...

JadePlugin ();

To access the jets at a given ycut = dcut/Q
2, the user should call

ClusterSequence::exclusive_jets_ycut(double ycut).

Note: the JADE algorithm has been used with various recombination schemes. The current plugin
will use whatever recombination scheme the user specifies with for the jet definition. The default E-
scheme is what was used in the original JADE publication [25]. To modify the recombination scheme,
the user may first construct the jet definition and then use either of

void JetDefinition::set_recombination_scheme(RecombinationScheme recomb_scheme);

void JetDefinition::set_recombiner(const Recombiner * recomb)

(cf. sections 5.6,A) to modify the recombination scheme.

The underlying code for this algorithm was written by the FastJet authors.

7.5 Building new sequential recombination algorithms

To enable users to more easily build plugins for new sequential recombination algorithms, fastjet also
provides a class NNH, which provides users with access to an implementation of the nearest-neighbour
heuristic for establishing and maintaining information about the closest pair of objects in a dynamic
set of objects (see [23] for an introduction to this and other generic algorithms). In good cases this
allows one to construct clustering that runs in N2 time, though its worst case can be as bad as N3. It
is a templated class and the template argument should be a class that stores the minimal information
for each jet so as to be able to calculate interjet distances. It underlies the implementations of the Jade
and e+e− Cambridge plugins. The interested user should consult those codes for more information,
as well as the header for the NNH class.

8 Compilation notes

Compilation and installation make use of the standard

% ./configure

% make

% make check

% make install

procedure. Explanations of available options are given in the INSTALL file in the top directory.

In order to access the NlnN strategy for the kt algorithm the library needs to be compiled with
the Computational Geometry Algorithms Library CGAL [15].16 At configure time the --enable-cgal

16This same strategy gives N lnN performance for Cambridge/Aachen and N3/2 performance for anti-kt (whose
sequence for jet clustering triggers a worst-case scenario for the underlying computational geometry methods.)
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option may be used to specify that CGAL support should be included.

CGAL may be obtained in source form from http://www.cgal.org/. Under linux, with CGAL
versions 3.2 and 3.3, after compilation and installation, the user will be encouraged to set an environ-
ment variable CGAL MAKEFILE, which points to the Makefile generated by CGAL at install time, which
contains various definitions of locations of include files. The user may specify the location of this file
to FastJet either through the above environment variable, or with the --with-cgalmakefile=...

configuration option. For CGAL 3.4 the user should instead specify --with-cgaldir=... unless the
CGAL files are installed in a standard location.

The NlnNCam strategy does not require CGAL, since it is based on a considerably simpler
computational-geometry structure [12].
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A External Recombination Schemes

If the user wishes to introduce a new recombination scheme, she may do so writing a class derived
from JetDefinition::Recombiner:

class JetDefinition::Recombiner {

public:

/// return a textual description of the recombination scheme

/// implemented here

virtual std::string description() const = 0;

/// recombine pa and pb and put result into pab

virtual void recombine(const PseudoJet & pa, const PseudoJet & pb,

PseudoJet & pab) const = 0;

/// routine called to preprocess each input jet (to make all input

/// jets compatible with the scheme requirements (e.g. massless).

virtual void preprocess(PseudoJet & p) const {};

/// a destructor to be replaced if necessary in derived classes...

virtual ~Recombiner() {};

};
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A jet definition can then be constructed by providing a pointer to an object derived from
JetDefinition::Recombiner instead of the RecombinationScheme index:

JetDefinition(JetAlgorithm jet_algorithm,

double R,

const JetDefinition::Recombiner * recombiner,

Strategy strategy = Best);

The derived class JetDefinition::DefaultRecombiner is what is used internally to implement the
various recombination schemes if an external Recombiner is not provided. It provides a useful example
of how to implement a new Recombiner class.
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