fastjet 2.4.3
|
00001 //STARTHEADER 00002 // $Id: SearchTree.hh 1203 2008-04-28 16:10:36Z salam $ 00003 // 00004 // Copyright (c) 2005-2006, Matteo Cacciari and Gavin Salam 00005 // 00006 //---------------------------------------------------------------------- 00007 // This file is part of FastJet. 00008 // 00009 // FastJet is free software; you can redistribute it and/or modify 00010 // it under the terms of the GNU General Public License as published by 00011 // the Free Software Foundation; either version 2 of the License, or 00012 // (at your option) any later version. 00013 // 00014 // The algorithms that underlie FastJet have required considerable 00015 // development and are described in hep-ph/0512210. If you use 00016 // FastJet as part of work towards a scientific publication, please 00017 // include a citation to the FastJet paper. 00018 // 00019 // FastJet is distributed in the hope that it will be useful, 00020 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00021 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00022 // GNU General Public License for more details. 00023 // 00024 // You should have received a copy of the GNU General Public License 00025 // along with FastJet; if not, write to the Free Software 00026 // Foundation, Inc.: 00027 // 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 00028 //---------------------------------------------------------------------- 00029 //ENDHEADER 00030 00031 00032 #ifndef __FASTJET_SEARCHTREE_HH__ 00033 #define __FASTJET_SEARCHTREE_HH__ 00034 00035 #include<vector> 00036 #include<cassert> 00037 #include<cstddef> 00038 #include "fastjet/internal/base.hh" 00039 00040 FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh 00041 00042 00043 //====================================================================== 00048 template<class T> class SearchTree { 00049 public: 00050 00051 class Node; 00052 class circulator; 00053 class const_circulator; 00054 00056 SearchTree(const std::vector<T> & init); 00057 00060 SearchTree(const std::vector<T> & init, unsigned int max_size); 00061 00063 void remove(unsigned node_index); 00064 void remove(typename SearchTree::Node * node); 00065 void remove(typename SearchTree::circulator & circ); 00066 00069 //Node * insert(const T & value); 00070 circulator insert(const T & value); 00071 00072 const Node & operator[](int i) const {return _nodes[i];}; 00073 00075 unsigned int size() const {return _nodes.size() - _available_nodes.size();} 00076 00078 void verify_structure(); 00079 void verify_structure_linear() const; 00080 void verify_structure_recursive(const Node * , const Node * , const Node * ) const; 00081 00083 void print_elements(); 00084 00085 // tracking the depth may have some speed overhead -- so leave it 00086 // out for the time being... 00087 #ifdef TRACK_DEPTH 00088 00089 inline unsigned int max_depth() const {return _max_depth;}; 00090 #else 00091 inline unsigned int max_depth() const {return 0;}; 00092 #endif 00093 00094 int loc(const Node * node) const ; 00095 00097 Node * _find_predecessor(const Node *); 00099 Node * _find_successor(const Node *); 00100 00101 const Node & operator[](unsigned int i) const {return _nodes[i];}; 00102 00105 const_circulator somewhere() const; 00106 circulator somewhere(); 00107 00108 private: 00109 00110 void _initialize(const std::vector<T> & init); 00111 00112 std::vector<Node> _nodes; 00113 std::vector<Node *> _available_nodes; 00114 Node * _top_node; 00115 unsigned int _n_removes; 00116 00117 00122 void _do_initial_connections(unsigned int this_one, unsigned int scale, 00123 unsigned int left_edge, unsigned int right_edge, 00124 unsigned int depth); 00125 00126 00127 #ifdef TRACK_DEPTH 00128 unsigned int _max_depth; 00129 #endif 00130 00131 }; 00132 00133 00134 //====================================================================== 00135 template<class T> class SearchTree<T>::Node{ 00136 public: 00137 Node() {}; 00138 00139 00141 bool treelinks_null() const { 00142 return ((parent==0) && (left==0) && (right==0));}; 00143 00145 inline void nullify_treelinks() { 00146 parent = NULL; 00147 left = NULL; 00148 right = NULL; 00149 }; 00150 00153 void reset_parents_link_to_me(Node * XX); 00154 00155 T value; 00156 Node * left; 00157 Node * right; 00158 Node * parent; 00159 Node * successor; 00160 Node * predecessor; 00161 }; 00162 00163 //---------------------------------------------------------------------- 00164 template<class T> void SearchTree<T>::Node::reset_parents_link_to_me(typename SearchTree<T>::Node * XX) { 00165 if (parent == NULL) {return;} 00166 if (parent->right == this) {parent->right = XX;} 00167 else {parent->left = XX;} 00168 } 00169 00170 00171 00172 //====================================================================== 00173 template<class T> class SearchTree<T>::circulator{ 00174 public: 00175 00176 // so that it can access out _node object; 00177 friend class SearchTree<T>::const_circulator; 00178 friend class SearchTree<T>; 00179 00180 circulator() : _node(NULL) {} 00181 00182 circulator(Node * node) : _node(node) {} 00183 00184 const T * operator->() const {return &(_node->value);} 00185 T * operator->() {return &(_node->value);} 00186 const T & operator*() const {return _node->value;} 00187 T & operator*() {return _node->value;} 00188 00190 circulator & operator++() { 00191 _node = _node->successor; 00192 return *this;} 00193 00196 circulator operator++(int) { 00197 circulator tmp = *this; 00198 _node = _node->successor; 00199 return tmp;} 00200 00202 circulator & operator--() { 00203 _node = _node->predecessor; 00204 return *this;} 00205 00208 circulator operator--(int) { 00209 circulator tmp = *this; 00210 _node = _node->predecessor; 00211 return tmp;} 00212 00214 circulator next() const { 00215 return circulator(_node->successor);} 00216 00218 circulator previous() const { 00219 return circulator(_node->predecessor);} 00220 00221 bool operator!=(const circulator & other) const {return other._node != _node;} 00222 bool operator==(const circulator & other) const {return other._node == _node;} 00223 00224 private: 00225 Node * _node; 00226 }; 00227 00228 00229 //====================================================================== 00230 template<class T> class SearchTree<T>::const_circulator{ 00231 public: 00232 00233 const_circulator() : _node(NULL) {} 00234 00235 const_circulator(const Node * node) : _node(node) {} 00236 const_circulator(const circulator & circ) :_node(circ._node) {} 00237 00238 const T * operator->() {return &(_node->value);} 00239 const T & operator*() const {return _node->value;} 00240 00242 const_circulator & operator++() { 00243 _node = _node->successor; 00244 return *this;} 00245 00248 const_circulator operator++(int) { 00249 const_circulator tmp = *this; 00250 _node = _node->successor; 00251 return tmp;} 00252 00253 00255 const_circulator & operator--() { 00256 _node = _node->predecessor; 00257 return *this;} 00258 00261 const_circulator operator--(int) { 00262 const_circulator tmp = *this; 00263 _node = _node->predecessor; 00264 return tmp;} 00265 00267 const_circulator next() const { 00268 return const_circulator(_node->successor);} 00269 00271 const_circulator previous() const { 00272 return const_circulator(_node->predecessor);} 00273 00274 00275 00276 bool operator!=(const const_circulator & other) const {return other._node != _node;} 00277 bool operator==(const const_circulator & other) const {return other._node == _node;} 00278 00279 private: 00280 const Node * _node; 00281 }; 00282 00283 00284 00285 00286 //---------------------------------------------------------------------- 00289 template<class T> SearchTree<T>::SearchTree(const std::vector<T> & init, 00290 unsigned int max_size) : 00291 _nodes(max_size) { 00292 00293 _available_nodes.reserve(max_size); 00294 _available_nodes.resize(max_size - init.size()); 00295 for (unsigned int i = init.size(); i < max_size; i++) { 00296 _available_nodes[i-init.size()] = &(_nodes[i]); 00297 } 00298 00299 _initialize(init); 00300 } 00301 00302 //---------------------------------------------------------------------- 00304 template<class T> SearchTree<T>::SearchTree(const std::vector<T> & init) : 00305 _nodes(init.size()), _available_nodes(0) { 00306 00307 // reserve space for the list of available nodes 00308 _available_nodes.reserve(init.size()); 00309 _initialize(init); 00310 } 00311 00312 //---------------------------------------------------------------------- 00314 template<class T> void SearchTree<T>::_initialize(const std::vector<T> & init) { 00315 00316 _n_removes = 0; 00317 unsigned n = init.size(); 00318 assert(n>=1); 00319 00320 // reserve space for the list of available nodes 00321 //_available_nodes.reserve(); 00322 00323 #ifdef TRACK_DEPTH 00324 _max_depth = 0; 00325 #endif 00326 00327 00328 // validate the input 00329 for (unsigned int i = 1; i<n; i++) { 00330 assert(!(init[i] < init[i-1])); 00331 } 00332 00333 // now initialise the vector; link neighbours in the sequence 00334 for(unsigned int i = 0; i < n; i++) { 00335 _nodes[i].value = init[i]; 00336 _nodes[i].predecessor = (& (_nodes[i])) - 1; 00337 _nodes[i].successor = (& (_nodes[i])) + 1; 00338 _nodes[i].nullify_treelinks(); 00339 } 00340 // make a loop structure so that we can circulate... 00341 _nodes[0].predecessor = (& (_nodes[n-1])); 00342 _nodes[n-1].successor = (& (_nodes[0])); 00343 00344 // now label the rest of the nodes 00345 unsigned int scale = (n+1)/2; 00346 unsigned int top = std::min(n-1,scale); 00347 _nodes[top].parent = NULL; 00348 _top_node = &(_nodes[top]); 00349 _do_initial_connections(top, scale, 0, n, 0); 00350 00351 // make sure things are sensible... 00352 //verify_structure(); 00353 } 00354 00355 00356 00357 //---------------------------------------------------------------------- 00358 template<class T> inline int SearchTree<T>::loc(const Node * node) const {return node == NULL? 00359 -999 : node - &(_nodes[0]);} 00360 00361 00362 //---------------------------------------------------------------------- 00365 template<class T> void SearchTree<T>::_do_initial_connections( 00366 unsigned int this_one, 00367 unsigned int scale, 00368 unsigned int left_edge, 00369 unsigned int right_edge, 00370 unsigned int depth 00371 ) { 00372 00373 #ifdef TRACK_DEPTH 00374 // keep track of tree depth for checking things stay reasonable... 00375 _max_depth = max(depth, _max_depth); 00376 #endif 00377 00378 //std::cout << this_one << " "<< scale<< std::endl; 00379 unsigned int ref_new_scale = (scale+1)/2; 00380 00381 // work through children to our left 00382 unsigned new_scale = ref_new_scale; 00383 bool did_child = false; 00384 while(true) { 00385 int left = this_one - new_scale; // be careful here to use signed int... 00386 // if there is something unitialised to our left, link to it 00387 if (left >= static_cast<int>(left_edge) 00388 && _nodes[left].treelinks_null() ) { 00389 _nodes[left].parent = &(_nodes[this_one]); 00390 _nodes[this_one].left = &(_nodes[left]); 00391 // create connections between left_edge and this_one 00392 _do_initial_connections(left, new_scale, left_edge, this_one, depth+1); 00393 did_child = true; 00394 break; 00395 } 00396 // reduce the scale so as to try again 00397 unsigned int old_new_scale = new_scale; 00398 new_scale = (old_new_scale + 1)/2; 00399 // unless we've reached end of tree 00400 if (new_scale == old_new_scale) break; 00401 } 00402 if (!did_child) {_nodes[this_one].left = NULL;} 00403 00404 00405 // work through children to our right 00406 new_scale = ref_new_scale; 00407 did_child = false; 00408 while(true) { 00409 unsigned int right = this_one + new_scale; 00410 if (right < right_edge && _nodes[right].treelinks_null()) { 00411 _nodes[right].parent = &(_nodes[this_one]); 00412 _nodes[this_one].right = &(_nodes[right]); 00413 // create connections between this_one+1 and right_edge 00414 _do_initial_connections(right, new_scale, this_one+1,right_edge,depth+1); 00415 did_child = true; 00416 break; 00417 } 00418 // reduce the scale so as to try again 00419 unsigned int old_new_scale = new_scale; 00420 new_scale = (old_new_scale + 1)/2; 00421 // unless we've reached end of tree 00422 if (new_scale == old_new_scale) break; 00423 } 00424 if (!did_child) {_nodes[this_one].right = NULL;} 00425 00426 } 00427 00428 00429 00430 //---------------------------------------------------------------------- 00431 template<class T> void SearchTree<T>::remove(unsigned int node_index) { 00432 remove(&(_nodes[node_index])); 00433 } 00434 00435 //---------------------------------------------------------------------- 00436 template<class T> void SearchTree<T>::remove(circulator & circ) { 00437 remove(circ._node); 00438 } 00439 00440 //---------------------------------------------------------------------- 00441 // Useful reference for this: 00442 // http://en.wikipedia.org/wiki/Binary_search_tree#Deletion 00443 template<class T> void SearchTree<T>::remove(typename SearchTree<T>::Node * node) { 00444 00445 // we don't remove things from the tree if we've reached the last 00446 // elements... (is this wise?) 00447 assert(size() > 1); // switch this to throw...? 00448 assert(!node->treelinks_null()); 00449 00450 // deal with relinking predecessor and successor 00451 node->predecessor->successor = node->successor; 00452 node->successor->predecessor = node->predecessor; 00453 00454 if (node->left == NULL && node->right == NULL) { 00455 // node has no children, so remove it by nullifying the pointer 00456 // from the parent 00457 node->reset_parents_link_to_me(NULL); 00458 00459 } else if (node->left != NULL && node->right == NULL){ 00460 // make parent point to my child 00461 node->reset_parents_link_to_me(node->left); 00462 // and child to parent 00463 node->left->parent = node->parent; 00464 // sort out the top node... 00465 if (_top_node == node) {_top_node = node->left;} 00466 00467 } else if (node->left == NULL && node->right != NULL){ 00468 // make parent point to my child 00469 node->reset_parents_link_to_me(node->right); 00470 // and child to parent 00471 node->right->parent = node->parent; 00472 // sort out the top node... 00473 if (_top_node == node) {_top_node = node->right;} 00474 00475 } else { 00476 // we have two children; we will put a replacement in our place 00477 Node * replacement; 00478 //SearchTree<T>::Node * replacements_child; 00479 // chose predecessor or successor (one, then other, then first, etc...) 00480 bool use_predecessor = (_n_removes % 2 == 1); 00481 if (use_predecessor) { 00482 // Option 1: put predecessor in our place, and have its parent 00483 // point to its left child (as a predecessor it has no right child) 00484 replacement = node->predecessor; 00485 assert(replacement->right == NULL); // guaranteed if it's our predecessor 00486 // we have to be careful of replacing certain links when the 00487 // replacement is this node's child 00488 if (replacement != node->left) { 00489 if (replacement->left != NULL) { 00490 replacement->left->parent = replacement->parent;} 00491 replacement->reset_parents_link_to_me(replacement->left); 00492 replacement->left = node->left; 00493 } 00494 replacement->parent = node->parent; 00495 replacement->right = node->right; 00496 } else { 00497 // Option 2: put successor in our place, and have its parent 00498 // point to its right child (as a successor it has no left child) 00499 replacement = node->successor; 00500 assert(replacement->left == NULL); // guaranteed if it's our successor 00501 if (replacement != node->right) { 00502 if (replacement->right != NULL) { 00503 replacement->right->parent = replacement->parent;} 00504 replacement->reset_parents_link_to_me(replacement->right); 00505 replacement->right = node->right; 00506 } 00507 replacement->parent = node->parent; 00508 replacement->left = node->left; 00509 } 00510 node->reset_parents_link_to_me(replacement); 00511 00512 // make sure node's original children now point to the replacement 00513 if (node->left != replacement) {node->left->parent = replacement;} 00514 if (node->right != replacement) {node->right->parent = replacement;} 00515 00516 // sort out the top node... 00517 if (_top_node == node) {_top_node = replacement;} 00518 } 00519 00520 // make sure we leave something nice and clean... 00521 node->nullify_treelinks(); 00522 node->predecessor = NULL; 00523 node->successor = NULL; 00524 00525 // for bookkeeping (and choosing whether to use pred. or succ.) 00526 _n_removes++; 00527 // for when we next need access to a free node... 00528 _available_nodes.push_back(node); 00529 } 00530 00531 00532 //---------------------------------------------------------------------- 00533 //template<class T> typename SearchTree<T>::Node * SearchTree<T>::insert(const T & value) { 00534 00535 //---------------------------------------------------------------------- 00536 template<class T> typename SearchTree<T>::circulator SearchTree<T>::insert(const T & value) { 00537 // make sure we don't exceed allowed number of nodes... 00538 assert(_available_nodes.size() > 0); 00539 00540 Node * node = _available_nodes.back(); 00541 _available_nodes.pop_back(); 00542 node->value = value; 00543 00544 Node * location = _top_node; 00545 Node * old_location = NULL; 00546 bool on_left = true; // (init not needed -- but soothes g++4) 00547 // work through tree until we reach its end 00548 #ifdef TRACK_DEPTH 00549 unsigned int depth = 0; 00550 #endif 00551 while(location != NULL) { 00552 #ifdef TRACK_DEPTH 00553 depth++; 00554 #endif 00555 old_location = location; 00556 on_left = value < location->value; 00557 if (on_left) {location = location->left;} 00558 else {location = location->right;} 00559 } 00560 #ifdef TRACK_DEPTH 00561 _max_depth = max(depth, _max_depth); 00562 #endif 00563 // now create tree links 00564 node->parent = old_location; 00565 if (on_left) {node->parent->left = node;} 00566 else {node->parent->right = node;} 00567 node->left = NULL; 00568 node->right = NULL; 00569 // and create predecessor / successor links 00570 node->predecessor = _find_predecessor(node); 00571 if (node->predecessor != NULL) { 00572 // it exists, so make use of its info (will include a cyclic case, 00573 // when successor is round the bend) 00574 node->successor = node->predecessor->successor; 00575 node->predecessor->successor = node; 00576 node->successor->predecessor = node; 00577 } else { 00578 // deal with case when we are left-most edge of tree (then successor 00579 // will exist...) 00580 node->successor = _find_successor(node); 00581 assert(node->successor != NULL); // can only happen if we're sole element 00582 // (but not allowed, since tree size>=1) 00583 node->predecessor = node->successor->predecessor; 00584 node->successor->predecessor = node; 00585 node->predecessor->successor = node; 00586 } 00587 00588 return circulator(node); 00589 } 00590 00591 00592 //---------------------------------------------------------------------- 00593 template<class T> void SearchTree<T>::verify_structure() { 00594 00595 // do a check running through all elements 00596 verify_structure_linear(); 00597 00598 // do a recursive check down tree from top 00599 00600 // first establish the extremities 00601 const Node * left_limit = _top_node; 00602 while (left_limit->left != NULL) {left_limit = left_limit->left;} 00603 const Node * right_limit = _top_node; 00604 while (right_limit->right != NULL) {right_limit = right_limit->right;} 00605 00606 // then actually do recursion 00607 verify_structure_recursive(_top_node, left_limit, right_limit); 00608 } 00609 00610 00611 //---------------------------------------------------------------------- 00612 template<class T> void SearchTree<T>::verify_structure_recursive( 00613 const typename SearchTree<T>::Node * element, 00614 const typename SearchTree<T>::Node * left_limit, 00615 const typename SearchTree<T>::Node * right_limit) const { 00616 00617 assert(!(element->value < left_limit->value)); 00618 assert(!(right_limit->value < element->value)); 00619 00620 const Node * left = element->left; 00621 if (left != NULL) { 00622 assert(!(element->value < left->value)); 00623 if (left != left_limit) { 00624 // recurse down the tree with this element as the right-hand limit 00625 verify_structure_recursive(left, left_limit, element);} 00626 } 00627 00628 const Node * right = element->right; 00629 if (right != NULL) { 00630 assert(!(right->value < element->value)); 00631 if (right != right_limit) { 00632 // recurse down the tree with this element as the left-hand limit 00633 verify_structure_recursive(right, element, right_limit);} 00634 } 00635 } 00636 00637 //---------------------------------------------------------------------- 00638 template<class T> void SearchTree<T>::verify_structure_linear() const { 00639 00640 //print_elements(); 00641 00642 unsigned n_top = 0; 00643 unsigned n_null = 0; 00644 for(unsigned i = 0; i < _nodes.size(); i++) { 00645 const typename SearchTree<T>::Node * node = &(_nodes[i]); 00646 // make sure node is defined 00647 if (node->treelinks_null()) {n_null++; continue;} 00648 00649 // make sure of the number of "top" nodes 00650 if (node->parent == NULL) { 00651 n_top++; 00652 //assert(node->left != NULL); 00653 //assert(node->right != NULL); 00654 } else { 00655 // make sure that I am a child of my parent... 00656 //assert((node->parent->left == node) || (node->parent->right == node)); 00657 assert((node->parent->left == node) ^ (node->parent->right == node)); 00658 } 00659 00660 // when there is a left child make sure it's value is ordered 00661 // (note use of !(b<a), to allow for a<=b while using just the < 00662 // operator) 00663 if (node->left != NULL) { 00664 assert(!(node->value < node->left->value ));} 00665 00666 // when there is a right child make sure it's value is ordered 00667 if (node->right != NULL) { 00668 assert(!(node->right->value < node->value ));} 00669 00670 } 00671 assert(n_top == 1 || (n_top == 0 && size() <= 1) ); 00672 assert(n_null == _available_nodes.size() || 00673 (n_null == _available_nodes.size() + 1 && size() == 1)); 00674 } 00675 00676 00677 //---------------------------------------------------------------------- 00678 template<class T> typename SearchTree<T>::Node * SearchTree<T>::_find_predecessor(const typename SearchTree<T>::Node * node) { 00679 00680 typename SearchTree<T>::Node * newnode; 00681 if (node->left != NULL) { 00682 // go down left, and then down right as far as possible. 00683 newnode = node->left; 00684 while(newnode->right != NULL) {newnode = newnode->right;} 00685 return newnode; 00686 } else { 00687 const typename SearchTree<T>::Node * lastnode = node; 00688 newnode = node->parent; 00689 // go up the tree as long as we're going right (when we go left then 00690 // we've found something smaller, so stop) 00691 while(newnode != NULL) { 00692 if (newnode->right == lastnode) {return newnode;} 00693 lastnode = newnode; 00694 newnode = newnode->parent; 00695 } 00696 return newnode; 00697 } 00698 } 00699 00700 00701 //---------------------------------------------------------------------- 00702 template<class T> typename SearchTree<T>::Node * SearchTree<T>::_find_successor(const typename SearchTree<T>::Node * node) { 00703 00704 typename SearchTree<T>::Node * newnode; 00705 if (node->right != NULL) { 00706 // go down right, and then down left as far as possible. 00707 newnode = node->right; 00708 while(newnode->left != NULL) {newnode = newnode->left;} 00709 return newnode; 00710 } else { 00711 const typename SearchTree<T>::Node * lastnode = node; 00712 newnode = node->parent; 00713 // go up the tree as long as we're going left (when we go right then 00714 // we've found something larger, so stop) 00715 while(newnode != NULL) { 00716 if (newnode->left == lastnode) {return newnode;} 00717 lastnode = newnode; 00718 newnode = newnode->parent; 00719 } 00720 return newnode; 00721 } 00722 } 00723 00724 00725 //---------------------------------------------------------------------- 00726 // print out all the elements for visual checking... 00727 template<class T> void SearchTree<T>::print_elements() { 00728 typename SearchTree<T>::Node * base_node = &(_nodes[0]); 00729 typename SearchTree<T>::Node * node = base_node; 00730 00731 int n = _nodes.size(); 00732 for(; node - base_node < n ; node++) { 00733 printf("%4d parent:%4d left:%4d right:%4d pred:%4d succ:%4d value:%10.6f\n",loc(node), loc(node->parent), loc(node->left), loc(node->right), loc(node->predecessor),loc(node->successor),node->value); 00734 } 00735 } 00736 00737 //---------------------------------------------------------------------- 00738 template<class T> typename SearchTree<T>::circulator SearchTree<T>::somewhere() { 00739 return circulator(_top_node); 00740 } 00741 00742 00743 //---------------------------------------------------------------------- 00744 template<class T> typename SearchTree<T>::const_circulator SearchTree<T>::somewhere() const { 00745 return const_circulator(_top_node); 00746 } 00747 00748 00749 FASTJET_END_NAMESPACE 00750 00751 #endif // __FASTJET_SEARCHTREE_HH__