00001 //---------------------------------------------------------------------- 00002 /// \file 00003 /// \page Example07 07 - subtracting jet background contamination 00004 /// 00005 /// fastjet subtraction example program. 00006 /// 00007 /// run it with : ./07-subtraction < data/Pythia-Zp2jets-lhc-pileup-1ev.dat 00008 /// 00009 /// Source code: 07-subtraction.cc 00010 //---------------------------------------------------------------------- 00011 00012 //STARTHEADER 00013 // $Id: 07-subtraction.cc 1911 2011-01-28 18:18:24Z soyez $ 00014 // 00015 // Copyright (c) 2005-2011, Matteo Cacciari, Gavin Salam and Gregory Soyez 00016 // 00017 //---------------------------------------------------------------------- 00018 // This file is part of FastJet. 00019 // 00020 // FastJet is free software; you can redistribute it and/or modify 00021 // it under the terms of the GNU General Public License as published by 00022 // the Free Software Foundation; either version 2 of the License, or 00023 // (at your option) any later version. 00024 // 00025 // The algorithms that underlie FastJet have required considerable 00026 // development and are described in hep-ph/0512210. If you use 00027 // FastJet as part of work towards a scientific publication, please 00028 // include a citation to the FastJet paper. 00029 // 00030 // FastJet is distributed in the hope that it will be useful, 00031 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00032 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00033 // GNU General Public License for more details. 00034 // 00035 // You should have received a copy of the GNU General Public License 00036 // along with FastJet; if not, write to the Free Software 00037 // Foundation, Inc.: 00038 // 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 00039 //---------------------------------------------------------------------- 00040 //ENDHEADER 00041 00042 #include "fastjet/PseudoJet.hh" 00043 #include "fastjet/ClusterSequenceArea.hh" 00044 #include <iostream> // needed for io 00045 00046 using namespace std; 00047 00048 int main (int argc, char ** argv) { 00049 00050 // read in input particles 00051 // 00052 // since we use here simulated data we can split the hard event 00053 // from the full (i.e. with pileup added) one 00054 //---------------------------------------------------------- 00055 00056 vector<fastjet::PseudoJet> hard_event, full_event; 00057 00058 // read in input particles. Keep the hard event generated by PYTHIA 00059 // separated from the full event, so as to be able to gauge the 00060 // "goodness" of the subtraction from the full event, which also 00061 // includes pileup 00062 double particle_maxrap = 5.0; 00063 00064 string line; 00065 int nsub = 0; // counter to keep track of which sub-event we're reading 00066 while (getline(cin, line)) { 00067 istringstream linestream(line); 00068 // take substrings to avoid problems when there are extra "pollution" 00069 // characters (e.g. line-feed). 00070 if (line.substr(0,4) == "#END") {break;} 00071 if (line.substr(0,9) == "#SUBSTART") { 00072 // if more sub events follow, make copy of first one (the hard one) here 00073 if (nsub == 1) hard_event = full_event; 00074 nsub += 1; 00075 } 00076 if (line.substr(0,1) == "#") {continue;} 00077 double px,py,pz,E; 00078 linestream >> px >> py >> pz >> E; 00079 // you can construct 00080 fastjet::PseudoJet particle(px,py,pz,E); 00081 00082 // push event onto back of full_event vector 00083 if (abs(particle.rap()) <= particle_maxrap) full_event.push_back(particle); 00084 } 00085 00086 // if we have read in only one event, copy it across here... 00087 if (nsub == 1) hard_event = full_event; 00088 00089 // if there was nothing in the event 00090 if (nsub == 0) { 00091 cerr << "Error: read empty event\n"; 00092 exit(-1); 00093 } 00094 00095 00096 // create a jet definition for the clustering 00097 // We use the anti-kt algorithm with a radius of 0.5 00098 //---------------------------------------------------------- 00099 double R = 0.5; 00100 fastjet::JetDefinition jet_def(fastjet::antikt_algorithm, R); 00101 00102 // create an area definition for the clustering 00103 //---------------------------------------------------------- 00104 double ghost_maxrap = 6.0; 00105 fastjet::ActiveAreaSpec area_spec(ghost_maxrap); 00106 fastjet::AreaDefinition area_def(fastjet::active_area, area_spec); 00107 00108 // run the jet clustering with the above jet and area definitions 00109 // for both the hard and full event 00110 // 00111 // We retrieve the jets above 7 GeV in both case (note that the 00112 // 7-GeV cut we be applied again later on after we subtract the jets 00113 // from the full event) 00114 // ---------------------------------------------------------- 00115 fastjet::ClusterSequenceArea clust_seq_hard(hard_event, jet_def, area_def); 00116 fastjet::ClusterSequenceArea clust_seq_full(full_event, jet_def, area_def); 00117 00118 double ptmin = 7.0; 00119 vector<fastjet::PseudoJet> hard_jets = sorted_by_pt(clust_seq_hard.inclusive_jets(ptmin)); 00120 vector<fastjet::PseudoJet> full_jets = sorted_by_pt(clust_seq_full.inclusive_jets(ptmin)); 00121 00122 // Now turn to the estimation of the background (for the full event) 00123 // 00124 // This also requires a ClusterSequenceArea. 00125 // In general, this ClusterSequenceArea does not need to be the same 00126 // as the one used (above) to cluster and extract the jets from the 00127 // event: 00128 // - We strongly recommend using the kt or Cambridge/Aachen algorithm 00129 // (a warning will be issued otherwise) 00130 // - The choice of the radius is a bit more subtle. R=0.6 is a 00131 // decent default, though for dense events, one can also 00132 // decrease that value to 0.4-0.5. 00133 // - For the area definition, we recommend the use of explicit 00134 // ghosts (i.e. active_area_explicit_ghosts) 00135 // As mentionned in the area example (06-area.cc), ghosts should 00136 // extend sufficiently far in rapidity to cover the jets used in 00137 // the computation of the background (see also the comment below) 00138 // 00139 // ---------------------------------------------------------- 00140 fastjet::JetDefinition jet_def_bkgd(fastjet::kt_algorithm, 0.6); 00141 fastjet::GhostedAreaSpec area_spec_bkgd(ghost_maxrap); 00142 fastjet::AreaDefinition area_def_bkgd(fastjet::active_area_explicit_ghosts, area_spec_bkgd); 00143 fastjet::ClusterSequenceArea clust_seq_bkgd(full_event, jet_def_bkgd, area_def_bkgd); 00144 00145 // Once you have the ClusterSequenceArea, you can compute the 00146 // background. This is estimated over a given range 00147 // (RangeDefinition) i.e. only jets within that range will be used 00148 // to estimate the background. You shold thus make sure the ghosts 00149 // extend far enough in rapidity to cover the range, a warning will 00150 // be issued otherwise. 00151 // 00152 // The simplest way to define a RangeDefinition is through its 00153 // maximal |y| extent but other options are possible e.g. through a 00154 // minimal and maximal rapidity and minimal and maximal azimuthal 00155 // angle. If needed, you can even define your own ranges (a few are 00156 // provided with FastJet) 00157 // 00158 // Finally, the estimation of the background properties rho (the 00159 // average density per unit area) and sigma (the average 00160 // fluctuations per unit area) is done using 00161 // ClusterSequenceArea::get_median_rho_and_sigma(). This takes 00162 // 2 main parameters: the range discussed above and a boolean 00163 // controlling the use of 4-vector or scalar areas (we suggest using 00164 // 4-vector areas) 00165 // 00166 // ---------------------------------------------------------- 00167 double range_maxrap = 5.0; // we have a ghost_maxrap of 6.0 00168 fastjet::RangeDefinition range(range_maxrap); 00169 00170 bool use_4vector_area = true; 00171 00172 double rho, sigma; 00173 clust_seq_bkgd.get_median_rho_and_sigma(range, use_4vector_area, rho, sigma); 00174 00175 // show a summary of what was done so far 00176 // - the description of the algorithms, areas and ranges used 00177 // - the background properties 00178 // - the jets in the hard event 00179 //---------------------------------------------------------- 00180 cout << "Main clustering:" << endl; 00181 cout << " Ran: " << jet_def.description() << endl; 00182 cout << " Area: " << area_def.description() << endl; 00183 cout << " Particles up to |y|=" << particle_maxrap << endl; 00184 cout << endl; 00185 00186 cout << "Background estimation:" << endl; 00187 cout << " Ran " << jet_def_bkgd.description() << endl; 00188 cout << " Area: " << area_def_bkgd.description() << endl; 00189 cout << " Range: " << range.description() << endl; 00190 cout << " Giving, for the full event" << endl; 00191 cout << " rho = " << rho << endl; 00192 cout << " sigma = " << sigma << endl; 00193 cout << endl; 00194 00195 cout << "Jets above " << ptmin << " GeV in the hard event (" << hard_event.size() << " particles)" << endl; 00196 cout << "---------------------------------------\n"; 00197 printf("%5s %15s %15s %15s %15s\n","jet #", "rapidity", "phi", "pt", "area"); 00198 for (unsigned int i = 0; i < hard_jets.size(); i++) { 00199 printf("%5u %15.8f %15.8f %15.8f %15.8f\n", i, 00200 hard_jets[i].rap(), hard_jets[i].phi(), hard_jets[i].perp(), 00201 hard_jets[i].area()); 00202 } 00203 cout << endl; 00204 00205 // Once the background properties have been computed, subtraction 00206 // can be applied on the jets 00207 // 00208 // This uses ClusterSequenceArea::subtracted_jet(jet, rho), with the 00209 // ClusterSequence used to cluster the jet and the background 00210 // density we have just computed 00211 // 00212 // (Note that when using scalar areas, subtracted_pt should be used 00213 // instead of subtracted_jet) 00214 // 00215 // We output the jets before and after subtraction 00216 // ---------------------------------------------------------- 00217 cout << "Jets above " << ptmin << " GeV in the full event (" << full_event.size() << " particles)" << endl; 00218 cout << "---------------------------------------\n"; 00219 printf("%5s %15s %15s %15s %15s %15s %15s %15s\n","jet #", "rapidity", "phi", "pt", "area", "rap_sub", "phi_sub", "pt_sub"); 00220 unsigned int idx=0; 00221 for (unsigned int i=0; i<full_jets.size(); i++){ 00222 // get the subtracted jet 00223 fastjet::PseudoJet subtracted_jet = clust_seq_full.subtracted_jet(full_jets[i], rho); 00224 00225 // re-apply the pt cut 00226 if (subtracted_jet.perp2() >= ptmin*ptmin){ 00227 printf("%5u %15.8f %15.8f %15.8f %15.8f %15.8f %15.8f %15.8f\n", idx, 00228 full_jets[i].rap(), full_jets[i].phi(), full_jets[i].perp(), 00229 full_jets[i].area(), 00230 subtracted_jet.rap(), subtracted_jet.phi(), 00231 subtracted_jet.perp()); 00232 idx++; 00233 } 00234 } 00235 00236 return 0; 00237 }