
CERN Program Library Long Writeup Q121

PAW
Physics Analysis Workstation

An Introductory Tutorial

Application Software Group

Computing and Networks Division

CERN Geneva, Switzerland

Copyright Notice

PAW – Physics Analysis Workstation

CERN Program Library entry Q121

c� Copyright CERN, Geneva 1995

Copyright and any other appropriate legal protection of these computer programs and associated doc-
umentation reserved in all countries of the world.

These programs or documentation may not be reproduced by any method without prior written con-
sent of the Director-General of CERN or his delegate.

Permission for the usage of any programs described herein is granted apriori to those scientific insti-
tutes associated with the CERN experimental program or with whom CERN has concluded a scientific
collaboration agreement.

Requests for information should be addressed to:

CERN Program Library Office

CERN�CN Division

CH����� Geneva ��

Switzerland

Tel� ��� �� 	
	 ����

Fax� ��� �� 	
	

��

Email� cernlib�cern�ch

Trademark notice: All trademarks appearing in this guide are acknowledged as such.

Contact Person: Olivier Couet /CN �olivier�couet�cern�ch�

Technical Consultant: Michel Goossens /CN �michel�goossens�cern�ch�

Edition – February 1995

About this guide

Preliminary remarks

In this tutorial examples are in monotype face and strings to be input by the user are underlined. In
the index the page where a command is defined is in bold, page numbers where a routine is referenced
are in normal type.

Acknowledgements

The authors of PAW would like to thank all their colleagues who, by their continuous interest and en-
couragement, have given them the necessary input to provide a modern and easy to use data analysis and
presentation system.

Vladimir Berezhnoi (IHEP, Serpukhov, USSR), the main author of the Fortran interpreter COMIS, pro-
vided one of the essential components of our system. Nicole Cremel has collaborated to the first versions
of HPLOT. The PAW/HBOOK to MINUIT interface has been implemented in collaboration with Eliane
Lessner (FNAL, USA) and Fred James. Jim Loken (Oxford, UK) has been our expert on VAX global sec-
tions. David Foster, Frederic Hemmer, Catherine Magnin and Ben Segal have contributed to the develop-
ment of the PAW TCP/IP interface. Ben has also largely contibuted to the TELNETG and 3270G systems.
Per Scharff-Hansen and Johannes Raab from the OPAL collaboration have made possible the interface
with the OS9 system. Harald Johnstad (SSC, USA) and Lee Roberts (FNAL, USA) have contributed to the
debugging phases of PAW in the DI3000 and DECGKS environments. Initial implementations of PAW
on MVS/TSO, the Sun and the DEC Station 3100 were made by Alain Michalon (Strasbourg, France),
François Marabelle (Saclay, France) and Walter Bruckner (Heidelberg, FRG), respectively. Lionel Cons
has contributed to the implementation of the selection mechanisms for Ntuples. Isabelle Moulinier (Paris)
has been working, as a summer student, on various improvements in the HIGZ/HPLOT packages.

i

ii

Related Manuals

This document can be complemented by the following manuals:

– COMIS, Compilation and Interpretation System [1]

– HBOOK User Guide — Version 4 [2]

– HIGZ-HPLOT — High level Interface to Graphics and ZEBRA and HPLOT User Guide [3]

– KUIP — Kit for a User Interface Package [4]

– MINUIT — Function Minimization and Error Analysis [5]

– PAW — PAW Reference Guide [6]

– ZEBRA — Data Structure Management System [7]

This document has been produced using LATEX [8] with the cernman style option, developed at CERN.
All pictures shown are produced with PAW and are included in PostScript [9] format in the manual.

A gzipped PostScript file paw�ps�gz, containing a complete printable version of this manual, can be
obtained by anonymous ftp as follows (commands to be typed by the user are underlined):

ftp asisftp�cern�ch

Connected to asis���cern�ch�

��� asis�� FTP server �Version wu����������� ready�

Name �asisftp	username�	 ftp

Password	 your
mailaddress

��� Guest login ok� access restrictions apply�

ftp
 cd cernlib�doc�ps�dir

ftp
 get paw�ps�gz �type get paw�ps for the uncompressed version�

ftp
 quit

Table of Contents

I PAW – Step by step 1

1 A few words on PAW 3

1.1 A short history � 3

1.2 What is PAW? � 3

1.3 What Can You Do with PAW? � 3

1.4 A User’s View of PAW � 5

1.5 Fundamental Objects of PAW � 7

1.6 The Component Subsystems of PAW � 9

1.7 A PAW Glossary � 12

iii

2 General principles 15

2.1 Access to PAW � 15
2.2 Initialising PAW � 17
2.3 PAW++ � 18
2.4 Command structure � 22
2.5 Getting help � 23
2.6 Special symbols for PAW � 25
2.7 PAW entities and their related commands � 25

3 PAW by Examples 28

3.1 Basic Principles � 30
3.2 Starting the PAW Tutorial � 31
3.3 Vectors—Tutorial � 32
3.4 Vectors—Examples � 36
3.5 Function drawing—Examples � 56
3.6 Histograms—Tutorial � 68
3.7 Histograms—Examples � 80
3.8 Ntuples—Tutorial � 116
3.9 Ntuples—Examples � 122
3.10 SIGMA—Examples � 146
3.11 Pictures and PostScript � 152

II PAW - Commands and Concepts 167

4 User interface - KUIP 169

4.1 Command line syntax � 169
4.2 Aliases � 182
4.3 System functions � 185
4.4 Vectors � 192
4.5 Expressions � 193
4.6 Macros � 198
4.7 Motif mode � 214
4.8 Nitty-Gritty � 231

5 Vectors 236

5.1 Vector creation and filling � 236
5.2 Vector addressing � 237
5.3 Vector arithmetic operations � 237
5.4 Vector arithmetic operations using SIGMA � 237
5.5 Using KUIP vectors in a COMIS routine � 238
5.6 Usage of vectors with other PAW objects � 238
5.7 Graphical output of vectors � 238
5.8 Fitting the contents of a vector � 238

iv

6 SIGMA 239

6.1 Access to SIGMA � 239

6.2 Vector arithmetic operations using SIGMA � 240

6.3 SIGMA functions � 241

6.4 Available library functions � 249

7 HBOOK 251

7.1 Introduction � 251

7.2 Basic ideas � 252

7.3 HBOOK batch as the first step of the analysis � 254

7.4 Using PAW to analyse data � 258

7.5 Ntuples: A closer look � 260

7.6 Fitting with PAW/HBOOK/MINUIT � 270

7.7 Doing more with Minuit � 280

8 Graphics (HIGZ and HPLOT) 284

8.1 HPLOT, HIGZ and local graphics package � 284

8.2 The metafiles � 285

8.3 The HIGZ pictures � 286

8.4 Setting attributes � 293

8.5 More on labels � 299

8.6 Colour, line width, and fill area in HPLOT � 300

8.7 Information about histograms � 304

8.8 Text drawing � 309

8.9 The HIGZ graphics editor � 320

9 Distributed PAW 321

9.1 TELNETG and 3270G � 321

9.2 ZFTP � 324

9.3 Access to remote files from a PAW session � 324

9.4 Using PAW as a presenter on VMS systems (global section) � � � � � � � � � � � � � � � 326

9.5 Using PAW as a presenter on OS9 systems � 327

III PAW - Reference section 329

10 KUIP 331

10.1 ALIAS � 336

10.2 SET˙SHOW � 338

v

11 MACRO 348

11.1 GLOBAL � 350
11.2 SYNTAX � 351

12 VECTOR 360

12.1 OPERATIONS � 366

13 HISTOGRAM 368

13.1 2D˙PLOT � 373
13.2 CREATE � 375
13.3 HIO � 378
13.4 OPERATIONS � 380
13.5 GET˙VECT � 385
13.6 PUT˙VECT � 386
13.7 SET � 387

14 FUNCTION 389

15 NTUPLE 393

16 GRAPHICS 406

16.1 MISC � 412
16.2 VIEWING � 413
16.3 PRIMITIVES � 415
16.4 ATTRIBUTES � 429
16.5 HPLOT � 430

17 PICTURE 434

18 ZEBRA 439

18.1 RZ � 439
18.2 FZ � 441
18.3 DZ � 442

19 FORTRAN 444

20 NETWORK 448

20.1 PIAF � 448

21 OBSOLETE 452

21.1 GRAPHICS � 452

A PAW tabular overview 454

Bibliography 460

Index 461

vi

Part I

PAW – Step by step

1

Chapter 1: A few words on PAW

1.1 A short history

Personal workstations equipped with a high resolution bitmap display, a speed of several tens of MIPS,
with at least 20-30 Mbytes of main memory and 1 Gbyte of local disk space (e.g. DEC, HP-700, IBM

RS6000, Sun Sparc and Silicon Graphics workstations) are now widely available at an affordable price
for individual users. In order to exploit the full functionality of these workstations, at the beginning of
1986 the Physics Analysis Workstation project PAW was launched at CERN. The first public release
of the system was made at the beginning of 1988. At present the system runs on most of the computer
systems used in the High Energy Physics (HEP) community (Mainframes, Workstations, PC’s) but its
full functionality is best exploited on personal workstations. In addition to its powerful data analysis,
particular emphasis has been put on the quality of the user interface and of the graphical presentation.

1.2 What is PAW?

PAW is an interactive utility for visualizing experimental data on a computer graphics display. It may
be run in batch mode if desired for very large and time consuming data analyses; typically, however, the
user will decide on an analysis procedure interactively before running a batch job.

PAW combines a handful of CERN High Energy Physics Library systems that may also used individually
in software that processes and displays data. The purpose of PAW is to provide many common analysis
and display procedures that would be duplicated needlessly by individual programmers, to supply a flex-
ible way to invoke these common procedures, and yet also to allow user customization where necessary.

Thus, PAW’s strong point is that it provides quick access to many facilities in the CERN library. One of its
limitations is that these libraries were not designed from scratch to work together, so that a PAW user must
eventually become somewhat familiar with many dissimilar subsystems in order to make effective use of
PAW’s more complex capabilities. As PAW evolves in the direction of more sophisticated interactive
graphics interfaces and object-oriented interaction styles, the hope is that such limitations will gradually
become less visible to the user.

PAW is most effective when it is run on a powerful computer workstation with substantial memory, rapid
access to a large amount of disk storage, and graphics support such as a large color screen and a three-
button mouse. If the network traffic can be tolerated, PAW can be run remotely over the network from a
large, multiuser client machine to more economical servers such as an X-terminal. In case such facilities
are unavailable, substantial effort has been made to ensure that PAW can be used also in noninteractive
or batch mode from mainframes or minicomputers using ASCII terminals.

1.3 What Can You Do with PAW?

PAW can do a wide variety of tasks relevant to analyzing and understanding physical data, which are
typically statistical distributions of measured events. Below we list what are probably the most frequent
and best-adapted applications of PAW; the list is not intended to be exhaustive, for it is obviously possible
to use PAW’s flexibility to do a huge number of things, some more difficult to achieve than others within
the given structure.

3

4 Chapter 1. A few words on PAW

Typical PAW Applications:

� Plot a Vector of Data Fields for a List of Events. A set of raw data is typically processed by
the user’s own software to give a set of physical quantities, such as momenta, energies, particle
identities, and so on, for each event. When this digested data is saved on a file as an Ntuple, it may
be read and manipulated directly from PAW. Options for plotting Ntuples include the following:

– One Variable. If a plot of a one variable from the data set is requested, a histogram showing
the statistical distribution of the values from all the events is automatically created. Individual
events are not plotted, but appear only as a contribution to the corresponding histogram bin.

– Two or Three Variables. If a plot of two or three variables from the data set is requested, no
histogram is created, but a 2D or 3D scatter plot showing a point or marker for each distinct
event is produced.

– Four Variables. If a plot of four variables is requested, a 3D scatter plot of the first three
variables is produced, and a color map is assigned to the fourth variable; the displayed color
of the individual data points in the 3D scatter plot indicates the approximate value of the fourth
variable.

– More than Four Variables. More than four variables can be plotted but it is up to the user to
customize the system in order to assign the additional variables to graphics attributes like the
size or the shape (type) of the markers.

– Vector Functions of Variables. PAW allows the user to define arbitrary vector functions of the
original variables in an Ntuple, and to plot those instead of the bare variables. Thus one can
easily plot something like

q
�P �

x � P �
y � if Px and Py are original variables in the data without

having to add a new data field to the Ntuple at the time of its creation.

– Selection Functions (Cuts). PAW does not require you to use every event in your data set.
Several methods are provided to define Boolean functions of the variables themselves that
pick out subsets of the events to be included in a plot.

– Plot presentation options. The PAW user can set a variety of options to customize the format
and appearance of the plots.

� Histogram of a Vector of Variables for a List of Events. Often one is more interested in the statis-
tical distribution of a vector of variables (or vector functions of the variables) than in the variables
themselves. PAW provides utilities for defining the desired limits and bin characteristics of a his-
togram and accumulating the bin counts by scanning through a list of events. The following are
some of the features available for the creation of histograms:

– One Dimensional Histograms. Any single variable can be analyzed using a one-dimensional
histogram that shows how many events lie in each bin. This is basically equivalent to the
single-variable data plotting application except that it is easier to specify personalized features
of the display format. A variety of features allow the user to slice and project a 2D scatter plot
and make a 1D histogram from the resulting projection.

– Two-Dimensional Histograms. The distribution of any pair of variables for a set of events can
be accumulated into a 2D histogram and plotted in a various of ways to show the resulting
surface.

– Three-Dimensional Histograms. Will be supported soon.

1.4. A User’s View of PAW 5

– Vector Functions of Variables. User-defined functions of variables in each event can be used
to define the histogram, just as for an Ntuple plot.

– Selection Functions (Cuts). Events may also be included or excluded by invoking Boolean
selection functions that are arbitrary functions of the variables of a given event.

– Event Weights. PAW allows the user to include a multiplicative statistical bias for each event
which is a scalar function of the available variables. This permits the user to correct for known
statistical biases in the data when making histograms of event distributions.

– Histogram Presentation Options. Virtually every aspect of the appearance of a histogram can
be controlled by the user. Axis labels, tick marks, titles, colors, fonts, and so on, are specified
by a large family of options. A particular set of options may be thought of as a “style” for
presenting the data in a histogram; “styles” are in the process of becoming a formal part of
PAW to aid the user in making graphics that have a standard pleasing appearance.

� Fit a Function to a Histogram. Once a histogram is defined, the user may fit the resulting shape
with one of a family of standard functions, or with a custom-designed function. The parameters of
the fit are returned in user-accessible form. Fitted functions of one variable may be attached to a 1D
histogram and plotted with it. The capability of associating fits to higher dimensional histograms
and overlaying their representations on the histogram is in the process of being added to PAW.

The fitting process in PAW is normally carried out by the MINUIT library. To user this package
effectively, users must typically supply data with reasonable numerical ranges and give reasonable
initial conditions for the fit before passing the task to the automated procedure.

� Annotate and Print Graphics. A typical objective of a PAW user is to examine, manipulate, and
display the properties of a body of experimental data, and then to prepare a graph of the results for
use in a report, presentation, or publication. PAW includes for convenience a family of graphics
primitives and procedures that may be used to annotate and customize graphics for such purposes.
In addition, any graphics display presented on the screen can be converted to a PostScript file for
black-and-white or color printing, or for direct inclusion in a manuscript.

1.4 A User’s View of PAW

In order to take advantage of PAW, the user must first have an understanding of its basic structure. Below
we explain the fundamental ways in which PAW and the user interact.

Initialization. PAW may be invoked in a variety of ways, depending on the user’s specific computer
system; these are described in the following chapter. As PAW starts, it prompts the user to select an inter-
action mode (or non-interactive mode) and window size and type (if interactive). The available window
sizes and positions are specified in the user file �higz�windows�dat�. User-specific intializations are
specified in the file �pawlogon�kumac�.

Command Mode Interface. The most basic interface is the KUIP “command mode” interface. KUIP
provides a basic syntax for commands that are parsed and passed on to the PAW application routines to
perform specific tasks. Among the basic features of KUIP with which the user interacts are the following:

� Command Entry. Any unique partially entered command is interpreted as a fully entered command.
KUIP responds to an ambiguous command by listing the possible alternatives. On Unix systems,

6 Chapter 1. A few words on PAW

individualcommand lines can be edited in place using individual control keystrokes similar to those
of the emacs editor, or the bash or tcsh Unix command shells. On other systems, a command
line that is in error can only be revised after it is entered, using the VAX/VMS editor “EDT” style
text line editing language.

� Parameters. Parameters are entered after the basic command on the same line and are separated
by spaces. If a parameter has embedded blanks, it must be it must be put between quotes. An ex-
clamation point ��� can be used to keep the default parameters in a sequence when only a later
parameter is being changed. If an underscore ��� is the last character on a line, the command may
be continued on the next line; no spaces are allowed in the middle of continued parameter fields.

� On-Line Assistance. The �usage� and �help� commands can be used to get a short or verbose
description of parameters and features of any command.

� Command History. A command history is kept both in memory for interactive inspection and on a
disk file. The command history file can be recovered and used to reconstruct a set of actions carried
out interactively.

� Aliases. Allow the abbreviation of partial or complete command sequences.

� Macros. A text file containing PAW commands and flow control statements.

KUIP/MOTIF Interface. If the user’s workstation supports the OSF/Motif windowing system, PAW
can be started in the KUIP/MOTIF mode: the executable module to be run in that case is called PAW++.
However, a small text panel and a command history panel keep track of individual actions, and permit
entry and recall of typed commands similar to the command mode interface.

The basic features of this interface are:

� Pull-Down Menu “Commands”. Each PAW command (that can be given in input) has a corre-
sponding item in a hierarchical pull-down menu (entry “Commands”). Commands that require ar-
guments cause a parameter-entry dialog box to appear; when the arguments are entered and com-
mand execution requested (button “OK” or “Execute”), the command is executed as though typed
from the command mode interface.

� Action Panel(s). A user may have a family of frequently executed macros or commands assigned
to specific buttons on the action panel(s). These panels are totally user definable.

� Object Browser. All the objects known in PAW (Histograms, Ntuples, Vectors etc...) can be ma-
nipulated via icons and pull-down menus in the “Object Browser”. This is in many ways similar
to the well-known browsers in the PC/MAC utilities or the visual tools on some workstations.

� Direct Graphics Interaction. One can click in the graphics area and identify automatically which
object has been selected. A pop-up menu appears with a list of possible actions on this object.

Graphics Output Window. The graphics image produced by PAW commands, regardless of the com-
mand interface, appears on a separate graphics output window. The actual size and position of this win-
dow on the screen is controlled by a list of numbers of the form x�upper�left y�upper�left x�width

y�height in the user file higz�windows�dat. The width and height of the drawing area within this win-
dow are subject to additional user control, and the user can specify “zones,” which are essentially ways of

1.5. Fundamental Objects of PAW 7

dividing the window into panes to allow simultaneous display of more than one plot. Some facilities are
available in the current version of PAW to use the mouse to retrieve data such as the height of a histogram
bin.

1.5 Fundamental Objects of PAW

PAW is implicitly based on a family of fundamental objects (see figure 1.1). Each PAW command per-
forms an action that either produces another object or produces a “side-effect” such as a printed message
or graphics display that is not saved anywhere as a data structure. Some commands do both, and some
may or may not produce a PAW data structure depending on the settings of global PAW parameters. In
this section, we describe the basic objects that the user needs to keep in mind when dealing with PAW.
The reader should perhaps note that the PAW commands themselves do not necessarily reflect the nature
of PAW objects as clearly as they might, while the MOTIF interactive graphics interface in fact displays
distinct icons for most of the object types listed below.

pawtut01 (17/01/94)

Data

Analysis Presentation

Vectors

Histograms

Ntuples

Fitting

Smoothing

Array Manipulation

FORTRAN Interpreter

Cuts

Projections

1D, 2D, and 3D Plots

1D
2D
3D

1D
2D

RWN

CWN

ASCII RZ

Figure 1.1: PAW’s fundamental “data” objects

Objects:

� 1D Histograms. A histogram is the basic statistical analysis tool of PAW. Histograms are created
(“booked”) by choosing the basic characteristics of their bins, variables, and perhaps customized
display parameters; numbers are entered into the histogram bins from an Ntuple (the histogram is
“filled”) by selecting the desired events, weights, and variable transformations to be used while
counts are accumulated in the bins. Functional forms are frequently fit to the resulting histograms
and stored with them. Thus a fit as an object is normally associated directly with a histogram, al-
though it may be considered separately.

8 Chapter 1. A few words on PAW

� 2D Histograms. 2D (and higher-dimensional) histograms are logical generalizations of 1D his-
tograms. 2D histograms, for example, are viewable as the result of counting the points in a the
sections of a rectangular grid overlaid on a scatter plot of two variables. Higher-dimensional his-
tograms can also be fitted, and support for associating the results of a fit to a higher-dimensional
histogram is currently being incorporated in PAW.

� Ntuples. An Ntuple is the basic type of data used in PAW. It consists of a list of identical data
structures, one for each event. Typically, an Ntuple is made available to PAW by opening a ZE-
BRA file; this file, as created by HBOOK, contains one or more Ntuples and possibly also ZEBRA
logical directories, which may store a hierarchy of Ntuples. A storage area for an Ntuple may be
created directly using ntuple�create; data may then be stored in the allocated space using the
ntuple�loop or ntuple�read commands. Other commands merge Ntuples into larger Ntuples,
project vector functions of the Ntuple variables into histograms, and plot selected subsets of events.

� Cuts. A cut is a Boolean function of Ntuple variables. Cuts are used to select subsets of events in
an Ntuple when creating histograms and ploting variables.

� Masks. Masks are separate files that are logically identical to a set of boolean variables added on
the end of an Ntuple’s data structure. A mask is constructed using the Boolean result of applying a
cut to an event set. A mask is useful only for efficiency; the effect of a mask is identical to that of
the cut that produced it.

� Vectors. PAW provides the facilities to store vectors of integer or real data. These vectors, or rather
arrays with up to 3 index dimensions, can be manipulated with a set of dedicated commands. Fur-
thermore they are interfaced to the array manipulation package SIGMA and to the Fortran inter-
preter COMIS. They provide a convenient and easy way to analyse small data sets stored in ASCII
files.

� Styles. A “style” is a set of variables that control the appearance of PAW plots. Commands of the
form igset parameter value determine fundamental characteristics of lines, axis format, text,
and so on. Commands of the form option attribute choose particular plotting options such as
logarithmic/linear, bar-chart/scatter-plot, and statisticsdisplay. Commands of the form set parameter value

control a vast set of numerical format parameters used to control plotting. While the “style” object
will eventually become a formal part of PAW, a “style” can be constructed by the user in the form of
a macro file that resets all parameters back to their defaults and then sets the desired customizations.

� Metafile. In normal interactive usage, images created on the screen correspond to no persistent
data structure. If one wishes to create a savable graphics object, the user establishes a metafile; as
a graphics image is being drawn, each command is then saved in a text file in coded form that al-
lows the image to be duplicated by other systems. PostScript format metafiles are especially useful
because they can be directly printed on most printers; furthermore, the printed quality of graphics
objects such as fonts can be of much higher quality than the original screen image.

� Pictures. Metafiles describing very complex graphics objects can be extremely lengthy, and there-
fore inefficient in terms of storage and the time needed to redraw the image. A picture is an exact
copy of the screen image, and so its storage and redisplay time are independent of complexity. Pic-
tures are also intensively used for object picking in the Motif version of PAW.

1.6. The Component Subsystems of PAW 9

� ZEBRA(RZ) Logical Directories. In a single PAW session, the user may work simultaneously
with many Ntuples, histograms, and hierarchies of Ntuple and histograms. However, this is not
accomplished using the native operating system’s file handler. Instead, the user works with a set
of objects that are similar to a file system, but are instead managed by the ZEBRA RZ package.
This can be somewhat confusing because a single operating system file created by RZ can contain
an entire hierarchy of ZEBRA logical directories; furthermore, sections of internal memory can
also be organized as ZEBRA logical directories to receive newly-created PAW objects that are not
written to files. A set of commands CDIR, LDIR, and MDIR are the basic utilities for walking through
a set of ZEBRA logical directories of PAW objects; Each set of directories contained in an actual
file corresponds to a logical unit number, and the root of the tree is usually of the form ��LUNx; the
PAW objects and logical directories stored in internal memory have the root ��PAWC. A macro is
a set of command lines stored in a file, which can be created or modified with any text editor. In
addition to all the PAW commands, special macro flow control statements are also available.

� Operating System File Directories. Many different ZEBRA files, some with logically equivalent
Ntuples and histograms, can be arranged in the user’s operating system file directories. Thus one
must also keep clearly in mind the operating system file directories and their correspondence to
the ZEBRA logical directories containing data that one wishes to work with. In many ways, the
operating system file system is also a type of “object” that forms an essential part of the user’s
mental picture of the system.

1.6 The Component Subsystems of PAW

The PAW system combines different tools and packages, which can also be used independently and some
of which have already a long history behind them (e.g. HBOOK and HPLOT, SIGMA, COMIS, MI-
NUIT). Figure 1.2 shows the various components of PAW.

1.6.1 KUIP - The user interface package

The purpose of KUIP (Kit for a User Interface Package) is to handle the dialogue between the user and
the application program (PAW in our case). It parses the commands input into the system, verifies them
for correctness and then hands over control to the relevant action routines.
Commands are grouped in a tree structure and they can be abbreviated to their shortest unambiguous
form. If an ambiguous command is typed, then KUIP responds by showing all the possibilities. Aliases

allow the user to abbreviate part or the whole of commonly used command and parameters. A sequence of
PAW commands can be stored in a text file and, combined with flow control statements, form a powerful
macro facility. With the help of parameters, whose values can be passed to the macros, general and
adaptable task solving procedures can be developed.
The user has the choice between different dialogue styles ranging from the conventional command line
interface to a high-level windowed environment based on OSF/Motif . In order to save typing, default

values, providing reasonable settings, can be used for most parameters of a command. A history file,
containing the n most recently entered commands, is automatically kept by KUIP and can be inspected,
copied or re-entered at any time. The history file of the last PAW session is also kept on disk.

1.6.2 HBOOK and HPLOT - The histograming and plotting packages

HBOOK and its graphics interface HPLOT are libraries of FORTRAN callable subroutines which have
been in use for many years. They provide the following functionality:

10 Chapter 1. A few words on PAW

pawtut00 (21/09/93)

PAW

KUIP

HPLOT

HIGZ

HBOOK

MINUIT

ZEBRA COMIS

SIGMA

ZEBRA MEMORYZEBRA FILES

X-Window

GKS, DI3000, PHIGS

MCIntosh, IBM PC etc ...

The Plotting Package

The Graphics Package:

basic graphics and

graphics editor for

pictures in data base

User Interface

Command Processor

Menu Dialogue

Motif Interface

Histogramming

N-Tuples

Statistical Analysis

Minimization Package

FORTRAN Interpreter

Arrays Manipulation

Data Structure Manager

Input/Output Server

Data Base Manager

Figure 1.2: PAW and its components

1.6. The Component Subsystems of PAW 11

– One- and two-dimensional histograms and Ntuples

– Projections and slices of two-dimensional histograms and Ntuples

– Complete control (input and output) of the histogram contents

– Operations and comparison of histograms

– Minimization and parameterization tools

– Random number generation

– Histograms and Ntuples structured in memory (directories)

– Histograms and Ntuples saved onto direct access ZEBRA files

– Wide range of graphics options:

– Contour histograms, bar chart, shaded histograms, error bars, colour

– Smoothed curves and surfaces

– Scatter, lego, contour and surface plots

– Automatic windowing

– Graphics input

1.6.3 HIGZ - The graphics interface package

A High level Interface to Graphics and ZEBRA (HIGZ) has been developed within the PAW project. This
package is a layer between the application program (e.g. PAW/HPLOT) and the basic graphics package
(e.g. X11) on a given system. Its basic aims are:

– Full transportability of the picture data base.

– Easy manipulation of the picture elements.

– Compactness of the data to be transported and accessibility of the pictures in direct access mode.

– Independence of the underlying basic graphics package. Presently HIGZ is interfaced with several
GKS packages, X- Windows (X11), PHIGS, Mac, PC’s graphic systems, GL (Silicon Graphics),
GDDM (IBM), GPR (Apollo) as well as with the DI3000 system.

These requirements have been incorporated into HIGZ by exploiting the data management system ZE-
BRA.

HIGZ does not introduce new basic graphics features, but introduces some macroprimitives for frequently
used functions (e.g. arcs, axes, boxes, pie-charts, tables). The system provides the following features:

– Basic graphics functions: basic primitives, attributes, space definition.

– Higher-level macroprimitives.

– Data structure management using an interface to the ZEBRA system.

– Interactive picture editing.

These features, which are available simultaneously, are particularly useful during an interactive session, as
the user is able to “replay” and edit previously created pictures, without the need to re-run the application
program. A direct interface to PostScript is also available.

12 Chapter 1. A few words on PAW

1.6.4 ZEBRA - The data structure management system

The data structure management package ZEBRA was developed at CERN in order to overcome the lack of
dynamic data structure facilities in FORTRAN, the favourite computer language in high energy physics.
It implements the dynamic creation and modification of data structures at execution time and their trans-
port to and from external media on the same or different computers, memory to memory, to disk or over
the network, at an insignificant cost in terms of execution-time overheads.

ZEBRA manages any type of structure, but specifically supports linear structures (lists) and trees. ZE-
BRA input/output is either of a sequential or direct access type. Two data representations, native (no data
conversion when transferred to/from the external medium) and exchange (a conversion to an interchange
format is made), allow data to be transported between computers of the same and of different architec-
tures. The direct access package RZ can be used to manage hierarchical data bases. In PAW this facility
is exploited to store histograms, Ntuples and pictures in a hierarchical direct access directory structure.

1.6.5 MINUIT - Function minimization and error analysis

MINUIT is a tool to find the minima of a multi-parameter function and analyse the shape around

the minimum. It can be used for statistical analysis of curve fitting, working on a �� or log-likelihood
function, to compute the best fit parameter values, their uncertainties and correlations. Guidance can be
provided in order to find the correct solution, parameters can be kept fixed and data points can be easily
added or removed from the fit. An interactive Motif based interface is in preparation.

1.6.6 COMIS - The FORTRAN interpreter

The COMIS interpreter allows the user to execute interactively a set of FORTRAN routines in interpretive
mode. The interpreter implements a large subset of the complete FORTRAN language. It is an extremely
important tool because it allows the user to specify his own complex data analysis procedures, for example
selection criteria or a minimisation function.

1.6.7 SIGMA - The array manipulation language

A scientific computing programming language SIGMA (System for Interactive Graphical Mathematical
Applications), which was designed essentially for mathematicians and theoretical physicists and has been
in use at CERN for over 10 years, has been integrated into PAW. Its main characteristics are:

– The basic data units are scalars and one or more dimensional rectangular arrays, which are auto-
matically handled.

– The computational operators resemble those of FORTRAN.

1.7 A PAW Glossary

Data Analysis Terminology

DST A “Data Summary Tape” is one basic form of output from a typical physics experiment. A
DST is generally not used directly by PAW, but is analyzed by customized user programs
to produce Ntuple files, which PAW can read directly.

1.7. A PAW Glossary 13

Ntuple A list of identical data structures, each typically corresponding to a single experimental
event. The data structures themselves frequently consist of a row of numbers, so that many
Ntuples may be viewed as two-dimensional arrays of data variables, with one index of the
array describing the position of the data structure in the list (i.e., the row or event number),
and the other index referring to the position of the data variable in the row (i.e., the col-
umn or variable number). A meaningful name is customarily assigned to each column that
describes the variable contained in that column for each event. However, the underlying
utilities dealing with Ntuples are currently being generalized to allow the name of an el-
ement of the data structure to refer not only to a single number, but also to more general
data types such as arrays, strings, and so on. Thus it is more general to view an Ntuple as a
sequence of tree-structured data, with names assigned to the top-level roots of the tree for
each event.

Event A single instance of a set of data or experimental measurements, usually consisting of a
sequence of variables or structures of variables resulting from a partial analysis of the raw
data. In PAW applications, one typically examines the statistical characteristics of large
sequences of similar events.

Variable One of a user-defined set of named values associated with a single event in an Ntuple. For
example, the �x� y� z� values of a momentum vector could each be variables for a given
event. Variables are typically useful experimental quantities that are stored in an Ntuple;
they are used in algebraic formulas to define boolean cut criteria or other dependent vari-
ables that are relevant to the analysis.

Cut A boolean-valued function of the variables of a given event. Such functions allow the user
to specify that only events meeting certain criteria are to be included in a given distribution.

Mask A set of columns of zeros and ones that is identical in form to a new set of Ntuple variables.
A mask is typically used to save the results of applying a set of cuts to a large set of events
so that time-consuming selection computations are not repeated needlessly.

Function Sequence of one or more statements with a FORTRAN-like syntax entered on the command
line or via an external file.

Statistical Analysis Terminology

Histogram A one- or two-dimensional array of data, generated by HBOOK in batch or in a PAW ses-
sion. Histograms are (implicitly or explicitly) declared (booked); they can be filled by ex-
plicit entry of data or can be derived from other histograms. The information stored with a
histogram includes a title, binning and packing definitions, bin contents and errors, statistic
values, possibly an associated function vector, and output attributes. Some of these items
are optional. The ensemble of this information constitutes an histogram.

Booking The operation of declaring (creating) an histogram.

Filling The operation of entering data values into a given histogram.

Fitting Least squares and maximum likelihoodfits of parametric functions to histograms and vec-
tors.

Projection The operation of projecting two-dimensional distributions onto either or both axes.

14 Chapter 1. A few words on PAW

Band A band is a projection onto the X (or Y) axis restricted to an interval along the other Y (or
X) axis.

Slice A slice is a projection onto the X (or Y) axis restricted to one bin along the other Y (or X)
axis. Hence a slice is a special case of a band, with the interval limited to one bin.

Weight PAW allows the user to include a multiplicative statistical bias for each event which is a
scalar function of the available variables. This permits the user to correct for known statis-
tical biases in the data when making histograms of event distributions.

KUIP/ZEBRA User Environment Terminology

Macro A text file containing a set commands and logical constructs to control the flow of execu-
tion. Parameters can be supplied when calling a macro.

Vector The equivalent of a FORTRAN array supporting up to three dimensions. The elements of
a vector can be stored using a real or an integer representation; they can be entered inter-
actively on a terminal or read from an external file.

Logical Directory The ZEBRA data storage system resembles a file system organized as logical directo-
ries. PAW maintains a global variable corresponding to the “current directory” where PAW
applications will look for PAW objects such as histograms. The ZEBRA directory structure
is a tree, and user functions permit the “current directory” to be set anywhere in the current
tree, as well as creating new “directories” where the results of PAW actions can be stored.
A special directory called ��PAWC corresponds to a memory-resident branch of this virtual
file system. ZEBRA files may be written to the operating system file system, but entire hi-
erarchies of ZEBRA directories typically are contained in a single binary operating system
file.

Graphics Production Terminology

Metafile File containing graphical information stored in a device independent format, which can
be replayed on various types of output devices. (e.g. the GKS Appendix E metafile and
PostScript, both used at CERN).

Picture Graphics object composed of graphics primitives and attributes. Pictures are generated by
the HIGZ graphics interface and they can be stored in a picture direct-access database, built
with the RZ-package of the data structure manager ZEBRA.

PostScript High level page description language permitting the description of complex text and graph-
ics using only text commands. Using PostScript representations of graphics makes it pos-
sible to create graphics files that can be exchanged with other users and printed on a wide
variety of printers without regard to the computer system upon which the graphics were
produced. Any graphics display produced by PAW can be expressed in terms of PostScript,
written to a file, and printed.

Chapter 2: General principles

2.1 Access to PAW

At CERN the PAW program is interfaced on all systems via a command procedure which gives access
to the three release levels of the CERN Program Library (PROduction, OLD and the NEW areas) and sets
the proper environment if necessary. Users who are not at CERN or who are using non-central computer
systems should contact their system administrator for help on PAW.

2.1.1 IBM/VM-CMS

There are three versions available:

GKS For any ASCII graphic terminal capable of emulating Tektronix or PG.

GDDM For IBM 3192G graphic terminals or its emulators (e.g. tn��	� on a Mac-II)

X11 For any X-window display connected to VM

You need a machine size of at least 11 Mb, that may be defined either temporarily for the current session
(command DEFINE STORAGE ��M followed by an IPL CMS) or permanently for all subsequent sessions
(command DIRM STOR ��M; you need to logoff once to make the definition effective).

An interface Rexx exec file PAW EXEC is located on the Q-disk and has the following interface:

PAW � ver driver

The first parameter ver can have the values PRO, NEW and OLD and the second parameter driver the
values GKS, GDDM or X��. The defaults are: PRO GKS. Help is available via FIND CMS PAW.

2.1.2 VAX/VMS

There are two versions available on VXCERN: GKS and X11. A commandfile CERN�ROOT��EXE�PAW�COM
is defined system-wide via the logical symbol PAW; its interface is:

PAW�ver�driver

(default is PRO GKS). You may set the initialization of PAW either as a PAWLOGON�KUMAC located in your
home directory, or through the logical symbolDEFINE PAW�LOGON disk��user�subdir�file�kumac

to be defined usually in your LOGIN�COM. Help is available via HELP �CERNLIB PAW.

2.1.3 Unix systems

There are three versions available: GKS, GPR andX��. The driver shell script is located in the file�cern�pro�bin�paw .
In order to access it automatically you could add the directory �cern�pro�bin to your command search
path. The command syntax is:

paw �v ver �d driver

(default is �v PRO �d GKS). In the GKS case this shell script sets the proper GKS environment.

15

16 Chapter 2. General principles

2.1.4 Note on the X11 version

The X11 version needs to know the X-host where graphics must be displayed; this can be specified on
each system on the command line:

VM�CMS	 PAW � X�� HOST yourhost

Vax�VMS	 PAW�X���host�yourhost

Unix	 paw �d X�� �h yourhost

or at the “Workstation” prompt in PAW: Workstation type ���HELP� �CR��� � ��yourhost

On Vax/VMS the default X-window protocol is TCP/IP. If you want DECNET (e.g. when running from
a Vaxstation) add the DECNET option to the command as follows:

PAW�X���DECNET�host�yourhost

If yourhost is not specified, the output is redirected (like for all X11 applications) to the display defined
via the environment variable DISPLAY.

The workstation type selects which type of workstation has to be opened. It corresponds to a line number
in a file higz�windows�dat (HIGZWIN DATA on IBM�VM machines). PAW tries to open this file in your
current working directory. If it does not succeed it tries in your HOME directory. If it doesn’t succeed
once more, it creates the file in your HOME directory as follows:

���� ���� �
�� �
��

�

�

�

���� ���� �
�� �
��

where the lines define each of the workstation types (from 1 to 10) with the x-margin (left), y-margin
(top), x-size (width) and y-size (height) of the corresponding window in pixels.

2.1.5 Different modes to start PAW

– A batch version of PAW is available (note that batch implies workstation type �):

On Unix do	 paw �b macroname

On VMS do	 PAW�BATCH�macroname

On VM do	 PAW �BATCH�macroname

– One can disable the automatic execution of the PAWLOGON macro:

On Unix do	 paw �n

On VMS do	 PAW�NOLOG

On VM do	 PAW �NOLOG

2.2. Initialising PAW 17

2.2 Initialising PAW

When PAW is started, a system startup procedure is initiated, which indicates the current version of PAW
and requests the workstation type of the terminal or workstation which you are using.

� PAW

��

� �

� W E L C O M E to P A W �

� �

� Version ������� �� September ���� �

� �

��

Workstation type ���HELP� �CR
�� 	 �

List of valid workstation types	

�	 Alphanumeric terminal

����	 Describe in file higz
windows�dat

n�host	 Open the display on host �� � n � ���

����	 FALCO terminal

����	 xterm

Note that if you specify �, PAW will not open a graphics workstation. This may be appropriate if one
wants to use PAW on an alphanumeric terminal.

Before passingcontrol to the user, the system looks for a user-suppliedfilepawlogon�kumacorPAWLOGON
KUMAC �VM�CMS�. The latter can contain commands which the user wants to be executed at PAW startup,
e.g. declaration of files, creation of aliases, definition of HPLOT parameters. A simple version of this
PAW initialisation file, displaying date and time, can be:

mess ��

mess �� ��

mess �� Starting PAW session on ����date��� at ����time��� ��

mess �� ��

mess ��

To ensure that only one version of this file is necessary, on VAX/VMS a logical name PAW�LOGON should
be defined in the user’s LOGIN�COM, as explained above. On a Unix workstation thefilepawlogon�kumac,
should be put into the directory. On IBM/VM-CMS the minidisk file search rule takes care of finding the
file.

18 Chapter 2. General principles

2.3 PAW++

paw�� is a new and powerful OSF/Motif based Graphical User Interface to the popular Physics Analysis
Workstation PAW. The graphical user interface makes the full and rich command set of PAW available
to even the naive user. Simple point and click operations are enough to execute commands that were
previously accessable only to expert users. Figure 2.1 on the next page compares the functionalities of
basic PAW with PAW++.

At present it is released on Unix workstations and VAX/VMS.

paw�� has, in addition to the conventional command line and macro types of interface, the following
dialogue modes:

Pull Down menus They are useful to understand the command structure of the PAW system.

Command panels They give a “panel representation” of the commands.

Object Browser This is in many ways similar to the well-known browsers in the PC/MAC util-
ities or the visual tools on some workstations.

Direct graphics One can click in the graphics area and identify automatically which object has
been selected. A pop-up menu appears with a list of possible actions on this
object. For example, by clicking with the right mouse button on a histogram,
one can make directly a gaussian fit, a smoothing etc. Pop-up menus are avail-
able by clicking on the Graphics Window to automatically produce PostScript,
Encapsulated PostScript, LATEX files or print the picture on your local printer.

Histogram Style Panel Buttons are available to change histogram attributes, colours, line styles, fonts,
and axes representation. 2-D histograms can be rotated interactively. Zooming
and rebinning can be performed interactivaly in real time.

Ntuple Viewer Just click on the Ntuple column name to histogram the column.

The new system is largely self-explanatory. Only a subset of PAW has been converted to this new user
interface, but work is currently in progress to offer many new facilities in future releases.

On all the computers where the cmz is installed, just type paw�� to enter the program.

paw�� starts up with three windows on the screen:

The “paw�� Executive Window” includes a menu bar, a Transcript Pad, a current working directory
indicator and an Input Pad.

The “paw�� Graphics 1” window displays the graphics output from higz/X��. Objects, e.g.
histograms, displayed in the Graphics Window can be manipulated
by pointing at them, pressing the right mouse button and selecting an
operation from the popup menu. Pointing at the edge of the Graph-

ics Window (between displayed object and window border) brings
up a general popup menu. Up to 4 additional Graphics Window

can be opened by selecting “Open New Window” from this menu.

The “paw�� Main Browser” displays all browsable classes and connected hbook files. Up to 4
additionalbrowsers can be opened via the “View” menu of the “paw��
Executive Window” or via the “Clone” button on the browsers. For
more information on the browsers see the “Help” menus.

2.3. PAW++ 19

pawtut02 (21/09/93)

Basic PAW and PAW++

Basic PAW

PAW++

Command line interface and macros via KUIP.

Histogram Presenter.

Operations on histograms, fits,etc.

Arrays: Manipulation and Drawing.

Plotting of mathematical expressions.

Basic, and high level graphics.

Ntuple selection and histograming.

Fortran Interpreter: COMIS.

MOTIF interface.

Class/Object Browsers.

Direct Graphics Manipulation.

Ntuple viewer.

Histogram style panel.

Figure 2.1: PAW and PAW++ compared

20 Chapter 2. General principles

2.3.1 Overview of PAW++

– The upper left corner is the paw�� Executive Window, with its Input Pad at the bottom and the
Transcript Pad at the top.

– The paw�� Browser, where the various entities (pictures, 1-D and 2-D histograms and Ntuples) are
all defined with their own symbol, is shown bottom left. A “pop-up” menu has been activated for
the chosen 1-D histogram. Several actions like Plot, Smooth, Fit etc... can be performed via this
menu.

– The Graphics Window is seen top right. A 1-D view of the data points and two 2-D views (a
Surface-plot and a colored contour plot) are shown. On the 1-D view, two 1-D histograms are su-
perimposed. The results of a “smoothing” type of fit to the data points is also drawn. Information
about the data and the fit can be found in the inserted window.

– The Histogram Style Panel at the lower right allows graphics attributes of the histogram to be
controlled.

2.3. PAW++ 21

– The upper left corner shows the Ntuple Viewer. The left window shows the name of the vari-
ous variables, characterizing the selected Ntuple. Other windows and press-buttons specify which
combinations of the various variables and which events have to be treated (plotted, scanned, ...).

– The lower left contains the paw��Browser, with this time an Ntuple selected. A double on a Ntuple
icon open automatically the Ntuple Viewer on the active Ntuple.

– The Graphics Window is seen top right and shows a 3-D view of the combination of three vari-
ables, whose cuts are specified with the Cut Editor (see below).

– Direct graphics interactions with Ntuple data are possible. Just by clicking on a point in the Graph-

ics Window, the event description is displayed in the PAW++ Locate window.

– The Cut Editor panel, shown at the lower right, allows various combinations of cuts to be specified
and applied.

22 Chapter 2. General principles

2.4 Command structure

PAW is based on the KUIP[4] User Interface package, which can provide different types of dialogue
styles:

– Command mode, where the user enters a command line via the terminal keyboard.

– Alphanumeric menu mode, where the command is selected from a list.

– Graphics menu modes:
� Pull-down menus, fixed layout reflecting the command structure;
� Panels of function keys, interactive user definable multiple layouts.

It is possible to change interactively from one style to another.

The general format of a PAW command line is:

command parameters

The first part of the command has the format:

object�verb

where the object is the item on which the action is performed (e.g. HISTOGRAM� VECTOR� NTUPLE) and
the verb is the action to be performed (e.g. CREATE� DELETE� PLOT). In some cases the object needs
to be specified further (e.g. GRAPHICS�PRIMITIVE), while in other cases the verb’s action needs to be
clarified further (e.g. CREATE��D). All components can be abbreviated to their shortest unambiguous
form. For example the two following lines will have the same effect of creating a vector A with nine
components:

VECTOR�CREATE A���

or
VE�CR A���

In the case that the form is ambiguous all possible interpretations for the given abbreviation are displayed.

The second part of a command are its parameters and their meaning is determined by their position.
Some of these can be mandatory with the remaining ones optional. If all mandatory parameters are not
provided on the command line, PAW will prompt the user to specify them, indicating the default values if
defined. If the user wants to assign the default value to a parameter from the command line he can use the
place-holder character exclamation mark (!) to signify this to PAW. In the case of optional parameters,
the user must provide them in the correct sequence if he wants to change their values, otherwise the
corresponding defaults are taken. Parameters containing blanks must be enclosed within single quotes.

In the example below we create a one-dimensional histogram, providing the parameters one by one an-
swering the PAW query:

PAW
 histogram�create��dhisto

Histogram Identifier ��CR
� �	 ��

Histogram title ��CR
� �	 title�

Number of channels ��CR
�����	 �CR

Low edge ��CR
���	 ���

Upper edge ��CR
�����	 ���

2.5. Getting help 23

For the command below we provide all parameters on the command line, includingan optionalone (�����),
which by default has the value �. Note that this parameter must be specified explicitly, since PAW does

not prompt for it, as seen in the previous example. Note also the use of the exclamation mark to take the
default for the number of channels (���).

PAW
 hi�cr��d �� title� � ��� ��� �����

2.5 Getting help

Once inside PAW, one can start entering commands. An interestingfirst try would be the HELP command,
which displays a list of items, preceded by a number and followed by one line of explanation. In the next
example we search for a command to create a one-dimensional histogram.

PAW � help

From ����

�� KUIP Command Processor commands�

�� MACRO Macro Processor commands�

�� VECTOR Vector Processor commands�

	� HISTOGRAM Manipulation of histograms
 Ntuples�

�� FUNCTION Operations with Functions� Creation and plotting�

�� NTUPLE Ntuple creation and related operations�

� GRAPHICS Interface to the graphics packages HPLOT and HIGZ�

�� PICTURE Creation and manipulation of HIGZ pictures�

�� ZEBRA Interfaces to the ZEBRA RZ
 FZ and DZ packages�

��� FORTRAN Interface to MINUIT
 COMIS
 SIGMA and FORTRAN

Input�Output�

��� NETWORK To access files on remote computers�

��� OBSOLETE Obsolete commands�

Enter a number ��Q��command mode�� 	

�HISTOGRAM

Manipulation of histograms
 Ntuples� Interface to the HBOOK package�

From �HISTOGRAM����

�� � FILE Open an HBOOK direct access file�

�� � LIST List histograms and Ntuples in the current directory�

�� � DELETE Delete histogram�Ntuple ID in Current Directory

�memory��

	� � PLOT Plot a single histogram or a ��Dim projection�

�� � ZOOM Plot a single histogram between channels ICMIN and

ICMAX�

�� � MANY�PLOTS Plot one or several histograms into the same plot�

� � PROJECT Fill all booked projections of a ��Dim histogram�

�� � COPY Copy a histogram �not Ntuple� onto another one�

�� � FIT Fit a user defined �and parameter dependent� function

to a histogram ID ���Dim or ��Dim� in the specified

range�

��� �D�PLOT Plotting of ��Dim histograms in various formats�

��� CREATE Creation ��booking�� of HBOOK objects in memory�

��� HIO Input�Output operations of histograms�

��� OPERATIONS Histogram operations and comparisons�

�	� GET�VECT Fill a vector from values stored in HBOOK objects�

��� PUT�VECT Replace histogram contents with values in a vector�

��� SET Set histogram attributes�

24 Chapter 2. General principles

Enter a number ����one level back
 �Q��command mode�� ��

�HISTOGRAM�CREATE

Creation ��booking�� of HBOOK objects in memory�

From �HISTOGRAM�CREATE����

�� � �DHISTO Create a one dimensional histogram�

�� � PROFILE Create a profile histogram�

�� � BINS Create a histogram with variable size bins�

	� � �DHISTO Create a two dimensional histogram�

�� � PROX Create the projection onto the x axis�

�� � PROY Create the projection onto the y axis�

� � SLIX Create projections onto the x axis
 in y�slices�

�� � SLIY Create projections onto the y axis
 in x�slices�

�� � BANX Create a projection onto the x axis
 in a band of y�

��� � BANY Create a projection onto the y axis
 in a band of x�

��� � TITLE�GLOBAL Set the global title�

Enter a number ����one level back
 �Q��command mode�� �

� �HISTOGRAM�CREATE��DHISTO ID TITLE NCX XMIN XMAX � VALMAX �

ID C �Histogram Identifier� Loop

TITLE C �Histogram title� D�� �

NCX I �Number of channels� D����

XMIN R �Low edge� D���

XMAX R �Upper edge� D�����

VALMAX R �Maximum bin content� D���

Create a one dimensional histogram� The contents are set to zero� If

VALMAX��
 then a full word is allocated per channel
 else VALMAX is used

as the maximum bin content allowing several channels to be stored into

the same machine word�

�CR��continue
 �Q��command mode
 �X��execute� q

The meaning of the notation used in the text displayed by the HELP command is explained on page III.
Moreover an item preceded by a star indicates a terminal leaf in the command tree, i.e. an executable

command.

One can also inquire about creating a one-dimensional histogram by typing simply:

HELP histogram�create��dhisto

or
HELP his�cre��d

or even
HELP �

The system will then display the following information:

� �HISTOGRAM�CREATE��DHISTO ID TITLE NCX XMIN XMAX � VALMAX �

ID C �Histogram Identifier� Loop

TITLE C �Histogram title� D�� �

NCX I �Number of channels� D����

XMIN R �Low edge� D���

XMAX R �Upper edge� D�����

VALMAX R �Maximum bin content� D���

2.6. Special symbols for PAW 25

Create a one dimensional histogram� The contents are set to zero� If

VALMAX��� then a full word is allocated per channel� else VALMAX is used

as the maximum bin content allowing several channels to be stored into

the same machine word�

2.5.1 Usage

Very often a single line description of the usage of a command is sufficient as a reminder. This can be
obtained by the USAGE command, e.g.:

PAW
 USAGE �d

� �HISTOGRAM�CREATE��DHISTO ID TITLE NCX XMIN XMAX � VALMAX �

2.6 Special symbols for PAW

One should pay attention to the fact that, in addition to their common arithmetic meaning, the symbols in
table 2.1 have a special connotation when working with PAW .

Symbol Meaning

blank Separator between command and parameter and between different parameters

� Separator between command elements

Comment line (if first character of the command line)

� Inline comments

� String delimiter

� Line continuation in KUIP commands

� Escape character to be put in front of � and � to interpret them as literal

� Place-holder for command parameter (i.e. default value is taken)

At beginning of command line: Unix C shell-like history

(e.g. ��� �number� ��number� �string)

�� Macro argument delimiters

� Separator between macro file and macro member

� � Vector subscript delimiters

� Vector subscript range

� Multi-dimensional vector subscript dimensions delimiter

Note: These special characters loose their effect when imbedded in single quotes.

Table 2.1: Special symbols

2.7 PAW entities and their related commands

Relations which exist between various PAW entities as described in section 1.6 on page 9 and the oper-
ations which can be performed upon them have been schematically represented in figure 2.2. All com-
mands shown in the picture next to the lines connecting the objects have been abbreviated in a way that

26 Chapter 2. General principles

they are unambiguous and can be typed to PAW, which will then detail the various parameters to be sup-
plied.

There are three main input/output formats, namely a simple text file (e.g. with data points or commands),
a direct access ZEBRA RZ file (used by HBOOK and HIGZ for storing histograms and pictures on a
given machine) and a ZEBRA FZ sequential file, which can be used to transfer structured ZEBRA data
between various computers. The RZ and FZ representations can be transformed into each other using the
TOALFA and FRALFA commands.

The three main PAW objects, Ntuples, histograms and vectors, can be printed on an alphanumeric screen
(PRINT commands) or they can be plotted on a graphics screen (PLOT commands). The picture can be
transformed into a ZEBRA data structure and stored in a HIGZ database for later reference (e.g. edit-
ing by the HIGZ editor), or an external presentation can be obtained via the creation of a metafile. This
“metafile” can for instance consist of GKS or PostScript commands, which can then be interpreted by the
relative drivers and printed on an output device, if so desired.

2.7. PAW entities and their related commands 27

pawtut10 (21/09/93)

Ntuples

Vectors Histograms

ASCII

Files

HBOOK

Files

V
E

C
T

O
R

/R
E

A
D

H
R

IN

H
R

IN

N
T

U
P

L
E

/R
E

A
D

V
E

C
T

O
R

/W
R

IT
E

N
T

U
P

L
E

/S
C

A
N

H
R

O
U

T

H
R

O
U

T

N
T

U
P

L
E

/L
O

O
P

G
E

T
/C

O
N

T
E

N
T

S

N
T

U
P

L
E

/P
R

O
J
E

C
T

P
U

T
/C

O
N

T
E

N
T

S

Figure 2.2: PAW entities and their related commands

Chapter 3: PAW by Examples

Contents

3.1 Basic Principles � 30

3.2 Starting the PAW Tutorial � 31

3.3 Vectors—Tutorial � 32

3.4 Vectors—Examples � 36

3.4.1 Starting with vectors � 36

3.4.2 Some more vector commands � 38

3.4.3 The VECTOR/DRAW options � 40

3.4.4 Vectors and Histograms � 42

3.4.5 Vector operations � 44

3.4.6 Simple macro, with a loop and a VECTOR fit � � � � � � � � � � � � � � � � � 46

3.4.7 Macros flow control � 48

3.4.8 More on fits � 50

3.4.9 VECTOR/READ using MATCH � 54

3.5 Function drawing—Examples � 56

3.5.1 Plot a few one-dimensional functions � 56

3.5.2 Plot a one-dimensional function and loop � � � � � � � � � � � � � � � � � � � 58

3.5.3 More on macro input parameters � 60

3.5.4 Plot two-dimensional functions � 62

3.5.5 The Mandelbrot distribution � 64

3.5.6 Three-dimensional functions drawing � 66

3.6 Histograms—Tutorial � 68

3.7 Histograms—Examples � 80

3.7.1 Histograms creation � 80

3.7.2 Read histograms from file and plot � 84

3.7.3 Histogram archiving � 88

3.7.4 Multiple fits on histograms � 90

3.7.5 Histogram operations � 92

3.7.6 Keep and update histograms � 96

3.7.7 Playing with dice � 98

3.7.8 Two-dimensional histograms representations � � � � � � � � � � � � � � � � � 100

3.7.9 Non equidistant contour plots � 102

3.7.10 Coordinate systems � 104

3.7.11 Logarithmic scales on lego plots � 106

3.7.12 Subranges in histogram identifiers � 108

3.7.13 Stacked Lego plots � 110

3.7.14 A more complex example � 112

3.8 Ntuples—Tutorial � 116

3.9 Ntuples—Examples � 122

3.9.1 Ntuple creation � 122

28

29

3.9.2 Automatic and user binning � 128

3.9.3 Simple selection criteria on Ntuple � 130

3.9.4 Use of Ntuple masks and loops � 134

3.9.5 The use of Ntuple Cuts � 136

3.9.6 Ntuple and 2D histograms � 138

3.9.7 Profile histograms and Ntuples � 140

3.9.8 Copy a Ntuple variable into a Vector � 142

3.9.9 Chain of Ntuples � 144

3.10 SIGMA—Examples � 146

3.10.1 Examples of the SIGMA processor (1) � 146

3.10.2 Examples of the SIGMA processor (2) � 150

3.11 Pictures and PostScript � 152

3.11.1 Merge pictures onto one plot � 152

3.11.2 Pie charts � 154

3.11.3 Feynman diagrams � 156

3.11.4 Making a complex graph with PAW � 158

3.11.5 Making slides � 161

3.11.6 How to use PostScript files � 164

30 Chapter 3. PAW by Examples

3.1 Basic Principles

� paw (Physics Analysis Workstation) is an interactive system designed for data analysis and data
presentation.

� paw provides a set of commands acting on specific objects. The main objects or data type are: vec-

tors, histograms, and ntuples. The aim of the examples is to explain how to work with these objects.

� The paw commands are organized in a tree, whose general structure is: OBJECT�ACTION.
Examples: NTUPLE�PLOT, HISTOGRAM�PROJECT, VECTOR�DRAW

� The usual user interface is a “command line interface”: commands are typed on keyboard and ex-
ecuted after CR!. Commands parameters are separated with blank.

� Command editing and retrieving is also possible. It is controlled via the command RECALL�STYLE.

� Commands can be grouped into “Macros”. Macros are files with the extension �kumac containing
paw commands and flow control operators like “do loop”, “if endif”, etc .. . To execute a macro it
is enough to type EXEC macroname.

� online help can be obtained with the commands:

– HELP to have the full description of a command.

– USAGE to have only the command syntax.

� A printable version of the reference manual can be obtained with the command MANUAL.

� paw++ provides a Motif based User Interface to paw.

� paw and paw++ have the SAME basic functionality.

pawtut60b (07/01/94)

Objects

on Files

Objects

in Memory

PAW

Commands

3.2. Starting the PAW Tutorial 31

3.2 Starting the PAW Tutorial

This tutorial present the basic principles of paw using a set of examples (paw macros). It tries to cover
the most frequently used basic functions of paw. In the examples, highlighted points are written in UP-
PERCASE with a reference in the left margin. This reference point to a comment after the listing of the
macro. If the example produce a graphics output, it is given on the page behind the example. Under each
figure, the name of the corresponding macro is given.

Starting the PAW Tutorial

MACRO PAWLOGON

Mess ���

Mess �� ��

Mess �� Starting PAW examples ��

Mess �� ��

Mess �� ����� June ���� ��

Mess �� ��

Mess ���

This example shows what could be the MACRO PAWLOGON (in the file PAWLOGON�KUMAC) which is auto-
matically executed (if it exists) at the beginning of each paw session.

It is assumed that the macro ALDDEF is executed before each example.

alldef.kumac

MACRO ALLDEF

Size �� ��

Next

Set � � Option � � Igset �

Size �� ��

Histogram�Delete � � Vector�Delete �

Title
global � �

Title
global � � U

Option NBOX

Option NGRI

Set �WID �

Set CSIZ ���� � Set VSIZ ���� � Set TSIZ ����

Set XMGL ��� � Set XMGR ��� � Set YMGU ��� � Set YMGL ���

Set GSIZ ���

Set YHTI ���

Set KSIZ ����

Set MTYP �

Zone � �

Next

Return

32 Chapter 3. PAW by Examples

3.3 Vectors—Tutorial

pawtut20 (21/09/93)

Vector Creation

PAW > V/CRE X(10) R 1 2 3 4 5 5 4 3 2 1

PAW > V/WRITE X ! 5(F3.1,1X)

1.0 2.0 3.0 4.0 5.0

5.0 4.0 3.0 2.0 1.0

PAW > V/READ X VECT.DAT

PAW > SIGMA X=SIN(ARRAY(100,0#2*PI))

PAW > V/PRINT X

X (1) = .0000000E+00

X (2) = .6342392E-01

etc ...

PAW > VLOCATE X Y

1 2 3 4 5 6 7 8 9

9 8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8 9

9 8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8 9

9 8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8 9

9 8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8 9

VECT.DAT

0

2

4

1 2 3 4 5 6 7 8 9 10 11

0

2

4

6

8

10

10 20 30 40 50 60 70 80

-1

-0.5

0

0.5

1

10 20 30 40 50 60 70 80 90 100

1

2

3

4

5

3 4 5 6 7 8 9

3.3. Vectors—Tutorial 33

pawtut21 (17/01/94)

Vector Drawing

PAW > SIGMA X = SIN(ARRAY(100,0#2*PI))

PAW > SIGMA Y = COS(ARRAY(100,0#2*PI))

PAW > VECTOR/DRAW X

PAW > VECTOR/DRAW Y S

PAW > VECTOR/PLOT X

PAW > VECTOR/PLOT Y

PAW > GRAPH 100 X Y

-1

-0.5

0

0.5

1

20 40 60 80 100

0

2

4

-1 -0.5 0 0.5 1

0

2.5

5

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Vector X

Vector X

Vector Y

Vector Y

34 Chapter 3. PAW by Examples

pawtut28 (21/09/93)

Vectors and COMIS
The declaration VECTOR may be used inside a COMIS routine to

address a KUIP vector. If the vector does not exist, it is

created with the specifications provided by the declared dimension.

PAW > VECTOR/CREATE x(10) R 1 2 3 4 5 6 7 8 9 10

PAW > CALL VECT.F

PAW > VECTOR/WRITE x ! 10(1x,f3.0)

 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

PAW > VECTOR/WRITE y ! 10(1x,f4.0)

 1. 4. 9. 16. 25. 36. 49. 64. 81. 100.

SUBROUTINE VECT

VECTOR X,Y(10)

DO I=1,10

 Y(I) = X(I)*X(I)

ENDDO

END

3.3. Vectors—Tutorial 35

pawtut29 (21/09/93)

Fitting Vectors - Errors
PAW > APPLICATION SIGMA
SIGMA > alpha = array(24,0#2*PI)
SIGMA > sina = sin(alpha)+rndm(alpha)*0.3
SIGMA > errx = array(24,0.2#0.2)
SIGMA > erry = errx+rndm(errx)*0.1
SIGMA > EXIT
PAW > VECTOR/FIT alpha sina erry P3
PAW > VECTOR/FIT alpha(1:12) sina erry G S
PAW > VECTOR/CREATE par(1) r 10
PAW > VECTOR/FIT alpha sina erry SINFIT.F S 1 par
PAW > HPLOT/ERRORS alpha sina errx erry 24

function sinfit(x)
common /pawpar/ par(1)
sinfit=par(1)*sin(x)
end

 EXT PARAMETER STEP FIRST

 NO. NAME VALUE ERROR SIZE DERIVATIVE

 1 P1 1.0309 .75837E-01 .95058E-02 .25594E-01

CHISQUARE = .4981E+00 NPFIT = 24

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6

➊

➊

➋

➋

➌

➌

36 Chapter 3. PAW by Examples

3.4 Vectors—Examples

3.4.1 Starting with vectors

Starting with vectors

➏ � Starting with vectors

➏ VECTOR�CREATE VECT����� � Create a vector of length ��

➊ VECTOR�INPUT VECT� �� � � � � � � � � ��

➐ ➊ VECTOR�CRE VX���� R �� �� �� �� �� �� �� �� ��

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

v�cr vy���� r ��� ��� ��� ��� ��� ��� ��� ��� ���

���� ���� ���� ���� ���� ���� ���� ��� ��� ��� ���

➑ ZON � �

➋ VECTOR�DRAW VECT�

➍ ➋ GRAPH �� VX VY

➍ ➎ graph �� VX VY �

➎ gra �� VX VY C

➌ VECT�DEL �

➊ Here we see two ways to fill a vector:

(a) V�CREATE: create a vector and, optionally, fill it.

(b) V�INPUT: allows to fill an existing vector.

We will see other ways later.

➋ Graphic representations of vectors : VECTOR�DRAW and GRAPH.

➌ VECT�DELETE allows to delete a vector from memory. “*” means delete all vectors in memory.
Very often in paw a command acting on a specific kind of objects (vectors, histogram, pictures) can
access the complete object set with “*”.

Note also:

➍ The paw commands are case insensitive.

➎ Command abbreviations are permitted.

➏ The character “*” and “j” are used for comments.

➐ The character “˙” is used to indicate a continuation line.

➑ The command ZONE subdivides the graphical area.

3.4. Vectors—Examples 37

38 Chapter 3. PAW by Examples

3.4.2 Some more vector commands

Some more vector commands

vector�create VECT������ R

�� �� �� �� �� �� �� �� �� ���

��� ��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ��� ���

vector�create VECT����� R

��� ��� ��� ��� ��� ��� ��� ��� ��� ���

➎ SET HTYP ��� � VE�DR VECT��	�����

➊ ➋ VECTOR�DRAW VECT��	����� � SC

➍ ➏ VECTOR�DRAW VECT� � L�S

ve�list

➌ VE�WRITE VECT �vector�data� ������f��������

➊ A vector can have up to three dimensions. Dimensions which are not specified are taken as 1, for
example VEC���� � VEC�������� and VEC � VEC�������.

➋ It is possible to access a subrange of a vector, for example: V�����, V���� or V����.

➌ The command VECT�WRITE creates the file vector�data as follows:

�� �� �� �� ��
� 	�
� �� ���

��
� 	�
� �� �� �� �� �� ��

� �� �� �� �� �� �� �� �� ��

Note also:

➍ The character “!” means default value of a parameter.

➎ It is possible to have several commands, separated with “;”, on the same line.

➏ Many commands have a parameter which defines options. Such parameters (often called CHOPT or
OPTION) have the attribute “Option” (see the help). Each option is a character string. It is possible
to mix several options, e.g. “SC” or “L"S”.

3.4. Vectors—Examples 39

40 Chapter 3. PAW by Examples

3.4.3 The VECTOR/DRAW options

Some possible data representations with VECTOR/DRAW

zone � �

ve�create v���� R � � � � � � � � � �

➊ SET HTYP ���

ve�draw v

ve�draw v � b

ve�draw v � l

➌ VE�DRAW V CHOPT�L�

ve�draw v � bl�

➋ IGSET MTYP ��

ve�draw v � e

ve�de V

➍ RETURN

➊ The command SET defines some high level graphics attributes for commands like VECT�DRAW or
HIST�PLOT. Here the HTYP (Histogram hatch TYPe) is defined.

➋ IGSET is used to define basic graphics attributes like line width, marker type etc Here the
marker type is defined. It is possible to type always SET instead of IGSET i.e. if a IGSET parameter
is invoke with the SET command, the command IGSET is automatically invoked.

➌ By default the parameters of a command are positional but it is possible to assign values by name,
i.e. PARAMETER�value. For example we have here CHOPT�L". In this case the “!” can be sup-
pressed.

Note also:

➍ The statement RETURN is not mandatory in a macro except if there are several macros in the same
file. In this case, a macro within a file can be executed by: EXEC FILENAME�MACRONAME.

3.4. Vectors—Examples 41

42 Chapter 3. PAW by Examples

3.4.4 Vectors and Histograms

Functionality of VECT/DRAW, VECT/PLOT, VECT/HFILL and PUT/CONT

zone � �

ve�create VECT����� R � � � � � � � � � �

�

ve�draw VECT�

➊ VE�PLOT VECT�

�

➍ CREATE��DHISTO ��� �test vector�hfill� � �� ��

max ��� ���

➋ VE�HFILL VECT� ���

histo�plot ��� b

hi�de ���

�

create��dhisto ��� �test put�contents� �� �� ���

➎ MAX ��� ���

➎ MIN ��� ���

➌ PUT�CONTENTS ��� VECT�

histo�plot ���

➊ VECT�PLOT draws the statistic of the given vector.

➋ VECT�HFILL fills an existing histogram (create with �DHIST) with the values taken from a vec-
tor. Note that the command VECTOR�PLOT can automatically book an histogram and fill it with the
vector content.

➌ PUT�CONT replaces the content of an histogram with the values of a vector.

Note also:

➍ Histograms are hbook objects. They can be created, like here, interactively in paw or in a batch
hbook program.They can be stored in direct access files (we will see examples later).

➎ MIN and MAX define the minimum and maximum of an histogram. By default they are computed
automatically.

3.4. Vectors—Examples 43

44 Chapter 3. PAW by Examples

3.4.5 Vector operations

Vector operations

zone � �

ve�create V����� R � � � � � � � � � �

vector�operations�vscale V� ��� V��

➊ VE�OP�VSCALE V� ���� V��

ve�dr V�

ve�dr V�� � S

ve�dr V�� � S

➊ VSUB V� V�� V��M

ve�dr V�

set htyp ���

ve�dr V��M � S

set htyp ���

ve�dr V�� � S

➊ Some simple operations are possible on vectors:

VBIAS � Y�i� � a � X�i�

VSCALE � Y�i� � a " X�i�

VADD � Z�i� � X�i� � Y�i�

VMULTIPLY � Z�i� � Z�i� " Y�i�

VSUBSTRACT� Z�i� � X�i� � Y�i�

VDIVIDE � Z�i� � X�i� � Y�i�

In these operations the resulting vectors are created automatically. Note that for more complicate
operations like SQRT or trigonometric functions etc... , sigma must be used (we will see examples
later).

3.4. Vectors—Examples 45

46 Chapter 3. PAW by Examples

3.4.6 Simple macro, with a loop and a VECTOR fit

Simple macro, with a loop and a VECTOR fit

ve�create VECT������

➊ VE�READ VECT �vector�data�

�

ve�print VECT��	�����

vbias vect��	����� ��� vect��	�����

zon � �

�

➍ DO IP � ���

ve�draw vect��	����ip��

➋ ➌ ORDER � �IP� � �

➎ VECT�FIT VECT��	����� VECT��	����IP�� � P�order� WS

➍ ENDDO

ve�delete VECT

➊ Thefile vector�datapreviouslycreated is read again in this example via the command VECT�READ.
Note that it is not necessary to specify the format.

➋ This example shows the usage of variables in the macros (IP). The content of a variable can be
accessed via:

�variable�

Note that the name of a variable in not case sensitive.

➌ Simple computations on variables are possible, like i��i��� or a��b���. However it is not pos-
sible to do complex operations on variables. For this kind of computation vectors and sigma (or
comis) must be used.

➍ Some controls statements are available in macros (see the complete list in the next example).

➎ It is possible to fit the vectors with functions. Here the function used for the fit is a polynome. The
fitting mechanisms are very complete in paw and simple to use. All the details useful to use the
commands HIST�FIT and VECT�FIT are given in the paw manual.

3.4. Vectors—Examples 47

48 Chapter 3. PAW by Examples

3.4.7 Macros flow control

There are several constructs available for controlling the flow execution, which include conditional state-
ment blocks, several looping constructs and variable assignation.

Macro Statements

STATEMENT DESCRIPTION

MACRO mname par��val� ��� begin macro mname

EXEC mname par� par��val� ��� execute macro mname

RETURN end of a macro

READ par read macro parameter par from keyboard

SHIFT control parameters list

label� label (must terminate with a colon)

GOTO label jump to label

ON ERROR GOTO label resume at label on error condition

OF ERROR temporarily deactivate the ON ERROR GOTO handling

ON ERROR reactivate the latest ON ERROR GOTO handling

IF logical�expression GOTO label conditional statement

IF�THEN� ELSEIF� ELSE� ENDIF Macro flow control

CASE� ENDCASE Macro flow control

WHILE�DO� ENDWHILE Macro flow control

REPEAT� UNTIL Macro flow control

DO� ENDDO Macro flow control

FOR� ENDFOR Macro flow control

BREAKL Macro flow control

EXITM Macro termination

par = arithmetic˙expression assignment statement

Conditional statement

MACRO DOC� PAW
 EXEC DOC�

A � �� Sum of �� and ��� is ����

NN � ��� KUIP arithmetic is correct�

TOT � �A� �NN�

IF �TOT�
 �� THEN

MESSAGE Sum of �A� and �NN� is �TOT�

AOK � correct

ELSE

AOK � wrong

ENDIF

MESSAGE KUIP arithmetic is �AOK��

RETURN

3.4. Vectors—Examples 49

Unassigned variables cannot be substituted by their values.

MACRO DOC� PAW
 EXEC DOC�

A � �� Result of sum is �� �XX�

NN � ���

TOT � �A� �XX�

MESSAGE Result of sum is �TOT�

RETURN

50 Chapter 3. PAW by Examples

3.4.8 More on fits

Fit the function sin between 0 and ��

➍ APPLICATION SIGMA

➍ alpha�array������!��PI�

➍ sina�sin�alpha� rndm�alpha�����

➍ err�array��������!����

➍ EXIT

zone � �

➊ V�FIT ALPHA��	��� SINA��	��� ERR��	��� G

➊ V�FIT ALPHA SINA ERR P�

➊ V�FIT ALPHA SINA ERR P�

v�create par��� r ���

➋ V�FIT ALPHA SINA ERR SINFIT�F � � PAR

➌ V�PRI PAR

➊ In this macro two different types of predefined fits are used: Gaussian, Polynomial. As we will
see later, the histograms fitting command HISTO�FIT has exactly the same syntax except that the 3
vectors are replaced by an unique parameter: The histogram identifier. On histograms some other
minimization mechanisms are available via the commands SPLINE, SMOOTH, etc.. .

➋ It is also possible to defined specific functions. Here the function SINFIT is defined as follow:

The function SINFIT

function sinfit�x�

common �pawpar� par���

sinfit�par����sin�x�

end

➌ This VECT�PRI shows that now PAR��� is close to 1.

PAR��� � ��������

➍ Vector initialization with sigma. We will see other sigma examples later.

3.4. Vectors—Examples 51

52 Chapter 3. PAW by Examples

Output of the Gaussian fit

��

� �

� Function minimization by SUBROUTINE HFITV �

� Variable�metric method �

� ID � � CHOPT � �

� �

��

Convergence when estimated distance to minimum �EDM� �LT� ���E���

FCN� �������� FROM MIGRAD STATUS�CONVERGED ��� CALLS ��� TOTAL

EDM� ���E��� STRATEGY� � ERROR MATRIX ACCURATE

EXT PARAMETER STEP FIRST

NO� NAME VALUE ERROR SIZE DERIVATIVE

� P� ������ ������E��� ������E��� ������

� P� ������ ������E��� ������E��� ������E���

� P� ������� ������E��� ������E��� �������

Output of the Polynomial fit (P3)

CHISQUARE � �����E �� NPFIT � ���

��

� �

� Function minimization by SUBROUTINE HFITV �

� Variable�metric method �

� ID � � CHOPT � �

� �

��

Convergence when estimated distance to minimum �EDM� �LT� ���E���

FCN� �������� FROM MIGRAD STATUS�FAILED �� CALLS �� TOTAL

EDM� ���E��� STRATEGY�� ERROR MATRIX UNCERTAINTY� ����"

EXT PARAMETER APPROXIMATE STEP FIRST

NO� NAME VALUE ERROR SIZE DERIVATIVE

� P� ������� ������E��� ������E �� ������

� P� ������ ������E��� ������E �� �������

� P� ������� ������E��� ������E �� ������

� P� ������E��� ������E��� ������E �� ������

CHISQUARE � �����E �� NPFIT � ���

3.4. Vectors—Examples 53

Output of the Polynomial fit (P5)

��

� �

� Function minimization by SUBROUTINE HFITV �

� Variable�metric method �

� ID � � CHOPT � �

� �

��

Convergence when estimated distance to minimum �EDM� �LT� ���E���

FCN� �������� FROM MIGRAD STATUS�FAILED ��� CALLS ��� TOTAL

EDM� ���E �� STRATEGY� � ERR MATRIX NOT POS�DEF

EXT PARAMETER APPROXIMATE STEP FIRST

NO� NAME VALUE ERROR SIZE DERIVATIVE

� P� ������E��� ������E��� ������E��� ������

� P� ������ ������E��� ������E��� �������

� P� ������ ������E��� ������E��� �������

� P� ������� ������E��� ������E��� �������

� P� ������E��� ������E��� ������E��� ������

� P� �������E��� ������E��� ������E��� �������

CHISQUARE � �����E��� NPFIT � ���

Output of the “comis” fit

��

� �

� Function minimization by SUBROUTINE HFITV �

� Variable�metric method �

� ID � � CHOPT � �

� �

��

Convergence when estimated distance to minimum �EDM� �LT� ���E���

FCN� �������� FROM MIGRAD STATUS�CONVERGED �� CALLS �� TOTAL

EDM� ���E��� STRATEGY� � ERROR MATRIX ACCURATE

EXT PARAMETER STEP FIRST

NO� NAME VALUE ERROR SIZE DERIVATIVE

� P� ������ ������E��� ������E��� �������

CHISQUARE � �����E �� NPFIT � ���

54 Chapter 3. PAW by Examples

3.4.9 VECTOR/READ using MATCH

* VECTOR/READ VLIST FNAME [FORMAT OPT MATCH]

➊ V�READ X�Y�Z match�dat �x���F���� � �Data�

v�draw X

v�draw Y � S

v�draw Z � S

match.dat

➋ Title	 File used for tests of the MATCH parameter in V�READ

Data 	 ��� ��� ���

Data 	 ��� ��� ���

Data 	 ��� ��� ���

Data 	 ��� ��� ���

➋ This line will be ignored by a V�READ with MATCH

Data 	 ��� ��� ���

Data 	 ��� ��� ���

Data 	 ��� ��� ���

Data 	 ��� ��� ���

Data 	 ��� ��� ���

➋ End

This example shows how the MATCH parameter can be used in order to read only a subset of a file. MATCH
is used to specify a pattern string, restricting the vector filling only to the records in the file which verify
the pattern. Example of patterns:

� /string/ match a string (starting in column 1)

� -/string/ do not match a string (starting in column 1)

� /string/(n) match a string, starting in column n

� /string/(*) match a string, starting at any column

➊ When the MATCH parameter is used, the command V�READ reads the file in two passes:

(a) to find how many lines should be read in order to create vectors with the proper length.

(b) to read the lines where the MATCH parameter is found.

➋ these lines are skipped during the reading pass.

3.4. Vectors—Examples 55

56 Chapter 3. PAW by Examples

3.5 Function drawing—Examples

3.5.1 Plot a few one-dimensional functions

* FUNCTION/PLOT UFUNC XLOW XUP [CHOPT]

➌ OPT GRID

➊ FUNC�PLOT X�SIN�X��EXP������X� ���� ���

➋ SET DMOD �

func�plot �sin�x� cos�x����� ���� ��� s

set dmod �

func�plot �sin�x���x��x�cos�x�� ���� ��� s

➊ FUN�PLOT allows to plot 2D functions. The character “x” or “X” is used as the variable name. The
command FUN� is analog to FUNC�PLOT but it produces also an histogram with the value of the
function. The number of steps used to compute the function along the X axis can be defined via the
command POINTS.

Note also:

➋ SET DMOD allows to define the line type for the drawing the function. Note that IGSET LTYP cannot
be used is this case because in the command FUN�PLOTmany different lines are drawn (axes, boxes,
etc ..). So a specific attribute must be used (DMOD) for the line type of a function or an histogram.

➌ OPTION GRID allows to have a grid on the subsequent plots.

3.5. Function drawing—Examples 57

58 Chapter 3. PAW by Examples

3.5.2 Plot a one-dimensional function and loop

Plot a one-dimensional function and loop

➊ ➋ MACRO PLOT ���

� The Macro parameter is the number of plots to be drawn�

� the defaults is ��

set dmod �

➌ SET XTIC ������

➌ SET YTIC ������

set xval ����

set yval ����

opt utit

fun�plot x�sin�x� ��� ��

fun�plot x�cos�x��sin�x� ��� �� s

a������

do i��a������

fun�plot x�sin�x���i����� ��� �� s

fun�plot x�cos�x��sin�x���i����� ��� �� s

enddo

➊ In this example we can see that macros can have input parameters. These parameters can be posi-
tional, and they can be accessed in the macro via �n�, where n is the parameter number in the input
list, or they can be specified by name and they are accessed like variables. The next example gives
more details on the input parameters management.

➋ If one parameter (positional or not) needs to have a default value, the value can be specified on
the MACRO line. At execution time this default value is taken if no value is given. Note that for
parameters given by name, the default value on the line MACRO is mandatory.

➌ It is possible to define the geometry of a picture via the SET parameters described on the figure
8.3,. In this example the size of the tick marks is set to 0 (XTIC and YTIC). But it is not possible to
specify: SET XTIC � as, for the SET command, 0 means default value.

3.5. Function drawing—Examples 59

60 Chapter 3. PAW by Examples

3.5.3 More on macro input parameters

Access to the parameter list

MACRO P� PAW
 exe p� �� �

i � �� �� squared is ���

➊ FOR p IN ��� �i� � � � squared is ��

sq � �p� � �p� �� squared is ���

message �p� squared is �sq� � squared is �

ENDFOR � squared is �

Indexed positional parameters

MACRO P� PAW
 exe p� �� � ��

➋ DO i � �� �!� parameter � is ��

➌ message parameter �i� is �"i� parameter � is �

ENDDO parameter � is ��

➊ The * sign allows to access the list of input parameters.

➋ The # sign allows to access the number of input parameters.

➌ % allows to have indexed positional parameters.

3.5. Function drawing—Examples 61

62 Chapter 3. PAW by Examples

3.5.4 Plot two-dimensional functions

* FUNCTION/FUN2 ID UFUNC NCX XMIN XMAX NCY YMIN YMAX [CHOPT]

zone � �

➊ FUN� �� ABS�SIN�X��X���COS�Y��Y� �� �� � �� �� �

contour �� �� �

hi�de ��

fun� �� x�sin�x��y�sin�y� �� ���� ��� �� ���� ��� C

h�pl �� surf�

➊ The command FUN� allows to plot 2D functions and fill an histogram. The variables names are X
and Y.

➋ It is possible to represent a 2D histogram in several ways :

(a) As a scatter plot.

(b) With proportional boxes.

(c) With a color table.

(d) As a surface plot.

(e) As a surface with color levels.

(f) As a surface with a contour plot on top.

(g) As a surface with Gouraud shading.

(h) As a lego plot.

(i) As a lego plot with colours or shading.

(j) As a line contour plot.

(k) As a table.

(l) As an arrows plot.

3.5. Function drawing—Examples 63

64 Chapter 3. PAW by Examples

3.5.5 The Mandelbrot distribution

Calculate and plot (BOX option) the Mandelbrot distribution

➊ FUN� �� mandel�f ��� ���� �� ��� ���� ��� � �

➋ HI�PL �� BOX

FORTRAN Routine MANDEL

real function mandel�xp�

dimension xp���

data nmax����

x�xp���

y�xp���

xx���

yy���

do n���nmax

tt�xx�xx�yy�yy x

yy����xx�yy y

xx�tt

if ����lt�xx�xx yy�yy� go to ��

enddo

�� mandel�float�n��float�nmax�

end

➊ This example shows one of the usages of comis. In this case, the name of the function to be plotted
by FUN� is replaced by a comis FORTRAN function.

➋ CHOPT�� � in the command FUN�means tofill only the histogram withoutproducing the plot which
is by default a surface. The plot is produced by the command HIST�PLOT.

➌ The vector XP is an input parameter given by FUN�, for each cell, to the FORTRAN program. XP
contains the X and Y coordinates of each cell. You can try to insert:

print"� XP

in mandel�f to see the values changing (in this case it is better to set the input parameter of the
macro to 10).

3.5. Function drawing—Examples 65

66 Chapter 3. PAW by Examples

3.5.6 Three-dimensional functions drawing

FUNCTION�DRAW and RANGE

zon � �

➊ FUN�DRAW X��� Y��� Z�����

➋ RANGE � �

➊ FUN�DRAW X��� Y��� Z�����

➋ RANGE � � � �

➊ FUN�DRAW X��� Y��� Z�����

➋ RANGE � � � � � �

➊ FUN�DRAW X��� Y��� Z�����

➊ This command draws a sphere of radius 1. The function can be also a comis program.

➋ The command RANGE modify the X, Y and Z range in which the function is drawn.

3.5. Function drawing—Examples 67

68 Chapter 3. PAW by Examples

3.6 Histograms—Tutorial

pawtut30 (21/09/93)

Histogram Creation

HBOOK Batch Program

Results of Data Analysis

Specific Commands

HBOOK

Files

MEMORYNTUPLE/PLOT

NTUPLE/SCAN

VECTOR/DRAW

VECTOR/PLOT etc ...

HISTOGRAM/CREATE/1DHISTO

HISTOGRAM/CREATE/BINS

HISTOGRAM/CREATE/2DHISTO

 514 (1) Angular density

30001 (1) mix

60202 (1) p dy like

 8001 (2) Data (gluino)

 1103 (2) Charged particle

 11 (2) PHI vs Y

3.6. Histograms—Tutorial 69

pawtut31 (21/09/93)

1D Histogram Drawing

2D Representations

3D Representations

➊

➋

➌

➍ ➎

➊ Default

➋ Error Bars

➌ Marker at each bin

➍ Line

➎ Curve

@ Surface Plot

Lego Plot A

PAW > H/PL 514 PAW > H/PL 30001(50:90) E PAW > H/PL 514 *

PAW > H/PL 60202(40:60) L PAW > H/PL 60202(40:60) C

PAW > SURF 30001 20 20 PAW > LEGO 514(1:30) 20 -20 1

70 Chapter 3. PAW by Examples

pawtut32 (21/09/93)

2D Histogram Drawing (1)

2D Representations

➊ ➋ ➌

➍ ➎

➏

➐

➊ Scatter PLot

➋ Text Plot

➌ Boxes Plot

➍ Colors Plot

➎ Arrows Plot

➏ Line Contour Plot

➐ Filled Contour Plot

3.6. Histograms—Tutorial 71

pawtut33 (21/09/93)

2D Histogram Drawing (2)

3D Representations

➊ ➋ ➌

➍ ➎

➏

➐

➊ Lego Plot

➋ Filled Lego Plot

➌ Surface Plot

➍ Filled Surface Plot

➎ Surface and Contour

➏ Gouraud Shaded

➐ Stacked Lego Plot

72 Chapter 3. PAW by Examples

pawtut34 (21/09/93)

Histogram Archiving

PAW > HI/FILE 1 pawtut.hbook ; LDIR
PAW > HRIN *
PAW > HI/FILE 2 pawtutnew.hbook N
PAW > MDIR 1Dhistograms
PAW > MDIR 2Dhistograms ; LDIR
PAW > CD 1Dhistograms
PAW > HROUT 514,30001,60202 ; LDIR
PAW > CD \2Dhistograms
PAW > HROUT 8001,1103,11 ; LDIR

************** Directory ===> //LUN1 <===

===> List of objects

 HBOOK-ID VARIABLE CYCLE DATE/TIME NDATA

 514 0 1 930304/1520 153

 30001 0 1 930304/1520 200

 60202 0 1 930304/1520 152

 8001 0 1 930304/1520 537

 1103 0 1 930304/1521 5361

 11 0 1 930304/1748 444

************** Directory ===> //LUN2 ===

===> List of subdirectories

1DHISTOGRAMS Created 930305/1106 at record 3

2DHISTOGRAMS Created 930305/1106 at record 4

************** Directory ===> //LUN2/1DHISTOGRAMS <===

===> List of objects

 HBOOK-ID VARIABLE CYCLE DATE/TIME NDATA

 514 0 1 930305/1106 153

 30001 0 1 930305/1106 200

 60202 0 1 930305/1106 152

************** Directory ===> //LUN2/2DHISTOGRAMS <===

===> List of objects

 HBOOK-ID VARIABLE CYCLE DATE/TIME NDATA

 8001 0 1 930305/1106 537

 1103 0 1 930305/1106 5361

 11 0 1 930305/1106 444

3.6. Histograms—Tutorial 73

pawtut35 (21/09/93)

Histogram Operations

Basic Operations

MIN, MAX and NORMALIZE

ADD ID1 ID2 ID3 [C1 C2 OPTION]

SUBTRACT ID1 ID2 ID3 [C1 C2 OPTION]

MULTIPLY ID1 ID2 ID3 [C1 C2 OPTION]

DIVIDE ID1 ID2 ID3 [C1 C2 OPTION]

Add histograms: ID3 = C1*ID1 + C2*ID2.

Subtract histograms: ID3 = C1*ID1 - C2*ID2.

Multiply histogram contents: ID3 = C1*ID1 * C2*ID2.

Divide histograms: ID3 = C1*ID1 / C2*ID2.

PAW > H/FILE 1 pawtut.hbook

PAW > HISTO/PLOT 514

PAW > MIN 514 20

PAW > MAX 514 60

PAW > HISTO/PLOT 514

PAW > HISTO/del 514

PAW > HRIN 514

PAW > CD //pawc

PAW > NORMALIZE 514 1

PAW > HISTO/PLOT 514

0

20

40

60

80
ID

Entries

 514

 1336

20

30

40

50

60

0

0.02

0.04

0.06

0 0.02 0.04 0.06 0.08 0.1

74 Chapter 3. PAW by Examples

pawtut36 (21/09/93)

Histogram Projections

Basic Operations

HISTOGRAM/CREATE/BANX ID YMIN YMAX

HISTOGRAM/CREATE/SLIX ID NSLICES

HISTOGRAM/CREATE/PROX ID

HISTOGRAM/PROJECT ID

Create a projection onto the x axis, in a band of y.

Create projections onto the x axis, in y-slices.

Create the projection onto the x axis.

Fill all booked projections of a 2-Dim histogram.

Note that a BANY, SLIY, and PROY are also available

0 0.2 0.4 0.6 0.8 1

-1

0

1

0

50

100

150

0

20

40

60

80

0

50

100

0

500

1000

1500

0 0.2 0.4 0.6 0.8 1

PAW > BANX 8001 0.5 1

PAW > SLIX 8001 20

PAW > PROX 8001

PAW > H/PROJECT 8001

PAW > H/PLOT 8001.banx ➊

PAW > H/PLOT 8001.slix.1 ➋

PAW > H/PLOT 8001.prox ➌

➊

➋

➌

3.6. Histograms—Tutorial 75

pawtut37 (21/09/93)

Histogram Fitting

The HISTOGRAM/FIT command

HISTOGRAM/FIT ID FUNC [CHOPT NP PAR STEP PMIN PMAX ERRPAR]

ID Histogram Identifier

FUNC Function name

CHOPT Options

NP Number of parameters

PAR Vector of parameters

STEP Vector of steps size

PMIN Vector of lower bounds

PMAX Vector of upper bounds

ERRPAR Vector of errors on parameters

PAW > VECTOR/CREATE par(5)

PAW > H/PL 30001(85:110)

PAW > H/FIT 30001(85:100) E QS 0 par(1:2)

PAW > H/FIT 30001(100:110) G QS 0 par(3:5)

PAW > H/FIT 30001(85:110) E+G QS 5 par

G : Func=par(1)*exp(-0.5*((x-par(2))/par(3))**2)

E : Func=exp(par(1)+par(2)*x)

0

10

20

30

40

50

60

0.85 0.9 0.95 1 1.05 1.1

0

50

100

150

200

250

300

350

0 0.5 1 1.5

76 Chapter 3. PAW by Examples

pawtut38 (21/09/93)

Histogram Smoothing (1)

The HISTOGRAM/OPERATIONS/SMOOTH command

HISTOGRAM/OPERATIONS/SMOOTH ID [OPTION SENSIT SMOOTH]

ID Histogram or Ntuple Identifier

OPTION Options

SENSIT Sensitivity parameter

SMOOTH Smoothness parameter

For multiquadric smoothing, SENSIT controls

the sensitivity to statistical fluctuations.

SMOOTH controls the (radius of) curvature of the

multiquadric basis functions.

For spline smoothing, SENSIT and SMOOTH control

the no. of knots (= 10 * SENSIT) and degree of

splines (= SMOOTH + 2) (thus if SENSIT and SMOOTH are

at their default values a 10-knot cubic spline is used).

PAW > SMOOTH 30001

PAW > SMOOTH 11

0

50

100

150

200

250

300

350

0 0.25 0.5 0.75 1 1.25 1.5

-5

-4

-3

-2

-1

0

1

2

3

4

5

100 150 200 250

3.6. Histograms—Tutorial 77

pawtut39 (21/09/93)

Histogram Smoothing (2)

The HISTOGRAM/OPERATIONS/SPLINE command

HISTOGRAM/OPERATIONS/ID [ISEL KNOTX KX]

ID Histogram or Ntuple Identifier

ISEL Option flag

KNOTX Number of knots

KX Degree of the spline

PAW > SPLINE 514

PAW > H/PLOT 514

PAW > CONTOUR 1103 ! 3

PAW > SPLINE 1103

PAW > CONTOUR 1103 ! 2S

0

10

20

30

40

50

60

70

80

90

0 0.02 0.04 0.06 0.08 0.1

0

50

100

150

200

250

300

350

0 50 100 150

78 Chapter 3. PAW by Examples

pawtut65 (21/09/93)

Error bars Drawing (1)

The command HISTOGRAM/PLOT provides five different options in order do draw

histograms with error bars:

Simple error bars and current marker.

Like ➊ plus small lines at the end of the error bars.

Error rectangles.

A filled area through the end points of the vertical error bars.

A smoothed filled area through the end points of the vertical error bars.

➊
➋

➌

➍
➎

➊ ➋

➌

➍ ➎

PAW > H/PL 514(30:70) E ➊

PAW > H/PL 514(30:70) E1 ➋

PAW > H/PL 514(30:70) E2 ➌

PAW > H/PL 514(10:30) E3 ➍

PAW > H/PL 514(10:30) E4 ➎

3.6. Histograms—Tutorial 79

pawtut66 (21/09/93)

Error bars Drawing (2)

Two commands are provided to draw error bars from data inside vectors:

➊ GRAPHICS/HPLOT/ERRORS X Y EX EY N [ISYMB SSIZE CHOPT]

➋ GRAPHICS/HPLOT/AERRORS X Y EXL EXU EYL EYU N [ISYMB SSIZE CHOPT]

The first one allows to draw symmetric error bars on X and Y directions.

The second one is more general, it allows to define asymmetric errors

both on X and Y directions.

040PAW > V/CR X(20) R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PAW > V/CR Y(20) R 7 2 3 4 5 5 4 3 2 1 2 3 4 3 2 1 2 3 3 3

PAW > V/CR EXL(20) R 19*0.2 0.

PAW > V/CR EXU(20) R 19*1 0.

PAW > V/CR EYL(20) R 10*0.5 9*1 0.

PAW > V/CR EYU(20) R 3 2 1 3 2 1 .5 .5 .5 .5 9*.4 0.

PAW > GRAPH 20 X Y

PAW > AERROR X Y EXL EXU EYL EYU 20 20 .2 1

1

2

3

4

5

6

7

2.5 5 7.5 10 12.5 15 17.5 20

80 Chapter 3. PAW by Examples

3.7 Histograms—Examples

3.7.1 Histograms creation

Creation of one and two dimensional histograms

zon � �

function�fun� ��� htfun��f ���� �� ��

�dh ��� �Test ��dim Histo� ��� �� �� �����

➊ CALL UROUT�F������

➏ FUN�FUN� ��� HTFUN� ��� �� �� ��� �� �� C

hi�li

➌ ➎ HISTOGRAM�FILE � PAWHISTS�HBOOK ���� N

➍ HROUT �

The FORTRAN Routine HTFUN1

function htfun��x�

data c��c��xm��xm��xs��xs�

 ��������������������������

a���������x�xm���xs�����

a���������x�xm���xs�����

x��c�

x��c�

if�abs�a���gt��������x��c��exp�a��

if�abs�a���gt��������x��c��exp�a��

htfun��x� x�

end

The FORTRAN Routine HTFUN2

➏ function htfun��x�y�

htfun������htfun��x��htfun��y�

end

The FORTRAN Routine UROUT

subroutine urout�nev�

do i���nev

➋ x�HRNDM������I�

➋ CALL HFILL�����X�������

enddo

end

➊ In this example comis is used in the simplest way, via the command CALL (CALL UROUT�F). This
command just calls the FORTRAN routine given as parameter and executes it.

➋ It is possible to call several routines of the CERN library. HELP CALL gives the list of available
routines (see next page). Here the routines HRNDM� and HFILL (to fill an histogram) are called by
UROUT.

➌ It is possible to store the histograms in memory into a direct access file opened via the command
HIST�FILE. Here CHOPT�N means: “create a New hbook file”. If the first parameter (LUN) is 0 the
next free logical unit will be used.

➍ To store an histogram in a file it is enough to execute the command HROUT. HROUT � (or HROUT ")
stores all the histograms currently in memory.

➎ Several files can be attached via HIST�FILE during a paw session. To change the current file it is
enough to execute CD ��LUNn where “n” is the first parameter given to HI�FILE. Note that the
command LD �� gives the list of all the files currently attached. Each attached direct access file is
similar to a directory (cf UNIX).

➏ HTFUN� is in the file htfun��f. That is why it can be invoked without the extension �f because it
has been compiled during the CALL to htfun�.

Most of the time, the histograms are created and filled outside paw in batch programs calling hbook di-
rectly, and after interactively analyzed with paw.

3.7. Histograms—Examples 81

82 Chapter 3. PAW by Examples

The following routines from the CERN Program Library can be called:

From HBOOK

HBOOK��HBOOK��HBOOKN�HFILL�HF��HPRINT�HDELET�HRESET

HFITGA�HFITPO�HFITEX�HPROJ��HPROJ��HFN�HGFIT

HROPEN�PAOPEN�PACLOS�PAREAD�PAWRIT�HCDIR�HGIVEN

HTITLE�HBFUN��HBFUN��HRNDM��HRNDM��HBARX�HBARY

HPAK�HPAKE�HUNPAK�HGIVE�HGN�HGNF�HGNPAR�HF��HFF��HFF�

HRIN�HROUT�HI�HIE�HIX�HIJ�HIF�HIDALL�HNOENT�HX�HXY

HTITLE�HCOPY�HSTATI�HBPROF�HOPERA�HIDOPT�HDERIV

HMAXIM�HMINIM�HMAX�HMIN�HSUM�HNORMA�HREND

HEXIST�HRGET�HRPUT�HSCR�HFIND�HCX�HCXY�HLABEL

HBPROX�HBPROY�HBANDX�HBANDY�HBSLIX�HBSLIY

HBOOKB�HBSTAT�HDIFF�HUNPKE�HREBIN�HERROR

HOUTPU�HERMES�HISTDO�HFUNC�HIJXY�HXYIJ�HLPOS�HFC�

HSPLI��HSPLI��HMDIR�HLDIR�HLOCAT�HFITH�HFITV�HFINAM

HBNT�HBNAME�HBNAMC�HFNT�HFNTB�HGNT�HGNTF�HGNTV�HBSET

From HPLOT

HPLOT�HPLSYM�HPLERR�HPLEGO�HPLNT�HPLSUR�HPLSOF

HPLABL�HPLSET�HPLGIV�HPLOC�HPLTOC�HPLNEW�HPLOPT

From ZEBRA

FZIN�FZOUT�FZFILE�FZENDI�FZENDO

RZCDIR�RZLDIR�RZFILE�RZEND�RZIN�RZOUT�RZVIN�RZVOUT

RZOPEN�RZIODO

From KUIP

KUGETV�KUDPAR�KUVECT�KILEXP�KUTIME�KUEXEL�KUPROS

KUNWG�KUCMD�KUGUID�KUNDPV�KUPAR�KUPVAL�KUACT

3.7. Histograms—Examples 83

From HIGZ

IPL�IPM�IFA�IGTEXT�IGBOX�IGAXIS�IGPIE�IGRAPH�IGHIST

IGARC�IGLBL�IGRNG�IGMETA�IGSA�IGSET�IRQLC�IRQST�ISCR

ISELNT�ISFAIS�ISFASI�ISLN�ISMK�ISVP�ISWN�ITX�ICLRWK

IGPAVE�IGTERM

From KERNLIB

VZERO�UCOPY�RNDM�RANNOR�LENOCC�SBIT��SBIT��SBYT

JBIT�JBYT�UCTOH�UHTOC�CLTOU�CUTOL

ERF�ERFC�FREQ�PROB

The following common blocks may be referenced

�PAWC�� �QUEST�� �KCWORK�� �PAWPAR�� �PAWIDN�

�HCFITS�� �HCFITD�

84 Chapter 3. PAW by Examples

3.7.2 Read histograms from file and plot

Read histograms from file and plot

➊ HISTOGRAM�FILE � PAWHISTS�HBOOK

➋ HRIN �

➌ LDIR

➌ HI�LIST

➎ ZON � �

hi�pl ���

set htyp ���

hi�pl ���

➎ ZONE � � � �S�

hi�plot ���

➍ CLOSE �

➊ In this example the existing file PAWHISTS�HBOOK is attached in READ�ONLY mode.

➋ The command HRIN " (or HRIN �) gets all the histograms from the file PAWHISTS�HBOOK into the
memory. Note that commands like HIST�PLOT take automatically the histogram from the file if it
is not already in memory.

➌ Both LDIR and HI�LIST give the list of the histograms. LDIR is the generic command to list the
content of a zebra file. It has no knowledge about the objects stored in the file that’s why it cannot
retrieve the histogram names. The hbook specific command HIST�LIST is able tofind informations
on the histogram like the histogram title and the histogram type. On the next page is given the output
of these two commands.

➍ To release an histogram file it is enough to do CLOSE n where “n” is the logical unit number used
by the command HIST�FILE (the first parameter of this command).

Note also:

➎ The usage of the command ZONE. It is used two times to define zones with different sizes.

3.7. Histograms—Examples 85

86 Chapter 3. PAW by Examples

Output of LDIR

�������������� Directory ���
 ��LUN� ����

Created ����������� Modified �����������

���
 List of objects

HBOOK�ID CYCLE DATE�TIME NDATA OFFSET REC� REC�

��� � ����������� ��� � �

��� � ����������� �� ��� �

��� � ����������� ��� ��� �

Number of records � � Number of megawords � � ���� words

Per cent of directory quota used � ����

Per cent of file used � ����

Blocking factor � ������

Output of HIST/LIST

���
 Directory 	

��� ��� htfun��f

��� ��� Test ��dim Histo

��� ��� htfun�

3.7. Histograms—Examples 87

88 Chapter 3. PAW by Examples

3.7.3 Histogram archiving

In this example, the histograms in an existing hbook file are moved in a new hbook file in two separated
directories according to their type.

Histogram archiving and directories into hbook files

➊ HISTOGRAM�FILE � pawtut�hbook

hi�li

hrin �

close �

➋ HISTOGRAM�FILE � pawtutnew�hbook � N

➌ MDIR �Dhistograms

➌ MDIR �Dhistograms

ldir

cd �Dhistograms

➍ HROUT ���������������

ldir

cd ��LUN���Dhistograms

➍ HROUT ���������������

ldir

close �

➊ Attach an existing hbook file.

➋ Create a new hbook file.

➌ Create two subdirectories in the file pawtutnew�hbook.

➍ Store the 1d and 2d histograms in two separated directories. Some commands like HROUT are able
to loop on parameters if a list is given. Such parameters have the attribute “Loop” when a help is
performed on the command.

3.7. Histograms—Examples 89

Output of LDIR

���
 Directory 	

�� �N� CERN Population

��� ��� Angular density

����� ��� mix

����� ��� p dy like

���� ��� Data �gluino�

���� ��� Charged particle theta vs� phi

�� ��� PHI VS� Y VE WEIGHTED

�� ��� PHI VS� Y VE WEIGHTED

�������������� Directory ���
 ��LUN� ����

Created ����������� Modified �����������

���
 List of subdirectories

�DHISTOGRAMS Created ����������� at record �

�DHISTOGRAMS Created ����������� at record �

���
 List of objects

HBOOK�ID VARIABLE CYCLE DATE�TIME NDATA

�������������� Directory ���
 ��LUN���DHISTOGRAMS ����

Created ����������� Modified �����������

���
 List of objects

HBOOK�ID VARIABLE CYCLE DATE�TIME NDATA

��� � � ����������� ���

����� � � ����������� ���

����� � � ����������� ���

�������������� Directory ���
 ��LUN���DHISTOGRAMS ����

Created ����������� Modified �����������

���
 List of objects

HBOOK�ID VARIABLE CYCLE DATE�TIME NDATA

���� � � ����������� ���

���� � � ����������� ����

�� � � ����������� ���

�� � � ����������� �����

90 Chapter 3. PAW by Examples

3.7.4 Multiple fits on histograms

Fit of the histogram 110 with two Gaussians

histogram�File � pawhists�hbook

hrin �

➊ VECT�CREATE PAR���

histo�plot ���

➎ SET FWID �

➎ SET DMOD �

➋ HISTO�FIT �����	��� G QS � PAR��	��

➌ HISTO�FIT ������	���� G QS � PAR��	��

➎ SET DMOD �

➍ HISTO�FIT ��� G G QS � PAR

➊ The vector PAR will be used to get the initial values of the fit parameters.

➋ Compute a gaussian fit on the first 50 channels. After this command the gaussian parameters are
stored in PAR�����.

➌ Compute a gaussian fit on the last 50 channels. After this command the gaussian parameters are
stored in PAR���
�.

➍ Compute the global fit using PAR for initial values.

Note also:

➎ The first two gaussian fits are drawn with dashed lines and the third one with a solid line.

3.7. Histograms—Examples 91

92 Chapter 3. PAW by Examples

3.7.5 Histogram operations

Perform operations on histograms read from file and save results

➊ HISTOGRAM�FILE � PAWHISTS�HBOOK � U

hrin �

zon � �

opt grid

igset mtyp ��

hi�pl ��� e

hi�pl ��� pl

zon � � � s

➋ HI�OP�ADD ��� ��� ��� ��� ��

hi�op�add ��� ��� ��� ���� ��

set htyp ���

hi�pl ���

set htyp ���

➌ HI�PL ��PAWC���� s

set htyp ���

hi�pl ��PAWC���� s

text ���� ��� �LEP Very Preliminary� ���� ���

hrout �

➊ The option “U” (for Update) in the command HIST�FILE, is used when the user wants to change
the content of an existing histogram file by adding a new histogram (HROUT p 166) or deleting an
histogram (HSCRATCH p 166).

➋ It is possible to perform operations between histograms like addition with the commands in the
menu HISTOGRAM�OPERATIONS.

➌ The memory, like the attached files, can be considered as a directory. This is the current directory
by default and ��PAWC is its name. The command HI�PL ��PAWC�id plots the histogram “id” in
memory while the current directory is ��LUN�.

3.7. Histograms—Examples 93

94 Chapter 3. PAW by Examples

How to embellish the graphical ouputs

histogram�file � pawhists�hbook � u

hrin �

zon � �

opt grid

➊ SET �FON ���

➋ SET BWID �

➌ SET BCOL ���

igset mtyp ��

hi�pl ��� e

hi�pl ��� pl

zon � � � s

hi�op�add ��� ��� ��� ��� ��

hi�op�add ��� ��� ��� ���� ��

set htyp ���

hi�pl ���

set htyp ���

hi�pl ��pawc���� s

set htyp ���

hi�pl ��PAWC���� s

➍ IGSET CHHE ���

➍ IGSET TANG ���

➍ ITX ���� ��� �LEP Very Preliminary�

hrout �

➊ All the text fonts used for HISTO�PLOT are set to -60.

➋ The line width for the boxes around the histograms is set to 4 pixels. Like for the fonts it is possible
to do SET "WID to set all the width available in the SET command.

➌ The color of the shadow around the histograms is set to 5 (Yellow), it appears grey on black and
white PostScript printers.

➍ To access hardware fonts (ie PostScript fonts) the command ITX and its related attributes should
be used.

3.7. Histograms—Examples 95

Test 1-dim Histo

0

20

40

60

80

100

120

140

160

180

0 0.2 0.4 0.6 0.8 1

Test 1-dim Histo

0

20

40

60

80

100

120

140

160

180

0 0.2 0.4 0.6 0.8 1

Test 1-dim Histo

0

20

40

60

80

100

120

140

160

180

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

LEP Very Prelim
inary

96 Chapter 3. PAW by Examples

3.7.6 Keep and update histograms

Graphical operations on histograms (Keep and Add)

histogram�file � pawhists�hbook

zone � �

set htyp ���

➊ H�PL ��� K

set htyp ���

➊ H�PL ���

set htyp

➋ H�PL ���

set htyp ���

hi�pl ���

➊ The option “K” in the command HIST�PLOT keep the histogram in memory at the graphics level to
allow updating. If no zone is defined, the option “K” is not necessary.

➋ If an histogram is kept in memory (automatically or via option “K”) it is possible to add the content
of an other histogram with option “+”.

3.7. Histograms—Examples 97

98 Chapter 3. PAW by Examples

3.7.7 Playing with dice

Graphical operations on histograms (Keep and Update)

MACRO DICE ����

set hcol ����

set ndvx ������

➏ OPT STAT

➊ CALL DICE�F�����

hi�fit � g

FORTRAN routine dice

subroutine dice�n�

ifirst��

➋ CALL HBOOK�����Playing with two dice���������������

do � j���n

ix�����rndm�������� �

ix�����rndm�������� �

➌ CALL HFILL���FLOAT�IX� IX���������

if �ifirst�eq��� then

➍ CALL HPLOT����BK��� ����

ifirst��

else

➎ CALL HPLOT����BU��� ����

endif

enddo

end

➊ This macro call a comis routine only to be faster. The comis routine can be replaced by a macro,
in particular the options “K” and “U” are also available in command HIST�PLOT (try HELP H�PL).

➋ The histogram is also booked in the FORTRAN program. The corresponding paw command is
�DHISTO.

➌ Two random numbers between 1 and 6 are generated and the histogram is filled with the sum of
this numbers to simulate dice playing.

➍ The first time the histogram is plotted the option “K” is used to keep in memory a copy of the his-
togram in order to update it later.

➎ With the “U” option, paw looks at the current kept histogram contents and update the plot with the
new contribution without redrawing everything. This mechanism is used in data acquisition.

➏ The statistics are also updated.

3.7. Histograms—Examples 99

100 Chapter 3. PAW by Examples

3.7.8 Two-dimensional histograms representations

Different representations of two-dimensional histograms

histogram�file � pawhists�hbook

zon � �

➊ HI�PL ��� BOX

➊ CONTOUR ��� �� �

➊ LEGO ���

➊ SURFACE ���

hi�del �

➊ As we have already seen, the command H/PL allows to draw 2D histograms in different ways.
Three additional commands are also available:

" �HISTOGRAM��D�PLOT�CONTOUR � ID NLEVEL CHOPT PARAM �

" �HISTOGRAM��D�PLOT�SURFACE � ID THETA PHI CHOPT �

" �HISTOGRAM��D�PLOT�LEGO � ID THETA PHI CHOPT �

#index$histogram�contour%

#index$histogram�surface%

#index$histogram�lego%

These commands have more parameters than HIS�PLOT. For example CONTOUR allows to specify
a set of levels to be drawn via the parameter PARAM (see next example).

➋ Note that it is also possible to have 1D histograms represented as lego or surface plots. For example
you can do: HI�PLOT ��� LEGO.

3.7. Histograms—Examples 101

102 Chapter 3. PAW by Examples

3.7.9 Non equidistant contour plots

User defined non equidistant contour plots

histogram�file � pawhists�hbook

➊ VECTOR�CREATE LEVEL��� R �� �� �� �� �� �� �� ��

zone � �

➋ CONTOUR ��� � � LEVEL

arrow �� ��� �� ��� ��

➎ ARROW �� ��� �� ��� ��

➍ SET CHHE ���

➌ ITX ��� �� ������

Arrow �� ��� �� ��� ��

Itx ��� �� �������

option LOGY

h�plot ��� BOX

➏ ARROW �� ��� �� ��� ��

➏ ITX ��� �� �������

close �

The command CONTOUR allows to draw user defined levels.

➊ The vector LEVEL contains the list of 8 levels to be drawn.

➋ Only the levels specified in the the vector LEVEL are drawn.

Note also:

➌ Some comments can be drawn with the command ITX.

➍ The size of the text is in centimeters even if the position is in histogram coordinates (current nor-
malization transformation).

➎ The position of the arrow is in the current normalization transformation (here histogram coordi-
nates), but its size is in centimeters (last parameter. Here 0.2).

➏ Arrows and text can be drawn in logarithmic coordinates. For lines the logarithm should be com-
puted with sigma.

3.7. Histograms—Examples 103

104 Chapter 3. PAW by Examples

3.7.10 Coordinate systems

Coordinate systems with legos and surfaces

histogram�file � pawhists�hbook

zon � �

➋ OPT UTIT

➋ TITLE �Polar coordinates� U

➊ HI�PL ��� LEGO�POL

title �Cylindrical coordinates� U

➊ HI�PL ��� LEGO�CYL

title �Spherical coordinates� U

➊ HI�PL ��� LEGO�SPH

title �Pseudo rapidy coordinates� U

➊ HI�PL ��� LEGO�PSD

close �

➊ Legos and Surfaces plot can be drawn in Polar, Cylindrical, Spherical and Pseudo rapidity coordi-
nates.

Note also:

➋ The option UTIT allows to use “user title” on histogram. To define the title itself, the command
TITLE should be used with the option U. Without this option TITLE define the global title.

3.7. Histograms—Examples 105

106 Chapter 3. PAW by Examples

3.7.11 Logarithmic scales on lego plots

Logarithmic scales on lego plots and surfaces plot

histogram�file � pawhists�hbook

zon � �

opt utit

hi�pl ��� lego

➊ OPT LOGX

hi�pl ��� lego

➊ OPT LOGY

hi�pl ��� lego

➊ OPT LOGZ

hi�pl ��� lego

close �

➊ Logarithmic are possible on Legos and Surfaces plot. It works also in Polar, Cylindrical, Spherical
and Pseudo rapidity coordinates.

3.7. Histograms—Examples 107

108 Chapter 3. PAW by Examples

3.7.12 Subranges in histogram identifiers

Usage of subranges in histogram identifiers

histogram�file � pawhists�hbook

hrin �

close �

➍ TRACE ON

zon � �

➊ HI�PL ������	��� E

➍ � Comments are not printed in TRACE mode

hi�pl �����	��� box

➌ HI�PL �����	����	��� CONT

➍ TRACE OFF

➋ hi�pl ������	������	���� LEGO

➊ This example shows how to plot subranges of 1D or 2D histograms. The different possibility to
give the range are the following:

(a) id�n��n�� with n� � n�.

(b) id�n��� in this case n� � number of bins.

(c) id��n�� in this case n� � �.

➋ If n� or n� are integer they are consider as bin numbers. But if they are real they are consider axis
values. Note that bin values and axis values can be mixed inside the same range definition.

➌ In case of 2D histograms, the two ranges are separate with “,”.

Note also:

➍ The TRACE command sets ON or OFF the trace mode. When this mode is on, all the command exe-
cuted inside macros are displayed on the standard output.

Ouput of the TRACE mode

 zon � �

 HI�PL ������	��� E

 hi�pl �����	��� box

 HI�PL �����	����	��� CONT

 TRACE OFF

3.7. Histograms—Examples 109

110 Chapter 3. PAW by Examples

3.7.13 Stacked Lego plots

Stacked Lego plots and subranges

hi�file � pawhists�hbook

zon � �

➊ HIST�PLOT ������	������	���� LEGO�

➊ HIST�PLOT �������	������	��� LEGO�

zon � � � s

➌ OPTION BAR

➋ HIST�PLOT ������	������	���� �������	������	��� LEGO�

close �

➊ The two commands draw submatrices of the histogram 200 as Lego plots.

➋ The submatrices previously drawn are now stacked.

➌ The option BAR is active on Lego plots.

3.7. Histograms—Examples 111

112 Chapter 3. PAW by Examples

3.7.14 A more complex example

Fit the background with a P3

Macro PAWEX��A ID������ IP���� IP����� IZ���� IZ����� LOOP���

�

Igset �BUF �

Hi�file � pawtut�hbook � Hrin �ID�

Set FWID � � Set DMOD �

➊ CALL hinfo�f��ID��

NBIN � hid���

Vector�Create FUNC��NBIN��

Vector�Create Y��NBIN��

Vector�Create S��NBIN��

Vector�Create X��NBIN���LOOP��

Histogram�Copy �ID� �

Histogram�Copy �ID� �

�

➋ Do i����LOOP�

Histogram�Plot �

➌ Histogram�Fit ���IZ��	�IZ��� P� �q

➌ Get�Func � FUNC � Put�Cont � FUNC

➌ Sub � � �

➍ Histogram�Fit ���IP��	�IP��� G �q

Histogram�Plot ���IP��	�IP��� FUNCS

➍ Get�Func � FUNC � Put�Cont � FUNC

➍ Sub � � �

Get�Func � X��	�NBIN���i��

Call igterm

Enddo

�

Get�Func � FUNC � Put�Cont � FUNC

Sub �id� � �

Zone � �

Histogram�Plot �ID�

Histogram�Plot � FUNCS

➎ Do i����LOOP�

Vector�Copy X��	�NBIN���i�� Y

SIGMA S � S Y

SIGMA Y � Y FUNC

Put�Cont � Y

Histogram�Plot ���IP��	�IP��� SL

Enddo

Histogram�Plot ���IP��	�IP��� HIST

Put�Cont � S

Histogram�plot ���IP��	�IP��� Sl

�

Close �

V�Del FUNC�X�Y�S � H�Del �����

3.7. Histograms—Examples 113

The routine hinfo.f

subroutine hinfo�id�

character��� chtitl

vector hid���

call hgive�id�chtitl�ncx�xmin�xmax�ncy�ymin�ymax�nwt�loc�

hid��� � ncx

hid��� � xmin

hid��� � xmax

hid��� � ncy

hid��� � ymin

hid��� � ymax

end

➊ This routine allows to have informations on an histogram.

➋ This loop try to find a P� background.

➌ After a P� fit, a new histogram is booked with the fit value at each channel. This new histogram is
consider as an approximation of the background and is removed from the original histogram.

➍ A gaussian fit allows to remove the pick.

➎ This loop produce the two final plots.

114 Chapter 3. PAW by Examples

3.7. Histograms—Examples 115

116 Chapter 3. PAW by Examples

3.8 Ntuples—Tutorial

pawtut40 (21/09/93)

Ntuples: basic idea

NTUPLE

VARIABLE 1

V
11

V
12

V
13

...

V
1j

...

. . . VARIABLE i

V
i1

V
i2

V
i3

...

V
ij

...

. . . VARIABLE n

V
n1

V
n2

V
n3

...

V
nj

...

Line � event

Column � variable

Can be accessed by:

① Name

② Number

3.8. Ntuples—Tutorial 117

pawtut41 (21/09/93)

Ntuple Creation

HBOOK Batch Program Interactive PAW

HBOOK File

Specific Commands (RWN Only)

COMIS Program (RWN and CWN)

NTUPLE/CREATE

NTUPLE/READ

Row

Wise

Ntuple

Column

Wise

Ntuple

R

W

N

C

W

N

Disk

Resident

Ntuple

Memory

Resident

Ntuple

D

R

N

M

R

N

MEMORY

Disk Resident Ntuple: partialy in memory Memory Resident Ntuple: totaly in memory

118 Chapter 3. PAW by Examples

pawtut47 (21/09/93)

Ntuple cuts definition

The NTUPLE/CUTS command

NTUPLE/CUTS CUTID [OPTION FNAME]

CUTID Cut identifier

OPTION Options

FNAME File name

Define the CUTID with the format $nn. nn is an integer between 1 and 99.

This cut can then be used in subsequent commands NTUPLE/PLOT, PROJECT.

0

50

100

150

20 30 40 50 60 70

0

10

20

30

40

40 50 60

0

50

100

150

40 50 60

PAW > HI/FILE 1 pawtut.hbook

PAW > NTUPLE/PLOT 10.age

PAW > CUT $1 grade>10

PAW > NTUPLE/PLOT 10.age $1

PAW > CUT $6 G

PAW > NTUPLE/PLOT 10.age $6

3.8. Ntuples—Tutorial 119

pawtut49 (21/09/93)

Ntuple Drawing

The NTUPLE/PLOT command

NTUPLE/PLOT IDN [UWFUNC NEVENT IFIRST NUPD OPTION IDH]

IDN Ntuple Identifier

UWFUNC Selection function

NEVENT Number of events

IFIRST First event

NUPD Frequency to update histogram

OPTION Options

IDH Identifier of histogram to fill

0

100

200

300

400

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4 -2 0 2 4

5
10

15

-4
-2
0
2
4

PAW > HI/FILE 1 hrztest.hbook

PAW > NTUPLE/PLOT 30.x

PAW > NTUPLE/PLOT 30.x%y

PAW > NTUPLE/PLOT 30.x%z%y

120 Chapter 3. PAW by Examples

pawtut50 (21/09/93)

Ntuple Projection

The NTUPLE/PROJECT command

NTUPLE/PROJECT IDH IDN [UWFUNC NEVENT IFIRST]

IDH Identifier of histogram to fill

IDN Identifier of Ntuple

UWFUNC Selection function or cut identifier

NEVENT Number of events

IFIRST First event

Project an Ntuple onto a 1-Dim or 2-Dim histogram, possibly using a

selection function or predefined cuts.

-4
-2

0
2

4

-4

-2

0

2

4

0

50

100

150

200

250

PAW > 2DHISTO 2 ’X vs Y’ 20 -4 4 20 -4 4

PAW > NTUPLE/PROJECT 2 30.x%y

PAW > HISTO/PLOT 2 LEGO1

3.8. Ntuples—Tutorial 121

pawtut51 (21/09/93)

Loop on Ntuple Events

The NTUPLE/LOOP command

NTUPLE/LOOP IDN UWFUNC [NEVENT IFIRST]

IDN Identifier of Ntuple

UWFUNC Selection function or cut identifier

NEVENT Number of events

IFIRST First event

Invoke the selection function UWFUNC for each event starting at event IFIRST.

PAW > HISTO/FILE 1 hrztest.dat

PAW > NTUPLE/LOOP 30 copy.f

PAW > V/DR vx(1:10) ; V/DR vy(1:10) ; V/DR vz(1:10)

 REAL FUNCTION COPY(XDUMMY)

 COMMON/PAWIDN/IDNEVT,VIDN1,VIDN2,VIDN3,VIDN(10),

 + X , Y , Z

*

 VECTOR VX(10000), VY(10000), VZ(10000)

*

 VX(IDNEVT) = X

 VY(IDNEVT) = Y

 VZ(IDNEVT) = Z

 END

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

5 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

5 10
0

1

2

3

4

5

5 10

122 Chapter 3. PAW by Examples

3.9 Ntuples—Examples

3.9.1 Ntuple creation

Creation of an Row-Wise Ntuple (RWN) and first look at its contents

➊ NTUPLE�CREATE �� �CERN Population� �� � � ����

Category Division Flag Age Service Children Grade

Step Nation Hrweek Cost

�

➋ NTUPLE�READ �� APTUPLE�DAT

➌ HISTO�FILE � RWN
APTUPLE�HBOOK ���� N

➌ HROUT ��

➍ NTUPLE�PRINT ��

zone � �

➏ OPT STAT

➏ SET STAT ���

➍ NTUPLE�PLOT ���Age

ntuple�plot ���Division

➊ �NTUPLE�CREATE IDN TITLE NVAR CHRZPA NPRIME VARLIST: Creates an Ntuple, i.e., a ma-
trix of n columns. Each line of the matrix is often called an “event”. Internally there is two different
way to access the data: by rows (Row-Wise Ntuple) or by columns (Column-Wise Ntuple). The
Ntuple may be created either in memory or, if necessary, using an automatic overflow to an his-
togram file.

➋ NT�READ allows to fill an RW/Ntuple with numeric values read from an existing ASCII file.

➌ Like histograms, Ntuples are hbook objects and can be stored into histogram files opened via the
command HIST�FILE.

➍ The command NT�PRINT gives the description of the Ntuple (see next page).

➎ NT�PLOT allows to plot an Ntuple. The syntax is:

NT�PLOT nid�n ������

where “nid” is the Ntuple identifier (a number) and “n” is the number or the name of one of the
variable in the Ntuple. By default, if “n” is not specified, the first variable of the Ntuple is ploted.

Note also:

➏ OPT STAT and SET STAT are used to plot some statistical informations.

3.9. Ntuples—Examples 123

124 Chapter 3. PAW by Examples

Creation of Column-Wise Ntuple (CWN)

➊ HISTO�FILE � CWN
APTUPLE�HBOOK ���� N

➋ CALL CERNPOP�F

hrout �

ntuple�print �

zone � �

opt stat

set stat ���

ntuple�plot ��Age

➌ NTUPLE�PLOT ��Division

➊ A new hbook file is open. If the Ntuple created after doesn’t fit in memory, it will be automatically
write on this file.

➋ This command create and read a CW/Ntuple. It is the equivalent of the �NTUPLE�CREATE and
�NTUPLE�READ commands in the previous example (for the time being these commands work only
with the RWN format). For more details on the CW/Ntuples management see the hbook manual.

➌ The axis are directly drawn with character labels.

3.9. Ntuples—Examples 125

126 Chapter 3. PAW by Examples

COMIS routine used to create a CW/Ntuple

Subroutine cernpop

�

integer category� flag� age� service� children� grade� step�

 hrweek� cost

common �cern� category� flag� age� service� children� grade�

 step� hrweek� cost

character�� division� nation

common �cernc� division� nation

�

character���� chform

dimension rdata����

character�� divs����� nats����

data divs ��AG�� �DD�� �DG�� �EF�� �EP�� �FI�� �LEP�� �PE��

 �PS�� �SPS�� �ST�� �TH�� �TIS��

data nats ��AT�� �BE�� �CH�� �DE�� �DK�� �ES�� �FR�� �GB��

 �GR�� �IT�� �NL�� �NO�� �PT�� �SE�� �ZZ��

�

open�unit����file��aptuple�dat��status��old��

�

call hbnt����CERN Population �CWN���� ��

chform � � CATEGORY���������	I� FLAG	U	�� AGE�������	I����

 � SERVICE������	I� CHILDREN������	I� GRADE������	I����

 � STEP������	I� HRWEEK	I� COST	I�

call hbname��� �CERN�� category� chform�

chform � �DIVISION	C� NATION	C�

call hbnamc��� �CERN�� division� chform�

�

�� read���� ����F���� F������ end���� rdata

category � rdata���

division � divs�int�rdata�����

flag � rdata���

age � rdata���

service � rdata���

children � rdata���

grade � rdata���

step � rdata���

nation � nats�int�rdata�����

hrweek � rdata����

cost � rdata����

call hfnt���

goto ��

�

�� close ����

end

3.9. Ntuples—Examples 127

RWN NT/PRINT output

��

� NTUPLE ID� �� ENTRIES� ���� CERN Population �

��

� Var numb � Name � Lower � Upper �

��

� � � CATEGORY � ��������E �� � ��������E �� �

� � � DIVISION � ��������E �� � ��������E �� �

� � � FLAG � ��������E �� � ��������E �� �

� � � AGE � ��������E �� � ��������E �� �

� � � SERVICE � ��������E �� � ��������E �� �

� � � CHILDREN � ��������E �� � ��������E �� �

� � � GRADE � ��������E �� � ��������E �� �

� � � STEP � ��������E �� � ��������E �� �

� � � NATION � ��������E �� � ��������E �� �

� �� � HRWEEK � ��������E �� � ��������E �� �

� �� � COST � ��������E �� � ��������E �� �

��

CWN NT/PRINT output

��

� Ntuple ID � � Entries � ���� CERN Population �CWN�

��

� Var numb � Type � Packing � Range � Block � Name �

��

� � � I�� � �� � ��������� � CERN � CATEGORY

� � � U�� � � � � CERN � FLAG

� � � I�� � � � ������� � CERN � AGE

� � � I�� � � � ������ � CERN � SERVICE

� � � I�� � � � ������ � CERN � CHILDREN

� � � I�� � � � ������ � CERN � GRADE

� � � I�� � � � ������ � CERN � STEP

� � � I�� � � � CERN � HRWEEK

� � � I�� � � � CERN � COST

� �� � C�� � � � CERN � DIVISION

� �� � C�� � � � CERN � NATION

��

� Block � Unpacked Bytes � Packed Bytes � Packing Factor �

��

� CERN � �� � �� � ����� �

� Total � �� � �� � ����� �

��

� Number of blocks � � Number of columns � �� �

��

128 Chapter 3. PAW by Examples

3.9.2 Automatic and user binning

Read an Ntuple from a histogram file. Automatic and user binning

hi�file � �rwn
aptuple�hbook�

zon � �

ntuple�pl ���age

�dhisto �� �Age � User binning� �� ��� ���

➋ SET NDVX ����

➊ NTUPLE�PROJECT �� ���AGE

hi�plot ��

�dhisto �� �Cost � User binning� �� �� ������

➋ SET NDVX

ntuple�plot ���cost

set ndvx ����

ntuple�pl ���Cost � ���

➊ NT�PROJECTProject an Ntuple onto a 1-Dim or 2-Dim histogram. The histogram is not reset before
the projection. This allows several PROJECTs from different Ntuples.

➋ By default the labeling on the axis is automatic. It possible to change the number of division via
the commands SET NDVX, SET NDVY and SET NDVY. The number of divisions (NDIV) is calculated
according to the following convention:

�NDIV � N� � ���"N� � �����"N��

Where N� is the number of primary divisions, N� is the number of second order divisions and N� is
the number of third order divisions.

The sign of NDIV is also used to control the labeling:

(a) If NDIV is positive, it is taken as a maximum number and the binning is optimized.

(b) If NDIV is negative, its absolute value is taken as the exact number of division without opti-
mization.

(c) If NDIV equal zero is given the default (510. i.e. 10 primary divisions and 5 secondary) is
taken.

3.9. Ntuples—Examples 129

130 Chapter 3. PAW by Examples

3.9.3 Simple selection criteria on Ntuple

Ntuple SCAN and the use of simple selection criteria

hi�file � �rwn
aptuple�hbook�

➍ ALIAS�CREATE DIVEP �

alias�create NATFR �

cd ��pawc

�

➊ ➋ NT�SCAN ��LUN���� nation�NATFR�and�division�DIVEP

� � � age service children grade step

�

hi�cr��d ��� �Number of years at CERN� �� �� ���

max ��� ���

set ndvx ���

set htyp ���

➌ NT�PL ��LUN�����SERVICE � ����

➎ ATITLE �Years at CERN� �Number of staff�

set htyp ���

➋ ➌ NT�PL ��LUN�����SERVICE NATION�NATFR ���� � � S

set htyp ���

nt�pl ��LUN�����Service division�DIVEP�and�nation�NATFR ���� � � S

➊ NT�SCAN prints in an alphanumeric way the content of an Ntuple. On the next page is given the
output of this command.

➋ In the commands NT�PLOT and NT�SCAN, the second parameter is the selection criteria. Only the
events satisfying this selection are taken into account.

➌ By default NT�PLOTfill an histogramwith the indentifier 1000000. The next invocationof this com-
mand will overwrite the content of this histogram. If eitherNEVENT or IFIRST or NUPD are negative,
then the identifier of the histogram being filled will be taken as IDF��NEVENT or IDF��IFIRST or
IDF��NUPD. IDF may have been created with H�CREATE. Before filling IDF, the contents of IDF
are reset if IDF already exists. Note that IDF not equal to 1000000 is a convenient way to force
user binning. This is used here.

We’ll see later another way to fill an histogram with data read in an Ntuple.

Note also:

➍ The aliases allow to define shortcut abbreviations. The aliases are known globally e.g. in all macros
and in command mode.

➎ ATITLE allows to define the title on the axis.

3.9. Ntuples—Examples 131

132 Chapter 3. PAW by Examples

NT/SCAN output

���

� ENTRY � AGE � SERVICE � CHILDREN � GRADE � STEP �

���

� �� � ������ � ������ � ������E ��� ������ � ������ �

� ��� � ������ � ������ � ������E ��� ������ � ������ �

� ��� � ������ � ������ � ������E ��� ������ � ������ �

� ��� � ������ � ������ � ������E ��� ������ � ������ �

� ��� � ������ � ������ � ������E ��� ������ � ������ �

� ��� � ������ � ������ � ������E ��� ������ � ������ �

� ��� � ������ � ������ � ������E ��� ������ � ������ �

� ��� � ������ � ������ � ������ � ������ � ������ �

� ��� � ������ � ������ � ������ � ������ � ������ �

� ��� � ������ � ������ � ������E ��� ������ � ������ �

� ��� � ������ � ������ � ������E ��� ������ � ������ �

� ��� � ������ � ������ � ������E ��� ������ � ������ �

� ��� � ������ � ������ � ������E ��� ������ � ������ �

� ��� � ������ � ������ � ������E ��� ������ � ������ �

� ��� � ������ � ������ � ������E ��� ������ � ������ �

More���� � �CR
�N�G �	 n

��
 �� events have been scanned

3.9. Ntuples—Examples 133

134 Chapter 3. PAW by Examples

3.9.4 Use of Ntuple masks and loops

Use of Ntuple masks and loops

hi�file � �rwn
aptuple�hbook�

�dhisto �� �Distribution by grade� �� � ��

max �� ���

ntuple�plot ���grade � ���

➊ NT�MASK STMASK n ����

➋ NT�LOOP ���GRADE STEP���

STMASK���

nt�loop ���grade grade
��and�step���

stmask���

nt�loop ���grade

�grade����and�step�����or��grade����and�step���

stmask���

NT�PLOT ���GRADE

STMASK����OR�STMASK����OR�STMASK���

STMASK��� ��� � � s

➌ NT�MASK STMASK P

➍ NT�MASK STMASK C

➊ NT�MASK perform operations with masks. A mask is a direct-access file with the name MNAME�MASK
(here STMASK�MASK). It must contain as many 32 bit words as there are events in the associated Ntu-
ple. Masks are interesting when only a few events of a Ntuple are selected with a time consuming
selection algorithm.

➋ The symbol “�” in NT�LOOP and NT�PLOT allows to fill the mask according to the selection func-
tion.

➌ This command allows to print the definition of the mask.

Output of the command NT�MASK STMASK P

�����
 Current active selections in mask STMASK

Bit Nevents Selection

� �� STEP���

� ��� GRADE
��AND�STEP���

� �� �GRADE����AND�STEP�����OR��GRADE����AND�STEP���

� ��� STMASK����OR�STMASK����OR�STMASK���

➍ The option “C” in NT�MASK close the mask.

➎ Try NT�PLOT ���GRADE STMASK���: It produce the same result as the last NT�PLOT of the macro.

➏ Compare the execution time (with TIMING) of the two following commands:

NTUPLE�PLOT ���GRADE �GRADE����AND�STEP�����OR��GRADE����AND�STEP�	�

NTUPLE�PLOT ���GRADE STMASK���

3.9. Ntuples—Examples 135

136 Chapter 3. PAW by Examples

3.9.5 The use of Ntuple Cuts

The use of Ntuple Cuts

hi�file � �rwn
aptuple�hbook�

➊ CUT �� MOD�FLAG����EQ��

➊ CUT �� MOD�FLAG���
�

�d �� �Male�female and resident�non�resident Staff� �� � ��

➋ OPT BAR

➋ SET BARW ���

➋ SET BARO ���

max �� ���

➌ LABELS � �� AG DD DG EF EP FI LEP PE PS SPS ST TH TIS

set NDVX �����

set ndvy ����

ntuple�plot ���division � ���

set htyp ���

ntuple�plot ���division �� ��� � � s

set baro ���

set htyp ���

ntuple�plot ���division �� ��� � � s

set htyp ���

ntuple�plot ���division ���and��� ��� � � s

ATITLE �Division� �Number of staff�

➊ NTUPLE�CUTS defines a cut identifier with the format $nn. It is possible to store the cuts in a file
with the option “W” and read them afterwards with the option “R”. When a cut is defined it can be
used in commands like NT�PLOT, NT�PROJ etc ...

It also possible to define “graphical cuts”. They are specified interactively with the mouse.

When option G is selected, graphical cuts are only operational for plots of the original Ntuple vari-
ables, not for expressions of these variables.

Note also:

➋ The “BAR” option and the attributes “BARW” and “BARO” allow to draw bar charts. OPTION BAR is
also active on LEGO plots.

➌ LABELS used with SET NDVX or SET NDVY allows to produce alphanumeric labeling.

➍ Histograms with alphanumeric binning are now available in hbook. A set of routines is available
to manage such histograms. In paw, the command SORT allows to reorder the labels.

3.9. Ntuples—Examples 137

138 Chapter 3. PAW by Examples

3.9.6 Ntuple and 2D histograms

2D Ntuple distributions and 2D histograms projections

hi�file � �rwn
aptuple�hbook�

clr

�d �� � � �� � �� �� � �� ��

➊ NT�PROJECT �� ��lun�����STEP"GRADE

lego �� �� ��

➋ PROX ��

➌ H�PRO ��

➍ H�PLOT ���prox

➊ The symbol “%” is used to produce multiple dimensional distributionswith ntuples. The maximum
number of dimension is 10. NT�PROJ allows to fill an histogram with data read in a Ntuple without
plotting the result.

➋ Create the projection onto the x axis. The commands PROX� SLIX� SLIY� BANX and BANY allows
to define other type of projections.

➌ Fill the projection.

➍ Plot the projection.

3.9. Ntuples—Examples 139

140 Chapter 3. PAW by Examples

3.9.7 Profile histograms and Ntuples

How to create a profile histogram from a Ntuple

hi�file � �rwn
aptuple�hbook�

zone � �

set MTYP �

➊ NT�PLOT ��LUN�����age"grade

➋ NT�PLOT ��LUN�����age"grade option�prof

➊ The command NT�PLOT produce a bi-dimensional distribution represented as a scatter plot with the
current marker type.

➋ When the option PROF is used, a profile histogram is produce. A profile histogram, is a 1D his-
togram which gives for each value of X the mean value of Y and its RMS (for more details see the
hbook manual: routine HBPROF).

3.9. Ntuples—Examples 141

142 Chapter 3. PAW by Examples

3.9.8 Copy a Ntuple variable into a Vector

Copy a Ntuple variable into a Vector

hi�file � �aptuple�hbook�

➊ UWFUNC �� copy�f E

➋ NT�LOOP ���age copy�f

zone � �

vect�draw x

vect�plot x

The routine copy.f

REAL FUNCTION COPY�XDUMMY�

REAL

 CATEGORY�DIVISION�FLAG �AGE �SERVICE �CHILDREN�

 GRADE �STEP �NATION �HRWEEK �COST

COMMON�PAWIDN�IDNEVT�VIDN��VIDN��VIDN��VIDN�����

 CATEGORY�DIVISION�FLAG �AGE �SERVICE �CHILDREN�

 GRADE �STEP �NATION �HRWEEK �COST

�

➌ VECTOR X������

X�IDNEVT��VIDN�

END

➊ This command allows to define the skeleton of the FORTRAN routine used by NTUPLE�LOOP.

➋ For each event, NTUPLE�LOOP calls copy�f.

➌ The declaration VECTOR may be used inside a COMIS routine to address a KUIP vector. If the
vector does not exist, it is created with the specifications provided by the declared dimension.

3.9. Ntuples—Examples 143

144 Chapter 3. PAW by Examples

3.9.9 Chain of Ntuples

This example simulate a CERN population of 335400 people.

A 10MB ntuple chain

opt stat

➊ CHAIN MB�� newaptuple�hbook newaptuple�hbook newaptuple�hbook

newaptuple�hbook newaptuple�hbook

➊ CHAIN MB� MB�� MB��

➊ CHAIN MB�� MB� MB� MB� MB� MB� MB� MB� MB� MB� MB�

➋ CHAIN

➌ CHAIN MB�

➍ CD MB��

Nt�plot ���age

➎ CHAIN �MB��

➊ Create the chain.

➋ List all the chains.

➌ Give the tree of the chain MB�.

➍ Set the current chain (MB��).

➎ Delete the chain MB��.

List of the chains and tree of MB�.

MB�� MB� MB��

MB�

MB��

newaptuple�hbook newaptuple�hbook newaptuple�hbook

newaptuple�hbook newaptuple�hbook

MB��

newaptuple�hbook newaptuple�hbook newaptuple�hbook

newaptuple�hbook newaptuple�hbook

3.9. Ntuples—Examples 145

146 Chapter 3. PAW by Examples

3.10 SIGMA—Examples

3.10.1 Examples of the SIGMA processor (1)

Examples of the SIGMA processor (1)

zone � �

➋ APPLICATION SIGMA

X�ARRAY������!��PI�

sinus�sin�x�

sinx�sin�x��x

➋ EXIT

gra ��� x sinus

set dmod �

gra ��� x sinx l

set dmod �

➊ SIGMA x�array������!��

sigma g�cosh�x� sin������ x�x��

gra ��� x g

sigma x�array������!��

➌ GRAPH ��� x �SIGMA�cosh�x� sin������ X�X���

sigma x�array������!��

➍ GRAPH ��� x �RSIGMA�cosh�x� sin������ X�X���

This example (and the next one) shows how to use the array manipulation package sigma. There are four
ways to give directives to sigma.

➊ Precede the statement by the prefix SIGMA.

➋ The paw command: APPLication SIGMA. All commands typed in after this command will be di-
rectly processed by sigma. The command EXIT will return control to paw.

➌ The paw system function �SIGMA. The expression to be evaluated must be enclosed in parentheses.
The function will return the numerical value of the expression (if the result is a scalar) or the name
of a temporary vector (if the result is a vector).

➍ The paw system function �RSIGMA. This function has be to used in comis calls expecting a REAL

argument, e.g.

CALL file�f��RSIGMA�sqrt�x�����

Otherwise the value may be passed as an INTEGER if the sigma result turns out to be a whole num-
ber.

Note also:

The system function�FORMAT�number�format� to format a number according to a Fortran-like FORMAT
string, e.g. �FORMAT��x��F����. Supports F,E,G,I, and Z (hexadecimal). The complete list of the sys-
tem functions available is given on next page.

3.10. SIGMA—Examples 147

148 Chapter 3. PAW by Examples

The function name (and arguments) is literally replaced, at run-time, by its current value. At present, the
following functions are available:

The kuip System Functions

�DATE ����������������������� Current date in format DD�MM�YY

�TIME ����������������������� Current time in format HH�MM�SS

�CPTIME ��������������������� CP time elapsed since last call �in sec�

�RTIME ���������������������� Real time elapsed since last call �in sec�

�VDIM�VNAME�IDIM� ����������� Physical length of vector VNAME

on dimension IDIM ������

�VLEN�VNAME�IDIM� ����������� As above� but for the logical length

�i�e� stripping trailing zeroes�

�NUMVEC ��������������������� Current number of vectors

�VEXIST�VNAME� �������������� Index of vector VNAME

�����NUMVEC or � if VNAME does not exist�

�SUBSTRING�STRING�IX�NCH� ��� STRING�IX	IX NCH���

�UPPER�STRING� �������������� STRING changed to upper case

�LOWER�STRING� �������������� STRING changed to lower case

�LEN�STRING� ���������������� Length of STRING� stripping

leading�trailing blanks and single quotes

�SIGMA�Expression� ���������� Result of the Expression computed by SIGMA

�RSIGMA�Expression� ���������� As above but a decimal point is added to

integer results

�FORMAT�number�format� ������ Format a number according to a Fortran

format string�

e�g� �FORMAT�����F���� ��
 � �����

�ARGS ����������������������� Command line at program invocation

�KEYNUM ��������������������� Address of latest clicked key in style GP

�KEYVAL ��������������������� Value of latest clicked key in style GP

�LAST ����������������������� Latest command line executed

�ANUM ����������������������� Number of aliases

�ANAM�I� �������������������� Name of I�th alias

�AVAL�I� �������������������� Value of I�th alias

�STYLE ���������������������� Current style as defined by SET�STYLE

3.10. SIGMA—Examples 149

150 Chapter 3. PAW by Examples

3.10.2 Examples of the SIGMA processor (2)

Examples of the SIGMA processor (2)

zone � �

➊ ➌ SIGMA X�ARRAY������!��

➋ SIGMA A��

sigma b����

➌ SIGMA Y�EXP��X��SIN�A�X� B�X�X

gra ��� x y

sigma x�array������!��pi�

sigma s�sin�x�

sigma s��s��

sigma c�cos�x�

sigma c��c��

sigma s��s��

sigma c��c��

gra ��� s c

gra ��� s� c l

gra ��� s� c l

gra ��� s c� l

gra ��� s� c� l

gra ��� s� c� l

gra ��� s c� l

gra ��� s� c� l

gra ��� s� c� l

sigma a�array������!������

sigma nc�nco�a�

sigma y�cos�a��a

sigma x�sin�a��a

gra nc x y

sigma a�a��������

sigma y�cos�a��a

sigma x�sin�a��a

gra nc x y

➊ The command V�ARRAY�L�x��x�� allows to create a vector V with the length L and initialize it in
the range x��x�.

➋ All the objects managed by sigma are vectors . In this example A is vector of length 1.

➌ The resulting vectors (if they don’t exist) are created automatically by sigma (here Y).

3.10. SIGMA—Examples 151

152 Chapter 3. PAW by Examples

3.11 Pictures and PostScript

3.11.1 Merge pictures onto one plot

Merge pictures onto one plot

histogram�file � pawhists�hbook

➎ SWITCH Z

➊ PIC�CR MERGE�

set htyp ���

hi�pl ���

set htyp ���

hi�pl ������	��� s

➊ PIC�CR MERGE�

set htyp ���

hi�pl ������	���

➋ IZPICT MERGE� C

switch g

➌ PI�MERGE MERGE� �� �� �� D

➍ PI�DEL �

This example shows some application of the higz pictures.

➊ PI�CREATE allows to create a new graphic picture in memory. After this call, all the graphic gen-
erated

➋ IZPICT is the generic function to perform all kind of actions on the higz pictures. Here the picture
MERGE� is set as the current picture.

➌ PI�MERGE allows to merge a picture into the current picture.

➍ PI�DEL allows to delete a picture from memory. To delete a picture from afile the commandSCRATCH
should be used.

➎ The command SWITCH set the graphics switch to control plotting output to terminal (G) and/or pic-
ture in memory (Z).

3.11. Pictures and PostScript 153

154 Chapter 3. PAW by Examples

3.11.2 Pie charts

Pie chart and Bar chart

alias�cre colbackg �

alias�cre colcompl �

alias�cre colred �

alias�cre colgreen �

alias�cre colblue �

alias�cre colyellow �

alias�cre colpurple �

alias�cre colcyan �

v�cre vws��� R ���� ���� ���� ���� ����

label � � �Sun� �DEC� �HP� �Apollo� �Other�

v�cre offset��� R ���� ����� ��

v�cre colour��� R colred colgreen colblue colyellow colpurple

v�cre style��� R ��� ��� ��� ��� ���

igset fais � � igset bord �

zon � �

null � �� � �� a � pie ��� ��� �� � vws p offset � colour

null � �� � �� a � pie ��� ��� �� � vws l offset � colour

null � �� � �� a � pie ��� ��� �� � vws n offset style

null � �� � �� a � pie ��� ��� �� � vws l offset style

3.11. Pictures and PostScript 155

156 Chapter 3. PAW by Examples

3.11.3 Feynman diagrams

Feynman diagrams drawing

Zone � �

➋ Nul � ���� � ���� A

Igset LWID � � Igset FAIS �

� c�c system

➊ Arline ���� ��� ���� ��� ���

Arline ���� ���� ���� ���� ���

Arline ���� ��� ���� ���� ���

� Proton

Arline ��� ��� ��� ��� ���

Arline ��� ��� ��� ��� ���

Arline ��� ��� ��� ��� ���

Line ��� ��� ���� ���

Line ��� ��� ���� ���

Line ��� ��� ���� ���

� Gluon

➊ Helix ���� ��� ��� ��� ��� � ��

� Lepton

Arline � �� � �� ���

Arline � �� �� �� ���

� Photon

Helix � �� �� �� ��� � �

� Vertex

➊ Fpoint ��� ���� ���

Fpoint ���� ���� ���

Fpoint ���� ��� ���

Fpoint ��� ��� ���

Igset CHHE ����

Itx ���� ���� �c�

Itx ���� ��� �c�

Itx ���� ���� �e#��

Itx ��� ���� �e#��

Itx ��� ��� �P�

Itx ��� ���� ��g��

Itx ��� ��� �g�

➋ Nul � �� � �� A

Arline ��� ��� ��� ��� ����

➊ Archelix ��� ��� ���� ��� ���� �� �� ����

Fpoint ��� ��� ���

Fpoint ���� ��� ���

Archelix ���� ��� ��� ��� ���� �� �� ����

Arline ���� ��� ���� ��� ����

Arline ��� ���� ��� ���� ����

Archelix ��� ���� ���� ���� ���� � � ����

Fpoint ��� ���� ���

Fpoint ���� ���� ���

Archelix ���� ���� ��� ���� ���� � � ����

Arline ���� ���� ���� ���� ����

➊ paw provides a set of commands to draw Feynman driagrams.

➋ NULL used with the option �A�, allows to define world coordinates without the axis. If in addition
the option �B� is given, the box around the plot is not drawn.

3.11. Pictures and PostScript 157

158 Chapter 3. PAW by Examples

3.11.4 Making a complex graph with PAW

Pie chart and Bar chart

OPT NBOX

OPT LOGY

OPT TIC

OPT UTIT

opt ZFL�

size �� ��

set VSIZ ����

set YGTI ���

set XVAL ���

set YVAL ���

set XLAB ���

set YLAB ���

set XTIC ����

set YTIC ����

set ASIZ ����

set GSIZ ����

title
gl �CERN Central Computer Usage�

vector�create vy���� R ��� ���� ���� ���� ���� ����� ��� ���� ���� ����

���� ���� ���� ���� ����� ����� ����� ����� ����� �����

����� ����� ����� ����� ����� ����� ����� ������ ������ ������

sigma vx�array������!���

ve�cre f���� r �����

ve�cre f���� r �����

SET NDVX ������

NULL �� �� � ������

igset MSCF ����

igset mtyp ��

graph �� vx vy p

sigma we�sqrt�vy�

ve�fi vx�	��� vy�	��� we e es � f�

ve�fi vx���	� vy���	� we e es � f�

arrow ��� ��� ��� ��� ����

igset txal ��

igset chhe ����

itx ��� ��� �IBM ����

arrow ��� ��� ��� ��� �����

itx ��� �� �IBM �����

arrow ��� ��� ���� ���� �����

itx ��� ���� �CDC �����

arrow ��� ��� ����� ����� �����

itx ���� ����� �CDC �����

arrow ��� ��� ����� ����� �����

itx ��� ����� �IBM ��� �

arrow ��� ��� ������ ������ �����

itx ��� ������ �IBM �����

arrow ��� ��� ������ ������ �����

itx ��� ������ �IBM �����

igset txal ��

arrow ��� ��� ������ ������ �����

itx ��� ������ �SIEMENS �����

igset txal ��

arrow ��� ��� ������ ������ ����

itx ��� ������ �SIEMENS �����

arrow ��� ��� ������ ������ ����

3.11. Pictures and PostScript 159

itx ���� ������ �IBM �����

arrow ��� ��� ������� ������� ����

itx ��� ������� �CRAY�

arise��sigma�int��exp�f������������ ��������" per Annum rise�

xhand����

yhand��sigma�exp�f���� f������xhand���

EXEC DRAW X��xhand� Y��yhand� TEXT��arise�

arise��sigma�int��exp�f������������ ��������" per Annum rise�

xhand����

yhand��sigma�exp�f���� f������xhand���

EXEC DRAW X��xhand� Y��yhand� TEXT��arise�

atitle �Year � �IBM ��� Units used �

Return

MACRO DRAW

igset TXAL ��

igset TANG ����

igset TXFP ����

igset CHHE ����

itx �SIGMA��X������ �Y�

igset TXAL ��

igset TANG ��

igset TXFP ���

igset CHHE ����

y � �y� � ����

itx �X� �Y� �TEXT�

RETURN

160 Chapter 3. PAW by Examples

CERN Central Computer Usage

10

10
2

10
3

10
4

10
5

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

IBM 709

IBM 7090

CDC 6600

CDC 7600

IBM 168

IBM 3032

IBM 3081

SIEMENS 7880

SIEMENS 7890

IBM 3090

CRAY

☞
87% per Annum rise

☞
20% per Annum rise

Year

IB
M

 1
6
8
 U

n
it
s
 u

s
e
d

3.11. Pictures and PostScript 161

3.11.5 Making slides

Making slides

alias�create mainfont ���

opt zfl�

exec discomp

RETURN

MACRO SLIDE name��Author�CERN CONF��� sn�� � title�� �

xsize���

ysize���

width����

xmax � �xsize���width�

ymax � �ysize���width�

size �xsize� �ysize�

next

igset �

igset lwid �

pave � �xmax� � �ymax� �width� � ���� tr

igset lwid �

xtitle � �sigma���xsize����������

ytitle � �ysize�����

igset txfp �

igset txal ��

igset chhe ���

itx �xtitle� �ytitle� �title�

igset chhe ���

igset txal ��

xtext � �xmax�����

ytext � ���

igset chhe ���

igset txal ��

itx �xtext� �ytext� �name�

igset txal ��

itx ��� ��� �sn�

igset chhe ���

igset lwid �

return

MACRO DISCOMP

exec slide sn��DisComp� title��Distributed Computing�

igset txfp mainfont

igset chhe ���

itx � �� �With a distributed operating system �not yet ���

itx � �� �With tools on top �RPCs� NCS��� ���

igset chhe ���

itx � �� Tmess

itx � �� Tfork

itx � �� Tdata

itx � �� Tcomp

igset txfp ���

itx � �� �Time to send message to remote process�

itx � �� �Time to fork a process�

itx � �� �Time to pass data �in and out��

itx � �� �Time used for computation on remote process�

igset txfp mainfont

pave � �� � � ��� � ���� trs

162 Chapter 3. PAW by Examples

igset txal ��

itx � � �Efficiency ��

igset txal ��

line ��� � ���� �

itx �� ��� Tcomp

itx �� ��� �Tcomp Tmess Tfork Tdata�

igset txfp ����

igset chhe ���

igset txal ��

itx ��� �� P

itx ��� �� P

igset chhe ���

igset txal ��

igset txfp �

itx � � �Many time consuming applications today have�

itx � � �Efficiency
 ����

RETURN

3.11. Pictures and PostScript 163

With a distributed operating system (not yet)

With tools on top (RPCs, NCS,..)

Tmess

Tfork

Tdata

Tcomp

Time to send message to remote process

Time to fork a process

Time to pass data (in and out)

Time used for computation on remote process

Efficiency =
Tcomp

Tcomp + Tmess + Tfork + Tdata

164 Chapter 3. PAW by Examples

3.11.6 How to use PostScript files

This macro can be used to print the tutorial examples

MACRO PRINTEX ���

FOR�FILE �� pawex����ps

METAFILE �� ����

EXEC PAWEX���

CLOSE ��

SHELL local print command pawex����ps

The PostScript workstation types have the following format:

��Format��Nx��Ny��Type�

Where:

Format is an integer between 0 and 99 which defines the format of the paper. For example if Format=3
the paper is in the standard A3 format. Format=4 and Format=0 are the same and define an A4
page. The A0 format is selected by Format=99.

Nx, Ny specify respectively the number of zones on the x and y axis. Nx and Ny are integers between 1
and 9.

Type can be equal to:

1 Portrait mode with a small margin at the bottom of the page.

2 Landscape mode with a small margin at the bottom of the page.

4 Portrait mode with a large margin at the bottom of the page.

5 Landscape mode with a large margin at the bottom of the page. The large margin is useful for
some PostScript printers (very often for the colour printers) they need more space to grip the
paper for mechanical reasons. Note that some PostScript colour printers can also use the so
called ”special A4” format permitting the full usage of the A4 area; in this case larger margins
are not necessary and Type=1 or 2 can be used.

3 Encapsulated PostScript. ThisType permits the generation of files which can be included in other
documents, for example in LATEX files. Note that with this Type, Nx and Ny must always be
equal to 1, and Format has no meaning. The size of the picture must be specified by the user
via the command SIZE. Therefore the workstation type for Encapsulated PostScript is -113.
For example if the name of an Encapsulated PostScript file is example�eps, the inclusion of
this file into a LATEX file will be possible via (in the LATEX file):

#begin$figure%

#epsffile$example�eps%

#caption$Example of Encapsulated PostScript in LaTeX%

#label$EXAMPLE%

#end$figure%

3.11. Pictures and PostScript 165

How to print all the tutorial examples on one page

MACRO PRINTALL

FOR�FILE �� all�ps

METAFILE �� ����

DO I�����

EXEC PAWEX�I�

ENDDO

CLOSE ��

SHELL local print command all�ps

Note also: The command PICTURE�PRINT allows to print the current picture in memory onto a PostScript
file, and if required send it to the default PostScript printer.

166 Chapter 3. PAW by Examples

Part II

PAW - Commands and Concepts

167

Chapter 4: User interface - KUIP

4.1 Command line syntax

The general syntax of a command line is a command path optionally followed by an argument list. The
command path and the arguments have to be separated from each other by one or more space characters.
Therefore arguments containing spaces or other special characters have to be quoted.

In the following we want to use an appropriate formalism to describe the syntax rules. The notation will
be introduced step by step as needed. The verbal explanation given above can be written as:

command-line ��� command-path f argument g

The slanted symbols are non-terminal, i.e. they are composed of other terminal or non-terminal symbols.
The definition of a non-terminal symbol is denoted by “::=”. Symbols enclosed in braces (“f���g”) are
optional and they can appear zero or more times.

4.1.1 Command structure

The set of commands is structured as an (inverted) tree (see figure 4.1), comparable to a Unix file system.
The command set can be dynamically extended by linking new commands or menus into the tree.

Compared to a flat list structure the tree allows a cleaner representation through menus, especially when
the command set is large. paw has more than 200 commands. It would be hard to visualize such a number
of command in a single graphics menu.

Abbreviations

A command path consists of a menu path and a command name. The menu path itself consists of a list
of menu names up to an arbitrarily deep level of sub-menus.

command-path ��� �menu-path��command-name

menu-path ��� ���menu-namef�menu-nameg

Here we introduced two more notations. Symbols in teletype mode (“�”) are literals, i.e. the menu and
command names have to be separated by a slash character. Symbols enclosed in brackets (“�����”) are
optional which can appear zero or one times.

These syntax rules already show that a command path may be abbreviated by omitting part of the leading
menu path. For example, if the complete command path is

�MENU�SUBMENU�COMMAND

valid abbreviations are

MENU�SUBMENU�COMMAND

SUBMENU�COMMAND

COMMAND

but not “MENU�COMMAND” or “�SUBMENU�COMMAND”. Note that the command name matching is case-
insensitive, i.e. the following are all valid possibilities:

COMMAND

command

Command

169

170 Chapter 4. User interface - KUIP

KUIP MACRO VECTOR HISTOGRAM FUNCTION NTUPLE GRAPHICS PICTURE ZEBRA FORTRAN NETWORK

FILE LIST DELETE PLOT ZOOM MANY_PLOT PROJECT COPY FIT 2D_PLOT CREATE HIO

1DHISTO PROFILE BINS 2DHISTO PROX PROY SLIX SLIY BANX BANY

Example of command path : HISTOGRAM / CREATE / 2DHISTO

PAW

Figure 4.1: Example of the PAW command tree structure

Furthermore, menu and command names may be abbreviated by omitting trailing parts, i.e.

SUB�COMMAND

COMMA

�M�S�C

are also valid abbreviations.

The shortest unambiguous abbreviation for any command is not fixed but depends on the whole command
set. kuip lists all possible ambiguities if a given abbreviation has no unique match:

PAW
 LIST

��� Ambiguous command list� Possible commands are 	

�KUIP�ALIAS�LIST

4.1. Command line syntax 171

�MACRO�LIST

�VECTOR�LIST

�HISTOGRAM�LIST

�NTUPLE�LIST

�PICTURE�LIST

Ambiguity resolution

Abbreviations can lead to ambiguities if the abbreviation matches more than one command path. For
example, in an application with the commands

�MENU�COMPUTE

�MENU�SUBMENU�COMMAND

�MENU�OTHERMENU�COMMA

typing “COM” matches all three commands and “COMM” still matches the last two.

The list of all executable commands can be obtained by just typing “�”. The single slash matches every
command element and therefore all available commands will be listed as possible ambiguities.

Since users tend to use abbreviations heavily also in command scripts adding a new command always
risks to break these scripts by introducing a sudden ambiguity. In order to alleviate this problem a set of
resolution rules apply before an abbreviation is finally considered ambiguous.

The first rule is that an exact match for the command name takes preference, i.e. “COMMA” resolves to the
third command only. The second rule prefers the lowest number of menu levels. For example, “COM”
resolves to the first command because the other two matches are one more menu level down.

More on command name resolution

kuip provides additonal commands which can affect the way the command name, i.e. the first token in a
command line, is interpreted.

Changing the root menu The command SET�ROOT defines the menu from which the search for com-
mand name starts. It is not quite comparable to the Unix cd or VMS SET DEFAULT command. If no
matching command is found going downwards from the SET�ROOT menu a second attempt is made start-
ing off at the top menu “�”.

Disabling commands The commandSET�VISIBILITYallows to disable/enable individualcommands.
Disabled commands cannot be executed and they do not contribute to name ambiguities. However, the
HELP information is still available. In STYLE G disabled commands are shown with a grey or hatched
background.

Note that the VISIBILITY command can disable itself which makes it impossible to re-enable any com-
mand.

Automatic macro execution The command MACRO�DEFAULT implements two facilities. First it allows
to define a directory search path used by the EXEC command for locating �kumac macro files. Second it
controls the implicit interpretation of the command name token as a possible macro filename:

�Command This is the default setting which does not try to interpreted cmd as macro name.

172 Chapter 4. User interface - KUIP

�Auto If the search path contains a file cmd�kumac it is executed, i.e. the actual command
becomes “EXEC cmd”, otherwise the search for a command named cmd starts.

�AutoReverse If cmd is either not a command name or ambiguous and a file cmd�kumac exists the
command is transformed into “EXEC cmd”.

Command template The command SET�COMMAND allows to define a template which is used whenever
the command token does not match any command name. The template can contain “��”, ..., “��” which
are substituted with the n’th token from the original command line, or “�"” which is replaced by the
complete line. For example, a kuip application can be turned into a calculator by

PAW
 SET�COMMAND �mess �sigma�����

PAW
 �� ���

��

“SET�COMMAND �EXEC �"�” has almost the same effect as “DEFAULT �AutoReverse” but these are two
distinct facilities which can be active simultaneously. The difference is that for SET�COMMAND the token in
the command name position must not match any command. If does not apply if the token is an ambiguous
command name.

Both Auto�AutoReverse and SET�COMMAND logic are ignored during the execution of macro scripts.

4.1.2 Arguments

Most commands have parameters for which the user is expected to supply argument values. Parameters
are either mandatory or optional. Mandatory arguments which are not specified on the command line are
prompted for. If optional arguments are omitted a default value is used instead.

Mandatory parameters always precede the optional parameters. The command USAGE allows to see the
number of parameters for a command:

PAW
 usage manual

� KUIP�MANUAL ITEM � OUTPUT OPTION �

The optional parameters are enclosed in square brackets. The default values can be seen from the help text
for a command. The STYLE command shown in figure 4.2 has only optional arguments. The correspond-
ing default values are indicated in the help information as “D�value”. There is also the case of optional
parameters without fixed default values. For these commands the application writer has to provide an
appropriate default at execution time.

Mandatory parameters may also have a default value which is used if the prompt is acknowledged by
simple hitting the RETURN-key. Otherwise the proposed default is the value used in the previous command
execution.

The STYLE command also shows that there are three different kind of parameters: character values indi-
cated by “C” after the parameter name, real values (“R”) and integer values (“I”).

Whether character values are case-sensitive is up to the application. The application writer has three
choices to retrieve a character argument:

KUGETC returns the string converted to uppercase.

KUGETS returns the string as it was typed in.

4.1. Command line syntax 173

PAW
 HELP STYLE

� KUIP�SET
SHOW�STYLE � OPTION SGYLEN SGSIZE SGYSPA SGBORD WKTYPE �

OPTION C �Option� D����

SGYLEN R �max Y LENgth of each menu item box� D������ R������	����

SGSIZE R �space available for the application� D���� R��	����

SGYSPA R �max Y length of space between menus� D����� R�����	����

SGBORD R �X or Y border for menus� D������ R��	����

WKTYPE I �Graphics workstation type� D��

Possible OPTION values are	

� show current style

C Command line 	 select Command line input

AN Menu with Numbers 	 select general Alpha menu �with Numbers�

AL Menu with Letters 	 select general Alpha menu �with Letters�

Figure 4.2: Parameter types, default values, and range limits

KUGETF returns on operating systems with case-sensitive filenames (Unix) the string depending on the
current setting of the FILECASE command. The string is either left as it is, or it is converted
to lowercase. If filenames are not case-sensitive the argument value is converted to whatever
case is required by the operating system.

Numeric (real or integer) parameters may be restricted in the range of acceptable values. In the help text
this is indicated as “R�lower�upper . If the argument value is outside the range kuip prompts the user
to enter an acceptable value before the command can be executed. The lower or upper range value may be
missing to indicate an unlimited range in one direction. Instead of a simple numeric value the argument
may also be an expression.

For both numeric and character parameters the range may also be given as a comma-separated list of
values. kuip will accept an argument only if it matches one of the values in the list.

In general the arguments given on the command line are assigned to the command parameters from left
to right but there are also ways to change the order. In our syntax notation, using “j” to indicate possible
alternatives, we can write:

argument ��� value � � � �� � name�value � �value

An argument given as a simple value is assigned to the next parameter expected. The special values “�”
and “��” are templates for the default value and the value from the previous command execution, respec-
tively.

Named arguments

The form “name�value” allows to invert the argument order or to skip a list of optional parameters for
which the default values should be used. For example,

STYLE G SGBORD����

is equivalent to

174 Chapter 4. User interface - KUIP

STYLE G � � � ���

kuip strips off the “name�” part before passing the argument values to the application. In fact the ap-
plication program cannot distinguish which of these possible forms the user actually typed. A simple
argument following a named argument is assigned to the parameter following the named parameter, i.e.

STYLE G SGBORD���� �

is equivalent to

STYLE G � � � SGBORD���� WKTYPE��

Parameter names are case-insensitive but in general they may not be abbreviated. However, the applica-
tion write can allow abbreviations up to a certain minimum length. In the help text this is indicated by a
“"” inside the parameter name. For example, if the parameter name is shown as

LIB�RARY

the acceptable abbreviations are “LIB�”, “LIBR�”, “LIBRA�”, “LIBRAR�”, and “LIBRARY�”.

kuip does not insist that an argument of the form “name�value” matches one of the parameter names.
The argument including the “name�” part is simply assigned to the next parameter expected.

Option arguments

The last alternative “�value” to specify an argument applies only to option parameters. (Note the distinc-
tion between option and optional. Option parameters are usually but not necessarily optional.) In the help
text option parameters are tagged by the list of possible values (figure 4.3). Frequently these parameters
are named “OPTION” or “CHOPT”.

PAW
 HELP MANUAL

� KUIP�MANUAL ITEM � OUTPUT OPTION �

ITEM C �Command or menu path�

OUTPUT C �Output file name� D�� �

OPTION C �Text formatting system� D�� �

Possible OPTION values are	

� � plain text 	 plain text format

LATEX LaTeX format �encapsulated�

TEX LaTeX format �without header�

Figure 4.3: Example for option parameters

The “�value” form allows to specify option arguments out of order, emulating the Unix style of options
preceeded other command arguments. For example,

MANUAL �LATEX �KUIP

4.1. Command line syntax 175

is equivalent to

MANUAL �KUIP OPTION�LATEX

Note that this is not equivalent to “MANUAL OPTION�LATEX �KUIP”. Unlike to the “�value” form sub-
sequent simple arguments are still assigned to the next parameter expected, not to the one following the
option parameter itself.

Since a leading “�” can be part of a valid (non-option) argument the value is checked against a set of rules
before it is actually interpreted as an option assignment.

The option argument can be a concatenation of several of the allowed option values. kuip checks that
the argument string is exclusivly constructed from valid option values. This check is done by remov-
ing matches of option values from the argument string, starting with the longest option values first. For
example, with the definition

Possible OPTION values are	 AB

ABC

CD

the argument “�ABCD” is not interpreted as option assignment because after removing the longest match
“ABC” the remainder “D” is not anymore a valid option value. (This case would have to be written as
“�CDAB”. kuip does not check whether the combination of values is valid. It is left to the application to
refuse execution, e.g. if some of the given option values are mutually exclusive.)

Even with this consistency check there is still a problem arising for commands using digits as option val-
ues. One example is the command SMOOTH (figure 4.4). The command line

SMOOTH �� �

could be interpreted as

SMOOTH ID�� OPTION���

Since histogram identifiers can have the form of a negative number the desired interpretation is the natural
order

SMOOTH ID��� OPTION��

The application writer has to inform kuip about this by giving the ID parameter the “Minus” attribute.
For numeric parameters the “Minus” attribute is implicit. However, the argument is taken as an option
assignment if the parameter has a limited range which does not include the corresponding negative value.
For example,

SMOOTH �� SENSIT�� ��

is interpreted as

SMOOTH ID��� OPTION�� SENSIT��

since “��” is outside the range for the SMOOTH parameter.

The “�” in an option assignment is usually stripped off before the value is passed to the application pro-
gram. The exception is if the minus sign itself is one of the valid option values and the next argument
expected belongs to the option parameter itself. Consider the command HISTO�PLOT (figure 4.5). The
command line

176 Chapter 4. User interface - KUIP

� HISTOGRAM�OPERATIONS�SMOOTH ID � OPTION SENSIT SMOOTH �

ID C �Histogram or Ntuple Identifier� Minus

OPTION C �Options� D���M�

SENSIT R �Sensitivity parameter� D��� R����	��

SMOOTH R �Smoothness parameter� D��� R����	��

Possible OPTION values are	

� Replace original histogram by smoothed�

� Replace original histogram by smoothed�

� Store values of smoothed function and its parameters without replacing

the original histogram �but see note below� � the smoothed function can

be displayed at editing time � see HISTOGRAM�PLOT�

M Invoke multiquadric smoothing�

Figure 4.4: HELP SMOOTH

� HISTOGRAM�PLOT � ID CHOPT �

ID C �Histogram Identifier� Loop Minus

CHOPT C �Options� D�� � Minus

Possible CHOPT values are	

� � Draw the histogram�

C Draw a smooth curve�

S Superimpose plot on top of existing picture�

 Add contents of ID to last plotted histogram�

� Substract contents of ID to last plotted histogram�

Figure 4.5: HELP HISTO/PLOT

H�PLOT �S �

is interpreted as

HISTO�PLOT ID�� CHOPT�S

while

H�PLOT � �S

is equivalent to

HISTO�PLOT ID�� CHOPT��S

4.1. Command line syntax 177

Argument values

Since in command line blanks are used to separate the command name and the individual arguments string
values containing blanks have to be quoted. The rules are the same as used by Fortran: the quote character
is the apostroph “�”, and apostroph inside a quoted string have to be duplicated:

MESS �Hello world�

MESS �Do or don��t�

The enclosing quote characters are stripped off before the argument value is passed to the application,
even if they are redundant, i.e. the two forms

MESS �Hello�

MESS Hello

are equivalent. Note that the MESSAGE command has only a single parameter:

� KUIP�MESSAGE � STRING �

STRING C �Message string� D�� �

���

Nevertheless, in most cases quoting the message string is not necessary. If the command line contains
more arguments than there are parameters the additional values are concatenated to the argument for the
last parameter. In the concatenation each value is separated by a (single) blank character, i.e. the com-
mands

MESS �Hello World�

MESS Hello World

MESS Hello World

yield all the same output. Therefore the message text only needs quoting if the words should be separated
by more than one space character.

Quoting inhibits the interpretation of the enclosed string as special argument values. Printing an excla-
mation mark as message text has to written as

MESS ���

because “MESS �” would mean to take the default value for the parameter STRING and yield an empty
line only.

Another instance is if an argument of the form “name�value” should be taken literally. For example, the
command line

EXEC mac foo�bar

initializes the macro variable “foo” to the value “bar”. However, if the intention is to pass the string
“foo�bar” as argument to the macro quotes must be used:

EXEC mac �foo�bar�

In addition, some commands, e.g.

178 Chapter 4. User interface - KUIP

� NTUPLE�PLOT IDN � UWFUNC NEVENT IFIRST NUPD OPTION IDH �

use the form “name�value” for equality tests in the cut expression UWFUNC. For example, the command

NT�PLOT ���energy year�����

selects all event for which the Ntuple column YEAR has the value ����. Any name clash between the
Ntuple column and one of the command parameters requires quoting. If the column was called NUPD

instead of YEAR the command would have to be written as

NT�PLOT ���energy �nupd������

or alternatively as “NT�PLOT ���energy UWFUNC�nupd�����”.

Finally, quoted strings are also exempted from any substitutions of aliases, kuip system functions, and
macro variables. For example,

MESS �foo�

always prints “foo” while

MESS foo

can result in “bar” if preceded by the command “ALIAS�CREATE foo bar”. Since square brackets de-
note macro variable substitution and system functions names start with a dollar-sign it is especially rec-
ommended to quote VMS file specifications.

The operator “��” allows to concatenate several parts to a single argument value. Unquoted strings on
either side of the concatenation operator are implicitly treated as literals unless they are subject to a sub-
stitution, i.e. the command lines

MESS �abc����def�

MESS �abc���def

MESS abc���def�

MESS abc��def

MESS abcdef

MESS �a����b����c����d����e����f�

are all equivalent (provided that abc and def are not defined as aliases). The character sequence “��” at
the beginning or end of an argument is taken literally, e.g. in

CD ��LUN����

the command receives the value “��LUN��”.

4.1.3 More on command lines

The command line syntax allows to write several commands in one line and also to extend commands
with long argument lists over several lines.

4.1. Command line syntax 179

Multiple commands on a single line

An input line presented to the kuip command processor may contain several commands separated by “&”.
The commands are executed sequentially as if they were on separate lines:

MESS Hello world�� MESS How are you�

is equivalent to

MESS Hello world�

MESS How are you�

Note that the text following the semicolon will not be used to satisfy any prompts emitted by the preceed-
ing command, e.g. “usage& manual” will not behave as “usage manual”.

The semicolon is not interpreted as line separator if it is immediately followed by a digit or one of the
characters

 � � � �

For example, issuing a VMS command with a file version number such as

SHELL delete ��tmp��

does not require quoting. Note that this exception rule applies independently of the operating system. In
order to avoid surprises we recommend to put always at least one blank after a semicolon intended to be
a line separator.

Each command execution returns a status code which is zero for success and non-zero for failure. The
sequences “&'” and “&�” allow to execute the remaining part of an input line depending on the status
code of the preceeding command. With

cmd� �$ cmd� � cmd�

the commands cmd� and cmd� are only executed if cmd� succeeded while with

cmd� �� cmd� � cmd�

the remaining commands are only executed if thefirst one failed. Note that the two characters must follow
each other immediately without intervening blank.

In some commands, for example HISTO�PLOT, one of the parameters is marked in the help text with the
attribute “Loop”. If the corresponding argument is a comma-separated list of values kuip implicitly re-
peats the command for each value in the list individually:

HISTO�PLOT ��������

is equivalent to

HISTO�PLOT ��

HISTO�PLOT ��

HISTO�PLOT ��

Note that “�” inside parentheses is not taken as value separator, i.e.

HISTO�PLOT ����	����	���

executes a single command.

180 Chapter 4. User interface - KUIP

Single commands on multiple lines

For commands with very long argument lists it can become necessary to continue it on the next line. An
input line ending with an “�” character is joined with the following line.

In the concatenation the underscore itself and all but one of the leading blanks from the next line are
removed. Blanks preceding the underscore are left intact. For example,

ME

SS

�Hello

world�

is an extravagant way of writing

MESS �Hello world�

Note that the interpretation of “�” as line continuation cannot be escaped. If the command line should
really end with an underscore the last argument must be quoted.

Recalling previous commands

The command lines types during a session are written into a history file. By default the file is called
last�kumac and is updated every 25 commands. The commands LAST and RECORDING allow one to
change the file name and the frequency. At the start of a new session before creating a new last�kumac

the existing file is renamed into last�kumacold (except on VMS). Comment lines indicate the date and
time at which the sessions were started and stopped.

In this way the user can keep track of all commands entered in the previous and in the current session.
The command “LAST ���” flushes the buffered lines intolast�kumac and envokes the editor on the file.
The user can then extract the interactively typed commands and copy them into another �kumac file from
which they can be re-executed.

The command “LAST �n” prints the last n commands entered. On a workstation this allows to re-execute
command sequences by doing cut-and-paste operations with the mouse.

kuip provides a mechanism similiar to the one found in the Unix csh shell for re-executing commands:

��n executes the n’th last command once more.

�� is an short-cut for “���” re-executing the last command.

�n re-executes the n’th command entered since the beginning of the session.

� prints the commands together with their numbers. The number of lines printed depend on the
recording frequency.

�foo re-executed the latest command line starting with the string “foo”.

The command line numbering can also be seen if the prompt string contains “��”:

PAW
 PROMPT �Paw�� �

Paw���

4.1. Command line syntax 181

(A�(E Move cursor to beginning/end of the line.

(F�(B Move cursor forward/backward one character.

(D Delete the character under the cursor.

(H� DEL Delete the character to the left of the cursor.

(K Kill from the cursor to the end of line.

(L Redraw current line.

(O Toggle overwrite/insert mode. Text added in overwrite mode (including yanks) over-
writes existing text, while insert mode does not overwrite.

(P�(N Move to previous/next item on history list.

(R�(S Perform incremental reverse/forward search for string on the history list. Typing normal
characters adds to the current search string and searches for a match. Typing(R/(S marks
the start of a new search, and moves on to the next match. Typing(H or DEL deletes the last
character from the search string, and searches from the starting location of the last search.
Therefore, repeated DEL’s appear to unwind to the match nearest the point at which the last
(R or (S was typed. If DEL is repeated until the search string is empty the search location
begins from the start of the history list. Typing ESC or any other editing character accepts
the current match and loads it into the buffer, terminating the search.

(T Toggle the characters under and to the left of the cursor.

(U Kill from the prompt to the end of line.

(Y Yank previously killed text back at current location. Note that this will overwrite or insert,
depending on the current mode.

TAB By default adds spaces to buffer to get to next TAB stop (just after every 8th column).

LF� CR Returns current buffer to the program.

Table 4.1: Key-binding for recall style KSH

BS�(E Move cursor to beginning/end of the line.

(F�(D Move cursor forward/backward one character.

DEL Delete the character to the left of the cursor.

(A Toggle overwrite/insert mode.

(B Move to previous item on history list.

(U Delete from the beginning of the line to the cursor.

TAB Move to next TAB stop.

LF� CR Returns current buffer to the program.

Table 4.2: Key-binding for recall style DCL

182 Chapter 4. User interface - KUIP

On Unix and VMS kuip also provides recalling and editing of command lines for re-executing. The
command RECALL allows to choose between different key-bindings:

– Recall style KSH has an Emacs-like binding (table 4.1) similar to the one used by the ksh and bash

shells. If the terminal returns ANSI escape sequences the arrow keys can be used instead of(B�(F�(N�(P.

– Recall style DCL implements the key-binding of VMS line editing (table 4.2).

– The style names KSHO and DCLO allow to switch to overstrike mode instead of the default insert
mode.

– Recall style NONE directs kuip to do plain reading from the terminal input.

Although the default setting depends on the operating system both styles can be used on Unix and VMS.
Style NONE is recommendable on systems which do swapping instead of paging. For example, on a Cray-
X/MP kuip line-editingrequires that the application program itself has to react to each individualkeystroke.

On Apollo/DomainOS kuip starts up in style NONE, if the program runs in a Display Manager pad, and
in style KSH otherwise. However, if crp is used from within a DM pad to run the program on a remote
node the automatic identification fails and style NONE must be selected manually.

4.2 Aliases

kuip aliases allow the user to define abbreviations for parts of a command line. There are two types of
aliases, command aliases and argument aliases, which differ in the way they are recognized in a command
line. Both alias types can be defined by the ALIAS�CREATE command:

� KUIP�ALIAS�CREATE NAME VALUE � CHOPT �

NAME C �Alias name�

VALUE C �Alias value�

CHOPT C �Option� D��A�

Possible CHOPT values are	

A create an Argument alias

C create a Command alias

N No alias expansion of value

The alias value may be any string but the alias name can only consist letters, digits, “�”, “�”, “�”, and
“�” characters. Command and argument aliases share the same name space. If a command alias with the
same name as an existing argument alias is created, the argument alias is deleted first, and vice versa.

4.2.1 Argument aliases

If an argument alias name is recognized anywhere in the command line it is substituted by its value. The
name matching is case-insensitive and the substitution is literally, i.e. without case folding or insertion of
additional blanks. The replacement is scanned for further occurrences of alias names which in turn will
be replaced as well.

The alias name must be separated from the rest of the command line either by a blank or by one of the
special characters

� � � 	 � � " � � �

4.2. Aliases 183

(not necessarily the same character on both sides). For example, if foo and bar are alias names, foot
and Bar�B�Q are not affected. If two alias replacements need to be concatenated the “��” operator can
be used, i.e.

ALIAS�CREATE DIR disk�user	�paw�

ALIAS�CREATE FIL file�dat

HISTO�FILE � DIR��FIL

translates into “HISTO�FILE � disk�user��paw�file�dat”. Since argument aliases are also recog-
nized in the command position with the definition abbreviations like HISTO�FIL cannot be used anymore.

Alias substitution does not take place inside quoted strings. The ALIAS commands themselves are treated
as a special case. In the command line parsing they are specifically exempted from alias translation in
order to allow aliases can be deleted and redefined without quoting. For example,

PAW
 ALIAS�DELETE �

PAW
 ALIAS�CREATE foo bar

PAW
 ALIAS�CREATE bar BQ

PAW
 ALIAS�CREATE foo tball

PAW
 ALIAS�LIST

Argument aliases	

BAR �
 BQ

FOO �
 tball

No Command aliases defined�

redefines FOO rather than creating a new alias name BQ. The value part, however, is subject to alias trans-
lations. If the aliases are created in reverse order

PAW
 ALIAS�DELETE �

PAW
 ALIAS�CREATE bar BQ

PAW
 ALIAS�CREATE foo bar

PAW
 ALIAS�LIST

Argument aliases	

BAR �
 BQ

FOO �
 BQ

No Command aliases defined�

the second alias is created as “ALIAS�CREATE foo BQ”. In this case quoting the alias value does not
avoid the translation. Writing instead

ALIAS�CREATE foo �bar�

will yield the same result. Since the ALIAS commands bypass part of the command line parsing the trans-
lation of the value part has to be applied by the ALIAS�CREATE command itself. At that stage the infor-
mation about quoting is no longer available.

The option “N” allows to inhibit the alias expansion in the value. Using this option can lead to an infinite
recursion of alias translations which will be detected only when one the alias names involved is actually
used.

PAW
 ALIAS�DELETE �

PAW
 ALIAS�CREATE foo bar

PAW
 ALIAS�CREATE �N bar foo

PAW
 ALIAS�LIST

Argument aliases	

184 Chapter 4. User interface - KUIP

BAR �
 foo

FOO �
 bar

No Command aliases defined�

PAW
 foo

��� Recursive command alias in foo

��� Recursive argument alias in foo

��� Unknown command	 foo

PAW
 bar

��� Recursive command alias in bar

��� Recursive argument alias in bar

��� Unknown command	 bar

Alias substitutionhappens before the command line is split-up into command name and arguments. Hence,
aliases can represent several arguments at once. For example,

ALIAS�CREATE limits ���� ����� �����

FUN� �� sin�x� limits

is equivalent to

FUN� �� sin�x� ��� ����� ����

The quotes in the ALIAS�CREATE command are necessary but they are not part of the alias value. If an
alias value containing blanks is supposed to be treated as a single argument four extra quotes are needed
in order that

ALIAS�CREATE htitle ���X vs� Y���

�D �� htitle ��� � �

is equivalent to

�D �� �X vs� Y� ��� � �

Argument aliases can lead to unexpected interpretations of command lines. For example, a user defining

ALIAS�CREATE e EDIT

wants “E” to be short-hand for the command EDIT. However, the following consequence is probably not
intended:

PAW
 nt�plot ���e

����� Unknown name ���
 EDIT

For historic reasons the default option for the ALIAS�CREATE command is to define an argument alias.
However, the use of argument aliases can lead to subtle side-effects and should therefore be restricted as
much as possible.

4.3. System functions 185

4.2.2 Command aliases

This problem described above does not arise if a command alias is created instead:

ALIAS�CREATE �C e EDIT

Command aliases are only recognized if they appear at the beginning of a command line (ignoring leading
blanks). Hence, there is no need to protect command arguments from inadvertent substitutions. Further-
more the match must be exact (ignoring case differences), i.e. the command

�GRAPHICS�HPLOT�ERRORS

can still be abbreviated as HPLOT�E.

Alias values can also represent several commands by using one of the line separators described in sec-
tion 4.1.3, e.g.

ALIAS�CREATE �C ciao �MESS Hello world� � MESS How are you��

4.3 System functions

kuip provides a set of built-in, so-called system functions which allow, for example, to inquire the current
dialogue style or to manipulate strings. An application may provide additional functions. The complete
list of available functions can be obtained from “HELP FUNCTIONS”.

The function name is preceded by a �-sign. Arguments are given as a comma separated list of values
delimited by “�” and “�”. The arguments may be expressions containing other system functions.

Functions without arguments must be followed by a character which is different from a letter, a digit, an
underscore, or a colon�. “�OSMOSIS” will not be recognized as the function “�OS” followed by “MOSIS”.
If that is the desired effect the concatenation operator has to be used: “�OS��MOSIS”. Note however that
two functions can follow each other, e.g. “�OS�MACHINE” because the �-sign does not belong to the func-
tion name.

Depending on the setting of the SET�DOLLAR command the name following the �-sign may also be an
environment variable�. The replacement value for “�xxx” is obtained in the following order:

1 If xxx is a system function followed by the correct number and types of arguments, replace it by
its value.

2 Otherwise if xxx is an argument-less system functions, replace it by its value.

3 Otherwise if xxx is a defined environment variable, replace it by its value.

4 Otherwise no replacement takes place.

�Excluding the colon as separator avoids the substitution of VMS logical name containing a dollar-sign such as in
“DISK�OS	�dir�file�dat”

�On VMS there is a distinction between lowercase and uppercase names. Uppercase names (without the �-sign) are searched
for first in the logical name tables and then in the symbol table while lowercase names are searched for only in the symbol table.
The names HOME, PATH, TERM, and USER have a predefined meaning. In order to avoid conflicts with DCL symbols which are
merely defined as abbreviations for running executables and DCL procedures all values starting with a “�” or “%” character are
excluded from substitution.

186 Chapter 4. User interface - KUIP

4.3.1 Inquiry functions

Style inquiries

– �STYLE returns the name of the currently active dialogue style (“C”, “G”, “GP”, etc.). This allows,
for example, to a common logon macro containing different default setups depending whether the
application is started in command line mode or in Motif mode:

IF �STYLE��XM� THEN

���

ELSE

���

ENDIF

– �LAST returns the previously executed command sequence:

PAW
 MESS Hello world� � MESS How are you�

Hello world�

How are you�

PAW
 MESS �LAST

MESS Hello world� � MESS How are you�

– �KEYVAL returns the content of the last selected panel box in style GP and

– �KEYNUM returns row/column address in the form “row�col”. The column address is always given
as a two-digit number.

Alias inquiries

– �ANUM returns the number of argument aliases currently defined.

– �ANAM�n� returns the name and

– �AVAL�n� returns the value of the n’th argument alias. No substitution takes place if n is not a
number between 1 and �ANUM. There is no guarantee that “�ANAM��ANUM�” refers to the most re-
cently created alias.

Vector inquiries

– �NUMVEC returns the number of vectors currently defined.

– �VEXIST�name� returns a positive number if a vector name is currently defined. The actual value
returned is undefined and may even change between tests on the same name. If the vector is unde-
fined the value “�” is returned.

– �VDIM�name�dim� returns the vector size along index dimension dim; dim � � is used if the
second argument is omitted. If the vector is undefined the value “�” is returned.

– �VLEN�name� returns for a 1-dimensional vector the index of the last non-zero element. For 2- and
3-dimensional vectors the result is the same as for �VDIM. If the vector is undefined the value “�”
is returned.

PAW
 V�CREATE v����� R � � � � � �

PAW
 MESS �VDIM�v�� �VLEN�v��

�� �

PAW
 V�CREATE v���VLEN�v���

PAW
 MESS �VDIM�v�� �VLEN�v��

� �

4.3. System functions 187

Environment inquiries

– �ARGS returns the program arguments with which the application was invoked.

– �DATE returns the current date in the format “dd�mm�yy”.

– �TIME returns the current time in the format “hh�mm�ss”.

– �RTIME returns the number of seconds elapsed since the previous usage of �RTIME.

– �CPTIME returns the seconds of CPU time spent since the previous usage of �CPTIME.

– �OS returns an identification for the operating system the application is running on, e.g. “UNIX”,
“VM”, or “VMS”.

– �MACHINE returns an identification for the particular hardware platform or Unix brand, e.g. “HPUX”,
“IBM”, or “VAX”. Table 4.3 shows the �OS and �MACHINE values for the different platforms.
On Unix platforms the operating system version can be obtained by �SHELL��uname �r��.

– �PID returns the process number or “�” if the operating system does not support the notion of pro-
cess IDs.

– �IQUEST�i� returns the i ’th component of the status vector

COMMON �QUEST� IQUEST�����

IQUEST��� always contains the return code of the most recently executed command.

– �DEFINED�name� returns name if a variable of that name is defined, or the empty string if the vari-
able is not defined. The argument can contain “"” as wildcard matching any sequence of characters.
All matching variable names are returned as a blank separated list.

– �ENV�name� returns the value of the environment variable name, or the empty string if the variable
is not defined.

– �FEXIST�filename� returns “�” if the file exists, or “� otherwise.

– �SHELL�command�n� returns the n’th line of output from the shell command.

– �SHELL(command,sep) returns the output from the shell command, where newlines are replaced
by the separator string. The sep argument can be omitted and defaults to a single blank character.
The �SHELL function is operational only on Unix systems. The command string is passed to the
shell set by the HOST�SHELL command. Alias definitions etc. in the shell specific startup script (e.g.
�cshrc) are taken into account.

4.3.2 String manipulations

– �LEN�string� returns the number of characters in string.

– �INDEX�string�substring� returns the position of the first occurence of substring inside string
or zero if there is none.

– �LOWER�string� and

– �UPPER�string� return the argument string converted to lower or upper case, respectively.

– �SUBSTRING�string�k�n� returns the substring
– string(k :k+n-1) if k¿0, or
– string(l+k+1:l+k+n) if k�0, where l=�LEN(string).

In any case the upper bound is clamped to�LEN(string). The argument n may be omitted and the re-
sult will extend to the end of string. Character counting starts with 1; by definition the replacement
is empty if k=0 or n=0. If n¡0 an error message is emitted.

188 Chapter 4. User interface - KUIP

�OS �MACHINE Platform

UNIX ALPHA DEC Alpha OSF

UNIX APOLLO HP/Apollo DomainOS

UNIX CONVEX Convex

UNIX CRAY Cray Unicos

UNIX DECS DECstation Ultrix

UNIX HPUX HP/UX

UNIX IBMAIX AIX for IBM/370

UNIX IBMRT AIX for RS/6000

UNIX LINUX Linux for PCs

UNIX NEXT NeXT

UNIX SGI Silicon Graphics Irix

UNIX SOLARIS Sun Solaris

UNIX SUN SunOS

VM IBM VM/CMS for IBM/370

MVS IBMMVS MVS for IBM/370

VMS ALPHA VMS for Alpha

VMS VAX VMS for Vax

MSDOS IBMPC MSDOS for PCs

WINNT ALPHA Windows/NT for DEC Alpha

WINNT IBMPC Windows/NT for PCs

Table 4.3: Platform identification with �OS and �MACHINE

PAW
 MESS �SUBSTRING�abcde�����SUBSTRING�abcde�����

bcde�bcd

PAW
 MESS �SUBSTRING�abcde������SUBSTRING�abcde������

de�bcd

– �WORDS�string�sep� returns the number of words in string separated by the sep character. Lead-
ing and trailing separators are ignored and strings of consecutive separators count as one only. The
second argument may be omitted and defaults to blank as the separator character.

PAW
 MESS �WORDS���abc�def��ghi������

�

– �WORD�string�k�n�sep� returns n words starting from word k. The last two arguments may be
omitted default to blank as separator character and the replacement value extending to the last word
in string.

PAW
 MESS �WORD��abc def ghi����

def ghi

PAW
 MESS �WORD��abc def ghi������

def

– �QUOTE�string� returns a quoted version of string, i.e. the string is enclosed by quote characters

4.3. System functions 189

and quote characters inside string are duplicated. The main use of this function is if an alias value
containing blanks should be treated as a single lexical token in a command line:

ALIAS�CREATE htitle �Histogram title�

�d �� �QUOTE�htitle� ��� � �

Another useful application of �QUOTE is to pass the value of an alias or macro variable as a character
constant to a comis function, for example

foo � �bar�

CALL fun�f��QUOTE��foo���

is equivalent to “CALL fun�f��bar��”. Since the quotes around “�bar�” are not part of the vari-
able value the construct “CALL fun�f��foo��” would given the desired result only if the value
contains blanks forcing the implicit quoting in the variable substitution.

– �UNQUOTE�string� returns a string with enclosing quote characters removed. The main use of
this function is if a macro variable should be treated as several blank-separated lexical tokens:

limits � ���� � ��

�d �� �Histogram title� �UNQUOTE��limits��

4.3.3 Expression evaluations

– �EXEC�cmd� executes a macro command and returns the macro’s EXITM value. Thus

mess �EXEC��mname ���

is equivalent to

EXEC mname �

mess �%�

– �EVAL�expr� returns the value of a numeric expression. The expression can contain numeric con-
stants and references to vector elements joined by “�”, �”, “"”, “�”. Parentheses may be used
to override the usual operator precedence. In addition, the functions ABS�x� (absolute value),
INT�x� (truncation towards zero), and MOD�x�y� (modulus) are available. Note that all opera-
tions, including division of two integer numbers, use floating point arithmetic.

PAW
 V�CREATE vec��� R ��� ��� ���

PAW
 MESS �EVAL��� ����� �EVAL�vec��� vec��� vec����

���� ���

Even if expr is merely a constant, the result is always in a canonical format with a maximum of
6 non-zero digits. Non-significant zeroes and the decimal point are omitted after rounding the last
digit towards �� or ��. A mantissa/exponent notation is used if the absolute value is � �	� or
� �	�
.

PAW
 MESS �EVAL������� �EVAL���������� �EVAL����������

��� �� ���E���

The explicit use of �EVAL is only necessary if the result should be inserted in a place where a string
is expected, for example in the MESSAGE command. In the instances where a command expects an
integer or real argument expressions are implicitly evaluated even without the �EVAL function.

– �SIGMA�expr� passes the expression to sigma for evaluation. sigma is an array manipulation
package which supports a multitude of mathematical functions (SQRT, EXP, etc.) operating on scalars

190 Chapter 4. User interface - KUIP

and kuip vectors:

PAW
 V�CREATE v������ R � � � � � � � � � ��

PAW
 MESS �SIGMA���pi� �SIGMA�vsum�v����

������� ��

For a description of the complete sigma expression syntax refer to chapter 6.
sigma expressions do not follow the syntax rules for kuip expressions. Therefore they cannot con-
tain kuip system functions with arguments. They may, however, contain argument-less system
functions, alias names, and macro variables.

– �RSIGMA is a slight variation of �SIGMA. Both functions return a scalar result in the same canonical
format used by �EVAL. The only difference is that �SIGMA removes the decimal point from integral
values while �RSIGMA leaves it in. For example, �RSIGMA should be used to calculate argument
values to be passed to a comis routine

SUBROUTINE FUN�X�

PRINT ��X

END

as floating point constants:

PAW
 CALL fun�f��SIGMA�sqrt�����

��������

PAW
 CALL fun�f��SIGMA�sqrt�����

��������E���

PAW
 CALL fun�f��RSIGMA�sqrt�����

��������

If the expression evaluates to a vector result �SIGMA (and �RSIGMA) return the name of a temporary vec-
tor containing the result. �SIGMA with a vector result can be used in all places where a vector name is
expected, e.g.

PAW
 V�PRINT �SIGMA�sqrt�array����!����

�SIG���� � �

�SIG���� � �������

�SIG���� � �������

The lifetime of these vectors is limited to the current command. Hence, their names should not be assigned
to macro variables and not be used in alias definitions:

PAW
 A�CREATE square
roots �SIGMA�sqrt�array����!����

PAW
 V�PRINT square
roots

��� VECTOR�PRINT	 unknown vector �SIG�

– �FORMAT�expr�format� returns the expression value formatted according to the Fortran format
specifier. The possible formats are “F”, “E”, “G”, “I”, and “Z” (hexadecimal).

PAW
 MESS �x � ����FORMAT�����F����

x � ����

PAW
 MESS �i � ����FORMAT����I��

i � ��

PAW
 MESS �j � ����FORMAT����I����

j � ����

4.3. System functions 191

– �INLINE�name� allows to insert the value of an alias or macro variable into an expression which
is then treated as being part of the expression. For example,

convert � ��UPPER�

foo � �INLINE��convert����bar��

is equivalent to “foo � �UPPER��bar��”, i.e. “foo � �BAR�”. Without �INLINE the content of
�convert� would be treated as a text string with the result that “foo � ��UPPER���bar����”.

4.3.4 Histograms inquiry functions

– �HEXIST�id� returns 1 if histogram id exists or 0 otherwise

– �HINFO�id��ENTRIES�� returns the number of entries.

– �HINFO�id��MEAN�� returns the mean value.

– �HINFO�id��RMS�� returns the standard deviation.

– �HINFO�id��EVENTS�� returns the number of equivalent event.

– �HINFO�id��OVERFLOW�� returns the content of overflow channel.

– �HINFO�id��UNDERFLOW�� returns the content of underflow channel.

– �HINFO�id��MIN�� returns the minimum bin content.

– �HINFO�id��MAX�� returns the maximum bin content.

– �HINFO�id��SUM�� returns the total histogram content.

– �HINFO�id��XBINS�� returns the number of bins in X direction.

– �HINFO�id��XMIN�� returns the lower histogram limit in X direction.

– �HINFO�id��XMAX�� returns the upper histogram limit in X direction.

– �HINFO�id��YBINS�� returns the number of bins in Y direction.

– �HINFO�id��YMIN�� returns the lower histogram limit in Y direction.

– �HINFO�id��YMAX�� returns the upper histogram limit in Y direction.

– �HTITLE�id� returns the histogram title.

4.3.5 Graphics inquiry functions

– �GRAFINFO��XZONES�� returns the number of zones in X direction.

– �GRAFINFO��YZONES�� returns the number of zones in Y direction.

– �GRAFINFO��NT�� returns the current normalization transformation number.

– �GRAFINFO��WNXMIN�� returns the lower X limit of window in current NT.

– �GRAFINFO��WNXMAX�� returns the upper X limit of window in current NT.

– �GRAFINFO��WNYMIN�� returns the lower Y limit of window in current NT.

– �GRAFINFO��WNYMAX�� returns the upper Y limit of window in current NT.

– �GRAFINFO��VPXMIN�� returns the lower X limit of viewport in current NT.

– �GRAFINFO��VPXMAX�� returns the upper X limit of viewport in current NT.

– �GRAFINFO��VPYMIN�� returns the lower Y limit of viewport in current NT.

– �GRAFINFO��VPYMAX�� returns the upper Y limit of viewport in current NT.

– �GRAFINFO���attr�� returns the current value of the hplot/higz attribute attr. See the HELP
of the command SET to have the list of the valid values of attr.

192 Chapter 4. User interface - KUIP

4.3.6 Cuts manipulations

– �CUT�n� returns the cut expression �n

– �CUTEXPAND�string� replace �n in the (quoted) string by �CUT�n�

4.4 Vectors

kuip provides optionally (VECDEF) the facilities to store vectors of integer or real data. These vectors, or
rather arrays with up to 3 index dimensions, can be manipulated by kuip built-in commands (see “HELP
VECTOR”). They are also accessible to application routines (KUGETV and KUVECT). Furthermore they are
interfaced to the array manipulation package sigma and to the Fortran interpreter comis (see chapter 6).

Vectors are memory resident only, i.e. they are not preserved across program executions. The commands
VECTOR�READ and VECTOR�WRITE allow to save and restore vector data from an external file in text for-
mat.

Vector names may be composed of letters, digits, underscores and question marks up to a maximum length
of 32 characters�. Names starting with “�” are reserved for internal use by kuip.

The only exception is the predefined vector simply called “�” which has a fixed size of 100 real elements.
Unlike the others the “�” vector is mapped to a fixed memory location (the common block �KCWORK�).
It does not show up in VECTOR�LIST output and it is not counted in the result of �NUMVEC.

4.4.1 Creating vectors

Vectors can be created with the VECTOR�CREATE command. The size of the index dimensions is given in
Fortran notation, e.g.

VECTOR�CREATE v������

VECTOR�CREATE v��������

The lower index bound always starts off at 1, i.e. “V�CREATE v��������” is not allowed. Omitting the
index dimension as in

VECTOR�CREATE v

is equivalent to

VECTOR�CREATE v���

kuip does not keep track of the actual number of index dimension given in the VECTOR�CREATE com-
mand, i.e.

VECTOR�CREATE v�����

VECTOR�CREATE v���������

are equivalent.

�Vector names which should be processed by sigma are currently limited to 7 characters.

4.5. Expressions 193

Definition: VECTOR�CREATE V�NCOL�

 ��� ��� ��� ���

� � � � � � � is addressed by V���

 ��� ��� ��� ���

Definition: VECTOR�CREATE V�NCOL�NROW�

 �� ��� ��� ��� V�	��� is the 1-dim array representing the 3rd row
� � � � � V���	� is the 1-dim array representing the 2nd column
 ��� ��� ��� ��� the shortcut notation V��� can be used as well
� � � � �

 ��� ��� ��� ���

� � � � � � � is addressed by V�����

 ��� ��� ��� ���

Definition: VECTOR�CREATE V�NCOL�NROW�NPLANE�

 ��� ��� ��� ���

 ��� ��� ��� ��� �

 ��� ��� ��� ��� �

� � � � � � � � is addressed by V�������

 ��� ��� ��� ��� �

� � � � � �

 ��� ��� ��� ��� �

� � � � �

 ��� ��� ��� ���

Figure 4.6: Addressing scheme for kuip vectors

4.4.2 Accessing vectors

Single vector elements can be used in kuip expressions where they are treated as numeric constants. Vec-
tors with a single element only we will refer to as “scalar vectors”. They have the special property that
in expressions it is sufficient to give the name without the “���” subscript.

Complete vectors and vector subranges can be used in the �SIGMA function and as argument to commands
expecting a vector name. The subrange notation is the same as in Fortran, e.g. v�����. The elements of
arrays are stored in column-major order, i.e. the elements v����� and v����� are adjacent in memory
(see figure 4.6).

The vector processing commands are expected to deal only with contiguous vectors. Therefore a subrange
referring to a non-contiguous set of elements is copied into a temporary vector and cannot be used as
output parameter.

4.5 Expressions

kuip has a built-in parser for different kinds of expressions: arithmetic expressions, boolean expressions,
string expressions, and “garbage expressions”.

194 Chapter 4. User interface - KUIP

4.5.1 Arithmetic expressions

The syntactic elements for building arithmetic expressions are shown in table 4.4. They can be used
– in the macro statements DO, FOR, and EXITM

– in macro variable assignments
– as system function arguments where a numeric value is expected
– as command arguments retrieved with KUGETI or KUGETR
– as argument to the �EVAL function

Note that all arithmetic operations are done in floating point, i.e. “���” becomes “���”. If a floating point
result appears in a place where an integer is expected, for example as an index, the value is truncated.

4.5.2 Boolean expressions

Boolean expressions can only be used in the macro statements IF, WHILE, and REPEAT. The possible syn-
tactic elements are shown in table 4.5.

In addition, a single arithmetic expression is also accepted as boolean expression, interpreting any non-
zero value as true. This allows, for example, the short-cuts

IF �VEXIST�v�� THEN

���

WHILE � DO

���

instead of the explicit forms

IF �VEXIST�v���
� THEN

���

WHILE ��� DO

���

Note, however, that an arithmetic expression is not equivalent to a boolean value. This implies that

IF �VEXIST�v�� �and� �VEXIST�v�� THEN � error

is not accepted and has to be written as

IF �VEXIST�v���
� �and� �VEXIST�v���
� THEN

4.5.3 String expressions

String expressions can be used
– in the macro statements CASE, FOR, and EXITM

– in macro variable assignments
– as system function arguments where a string value is expected
– as argument to the �EVAL function

They may be constructed from the syntactic elements shown in table 4.6.

4.5. Expressions 195

expr ��� number
� vector-name for scalar vectors

� vector-name � expr �

� vector-name � expr � expr �

� vector-name � expr � expr � expr �
� �variable-name� if variable value has form of a numeric con-

stant or is the name of a scalar vector

� �variable-name� � expr ... � if variable value is a vector name

� alias-name if alias value has form of a numeric constant

� �system-function � ... � if function returns a numeric value

� � expr

� expr � expr
� expr � expr

� expr " expr

� expr � expr

� � expr �
� ABS � expr �

� INT � expr �

� MOD � expr � expr �

Table 4.4: Syntax for arithmetic expressions

bool ��� expr rel-op expr
� string eq-op string

� expr eq-op string

� �NOT� bool

� bool �AND� bool
� bool �OR� bool

� � bool �

rel-op ��� �LT� � �LE�

� � �

� �GT� � �GE�

� ! � !�

� eq-op
eq-op ��� �EQ� � �NE�

� � � !

Table 4.5: Syntax for boolean expressions

string ��� quoted-string

� unquoted-string

� string �� string concatenation

� expr �� string value of expression converted to string representation

� �variable-name�

� alias-name

� �system-function � ... �

Table 4.6: Syntax for string expressions

196 Chapter 4. User interface - KUIP

4.5.4 Garbage expressions

Expressions which do not satisfy any of the above syntax rules we want to call “garbage” expressions.
For example,

s � �OS�MACHINE

is not a proper string expression. Unless they appear in a macro statement where specifically only an
arithmetic or a boolean expression is allowed, kuip does not complain about these syntax errors. Instead
the following transformations are applied:

1 alias substitution

2 macro variable replacement; values containing a blank character are implicitly quoted

3 system function calls are replaced one by one by their value provided that the argument is a syn-
tactically correct expression

4 string concatenation

The same transformations are also applied to command arguments. Therefore the concatenation operator
“��” can be omitted in many cases. For example,

MESS �OS�MACHINE

MESS �OS���MACHINE

MESS �EVAL��OS�MACHINE�

MESS �EVAL��OS���MACHINE�

give all the same result.

4.5.5 The small-print on kuip expressions

kuip expressions are evaluated by a yacc-generated parser. Yacc (“Yet Another Compiler-Compiler”) is a standard
Unix tool. It produces a C routine to parse an token stream which follows the syntax rules fixed by the grammar
definition.
The parser needs as front-end a lexical analyzer which reads the input stream, separates it into tokens, and returns
the token type and its value to the parser. There is another Unix tool lex which can produce an appropriate lexical
analyzer from a set of rules. In the case of kuip the lexical analyzer had to be hand-crafted because the interpretation
of a symbol depends very much on the global context. For example, if the input stream consists is simply “foo”
the lexical analyzer has to check consecutively:

– If foo is defined as an alias:
– If the alias value looks like a number, classify it as a number.
– Otherwise classify the alias value as a string.

– Otherwise classify it as the string “�foo�”.

A similar reasoning has to be applied for “�foo�”:

– If foo is a defined macro variable:
– If the variable value looks like a number, classify it as a number.
– If the variable value is the name of a scalar vector, classify it as a number.
– Otherwise classify the variable value as a string.

– Otherwise classify it as the string “��foo��”.

kuipmacro variables do not have to (and cannot) be declared. The value is always stored as a string and it depends
on the context whether the value should be interpreted as a number. Also there is no way to tell in the beginning
whether the right-hand side of an assignment is an arithmetic or a string expression.
The lexical analyzer starts off interpreting tokens as a numbers if it can. For example,

4.5. Expressions 197

a � ���

b � ���

c � �a� �b�

is tokenized as “number � number” and gives “c � �” even though the values assigned to a and b are originally
quoted. If we have a string expression

�foo����bar�

this could result in the possible token sequences

string �� string

number �� string

string �� number

number �� number

depending whether the values of foo and bar look like a number. Accordingly we would have to define four gram-
mar rules to cover these different cases. The same problem occurs in system functions expecting a string argument,
e.g.

�SUBSTRING��foo������

would need two rules for foo being a number or a genuine string.
Yacc allows to avoid this inflation of necessary rules by using so-called lexical tie-ins. After having seen “��” or
“	SUBSTRING
” the parser can instruct the lexical analyzer that it should not attempt to classify the next token as
a number. Therefore a single rule for each system function is sufficient.
However, a lexical tie-in can only be used after the parser found a unique match between the token sequence and
all grammar rules In the case of string concatenation we still have to provide two separate rules for

string �� string

number �� string

The grammar rule (see above) actually says that the left-hand side of the “��” operator can be either an arithmetic
or a string expression. An arithmetic expression is evaluated and then transformed into the result’s string represen-
tation. For example,

������

gives “����”. On the other hand,

������

gives “��
���”. It does not become “����” because the right-hand side is not consider to be an arithmetic expres-
sion. It does also not become “�
�” because a result of a string operation is never again treated as a number even
if it looks like one.
The lexical analyzer forwards numbers in arithmetic expressions as floating point values to the parser. The result
is converted back to the string representation when it has to be stored in the macro variable. Since a single numeric
value already counts as an arithmetic expression the original string representation can be lost. For example,

a � ������������

b � �a�

MESS �LEN��a�� �LEN��b��

results in “�� ��” because the assignment “b � ��
�������” is taken as an arithmetic expression which is refor-
matted into ��
����E���. The reformatting can be inhibited by using

b � �UNQUOTE��a��

The 	UNQUOTE function removes quotes around a string. If the string is already unquoted it does nothing except
that in this case the parser will treat the value of �a� as a string.
Macros should not depend on this reformatting behavior. We consider it as an obscure side-effect of the present
implementation rather than a feature. If it causes inconvenience and we have a good idea how to avoid it the behavior
may change in a future kuip version.

198 Chapter 4. User interface - KUIP

4.6 Macros

A macro is a set of command lines stored in a file, which can be created and modified with any text editor.
The command EXEC invokes the macro and allows for two ways of specifying the macro name:

EXEC file

EXEC file!macro

The first form executes the first macro contained in file while the second form selects the macro named
macro. The default extension for file is “�kumac”.

Example of macro calls

PAW
 EXEC abc � Execute first �or unnamed� macro of file abc�kumac

PAW
 EXEC abc!m � Execute macro M of file abc�kumac

In addition to all available kuip commands the special “macro statements” in table 4.7 are valid only
inside macros (except for EXEC and APPLICATION, which are valid both inside and outside).

Note that the statement keywords are fixed. Aliasing such as “ALIAS�CREATE jump GOTO” is not al-
lowed.

4.6.1 Macro definitions and variables

A �kumac file can contain several macros. An individual macro has the form

MACRO macro�name � parameter�list �

statements

RETURN � expression �

Each statement is either a command line or one of the macro constructs described below. For the first
macro in the file the MACRO header can be omitted. For the last macro in the file the RETURN trailer may be
omitted. Therefore a �kumac file containing only commands (like the LAST�KUMAC) already constitutes
a valid macro.

Input lines starting with an asterisk (“"”) are comments. The vertical bar (“�”) acts as in-line comment
character unless it appears inside a quoted string. An underscore (“�”) at the end of a line concatenates it
to the next line.

Invoking a macro triggers the compilation of the whole �kumac file—not just the single macro called for.
The

ENDKUMAC

statement fakes an end-of-file condition during the compilation. This allows to keep unfinished material,
which would cause compilation errors, simply by moving it after the ENDKUMAC statement rather than
having to comment the offending lines.

The APPLICATION statement has the same form and similar functionality as the SET�APPLICATION com-
mand:

4.6. Macros 199

Macro Statements

STATEMENT DESCRIPTION

MACRO mname � var��val� ��� � define macro mname

RETURN � value � end of macro definition

ENDKUMAC end of macro file

EXEC mname � val� ��� � execute macro mname

EXITM � value � return to calling macro

STOPM return to command line prompt

APPLICATION command marker In-line text passed to application command

name � expression assign variable value

READ var � prompt � prompt for variable value

SHIFT shift numbered macro variables

GOTO label continue execution at label

label� GOTO target label (must terminate with a colon)

IF expr GOTO label continue at label if expr is true

IF�THEN� ELSEIF� ELSE� ENDIF conditional block statement

CASE� ENDCASE Macro flow control

WHILE�DO� ENDWHILE Macro flow control

REPEAT� UNTIL Macro flow control

DO� ENDDO Macro flow control

FOR� ENDFOR Macro flow control

BREAKL Macro flow control

NEXTL Macro flow control

ON ERROR CONTINUE ignore error conditions

ON ERROR GOTO label continue at label on error condition

ON ERROR EXITM value return to calling macro on error condition

ON ERROR STOPM return to command input on error condition

OFF ERROR deactivate the ON ERROR GOTO handling

ON ERROR reactivate the previous ON ERROR GOTO setting

Table 4.7: kuip macro statements

200 Chapter 4. User interface - KUIP

APPLICATION command marker

text

marker

The text up to the next line containing only the end marker starting in the first column is written to a
temporary file and then passed to the application command. The text is not interpreted in any way, i.e.
variable substitution etc. does not take place.
Instead of the full spelling APPLICATION any valid abbreviation of �KUIP�SET�SHOW�APPLICATION be
used, e.g. “APPL”. A call to SET�APPLICATION as a result of an alias expansion, however, is not allowed.

Macro execution

Inside a macro the EXEC statement can call other macros. A macro may also call itself recursively. The
EXEC command allows two different forms for specifying the macro to be executed:

EXEC fname�mname � argument�list �

and

EXEC name � argument�list �

Between the EXEC statement and the EXEC command there is a slight difference. The command “EXEC
name” executes the first macro in name�kumac while the EXEC statement will try first whether a macro
name is defined within the current �kumac file.
Macro execution terminates when one of the statements

EXITM � expression �

or

RETURN � expression �

or

STOPM

is encountered. The EXITM andRETURN statements return to the calling macro. They allow to pass a return
value which is stored into the special variable ��� of the calling macro. If no value is given it defaults to
“�”. Note that the RETURN statement also flags the end of the macro definition, i.e. the construct

IF ��� THEN

RETURN � error�

ENDIF

is illegal. The STOPM statement unwinds nested macro calls and returns to the command line prompt im-
mediately.

4.6. Macros 201

Macro variables

Macro variables do not have to be declared. They become defined by an assignment statement:

name � expression

The right-hand side of the assignment can be an arithmetic expression, a string expression, or a garbage
expression (see section 4.5). The expression is evaluated and the result is stored as a string (even for
arithmetic expressions).

The variable value can be used in other expressions or in command lines by enclosing the name in square
brackets:

�name�

For example,

greet � Hello

msg � �greet���� World�

MESS �msg�

If the name enclosed in brackets is not a macro variable then no substitution takes place.

Variable values can also be queried from the user during macro execution. The statement

READ name � prompt �

prompts for the variable value. If the prompt string is omitted it is constructed from the macro and variable
names. The variable value prior to the execution of the READ statement is proposed as default value and
will be left unchanged if the user answers simply be hitting the RETURN-key.

Macro using the READ statement

MACRO m

READ foo

bar � abc

READ bar

MESS �foo� �bar�

msg � ��

READ msg �Enter message	�

MESS You said �msg��

Output when executing

PAW
 EXEC m

Macro m	 foo � ��CR
��foo�� ���

Macro m	 bar � ��CR
�abc�

��� abc

Enter message	 ��CR
�� Hello

You said Hello�

Macro arguments

The EXEC command can pass arguments to a macro. The arguments are assigned to the numbered vari-
ables ���, ���, etc. For example, with the macro definition

202 Chapter 4. User interface - KUIP

MACRO m

MESS p����� p�����

we get the result

PAW
 EXEC m foo bar

p��foo p��bar

Unlike named variables undefined numbered variables are always replaced by the blank string � �, i.e.

PAW
 EXEC m foo

p��foo p��� �

The MACRO statement can define default values for missing arguments. With the macro definition

MACRO m ��abc ��def

MESS p����� p�����

we get the result

PAW
 EXEC m foo

p��foo p��def

The macro parameters can also be named, for example:

MACRO m arg��abc arg��def

MESS p���arg�� p���arg��

Even if the parameters are named the corresponding numbered variables are created nevertheless. The
named variables are a copy of their numbered counterparts rather that aliases, i.e. the above macro defi-
nition is equivalent to

MACRO m ��abc ��def

arg� � ���

arg� � ���

The named parameters can be redefined by a variable assignment which leaves the value of the numbered
variable untouched. For example,

MACRO m arg�old

MESS ��� �arg�

arg � new

MESS ��� �arg�

yields

PAW
 EXEC m

old old

old new

The EXEC command allows to give values for named parameters in non-positional order. For example,

MACRO m arg��abc arg��def

MESS �arg�� �arg��

4.6. Macros 203

can be used as

PAW
 EXEC m arg��foo

abc foo

Unnamed EXEC arguments following a named argument are assigned to numbered variables beyond the
parameters listed in the MACRO definition. For example,

PAW
 EXEC m arg��foo bar

foo def

i.e. the second argument “bar” is not assigned to �arg�� or ��� but to ���. Note that this differs from
the behavior for command arguments (see section 4.1.2).

The construct name�value may also be used in the EXEC command for names not defined in the macro’s
parameter list. The variable name is implicitly defined inside the macro. For example,

MACRO m

MESS �foo�

yields

PAW
 EXEC m

�foo�

PAW
 EXEC m foo�bar

bar

Therefore a string containing a “�” must be quoted� if it should be passed to the macro literally:

PAW
 EXEC m �foo�bar�

foo�bar

Since a undefined variable name can be thought of as having the value ��name��, the construct

IF �var��
��var�� THEN

allows to test whether such an external variable definition was provided.

Passing a value as argument to a macro is not quite the same as assigning the value to a variable inside the
macro. The macro argument is not tried to be evaluated as an arithmetic expression. String operations,
however, such as concatenation and alias substitutions, are applied. For example, “EXEC m� �"� ����”
with

MACRO m� a�� b��

mess �a� �b�

yields “�"� ��”, while “EXEC m�” with

�Up to the 94a release of kuip the treatment of quoted strings as macro arguments was very primitive. The value assigned
to the macro variable was obtained by simply stripping off the quote character on both sides. For example, a cut expression
“nation��F��” had to be written as EXEC m �nation��F���

In the 94b release the quoting of macro arguments was made consistent with the general rules and the correct quoting is now
EXEC m �nation���F���� The old spelling is still accepted but emits a warning message Old style use of quotes in

macro argument fixed to �nation���F����

204 Chapter 4. User interface - KUIP

MACRO m�

a � ���

a � ����

mess �a� �b�

yields “
 ��”. Macro arguments are not tried as arithmetic expressions in order to allow passing of vector
names without the use of quotes. Otherwise “EXEC m v�”, where v� is a scalar vector, would pass the
value of v���� rather than the string �v��.

Note that the result “
 ��” can also be obtained from the first of the above examples by means of the
�INLINE function:

MACRO m� ��� b��

a � �INLINE�����

mess �a� �b�

Special variables

A numbered variable cannot be redefined, i.e. an assignment such as “� � foo” is illegal. The only pos-
sibly manipulation of numbered variables is provided by the

SHIFT

statement which copies ��� into ���, ��� into ���, etc. and discards the value of the last defined num-
bered variable. For example, the construct

WHILE ��� �
 � � DO

arg � ���

���

SHIFT

ENDDO

allows to traverse the list of macro arguments.

For each macro the following special variables are always defined:

– ��� contains the fully qualified macro file name, e.g. “��fname�kumac�mname”

– ��� contains the number of macro arguments

– �"� is the concatenation of all macro arguments separated by blanks

– ��� contains the return value of the most recent EXEC call

Like for numbered variables these names cannot be used on the left-hand side of an assignment. The
values or ��� and �"� are updated by the SHIFT statement.

Variable indirection and arrays

Macro variables can be referenced indirectly by constructing the name using other variables, for example

4.6. Macros 205

Example of Input Macros

MACRO EXITMAC

MESSAGE At first� ��%�� � �%�

EXEC EXIT�

IF �%� � � THEN

MESSAGE Macro EXIT� successful

ELSE

MESSAGE Error in EXIT� � code �%�

ENDIF

RETURN

MACRO EXIT�

READ NUM

IF �NUM�
 �� THEN

MESSAGE Number too large

EXITM �NUM����

ELSE

V�CREATE V��NUM��

ENDIF

RETURN

Output when executing

PAW
 EXEC EXITMAC

At first� �%� � �

Macro EXIT�	 NUM � ��

Number too large

Error in macro EXIT� � code �

PAW
 EXEC EXITMAC

At first� �%� � �

Macro EXIT�	 NUM � ��

Macro EXIT� successful

DO i � �� ��

a
�i� � �i� � �i�

ENDDO

s � �

DO i � �� ��

s � �s� �a
�i��

ENDDO

While for kuip we simply created ten variables a��, ..., a���, we can also look at it as an array a�i.
We don’t even need to remember the dimension of the array. The system function �DEFINED returns all
defined variables matching a wildcard, for example

s � �

DO i � �� �WORDS��DEFINED��a
����

s � �s� �a
�i��

ENDDO

Instead of a�i we can also use the more conventional array notation a�i�

DO i � �� ��

a��i�� � �i� � �i�

ENDDO

s � �

DO i � �� �WORDS��DEFINED��a������

s � �s� �a��i���

ENDDO

as long as we have the possibility to match all array elements with a single wildcard expression.

Since for kuip all array elements are just simple variables the indices do not even need to be numeric.
We can also construct associative arrays where the indices are names, for example

206 Chapter 4. User interface - KUIP

events�mu� � ����

events�el� � ���

events�tau� � ��

total � �

names � �DEFINED��events�����

DO i � �� �WORDS��names��

name � �WORD��names���i����

total � �total� ��name��

ENDDO

By the same token we can also create multi-dimensional arrays, for example

DO i � �� �

DO j � �� �

a��i���j�� � �i��� �j�

ENDDO

ENDDO

The �DEFINED function returns the matching variable names sorted in alphabetical order, i.e.

�DEFINED��events����� is �events�el� events�mu� events�tau��

�DEFINED��a����� is �a��� a���� a��� ��� a����

and not necessarily in the order in which they were created.

The indirection only allows for variable substitution when constructing the actual variable name. Expres-
sion evaluation etc. does not take place and constructs such as

total � �total� ��WORD��names���i����� � invalid�

are not allowed.

The construct ��name�� can also be written as

�)name�

For example, this is another way to traverse the list of macro arguments:

DO i����!�

arg � �"i�

���

ENDDO

Except for the �)name� construct variable indirection is available only since the 95a release.

Global variables

Global variables can be made visible inside a macro by executing the commands GLOBAL�CREATE or
GLOBAL�IMPORT. Technically these commands create a local variable with the same name initialized to
the value of the global variable. When assigning a value to the local variable the change is also propagated
to the global variable. Therefore, once they are made visible inside a macro, global variables are assigned
to and used in the same way as local variables.

The GLOBAL�CREATE command creates a global variable allowing to specify an initial value and a com-
ment text, e.g.

4.6. Macros 207

GLOBAL�CREATE m
e ������ �Electron mass �GeV��

GLOBAL�CREATE m
mu ����� �Muon mass �GeV��

If executed inside a macro the global variable becomes visible there.

The GLOBAL�IMPORTcommand has an effect only when executed inside a macro. It allows to make global
variables visible which have been created elsewhere. The import list may contain “"” as a wildcard for
any character sequence, for example

GLOBAL�IMPORT m
�

Only those global variables existing at the time the GLOBAL�IMPORT is executed become visible. There-
fore, global variables created in an inferior macro do not become visible even if they match the wildcard.
For example, in

MACRO a

GLOBAL�IMPORT m
�

EXEC b

���

RETURN

MACRO b

GLOBAL�CREATE m
tau ����� �Tau mass �GeV��

RETURN

m�tau is not visible in macro a unless it is imported after executing b.

Deleting a global variable in an inferior macro, on the other hand, also deletes the associated local vari-
ables in the macro call stack. For example, in

MACRO a

GLOBAL�IMPORT m
�

EXEC b

���

RETURN

MACRO b

GLOBAL�DELETE m
mu

RETURN

when returning from macro b the imported variable m�mu will become undefined.

Global variables can also be set and used from the command line, for example,

PAW
 g�cre x �

PAW
 x��x���

PAW
 mess �x�

�

However, the implicit creation when assigning a value to an undefined variables does not apply:

PAW
 y��

��� Unknown command	 y��

Global variables are available only since the 95a release.

208 Chapter 4. User interface - KUIP

4.6.2 Flow control constructs

There are a variety of constructs available for controlling the flow of macro execution. Most for the con-
structs extend over several lines up to an end clause. The complete block counts as a single statement and
inside each block may be nested other block statements.
The simplest form of flow control is provided by the

GOTO label

statement which continues execution at the statement following the target label:

label�

If the jump leads into the scope of a block statement, for example a DO-loop, the result is undefined. The
target may be given as an expression evaluating to the actual label name, e.g.

name � label

���

GOTO �name�

���

label	

In the label definition the colon must follow the label name immediately without any intervening blanks.
The label may be followed by a command on the same line, e.g.

label	 MESS Hello

Conditional execution

IF expression THEN

statements

ELSEIF expression THEN

statements

���

ELSEIF expression THEN

statements

ELSE

statements

ENDIF

The general IF construct executes the statements following thefirst IF/ELSEIFclause for with the boolean
expression is true and then continues at the statement following the ENDIF.
The ELSEIF clause can be repeated any number of times or can be omitted altogether. If none of the
expressions is true, the statements following the optional ELSE clause are executed.

IF expression GOTO label

This old-fashioned construct is equivalent to

4.6. Macros 209

IF expression THEN

GOTO label

ENDIF

CASE expression IN

�label� � statements �

���

�label� � statements �

ENDCASE

The CASE switch evaluates the string expression and compares it one by one against the label lists until the
first match is found. If a match is found the statements up to the next label are executed before skipping
to the statement following the ENDCASE. None of the statements are executed if there is no match with
any label.

Each label is a string constant and the comparison with the selection expression is case-sensitive. If a
label is followed by another label without intervening statements then a match of the first label will skip
to theENDCASE immediately. In order to execute the same statement sequence for distinct labels a comma-
separated list of values can be used. The “"” character in a label item acts as wild-card matching any string
of zero or more characters, i.e. “�"�” constitutes the default label.

Example for CASE labels with wild-cards

MACRO CASE

READ FILENAME

CASE �FILENAME� IN

���ftn� ��for� TYPE � FORTRAN

���c� TYPE � C

���p� TYPE � PASCAL

��� TYPE � UNKNOWN

ENDCASE

MESSAGE �FILENAME� is a �TYPE� file�

RETURN

Loop constructs

The loop constructs allow the repeated execution of command sequences. For DO-loops and FOR-loops
the number of iterations is fixed before entering the loop body. For WHILE and REPEAT the loop count
depends on the boolean expression evaluated for each iteration.

DO loop � start�expr� finish�expr �� step�expr �

statements

ENDDO

The step size defaults to “�”. The arithmetic expressions involved can be floating point values but care
must be taken of rounding errors. A DO-loop is equivalent to the construct

210 Chapter 4. User interface - KUIP

count � � finish
expr � start
expr � � step
expr

loop � start
expr

step � step
expr

label	

IF �count�
� � THEN

statements

loop � �loop� �step�

count � �count� � �

GOTO label

ENDIF

where all variables except for loop are temporary.

Note that “DO i����” results in zero iterations and that the expressions are evaluated only once. i.e. the
loop

n � ��

DO i����n�

MESS �i� �n�

n � �n� � �

ENDDO

is iterated 10 times and leaves “i � ��” afterwards.

FOR name IN expr�� � expr�� ��� expr�n �

statements

ENDFOR

In a FOR-loop the number of iterations is determined by the number of items in the blank-separated ex-
pression list. The expression list must not be empty. One by one each expression evaluated and assigned
to the variable name before the statements are executed. The equivalent construct is the loop-unrolling

name � expr
�

statements

name � expr
�

statements

���

name � expr
n

statements

The expressions can be of any type: arithmetic, string, or garbage expressions, and they do not need to
be all of the same type. In general each expression is a single list item even if the result contains blanks.
For example,

foobar � �foo bar�

FOR item IN �foobar�

MESS �item�

ENDFOR

results in a single iteration. The variable �"� is treated as a special case being equivalent to the expression
list “��� ��� ��� �n�” which allows yet another construct to traverse the macro arguments:

4.6. Macros 211

FOR arg IN ���

���

ENDFOR

WHILE expression DO

statements

ENDWHILE

The WHILE-loop is iterated while the boolean expression evaluates to true. The loop body is not executed
at all if the boolean expression is false already in the beginning. The equivalent construct is:

label	

IF expression THEN

statements

GOTO label

ENDIF

REPEAT

statements

UNTIL expression

The body of a REPEAT-loop is executed at least once and iterated until the boolean expression evaluates
to true. The equivalent construct is:

label	

statements

IF �NOT� expression GOTO label

BREAKL � levels �

allows to terminate a loop prematurely. The BREAKL statement continues executing after the end clause
of the enclosing DO, FOR, WHILE, or REPEAT block.

NEXTL � levels �

allows to terminate one loop iteration and to continue with the next one. The NEXTL statement continues
executing just before the end clause of the enclosing DO, FOR, WHILE, or REPEAT block.

Both BREAKL and NEXTL allow to specify the number of nesting levels to skip as an integer constant.

Error handling

Each command returns a status code which should be zero if the operation was successful or non-zero if
any kind of error condition occurred. The status code is stored in the IQUEST��� status vector and can
be tested as, for example

212 Chapter 4. User interface - KUIP

Example of using BREAKL and NEXTL

WHILE ��� DO

���

IF expr THEN

BREAKL

ENDIF

���

DO i����!�

���

IF �"i����� THEN

NEXTL

ENDIF

IF �"i������ THEN

NEXTL �

ENDIF

���

ENDDO

���

ENDWHILE

Equivalent code using GOTOs

WHILE ��� DO

���

IF expr GOTO break
while

���

DO i����!�

���

IF �"i����� GOTO next
do

IF �"i������ GOTO next
while

���

next
do	

ENDDO

���

next
while	

ENDWHILE

break
while	

HISTO�FILE � foo�hbook

IF �IQUEST����
� THEN

��� cannot open file

��� do some cleanup

EXITM �

ENDIF

ON ERROR GOTO label

installs an error handler which tests the status code after each command and branches to the given label
when a non-zero value is found. The error handler is local to each macro.

ON ERROR EXITM � expression �

and

ON ERROR STOPM

are short-hand notations for an ON ERROR GOTO statement with a EXITM or STOPM statement, respectively,
at the target label.

ON ERROR CONTINUE

nullifies the error handling. Execution continues with the next command independent of the status code.
This is the initial setting when entering a macro.

4.6. Macros 213

OFF ERROR

and

ON ERROR

allow to temporarily suspend and afterwards reinstate the previously installed error handling. Note that
the OFF/ON settings do not nest, for example

ON ERROR EXITM

OFF ERROR � behave like ON ERROR CONTINUE

ON ERROR STOPM

OFF ERROR

ON ERROR � restore ON ERROR STOPM

ON ERROR � unchanged� i�e� not ON ERROR EXITM �

Another way of testing the status code of a command is to use the line separators “&'” and “&�” (see
section 4.1.3). These operators take precedence over the ON ERROR setting.

cmd� �$ cmd� � cmd�

is roughly equivalent to

OFF ERROR

cmd�

IF �IQUEST����� THEN

cmd�

ON ERROR

cmd�

ENDIF

ON ERROR

except that the ON/OFF ERROR statements are virtual and do not overwrite the setting saved by a real OFF
ERROR statement.

214 Chapter 4. User interface - KUIP

4.7 Motif mode

4.7.1 The KUIP/Motif Browser Interface

The KUIP/Motif Browser interface is a general tool to display and manipulate a tree structure of objects
which are defined either by kuip itself (commands, files, macros, etc.) or by the application (e.g. in
paw++: Zebra and Hbook files, Chains, etc.). The objects contained in the currently selected directory
can be displayed in various forms: big icons, small icons, text only, etc. It is possible to perform actions
on these objects or the directories it-selves by accessing pop-up menus directly attached to them: this be-
havior of the browser gives access to a “direct object manipulation” user interface by opposition to the
usual “command mode interface”. Adding your application specific objects into the browser is mainly
done through the kuip “Command Definition File” (CDF): you will not get involved in any kind of Mo-
tif programming.

Description of the “Main Browser” Window

For any application based on KUIP/Motif one browser will be automatically created and displayed: it is
called the “Main Browser”. Later on it is possible to “clone” this browser (by pressing the corresponding
button at the bottom/right) when it is in a certain state. This will give to the user the possibility to have
several instances of the browser window, and look at the same time to different kind of objects.
A “browser window” is composed of (Fig. 4.7):

– A menu bar with the menu entries “File” ➀ , “View” ➁ , “Options” ➂ , “Commands” ➃ and “Help” ➄ .

– A two lines text/label area (➊ and ➋).

– The middle part of the browser is divided into two scroll-able windows: the “FileList” or “Brows-

able window” ➌ at the left and the “DirList” or “Object window” ➍ at the right.

– Two lines of information at the bottom (➎ et ➏), plus a “Clone” ➑ and a “Close” ➒ buttons.

Below follows a description of the middle (and main) part of the browser which is divided into two scroll-
able windows on the left and right sides (Fig. 4.7):

– The left hand “FileList” or “Browsable window” ➌ shows the list of all the currently connected
browsables. A “browsable” is simply a container of objects and is defined with the “!Browse”
directive in the CDF. The browsables “Commands”, “Files” and “Macros” are built-in inside kuip
itself and are always displayed. Each application can add to this list its own definitions for any
kind of browsables (e.g. in paw++: “Zebra”, “Hbook”, “Chains” and “PAWC”) Some browsables
can also be attached at run time by selecting the corresponding “Open” entry in the menu “File”
(e.g. in paw++: ZEBRA/RZ files for access to histograms and Ntuples).
Pressing the right mouse button in this window shows a pop-up menu with all the possible actions
which have been defined for this browsable.
Selecting one item (or browsable) in this window with the left mouse button executes by default
the “List” action (first entry of the pop-up menu): it displays the content of the browsable in the
right hand window (“DirList” or “Object window”)
Note that the first entry of the pop-up menu of actions for one browsable is always “List” and that
the last entry is always “Help” : it should give information concerning the selected browsable.

– The right hand “DirList” or “Object window” ➍ shows the content of the currently selected brows-
able for the selected path. E.g. when you select the browsable “Macro” (built-in inside kuip), you
will get all the kuip macro files and sub-directories which are contained in the selected directory.

4.7. Motif mode 215

➀ ➁ ➂ ➃ ➄

➊ ➋

➌ ➍
➎ ➏

➐
➑ ➒

Figure 4.7: KUIP/Motif “Main Browser” Window

Objects are selected by clicking on them with the left mouse button. Pressing the right mouse button
pops up a menu of possible operations depending on the object type ➐ .
An item in a pop-up menu is selected by pointing at the corresponding line and releasing the right
mouse button. Double clicking with the left mouse button is equivalent to selecting the first menu
item.
Each menu item executes a command sequence where the name of the selected object is filled into
the appropriate place. By default the command is executed immediately whenever possible. (The
commands executed can be seen by selecting “Echo Commands” in the “Options” menu of the “Ex-

ecutive Window”.) In case some mandatory parameters are missing the corresponding “Command

216 Chapter 4. User interface - KUIP

Argument Panel” is displayed, and he remaining arguments have to be filled in. The command is
executed then by pressing the “OK” or “Execute” button. (Note that if it is not the last one in the se-
quence of commands bound to the menu item, the application is blocked until the “OK” or “Cancel”
button is pressed.)

All the application specific definitions for the entities accessible through the browser (objects, browsables
and action menus) have to be made in the “Command Definition File” (CDF) with a very simple and easy-
readable syntax.
The two lines text/label area at the top displays information about (Fig. 4.7):

– the current path (or directory) for the selected browsable ➊ (entry “Path:”). The directory can be
changed by pointing at the tail of the wanted sub-path and clicking the left mouse button. Clicking
a second time on the same path segment performs the directory change and updates the “DirList”
window with the list of objects.

– the number of objects of all the different classes defined for the selected browsable in the current
directory ➋ .

The two lines of information at the bottom are filled with (Fig. 4.7):

– a short description of the browsable which is currently selected ➎ (entry “File:”),

– a short description of the object which is selected in the “object window” for a given browsable ➏ .

Below follows a description of the different Browser menus:

File

The File menu can be filled by the application with menu entries (buttons) which give access to the com-
mands that can be used to connect or de-connect a new browsable at run time (e.g. in paw++ the commands
to open or close ZEBRA/RZ files).
These buttons/menu entries are automatically generated from the definition of the action menus for the
browsables made in the CDF. For example, the File menu in the paw++ “Main Browser” is shown below.
The last entry of this menu is always “Exit”, to exit from the application.

Open Hbook File... Open one ZEBRA/RZ file.

Close Hbook File... Close one ZEBRA/RZ file.

Exit Exit from the application.

View

The View menu allows to change the way objects are displayed or selected.

Icons display objects with normal size icons and names (default).

Small Icons display objects with small icons and names.

No Icons display objects without icons, but names and small titles.

Titles display objects without icons, but long titles.

Select All select all the objects.

Filter... ask for a filter to be put on object names.

4.7. Motif mode 217

Options

Raise Window “cascade button” with the list of all opened windows. Selecting one of
this window will pop-up the window on top of the others.

Command Argument Panel selecting this entry will prompt the user for a command name. If the com-
mand is valid then the corresponding “Command Argument Panel” with
the list and description of all parameters will be displayed. If the com-
mand is ambiguous (e.g. command “list”) the user will be proposed a list
of all the possible commands. He can then select one and the correspond-
ing “Command Argument Panel” will be displayed. If the command does
not exist an error message is displayed.

Commands

This menu gives access to the
complete tree of commands de-
fined by kuip and the application
in the form of a pull-down menu.
When a terminal item (command)
in this menu is selected then the
corresponding “Command Argu-
ment Panel” is displayed. The
functionality of this menu is quite
similar to the browsable “Com-
mands” (this is just a matter of
taste whether the user prefer to ac-
cess commands through this pull-
down menu or through the “Com-
mands” browser).

218 Chapter 4. User interface - KUIP

Help

On fAppl.g Help specific to the application (has to be
written in the CDF (Command Definition
File)).

On fAppl.g Resources Help specific to the application resources
(has to be written in the CDF (Command
Definition File)). Resources control the ap-
pearance and behavior of an application.

On Kuip Resources List the X resources available to any
KUIP/Motif based application.

On Browser Help on the KUIP/Motif Browser interface
(“Main Browser”).

On Panel Help on the KUIP/Motif “PANEL inter-
face”.

On System Functions List kuip all internal system functions cur-
rently available.

Browser Setting or Initialization

The following KUIP/Motif command can be used to set up the browser in a given state, without having
to click with the mouse:

�MOTIF�BROWSER browsable �path�

– browsable is the name of the file (browsable) you want to open (corresponding item is selected in
the list of browsables).

– path (optional) is the pathname to be used for this browsable.

E.g. If you want to open the browser in the state displayed in Fig. 4.7, without having to click with the
mouse, you can execute the KUIP command:

�MOTIF�BROWSER Files �neutrons�cremel�kuip

It is also possible, for the application programmer, to initialize the browser in a certain state when the
application is starting. For that we provide the Motif user callable C routine km˙browser˙set which can
be called just before entering the Motif main loop.

4.7.2 KXTERM: the kuip Terminal Emulator (or “Executive Window”)

This terminal emulator combines features from Apollo DM pads (Input Pad and Transcript Pad, auto-
matic file backup of Transcript Pad, string search in pads, etc.) and the Korn shell emacs-style command
line editing and command line recall mechanism.

4.7. Motif mode 219

➀ ➁ ➂ ➃ ➄

➊ ➋ ➌ ➍➍

➀ Menu bar entry
“File”.

➁ Menu bar entry
“Edit”.

➂ Menu bar entry
“View”.

➃ Menu bar entry
“Options”.

➄ Menu bar entry
“Help”.

➊ Input Pad

➋ Transcript Pad

➌ Current working
directory indica-
tor.

➍ Hold buttons.

Figure 4.8: KXTERM (KUIP/Motif “Executive Window”)

Description and Behavior

KXTERM (or what we call the “Executive Window” in a kuip based application) is composed of three
main parts (Fig. 4.8):

– A “menu bar” with the menu entries “File” ➀ , “Edit” ➁ , “View”➂ , “Options”➃ , and “Help”➄ ,.

– A Transcript Pad ➋ which contains any kind of output coming from kuip or from the application.

– An Input Pad ➊ which is an edit-able “scrolled window” where the user can type commands.

Commands are typed in the input pad behind the application prompt. Via the toggle buttons ➍ labeled “H”
the Input Pad and/or Transcript Pad can be placed in hold mode. In hold mode one can paste or type a
number of commands into the Input Pad and edit them without sending the commands to the application.
Releasing the hold button will causes Kxterm to submit all lines, up to the line containing the cursor, to
the application. To submit the lines below the cursor, just move the cursor down. In this way one can still
edit the lines just before they are being submitted to the application.

Commands can be edited in the Input Pad using emacs-like key sequences (see section 4.7.2). The Tran-

script Pad shows the executed commands and command output. When in hold mode the Transcript Pad

does not scroll to make the new text visible.

Every time the current directory is changed, the Current working directory indicator ➌ is updated. The
current working directory is the one which is currently selected in the “Main Browser”.

220 Chapter 4. User interface - KUIP

Below follows a description of the different Kxterm menus. All Kxterm menus can be dynamically ex-
tended by the application.

File

About Kxterm... Displays version information about Kxterm.

About fAppl.g ... Displays version information about the applica-
tion Kxterm is servicing.

Save Transcript Write the contents of the Transcript Pad to the
current file. If there is no current file a file selec-
tion box will appear.

Save Transcript As... Write the contents of the Transcript Pad to a
user-specified file.

Print... Print the contents of the Transcript Pad (not yet
implemented).

Kill fAppl.g Send a SIGINT signal to the application to cause
it to core dump. This is useful when the appli-
cation is hanging or blocked. Use only in emer-
gency situations.

Exit Exit Kxterm and the application.

Edit

Cut Remove the selected text. The selected text is written to
the Cut & Paste buffer. Using the “Paste” function, it can
be written to any X11 program. In the Transcript Pad

“Cut” defaults to the “Copy” function.

Copy Copy the selected text. The selected text is written to the
Cut & Paste buffer. Using the “Paste” function, it can be
written to any X11 program.

Paste Insert text from the Cut & Paste buffer at the cursor lo-
cation into the Input Pad.

Search... Search for a text string in the Transcript Pad.

4.7. Motif mode 221

View

Show Input Show in a window all commands entered
via the Input Pad.

Command Panel Gives access to the KUIP/Motif “PANEL

interface” for a panel which has been pre-
defined in a kuip macro file (see section
4.7.3).

New Command Panel Gives access to the KUIP/Motif “PANEL

interface” for setting a new and empty
panel to be filled interactively (see section
4.7.3).

Browser Display another instance of the browser.

Options

Clear Transcript Pad Clear all text off of the top of the Tran-

script Pad.

Echo Command Echo executed commands in Transcript

Pad.

Timing Report command execution time (real and
CPU time).

Iconify Iconify Kxterm and all windows of the ap-
plication.

Raise Window Display a list of all windows connected to
the application. The user can select the
window he wants to pop-up.

222 Chapter 4. User interface - KUIP

Help

On Kxterm The help you are currently reading.

On Edit Keys Help on the emacs-style edit key se-
quences.

On fAppl.g Help specific to the application (has to be
written in the CDF).

On fAppl.g Resources Help specific to the application resources
(has to be written in the CDF). Resources
control the appearance and behavior of an
application.

On Kuip Resources List the X resources available to any
KUIP/Motif based application.

On Browser Help on the KUIP/Motif Browser inter-
face (“Main Browser”).

On Panel Help on the KUIP/Motif “PANEL inter-
face”.

On System Functions List all kuip internal system functions
currently available.

Edit Key Sequences

Please note that “C-b” means holding down the Control key and pressing the “b”-key. “M-” stands for
the Meta or Alt key.

C�b	 backward character

M�b	 backward word

Shift M�b	 backward word� extend selection

M��	 backward paragraph

Shift M��	 backward paragraph� extend selection

M��	 beginning of file

C�a	 beginning of line

Shift C�a	 beginning of line� extend selection

C�osfInsert	 copy to clipboard

Shift osfDelete	 cut to clipboard

Shift osfInsert	 paste from clipboard

Alt�
	 end of file

M�
	 end of file

C�e	 end of line

Shift C�e	 end of line� extend selection

C�f	 forward character

M��	 forward paragraph

Shift M��	 forward paragraph� extend selection

C�M�f	 forward word

C�d	 kill next character

M�BS	 kill previous word

C�w	 kill region

C�y	 yank back last thing killed

C�k	 kill to end of line

C�u	 kill line

4.7. Motif mode 223

NEWPANEL �
 �First panel� �

��� ��� ���
��

This KUIP/Motif command creates an empty panel
with 4 rows and 6 columns of buttons. The title of
this panel will be set to “Gtest First panel” (“Gtest” is
the application class-name). The panel size in pixels
is 250 (width) x 200 (height), and the panel position
(in pixels) is 500 (along X axis), 600 (along Y axis).

Figure 4.9: New Panel of Commands

M�DEL	 kill to start of line

C�o	 newline and backup

C�j	 newline and indent

C�n	 get next command� in hold mode	 next line

C�osfLeft	 page left

C�osfRight	 page right

C�p	 get previous command� in hold mode	 previous line

C�g	 process cancel

C�l	 redraw display

C�osfDown	 next page

C�osfUp	 previous page

C�SPC	 set mark here

C�c	 send kill signal to application

C�h	 toggle hold button of pad containing input focus

F�	 re�execute last executed command

Shift F�	 put last executed command in input pad

Shift�TAB	 change input focus

4.7.3 User Definable Panels of Commands (“PANEL interface”)

KUIP/Motif includes a built-in “PANEL interface” that allows to define command sequences which are
executed when the corresponding button in the panel is pressed.

As you will see, this “PANEL interface” is quite powerful compared to the ”STYLE GP” which was
available in the basic kuip for graphical screens. In particular it is possible to set-up panels with graphical
keys (icons) representation.

New Panel

It is possible to fill a new and empty panel interactively (see section 4.7.3) giving a label to each button.

In the top menu bar 3 pull-down menus (‘File”, “View” and “Help”) are available. The pull-down menu
“File”, whose contents is displayed, contains the 2 items “Save” (to save the actual panel configuration
after editing) and “Close” (to close the panel and erase it from the screen). The “View” menu contains

224 Chapter 4. User interface - KUIP

various options for displaying the same panel in different ways (see section 4.7.3), and the “Help” menu
contains various items to help the user concerning this panel interface.

This new panel definition can also be done with the command PANEL using the sequence

PANEL �

PANEL ���� � �

PANEL � D �This is my first panel� ���x��� ��� ���

You can get automatically access to the command “NEWPANEL” (and its corresponding “Command Ar-
gument Panel”) by selecting the menu item “New Command Panel” in the “View” menu of the “Executive

Window” (KXTERM, Fig. 4.7.2).

Predefined Panel of Commands

The command “PANEL” for a key (or button) definition has to be used if you want to describe your panel
in a kuip macro file in order to keep trace of the panel definition, and be able to retrieve it later on. You
can predefine as many panels as you want, and you can easily access them by selecting the menu item
“Command Panel” in the “View” menu of the “Executive Window” (section 4.7.2).

You have to describe in the kuipmacro file(s) each button individually. You can also request the macro(s)
execution in your “kuip logon” file so that the panel(s) will be automatically displayed at the beginning
of the session.

The general syntax of the KUIP/Motif command “PANEL” for a key definition is:

panel x�y command �label� �pixmap�

– x.y is the key position (column and row number),

– command is the complete command (or list of commands) to be executed when the corresponding
button is pressed,

– label (optional) is an alias-name for this command. If specified, this alias-name is used for the
button label (when the appropriate “View” option is selected) instead of the complete command
(which is generally too long for a “user-friendly” button label).

– pixmap (optional) has to be specified for graphical keys (fully described in the next section 4.7.3).

An example of a panel definition is given in figure 4.10.

Panel with Graphical keys (Icons) and “View” Selection

As seen in the previous section, the general syntax of the KUIP/Motif command “PANEL” for a key def-
inition allows the user to define graphical keys (or buttons) where pixmaps are used instead of alpha-
numerical labels:

panel x�y command �label� �pixmap�

The last parameter pixmap (optional) is the pixmap to be used for representing the key (button) graphi-
cally. If it is specified the graphical representation is displayed by default. It is anyway always possible

4.7. Motif mode 225

➊ ➋ ➌

➀ ➁ ➂

kuipMacro for panel definition

�

� MOTIF
PANEL panel
test�kumac

�

panel �

panel ���� �list�

panel ���� �null � ��� � ����

panel ���� �file�

panel ���� �FUNDEMO�

panel ���� �null�

panel � d �Test Panel� ���x��� ��� ���

➊ Close button (to close panel)

➋ Save button (to save panel into a kuip macro file)

➌ Access to various “helps” on the “PANEL interface”

➀ ➁ ➂ User defined buttons

Figure 4.10: Predefined Panel of Commands

at run time to ask for an alpha-numerical representation by selecting the appropriate entry in the “View”
menu of the panel.

The application can define its own icons (pixmaps). This can be done by the application programmer in
the CDF (following the KUIP/Motif directive “!Icon�bitmaps”) or by the user himself (at run-time and
for his own user-defined panels of commands) using the KUIP/Motif command:

�MOTIF�ICON pixmap filename

– pixmap is the name given to the icon bitmap and used in the “panel” command for a graphical key
definition.

– filename is the name of the file where the icon bitmap data is stored.

N.B. All application-defined pixmaps (in the CDF) are available to the user in the “panel” command,
without having to use this “/MOTIF/ICON” command. This command is only useful when you want to
make new icons known by the application (and the command “panel”).

To create a new icon bitmap (or pixmap) one can use the X11 standard bitmap editor “bitmap”. E.g., to get
a �		�	 pixel icon called “m�”, one can type: bitmap m��bm ��x��. The outputfile m��bm containing
“�define m��width �� ...” has to be referred in the command “/MOTIF/ICON” (with the correct path
for the filename), e.g. �MOTIF�ICON m� �user���������m��bm

The following kuip macro is a general example for a panel definition with graphical keys.

���

226 Chapter 4. User interface - KUIP

� �

� ��� panel�kumac ��� �

� �

� General example for a panel with icons definition �

� �

� �

���

�

� Icon bitmaps

�

�motif�icon m� mk��bm

�motif�icon m� mk��bm

�motif�icon m� mk��bm

�motif�icon m� mk��bm

�motif�icon m� mk��bm

�

� Panel keys definition

� N�B� General syntax	

� panel r�c command �label� �pixmap�

� label ��
 command alias

� �written in the panel and executed for �Button press
��

� if �label
 �optional� is defined then	

� �KUIP�ALIAS�CREATE �label
 �command

� is automatically generated�

� if �label
 is not defined then &command& is used

� for button label�

�

panel �

panel ���� null

panel ���� tex
�

panel ���� ��example�general kuip�tex tex �� �tex
�� m�

panel ���� ��example�general kuip�tex tex �� �tex
�� m�

panel ���� ��example�general kuip�tex tex �� � m�

panel ���� ��example�general kuip�tex tex �� � m�

panel ���� � � � m�

panel ���� �tex
�� � m�

panel ���� ��example�general kuip�tex tex �� � sm
menu

panel ���� ��example�general kuip�tex tex �� � big
menu

panel ���� ��example�general kuip�tex tex �� �tex
��

panel ���� ��example�general kuip�tex tex �� �tex
�� m�

panel � d �Marker Types� ���x��� ��� ���

Figure 4.11 shows the panel defined in the macro listed above with different “View(ing)” options. In the
first window (top/right) the “View” menu is displayed, with the different possibilities which are offered
to the user to see the same panel in different ways.

Panel Edition and Saving

All the panels (new or predefined) can be edited interactively. Clicking with the left mouse button on a
panel button removes its definition. Clicking with the right mouse button on an empty panel button the
user will be asked to give a definition to this button (figure 4.12).

The PANEL commands needed to recreate a panel can be automatically saved into a macro file by pressing
the ”Save” button ➋ (Fig. 4.10). The panel configuration with its current size and position (which can
be modified interactively) is kept into the macro. Panels can be reloaded either by executing the com-

4.7. Motif mode 227

**By Name�� (bottom left): The
panel is displayed with alphanu-
meric labels. If the alias-name
“label” is specified in the “panel”
command it is used for the but-
ton label, otherwise the complete
command is displayed.

**By Icon�� (top right): The
panel is displayed with graphi-
cal labels (icons), if “pixmap” is
specified in the “panel” command.
Otherwise “label” or the complete
command are used instead (no
graphical representation). This
“view” setting is the default one
(the setting can be changed inter-
actively at run time, and the de-
fault setting can be changed with
the appropriate resource in the
“.Xdefaults” for each user individ-
ually).

**By Name and Icon��: The panel is displayed with both alphanumeric and graphical (if any) la-
bels. (Not yet implemented ...).

**By Command �normal���The panel is displayed with the complete command names. The arrange-
ment of the buttons stay the same (which might not be very convenient ... See below).

**By Command �� col�� (bottom right): The panel is displayed with the complete command names
BUT the arrangement of the buttons is modified: all buttons are displayed on one column, and “blank”
buttons are suppressed (this can save a lot of space, and is more user-friendly, for this kind of viewing
option).

Figure 4.11: Panel “View” Selection

mand ’PANEL 0 D’ or by pressing the ”Command Panel” button in the ”View” menu of the “Executive

Window” and entering the corresponding macro file name.

Some characters in the panel keys/buttons have a special meaning:

– The dollar sign inside a key is replaced by additional keyboard input. For example:

�V�PRINT V���� � entering ��	�� will execute V�PRINT V���	���

– Keys ending with a double minus sign make an additional request of keyboard input. For example:

V�PRINT V��� � entering AB will execute V�PRINT VAB

228 Chapter 4. User interface - KUIP

Figure 4.12: Interactive panel button definition

User-defined KUIP/Motif “palette” with 3 panels :

“Various Icons” : this panel is not displayed (arrow
turned left to right) at the moment. One would just have
to press the arrow button to make it visible ...

“Marker Types” : this user-defined panel is visible (ar-
row turned top to down). One can turned it off by press-
ing the arrow button.

”Other Various Icons” : this user-defined panel is also
visible.

Figure 4.13: Multi˙panel (or Palette)

4.7. Motif mode 229

“Multi˙panel” or Palette of panels Definition

It may be nice or more user-friendly to group a certain number of panels (related to similar actions or ob-
jects to be manipulated) in a so-called “palette” of panels. This is possible with the KUIP/Motif command
“MULTI˙PANEL” which opens such a widget. �

�MOTIF�MULTI�PANEL �title� �geometry�

E.g. MULTI�PANEL �My Palette� ����x��������will display a ”multi˙panel” widget with title “My
Palette” and geometry “200x100+0+0” (Position=0,0 in X and Y, width=200, height=100). When this
command is executed all panel definitions and executions will go into this ”multi˙panel” (or palette) wid-
get. This can be done simply by executing KUIP macro(s) containing your panel definition(s), or by se-
lecting the ”Add button” entry in the menu “File” available in the ”multi˙panel” widget. To terminate a
”multi-panel” setting one just have to type: MULTI�PANEL end. This means that the following panel def-
initions and executions will be displayed as individual panels and will not go into this ”palette” anymore,
unless another palette is opened (by executing again the command “MULTI˙PANEL”). Then the panels
will go into that new palette.

The following sequence of commands (which can be put inside a macro) can be used to set up a palette:

MULTI
PANEL

EXEC PANEL��KUMAC

EXEC PANEL��KUMAC

EXEC PANEL��KUMAC

MULTI
PANEL end

N.B. panel��kumac, panel��kumac, and panel��kumac are KUIP macro files with “usual” panel set-
ting and definition.

Figure 4.13 shows an example of a user-defined palette (with some predefined panels). The “arrow but-
tons” can be pressed either to reduce the panel to a label containing the panel title (arrow button is then
turned left to right) or to display it (arrow button turned up to down). One can see that the KUIP/Motif
“palette” is a good way to have many panels defined and save space on the screen.

4.7.4 KUIP/Motif X-Windows Resources

X-Windows resources control the appearance and behavior of an application. Users who are not pleased
with the default values proposed for any resources that can affect their KUIP/Motif based application,
can override them by specifying their own values in the standard X11 way : i.e. by editing their private
“.Xdefaults” file or the system wide “/usr/lib/X11/app-defaults/¡appl˙class¿”.

Each new resource has to be specified on a separate line. The syntax for editing one specific resource is
always the following:

¡appl.˙class¿*¡resource˙name¿: ¡resource˙value¿

where:

– “appl.˙class” has to be replaced by the real application class name (e.g. “Paw++” for paw++) which
is the input parameter of the routine KUWHAM.

�For those who are familiar with the “UIMX” User Interface ManagementSystem, this is an emulation of the “Palette” widget
which is built-in inside this program.

230 Chapter 4. User interface - KUIP

– “resource˙value” is the value to be given to the corresponding “resource˙name”. It can be an integer,
a boolean value, a color, a font, or any kind of predefined syntax (e.g. for geometry).

The following is a (non exhaustive) list of the most important or frequently used X-Windows resources
for a KUIP/Motif based application. The default values provided by KUIP/Motif (if any) are put inside
“[]”.

– Background and foreground color for all windows (except KXTERM):

...*background: ...

...*foreground: ...

– Geometry ([width]x[height]+[xpos]+[ypos]) of the “Executive Window” (KXTERM):

...*kxtermGeometry: ... [650x450+0+0]

– Geometry of the Browser(s):

...*kuipBrowser˙shell.geometry: ... [-0+0] (1) or [+0+485] (2)

(1) without any graphics window - (2) with graphics window(s) managed by HIGZ.

– Geometry of the Graphics Window(s) (if any):

...*kuipGraphics˙shell.geometry: ... [600x600-0+0]

– Character font for menus, buttons and dialog area:

...*fontList: ... [-adobe-helvetica-bold-r-normal–12-120-75-75-p-70-iso8859-1]

– Character font for the Input Pad and Transcript Pad (KXTERM):

...*kxtermFont: ... [*-courier-medium-r-normal*-120-*]

– Character font for the “HELP” windows:

...*helpFont: ... [*-courier-bold-r-normal*-120-*]

– Character font for all “Text” widgets:

...*XmText*fontList: ...

...*XmTextField*fontList: ...

– Character font for the icon labels in the browser(s) “Object window”:

...*dirlist*fontList: ...

– Background and foreground colors for the “Object window” in browser(s):

...*dirlist*background: ...

...*dirlist*foreground: ...

– Background and foreground colors for the icons associated to the object class “objclass”:

...*dirlist*¡objclass¿*iconBackground: ... [white]

...*dirlist*¡objclass¿*iconForeground: ... [black]

– Background and foreground colors for the icon-labels associated to the object class “objclass”:

...*dirlist*¡objclass¿*iconLabelBackground: ... [white]

...*dirlist*¡objclass¿*iconLabelForeground: ... [black]

– Possibilityto turn on/off the zooming effect when traversing directories structures inside the browser(s):

...*zoomEffect: ... [on]

4.8. Nitty-Gritty 231

– Speed of the zooming effect in the browser(s) when turned on:

...*zoomSpeed: ... [10]

– Double click interval in milliseconds (time span within which 2 button clicks must occur to be con-
sidered as a double click rather than two single clicks):

...*doubleClickInterval: ... [250]

– Background and foreground colors for the “Browsable window” in browser(s):

...*fileList*background: ...

...*fileList*foreground: ...

– Focus policy:

...*keyboardFocusPolicy: ...

If “explicit” focus is set by the mouse or a keyboard command. If “pointer” focus is determined by
the mouse pointer position.

The appearance and behavior of the “Executive Window” are managed by “KXTERM” whose class-
name is “KXterm”. It means that, for instance, to change the background and foreground color of the
“Executive Window”, one has to override the following resources:

KXterm*background: ...

KXterm*foreground: ...
To this list of resources one can add all the resources which can affect any Motif widgets which are used
by KUIP/Motif.
Concerning the appareance of the icons built-in inside KUIP/Motif (browsers for “Commands”, “Files”
and “Macro”), the classes of objects which are currently predefined are:

Cmd �� Command

InvCmd �� Deactivated command

Menu �� Menu tree

MacFile �� Macro File

RwFile �� Read�write file

RoFile �� Readonly file

NoFile �� No access file

ExFile �� Executable file

DirFile �� Directory

DirUpFile �� Up directory ����

4.8 Nitty-Gritty

4.8.1 System dependencies

kuip tries to provide as far as possible a homogenous environment across different operating systems and
hardware platforms. Here we want to summarize the remaining system-dependencies. To a large extend
the comments made on Unix apply also to the MS-DOS and Windows/NT implementations.

SHELL command

The SHELL command allows to pass a command line to the underlying operating system for execution.
If used without arguments the SHELL command suspends the application program and allows to enter
OS commands interactively. When leaving the subprocess, either with the command return or exit
depending on the system, the application resumes execution.

232 Chapter 4. User interface - KUIP

Unix The command HOST�SHELL defines the shell to be invoked. The start-up value is taken
from the environment variable SHELL or set to an appropriate default such as �bin�sh.
On some Unix implementations the SHELL command can fail if there is not enough free
swap space to duplicate the current process.

VMS The SHELL command spawns a subprocess with a DCL command processor. This is no-
toriously slow and there is no way to combine several DCL commands into one SHELL

command.

VM/CMS “SHELL cmd” first tries to find the file “CMD EXEC "” and execute it as a REXX script.
Otherwise the command is passed as-is which will either run “CMD MODULE "” or execute
the genuine CMS command CMD. There are some restrictions on the kind of modules that
can be executed in CMS subset mode. CP commands have to be prefixed, e.g. “SHELL CP

Q TIME”.

EDIT command

The EDIT command allows to edit a file without leaving the application program. The command HOST�EDITOR
defines the editor to be invoked. The start-up value is taken from the environment variables KUIPEDITOR,
EDITOR, or set to a system dependent default.

HOST�EDITOR sets the shell command (sans filename) for starting the editor. Some values have a system
dependent special meaning.

Unix The default editor is vi. The shell command containing a “'” does not necessarily mean
that the editor will run as a background process (see section 4.8.2).
On Apollo/DomainOS “DM” uses the Display Manager editor. This is the default if the
application program is started from a DM pad.

VMS The special names EDT and TPU use the callable interface to these two editors. The startup
time is much less than, for example EDIT�TPU which spawns a subprocess. However,
there is a problem with the callable EDT. If any error condition occurs (invalid filename
etc.) the callable EDT will be unusable for the rest of the session.

VM/CMS There is only one possible HOST�EDITOR: XEDIT. For editing large files the virtual ma-
chine’s size must be dimensioned that the application program and XEDIT fit into the avail-
able memory at the same time.

Exception handling

kuip installs a signal handler in order to catch exceptions and return to the command input prompt. The
command “BREAK OFF” disables the signal handler, i.e. the program aborts in case of an exceptions. For
some systems “BREAK ON” allows to request a traceback of where the exception has happened.

There are two major types of exceptions caught by the signal handler. Program exceptions indicate either
a bug in the application program (or kuip) or insufficient protection against invalid input:

Floating point exceptions are caused by divide by zero, floating point overflow, square root of negative
numbers etc. Floating point underflows are usually silently ignored and the result is treated as
being zero.

4.8. Nitty-Gritty 233

Segmentation violation indicates an attempt to read or write a memory location outside the address space
reserved by the process, e.g. if an array index is out of bounds. In C code it is most often caused
by dereferencing a NULL pointer which is prohibited on many systems.

Bus error is usually caused by an unaligned access. Most RISC processors have strict requirements for
properly aligned data.

Illegal instruction can mean that the program tries to executed data as code, for example if the return
address on the stack has been overwritten.

Don’t be surprised if the program shows irregular behaviour after an exception!
The second type of exceptions handled by the kuip signal handler are user breaks. Hitting the break key
(usually Ctrl-C) aborts a running command and returns to the input prompt. Using Ctrl-C is potentially
unsafe unless the application is properly coded to block keyboard interrupts in critical sections. Other-
wise the interrupt can happen at an inconvinient moment which leaves the program’s data structures in
an inconsistent state. The signal handler prompts the user after three consecutive keyboard interrupts to
allow exiting from a run-away process.

Unix The actual break key can be changed with the Unix command stty. The default setup
usually is “stty intr (C”. Unix provides a second kind of keyboard interrupt which is
intentionally not caught by the kuip signal handler to allow killing run-away processes.
A convenient setting is “stty quit �##�”
User break interception does not work for Windows/NT.Tell Microsoft that signal handlers
are pretty useless if they are not allowed to use printf and longjmp.

VMS The user break key is Ctrl-C. Ctrl-Y is treated like Ctrl-C, i.e. it does not bring up the
DCL prompt.

VM/CMS There is no user break for VM/CMS. To abort a run-away session use

!CP EXT

HX

4.8.2 The edit server

By default editing from within a kuip application is synchronous, i.e. the application is suspended until
the editor terminates. On a workstation this is an inconvenient restriction because the editor can run in a
separate window while the application continues to accept commands.
Although not an issue for the KUIP�EDIT command itself there are applications (notablycmz) which have
to process the file content after it has been edited. Therefore the editor cannot be simply started as a back-
ground process.
To take care of this problem kuip provides a facility called the “edit server”. Instead of calling the editor
directly, kuip starts the editor server as a background process which leaves the application program ready
to accept more commands. The server invokes the editor and waits for it. When the editor terminates the
server informs the application program about the file which is ready. kuip can then call the application
routine for processing the edited file.
The processing routine cannot be called at the very instant the file is ready. kuip waits until the user
hits the RETURN-key to execute the next command. The file is then checked in before the command just
entered is executed.
As a protection especially for users working alternately on a terminal or on a workstation kuip does not
try asynchronous editing if one of the following conditions is missing:

234 Chapter 4. User interface - KUIP

– The edit server module kuesvr must be found in the search path.

– The editor command set by HOST�EDITOR must end with an ampersand (“'”).

– The environment variable DISPLAY must be set.

Note that the editor command must create its own window, possibly by wrapping the editor into a terminal
window. For convenience “HOST�EDITOR �vi '�” is interpreted automatically as “xterm �e cmd '”.

The edit server cannot be used for the Apollo DM editor. Some Unix windowing editors tend to fork them-
selves as a detached process by default. For example the jot editor found on Silicon Graphics systems
requires a special option “�noFork”. Otherwise the edit server and the application think that the editor
has already terminated leaving the file unchanged.

In the KUIP/Motif interface it is essential to use the edit server mechanism. Otherwise invoking the editor
from a pop-up menu freezes the screen when the right-hand mouse button is pressed before the subprocess
terminates�. The screen can only be unlocked by logging in remotely and killing the application program.

For asynchronous editing on VMS either the Motif version of TPU must be used or the hosteditor com-
mand must create its own terminal window, e.g.

HOST
EDITOR TPU�DISPLAY�MOTIF

HOST
EDITOR �CREATE�TERM�WAIT EDT�

4.8.3 Implementation details

Command search order

With the various possibilities of changing the interpretation of a command line it is sometimes important
to know the exact order in which the different mechanisms are applied:

1 If the input line contains a semicolon line separator (section ??), split off the front part and deal with
the rest later. In case the line separator is “&'” or “&�” the execution of the remaining line depends
on the status code of the first command.

2 If executing a macro script, substitute all variables by their values.

3 If the first token is a command alias (section ??), substitute it by its value. If the replacement con-
tains a semicolon line separator, start again at step 1. In order to protect against recursive aliases
stop if a reasonable upper limit on the number of iterations is exceeded.

4 Unless the command name belongs to the KUIP�ALIAS menu, substitute argument aliases. Argu-
ment aliases can occur in the command name position but they may not contain semicolon line
separators.

5 Substitute system functions (section ??).

6 If executing a macro with “TRACE ON”, show the present command line. If “TRACE ON WAIT”
prompt for further actions:

– execute command

– skip execution of this command

– quit execution of macro script

– continue macro execution without further prompting

�Can somebody elucidate this problem or knows a workaround? It seems that the application does not receive the button-
release event and therefore the Motif pop-up menu never releases the pointer grab???

4.8. Nitty-Gritty 235

7 Separator first token (command name cmd) from the rest of the line (argument list).

8 Unless executing a macro, if “DEFAULT �AutoReverse” (section ??) is active and cmd�kumac

is found in the macro search path, transform the command name into EXEC. The command token
itself has to be put back in the front of the other argument. If the command token contains a “�”
character we had to separate the front part before searching for the �kumac file.

9 Match cmd as abbreviation against the command tree:

– If cmd begins with a slash, start at the top menu.

– Otherwise start at the SET�ROOT menu; if there is no match and the current root is not the top
menu itself, start again at the top menu.

10 Unless executing a macro, if “DEFAULT �Auto” is active and cmd is either not a command or am-
biguous, try again procedure of step 8.

11 If a SET�COMMAND template is defined and cmd is unknown as command name, i.e. not just am-
biguous, apply the template replacement and go back to step 1. SET�COMMAND must be disabled
temporarily to avoid an infinite recursion in case the template itself is an invalid command.

12 If cmd is ambiguous, show the list of possible solutions and exit.

13 If cmd is not a valid command name, print error message and exit.

14 Otherwise tokenize the argument list and call the action routine for the command.

Name spaces

There is an admittedly confusing difference in the characters allowed to form the various kuip identifiers
which we summarize here:

Alias names allow letters, digits, “�”, “�”, “�”, “�”.

Macro variable names allow letters, digits, “�”. The first character may not be a digit.

System function names allow letters, digits, “�”. The first character may not be a digit. Uppercase and
lowercase letters are distinct when the name is looked up as environment variable.

Vector names allow letters, digits, “�”, “�”. The first character may not be a digit. Names starting with
“�” are reserved.

Although not in the hands of the application user but only the application writer:

Command and menu names allow letters, digits, and “�”.

Parameter names allow letters, digits, and “�”. The first character may not be a digit.

Chapter 5: Vectors

Vectors are named arrays of numerical data, memory resident, which can be created during a session,
loaded from HBOOK objects, typed in by hand, read from disk files, operated upon using the full func-
tionality of SIGMA or COMIS. Vectors can be used to produce graphics output, and, if necessary, stored
away on disk files for further usage. Vectors provide a very convenient mechanism to transport numerical
information between different PAW objects, and to manipulate mathematically their content. At the end
of an interactive session, they are lost, unless previously saved onto disk files.

Vectors can have up to 3 dimensions (in fact they are “arrays”, called “vectors” for historical reasons).
They can be handled in PAW either interactively, by using VECTOR���� commands, or by means of
KUIP routines which return the addresses of a given vector.

Simple arithmetic operations can be applied to vectors. In addition, as SIGMA is part of PAW, power-
ful array manipulation operations are available, through the SIGMA, �SIGMA and APPLICATION SIGMA

commands (see section 6.1 on page 239).

An “invisible” vector named �, mono-dimensional and of length 100, is always present. It is used for
communication between arrays in the user code (for instance in a COMIS[1] routine) and KUIP vectors,
being equivalenced with the real array VECTOR����� in the labelled common block �KCWORK�.

5.1 Vector creation and filling

A vector is created either by the PAW command VECTOR�CREATE, by the SIGMA function ARRAY. or
by the COMIS statement VECTOR.

Example of vector creation

VECTOR�CREATE X����� will create a ����components vector� values � ��

SIGMA X�ARRAY������!���� will create a ����components vector and assign

to each element the values ����������

VECTOR X����� in a COMIS routine creates a ����components vector

and initialises each element to zero

Once the vector is created, it can be manipulated using the following PAW commands:

VECTOR�INPUT vlist Input from the terminal values into the vector elements specified by the list
vlist.

VECTOR�READ vlist Values can be read in from a file into the vector elements specified by the
list vlist.

VECTOR�COPY v� v� Values in v� are copied into v�.

VECTOR�WRITE vlist Values in the vector elements specified by the list vlist can be saved on a file.

VECTOR�PRINT vlist Values of the vector elements specified in vlist will be printed on the ter-
minal.

VECTOR�LIST A list of existing vectors and their characteristics is printed on the terminal.

VECTOR�DELETE Allows global or selective deletion of vectors.

236

5.2. Vector addressing 237

5.2 Vector addressing

Indexing of vectors is possible�.

Example of vector indices

Vec for all elements

Vec(13) for element ��

Vec(12:) for elements �� up to the last

Vec(:10) for elements � to ��

Vec(5:8) for elements � to �

Sub-elements of the two-dimensional vector Vec������� (3 columns by 100 rows) may be addressed by:

Using two-dimensional vectors

Vec(2,5:8) for elements � to � in column �

Vec(2:3,5:8) for elements � to � columns � to �

Vec(2,5) for element � in column �

Vec(:,3) for all elements in row �

Vec(2) for all elements in the ��nd column �SPECIAL CASE�

5.3 Vector arithmetic operations

A number of basic vector arithmetic operations is available:

VBIAS v� bias v� v��I� � bias � v��I�

VSCALE v� scale v� v��I� � scale " v��I�

VADD v� v� v� v��I� � v��I� � v��I�

VMULTI v� v� v� v��I� � v��I� " v��I�

VSUBTR v� v� v� v��I� � v��I� � v��I�

VDIVID v� v� v� v��I� � v��I� � v��I�� if v��I� !�

In all operations only the minimum vector length is considered, i.e. an operation between a vector A of
dimension 10 and a vector B of dimension 5 will involve the first 5 elements for both vectors. If the des-
tination vector does not exist, it is created with the same length as specified in the source vector.

5.4 Vector arithmetic operations using SIGMA

A more complete and convenient mechanism for the mathematical manipulation of entire vectors is pro-
vided by SIGMA. SIGMA-generated arrays are stored as PAW vectors and therefore are accessible to
PAW commands, and PAW vectors are accessible to SIGMA. The facilities available via SIGMA are de-
scribed in the next chapter.

�Note that the indexing permitted in PAW can be considered as a superset of that permitted by FORTRAN. This feature
cannot be used from within SIGMA.

238 Chapter 5. Vectors

5.5 Using KUIP vectors in a COMIS routine

The declaration VECTOR vector�name may be used inside a COMIS routine to address a KUIP vector.
If the vector does not exist, it is created with the specifications provided by the declared dimension.

5.6 Usage of vectors with other PAW objects

Vectors can be used to transport numerical information between different PAW objects, and to manipulate
mathematically their content.

VECTOR�HFILL VNAME ID Each vector element of vector VNAME is used to fill an existing
histogram with identifier ID.

HISTOGRAM�GET�VECTOR�CONTEN Provides an interface between vectors and histograms.

HISTOGRAM�PUT�VECTOR�CONTEN Provides an interface between histograms and vectors.

5.7 Graphical output of vectors

VECTOR�DRAW VNAME Interprets the content of the vector VNAME as a histogram contents and
draw a graph.

VECTOR�PLOT VNAME Vector elements are considered as individual values to be entered into
a histogram and a graph is produced. If VNAME is the name of a vector,
then each vector element of VNAME is used to fill a histogram which
is automatically booked with 100 channels and plotted. If VNAME has
the form VNAME�)VNAME� then a scatter-plot of vector VNAME� versus
VNAME� is plotted.

See section 3.4.4 in the tutorial section for an explanation of the difference between VECTOR�DRAW and
VECTOR�PLOT.

A number of HIGZ [10] macro-primitives are available in PAW. Those directly related to the graphical
output of vectors are:

GRAPH N X Y Draw a curve through a set of points defined by arrays X and Y.

HIST N X Y Draw an histogram defined by arrays X and Y.

PIE X� Y� RAD N VAL Draw a pie chart, of N slices, with size of slices given in VAL, of a radius
RAD, centered at X�, Y�.

5.8 Fitting the contents of a vector

A user defined (and parameter dependent) function can be fitted to the points defined by the two vectors
X and Y and the vector of associated errors EY. The general syntax of the command to fit vectors is:

VECTOR�FIT x y ey func � chopt np par step pmin pmax errpar �

For more information the reader is referred to the reference part of the present manual.

Chapter 6: SIGMA

6.1 Access to SIGMA

The SIGMA array manipulation package can be accessed in three different ways in PAW:

Precede the statement by the prefix SIGMA

Example

PAW
 SIGMA xvec�array������pi!pi���

PAW
 SIGMA y�sin�xvec��xvec

Note the use of the predefined constant PI in SIGMA with the obvious value.

The PAW command: APPLication SIGMA

All commands typed in after this command will be directly processed by SIGMA. The command EXIT

will return control to PAW, e.g.

PAW
 APPLication SIGMA

SIGMA
 xvec�array������pi!pi���

SIGMA
 sinus�sin�xvec��xvec

SIGMA
 cosinus�cos�xvec��xvec

SIGMA
 exit

PAW
 vector�list

Vector Name Type Length Dim�� Dim�� Dim��

XVEC R ��� ���

SINUS R ��� ���

COSINUS R ��� ���

Total of � Vector�s�

The PAW system function �SIGMA

The expression to be evaluated must be enclosed in parentheses. The function will return the numerical
value of the expression (if the result is a scalar) or the name of a temporary vector (if the result is a vector).

Assuming that the computation of the function sin�x�"x in the above example would be only for the
purpose of producing a graph, (i.e. the result is not needed for further calculations), then one could just
have typed the following commands:

PAW
 SIGMA xvec�array������pi!pi���

PAW
 GRAph ��� xvec �SIGMA�SIN�XVEC��XVEC�

239

240 Chapter 6. SIGMA

6.2 Vector arithmetic operations using SIGMA

A complete and convenient mechanism for the mathematical manipulation of vectors is provided by SIGMA.
In the following, we use the words “array” and “vector” as synonyms. In both cases, we refer to PAW
vectors, in the sense that SIGMA offers an alternative way to generate and to manipulate PAW vectors
(see section 5 on page 236). The notation of SIGMA is similar to that of FORTRAN, in the sense that is
based upon formulae and assignment statements.

The special operator ARRAY is used to generate vectors:

vname � ARRAY �arg��arg��

vname Name of the vector (array) being created.

arg� Defines the array structure, i.e. the Number of COmponents (NCO) of the array.

arg� Provides the numerical values filling the array row-wise.
If arg� is absent (or does not provide enough values) the array is filled with 1.

6.2.1 Basic operators

� Add

� Subtract

" Multiply

� Divide

"" Exponentiation

' Concatenation

Note that ill defined operations will give �� as result. For instance: a division by zero gives zero as
result.

6.2.2 Logical operators

Logical operators act on entities that have Boolean values � (true) or � (false). The result is Boolean.

AND Logical operation AND

NOT Logical operation NOT

OR Logical operation OR

EQ EQual to

GE Greater or Equal to

GT Greater Than

LE Less or Equal to

LT Less Than

NE Not Equal

6.2.3 Control operators

�PRINT Provides the automatic printing of every newly created array or scalar.

�NOPRINT Suppresses the automatic printing of every newly created array or scalar.

Examples

A�ARRAY ����!�� � � � � � �

A�ARRAY ��� � � � �

A�ARRAY ����$�$��$�$���� � � �� � ���

A�ARRAY ����PI ��������� ��������� ���������

A�ARRAY ������E�� ���������

6.3. SIGMA functions 241

6.3 SIGMA functions

SIGMA provides some functions which perform a task on a whole array. These functions have no ana-
logues in FORTRAN because all FORTRAN functions operate on one or more single numbers. Presently
available SIGMA functions are listed in table 6.1 below.

Name Result Explanation

ANY Scalar The result is a Boolean scalar of value � (true) if at least one component of the
argument is true and � (false) otherwise.

DEL Vector Analog to the Dirac-DELta Function. V��DEL�V� sets each element of V�
to ��� (if corresponding element in V is non-zero) or to ��� (if corresponding
element is zero).

DIFF Vector V��DIFF�V� forward difference of V. The rightmost value in V� is obtained
by quadratic extrapolation over the last three elements of V.

LS Vector V��LS�V�N� shifts index of V to the left by N steps (cyclic).

LVMAX Scalar S��LVMAX�V�� sets S� equal to the index (location) of the maximum value in
vector V�.

LVMIM Scalar S��LVMIN�V�� sets S� equal to the index (location) of the minimum value in
vector V�.

MAX Vector V��MAX�V��V�� sets each element of V� equal to the maximum of the corre-
sponding elements in V� and V�.

MAXV Vector V��MAXV�V� sets each element of V� equal to the maximum value in V.

MIN Vector V��MIN�V��V�� sets each element of V� equal to the minumum of the corre-
sponding elements in V� and V�.

MINV Vector V��MINV�V� sets each element of V� equal to the minimum value in V.

NCO Scalar V��NCO�V� Number of COmponents of vector of V.

ORDER Vector V��ORDER�V�V��finds a permutation that brings V� in a non-descending order
and applies it to V to generate V�.

PROD Vector V��PROD�V� V� is the running product of V.

QUAD Vector V��QUAD�V��H� The quadrature function QUAD numerically integrates each
row of V� with respect to the scalar step size H.

SUMV Vector V��SUMV�V�� running sum of V.

VMAX Scalar S��VMAX�V�� sets S� equal to the maximum value in vector V�.

VMIN Scalar S��VMIN�V�� sets S� equal to the minimum value in vector V�.

VSUM Scalar S��VSUM�V� sum of all components of V.

Table 6.1: SIGMA functions

6.3.1 SIGMA functions - A detailed description

In the following description of the SIGMA functions, the letter R always denotes the result and arg de-
notes one or more arguments. Any argument may itself be an expression. In that case arg means the

242 Chapter 6. SIGMA

result of this expression. Let OP denote any of the above array functions, then the statement:

R � OP �arg��arg������

produces R without doing anything to the contents stored under the names appearing in arg��arg�����.
Thus, although in the description we may say “...OP does such and such to arg ...”, in reality it leaves arg
intact and works on the argument to produce R.

R � ANY �arg�

The function ANY considers the result of the argument expression as a Boolean array. SIGMA represents
“true” by � and “false” by �. Thus the components of arg must be either � or �, otherwise an error is
generated.

If at least one component of the result of the argument expression is �, than ANY returns the scalar �. If
all components of the result of the argument expression are � then ANY returns the scalar �. If arg is a
Boolean scalar, R � arg.

Example of the ANY command

PAW
 APPL SIGMA

SIGMA
 �PRINT � Print newly created vectors and scalars

SIGMA
 W�������ARRAY�����!���

NCO�W �� ��

W �

������ ����� ������ ����� ������ �����

������ ����� ������ �����

SIGMA
 X�W GT �

NCO�X �� ��

X �

������ ����� ������ ����� ������ �����

������ ����� ������ �����

SIGMA
 R�ANY�X�

NCO�R �� �

R �����

R � DEL �arg�

DEL is a discrete analogue of a Dirac delta function. DEL works independently on each row of the argu-
ment array. If the elements of any row of the argument are denoted byX�� X�� � � � � Xi� � � � � Xn then the
corresponding row of the result of the delta function operation will be Z�� Z�� � � � � Zi� � � � � Zn where
all Zi � 	 except in three cases, in which Zi � �, namely:

1 When the component Xi is itself zero.

2 When Xi��� Xi are of opposite sign and jXij � jXi��j If i � � then linear extrapolation to the
left is used.

3 When Xi� Xi�� are of opposite sign and jXij � jXi��j If i � � then linear extrapolation to the
right is used.

If arg is a scalar, the value of DEL�arg� will be � if arg is zero, and � otherwise.

6.3. SIGMA functions 243

Example of the del command

SIGMA
 W�array������!��

NCO�W �� ��

W �

������ ������� ������� ������� ������� �������E���

������ ������ ������ ������ �����

SIGMA
 X� �W ������W��W�������W�����

NCO�X �� ��

X �

�������E��� ������� ������� ������� �������E����������E���

������E��� �������E��� ������E��� ������ ������

SIGMA
 R�del�x�

NCO�R �� ��

R �

����� ������ ������ ������ ������ �����

������ ����� ������ ������ ������

R � DIFF �arg�

The DIFF function generates the forward difference of each row of the argument array, sayX�� X�� � � � �
Xi� � � � � Xn and creates an array with components equal to the forward difference of X : X��X�� X��
X�� � � � � Xn �Xn��� X� where the rightmost value X� is obtained by quadratic extrapolation over the
last three elements of the result of arg. Applied to a scalar DIFF gives a zero result.

Example of the DIFF command

SIGMA
 x�array����!��

NCO�X �� �

X �

����� ����� ����� ����� ����� ������

SIGMA
 Y�x�x

NCO�Y �� �

Y �

����� ����� ����� ����� ����� ������

SIGMA
 Z�Diff�Y�

NCO�Z �� �

Z �

������ ������ ������ ������ ������ �����

R � LS �arg��arg��

The LS rearrangement function performs a left shift. arg� is the array to be shifted; arg�must be a scalar
value (rounded if necessary by the system), interpreted as the number of places the array has to be shifted
to the left. The scalar arg� can be negative, in which case LS shifts to the right a number of places equal
to the absolute value of arg�.

It should be noted the the shift is performed circularly modulo N, where N is the number of components
in the rows of the array to be shifted. Hence, LS�X�N�l� shifts the N component rows of X by � to the
left, and LS�X��l� shifts the rows by N�� to the left (or by � to the right). If arg� is a scalar, R � arg�.

244 Chapter 6. SIGMA

Example of the left shift command

SIGMA
 X�array��$��array�����!����

NCO�X �� � �

X �

����� ����� ����� �����

����� ����� ����� �����

����� ����� ����� �����

����� ����� ����� �����

����� ����� ����� �����

SIGMA
 y�ls�x���

NCO�Y �� � �

Y �

����� ����� ����� �����

����� ����� ����� �����

����� ����� ����� �����

����� ����� ����� �����

����� ����� ����� �����

SIGMA
 y�ls�x����

NCO�Y �� � �

Y �

����� ����� ����� �����

����� ����� ����� �����

����� ����� ����� �����

����� ����� ����� �����

����� ����� ����� �����

SIGMA
 X�array����!��

NCO�X �� �

X ����� ����� ����� ����� �����

SIGMA
 z�ls�x���

NCO�Z �� �

Z ����� ����� ����� ����� �����

SIGMA
 z��ls�x����

NCO�Z� �� �

Z� ����� ����� ����� ����� �����

R � LVMAX �arg�� and R � LVMIN �arg��

The functions LVMAX and LVMIN returns as a scalar result the index (position) of the largest or smallest
element, respectively, in the argument array.

Example of using the LVMAX and LVMIN commands

SIGMA
 x�sin�array�����!����

NCO�X �� ��

X �

����� ����� ����� ������ ������ ������ �����

����� ����� ������

SIGMA
 r�lvmax�x�

NCO�R �� �

R ����

6.3. SIGMA functions 245

R � MAX �arg��arg�� and R � MIN �arg��arg��

The functions MAX and MINwork independently on each element of their arguments. arg� can be a scalar.
The result has the same dimension as the argument array arg� and each element of the result is set equal
to the largest or smallest element, respectively, of the corresponding element of the argument arrays.

Example of using the MAX and MIN commands

SIGMA
 x�sin�array�����!����

NCO�X �� ��

X �

����� ����� ����� ������ ������ ������ �����

����� ����� ������

SIGMA
 y�cos�array�����!����

NCO�Y �� ��

Y �

����� ������ ������ ������ ����� ����� �����

������ ������ ������

SIGMA
 z�min�x�y�

NCO�Z �� ��

Z �

����� ������ ������ ������ ������ ������ �����

������ ������ ������

R � MAXV �arg� and R � MINV �arg�

The extrema functionsMAXV and MINVwork on each element of their argument and the result has the same
dimension as the argument array arg�. Each element of of the result is set equal to the largest or smallest
element, respectively, of the corresponding row of the argument array.

All these functions, if applied to a scalar argument, yield R�arg.

Example of using the MAX and MIN commands

SIGMA
 x�array�����!���

NCO�X �� ��

X �

������ ����� ����� ����� ����� �����

����� ����� ����� �����

SIGMA
 s�sin�x��x

NCO�S �� ��

S �

������ ������ ����� ������� ������ ������

����� ����� ����� ������

SIGMA
 x�minv�s�

NCO�X �� ��

X �

������ ������ ������ ������ ������ ������

������ ������ ������ ������

246 Chapter 6. SIGMA

R � NCO �arg�

The “Number of COmponents” (NCO) control function obtains the NCO vector of the arg. The NCO vector
of a scalar is the scalar �. For any argument the NCO�NCO�arg�� gives the number of dimensions of the
arg.

Using the NCO command

SIGMA
 x�array��$�$��array�����!����

NCO�X �� � � �

X �

����� ����� ����� �����

����� ����� ����� �����

����� ����� ����� �����

����� ����� ����� �����

����� ����� ����� �����

����� ����� ����� �����

SIGMA
 r�nco�x�

NCO�R �� �

R ����� ����� �����

SIGMA
 ndim�nco�nco�x��

NCO�NDIM �� �

NDIM �����

R � ORDER �arg��arg��

The ordering function ORDER acts independently on each row of arg�. arg� must have the same row
length as arg�.
ORDER finds the permutation that brings arg� into a non-descending sequence (row-wise) and constructs
the result by applying this permutation to arg�. It may in some cases be expanded to that structure by
using the techniques of the topological arithmetic. This is particularly useful if arg� is a single vector
with the length of the rows of arg�.

Using the ORDER command

SIGMA
 X � �$�$�$�$��$�$�

NCO�X �� �

X �

���� ���� ���� ���� ����� ���� ����

SIGMA
 P � ORDER�X�X�

NCO�P �� �

P �

����� ���� ���� ���� ���� ���� ����

SIGMA
 P � ORDER�X��X�

NCO�P �� �

P �

���� ���� ���� ���� ���� ���� �����

SIGMA
 Y � ARRAY����! ��

NCO�Y �� �

Y �

���� ���� ���� ���� ���� ���� ����

SIGMA
 P � ORDER�Y�X�

NCO�P �� �

P �

���� ���� ���� ���� ���� ���� ����

6.3. SIGMA functions 247

R � PROD �arg�

The PROD function generates the running product of each row of the argument array, sayX�� X�� � � � � Xn

and creates an array with components equal to the running product of the component of the argument:
X�� X�� � � � � Xn X�� X� 	X�� � � � � X� 	X� 	 � � �Xn

Using the TIMES command

SIGMA
 x�array��$��array�����!����

NCO�X �� � �

X �

����� ����� ����� ����� ����� �����

����� ����� ����� ����� ����� �����

����� ����� ����� ����� ����� �����

����� ����� ����� ����� ����� �����

SIGMA
 y�prod�x�

NCO�Y �� � �

Y �

����� ����� ����� ����� ����� �����

����� ����� ����� ����� ������E �� ������E ��

����� ����� ����� ������E �� ������E �� ������E ��

����� ����� ����� ������E �� ������E �� ������E ��

R � QUAD �arg��arg��

The quadrature function QUAD numerically integrates each row of arg� with respect to the scalar step
size h defined by arg�.

The result R has the same dimension as arg� and the integration constant is fixed by choosing the first
point of the result to be zero.

The method uses a four-point forward and backward one-strip-formula based on Lagrange interpolation.
We have for the first point of the result:

R� �
Z x�

x�

�arg��dx � 	

for the second and third points

Ri�� � Ri �
h

�

��fi � ��fi�� �
fi�� � fi���

and for all subsequent points

Ri � Ri�� �
h

�

�fi�� �
fi�� � ��fi�� � �fi�

248 Chapter 6. SIGMA

where the fi are elements of arg� and are assumed to be values of some functions evaluated at equidistant
intervals with interval width equal to h (h being equal to the value of arg�).

SIGMA
 ���������������������

SIGMA
 � SIGMA application �

SIGMA
 � showing use of �

SIGMA
 � QUAD numeric �

SIGMA
 � integration �

SIGMA
 ���������������������

SIGMA
 x�array������!��pi�

SIGMA
 � Function value array

SIGMA
 y�sin�x�

SIGMA
 � Step size

SIGMA
 dx����������E���

SIGMA
 print dx

NCO�DX �� �

DX ���������E���

SIGMA
 � Integration of SIN�X�

SIGMA
 � in interval ���X� ��PI

SIGMA
 f�quad�y�dx�

SIGMA
 � Analytical result

SIGMA
 � is ��COS�X�

SIGMA
 g���cos�x�

SIGMA
 � Compute the difference

SIGMA
 erro��g�f�������

SIGMA
 � Plot the difference

SIGMA
 � in units of ��
��

SIGMA
 exit

PAW
 opt GRID

PAW
 gra ��� x erro

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0 1 2 3 4 5 6

Figure 6.1: Using numerical integration with SIGMA

R � SUMV �arg�

The SUMV function generates the running summation of each row of the argument array, sayX�� X�� � � � �
Xi� � � � � Xn and creates an array with components equal to the running sum of theXi namely: X�� X��
X�� � � � � X� �X� � � � �Xi� � � � � X� �X� � � � �Xn.

Using the SUM function

SIGMA
 x�array��$��array�����!����

NCO�X �� � �

X �

����� ����� ����� ����� ����� �����

����� ����� ����� ����� ����� �����

����� ����� ����� ����� ����� �����

����� ����� ����� ����� ����� �����

SIGMA
 y�sumv�x�

NCO�Y �� � �

Y �

����� ����� ����� ����� ����� �����

6.4. Available library functions 249

����� ����� ����� ����� ����� �����

����� ����� ����� ����� ����� �����

����� ����� ����� ����� ����� �����

R � VMAX �arg� and R � VMIN �arg�

The functions VMAX and VMIN return a scalar equal to the largest or smallest element of the array arg.

R � VSUM �arg��

The VSUM function generates the sum of each element of the argument array, sayX�� X�� � � � � Xi� � � � � Xn

and creates a scalar whose value is equal to the sum of all the components of X namely: X� � X� �
X�� � � � � Xn

Using the VSUM function

SIGMA
 x�array����

NCO�X �� ��

X �

���� ���� ���� ���� ���� ���� ����

���� ���� ����

SIGMA
 r�vsum�x�

NCO�R �� �

R ����

6.4 Available library functions

The library functions available under SIGMA are listed below. All these functions have a single argument,
unless otherwise indicated. The number indicated between parentheses corresponds to the number of the
same function in the CERN program library.

ABS ABSolute value

ACOS ArCOSine

ALOGAM LOGarithm of the GAMma Function (C341)

ASIN ArcSINe

ATAN ArcTANgent

ATAN� ArcTANgent2 (2 arguments)

BESI� Mod. Bessel Function I0 (C313)

BESI� Mod. Bessel Function I1 (C313)

BESJ� Bessel Function J0 (C312)

BESJ� Bessel Function J1 (C312)

BESK� Mod. Bessel Function K0 (C313)

BESK� Mod. Bessel Function K1 (C313)

250 Chapter 6. SIGMA

BESY� Bessel Function Y0 (C312)

BESY� Bessel Function Y1 (C312)

COS COSine

COSH Hyperbolic COSine

COSINT COSine INTegral (C336)

DILOG DILOGarithm Function (C304)

EBESI� exp�� jxj�I��x� (C313)

EBESI� exp�� jxj�I��x� (C313)

EBESK� exp�x�K��x� (C313)

EBESK� exp�x�K��x� (C313)

ELLICK Complete Elliptic Integral K (C308)

ELLICE Complete Elliptic Integral E (C308)

ERF Error Function ERF (C300)

ERFC Error Function ERFC (C300)

EXP EXPonential

EXPINT EXPonential INTegral (C337)

FREQ Normal Frequency Function FREQ (C300)

GAMMA GAMMA Function (C305)

INT Takes INTegral part of decimal number

LOG Natural LOGarithm

LOG�� Common LOGarithm

MOD Remaindering

RNDM Random Number Generator: V��RNDM�V�, with NCO�V���NCO�V� generates random num-
bers between � and �.

SIGN Transfer of SIGN: V��SIGN�V�V��, V���V�"V���V��

SIN SINe Function

SINH Hyperbolic SINe

SININT SINe INTegral (C336)

SQRT SQuare RooT

TAN TANgent

TANH Hyperbolic Tangent

Ill defined functions will return �� as result. (e.g. SQRT of a negative number is taken as �).

Chapter 7: HBOOK

7.1 Introduction

Many of the ideas and functionality in the area of data presentation, manipulation and management in
PAW find their origin in the HBOOK subroutine package [2], which handles statistical distributions (his-
tograms and Ntuples). HBOOK is normally run in a batch environment, and it produces generally graph-
ics output on the line printer or, optionally, via the HPLOT [11] package on a high resolution graphic
output device.

The HBOOK system consists of a few hundred FORTRAN subroutines which enable the user to symbol-
ically define, fill and output one- and two-dimensional density estimators, under the form of histograms,

scatter-plots and tables.

Furthermore the analysis of large data samples is eased by the use of Ntuples, which are two-dimensional
arrays, characterised by a fixed number N, specifying the number of entries per element, and by a length,
giving the total number of elements. An element of a Ntuple can be thought of as a physics “event” on
e.g. a Data Summary Tape (micro-DST). Selection criteria can be applied to each “event” or element
and a complete Ntuple can be statistically analysed in a fast, efficient and interactive way.

7.1.1 The functionality of HBOOK

The various user routines of HBOOK can be subdivided by functionality as follows:

Booking Declare a one- or two-dimensional histogram or a Ntuple

Projections Project two-dimensional distributions onto both axes

Ntuples Way of writing micro data-summary-files for further processing. This
allows to make later projections of individual variables or correlation
plots. Selection mechanisms may be defined

Function representation Associates a real function of 1 or 2 variables to a histogram

Filling Enter a data value into a given histogram, table or Ntuple

Access to information Transfer of numerical values from HBOOK-managed memory to For-
tran variables and back

Arithmetic operations On histograms and Ntuples

Fitting Least squares and maximum likelihood fits of parametric functions to
histogramed data

Smoothing Splines or other algorithms

Random number generation Based on experimental distributions

Archiving Information is stored on mass storage for further reference in subsequent
programs

Editing Choice of the form of presentation of the histogramed data

251

252 Chapter 7. HBOOK

7.2 Basic ideas

The basic data elements of HBOOK are the histogram (one- and two-dimensional) and the Ntuple. The
user identifies his data elements using a single integer. Each of the elements has a number of attributes

associated with it.
The HBOOK system uses the ZEBRA [7] data manager to store its data elements in a COMMON block
�PAWC�, shared with the KUIP [4] and HIGZ [10] packages, when the latter are also used (as is the case
in PAW). In fact the first task of a HBOOK user is to declare the length of this common to ZEBRA by a
call to HLIMIT, as is seen in figures 7.3 and 7.5�.
In the �PAWC� data store, the HBOOK, HIGZ and KUIP packages have all their own division (see [7] for
more details on the notion of divisions) as follows (figure 7.1):

LINKS Some locations at the beginning of �PAWC� for ZEBRA pointers.

WORKS Working space (or division �) used by the various packages storing information in �PAWC�

HBOOK Division � of the store. Reserved to HBOOK

HIGZ A division reserved for the HIGZ graphics package.

KUIP A division reserved for the KUIP user interface package.

SYSTEM The ZEBRA system division. It contains some tables, as well as the Input/Outputbuffers for HRIN
and HROUT.

link

area

work

area

free

space

HBOOK

div

HIGZ

div

KUIP

div

system

div

Figure 7.1: The layout of the �PAWC� dynamic store

7.2.1 RZ directories and HBOOK files

An advantage of using ZEBRA in HBOOK is that ZEBRA’s direct access RZ package is available. The
latter allows data structures to be uniquely addressed via pathnames, carrying a mnemonic meaning and
showing the relations between data structures. Related data structures are addressed from a directory.
Each time a RZ file is opened via a call to HRFILE a supplementary top directory is created with a name
specified in the calling sequence. This means that the user can more easily keep track of his data and also
the same histogram identifiers can be used in various files, what makes life easier if one wants to study
various data samples with the same program, since they can be addressed by changing to the relevant file
by a call to HCDIR first.

�This is of course not necessary in PAW, which is already precompiled when it is run. However when treating very large data
samples or in other special applications, it might be necessary to specify a different value for the length of the dynamic store,
which is defined by a call to PAWINT from the main initialisation routine PAMAIN. The “default” value for the length of �PAWC�
is 500000 (Apollo), 200000 (IBM) or 300000 (other systems), with respectively 10000 and 68000 words initially reserved for
HIGZ and KUIP.

7.2. Basic ideas 253

Example of using directories

CALL HRFILE����HISTO���� �� � Open first HBOOK RZ file �read only�

CALL HRFILE����HISTO����U�� � Open second HBOOK RZ file �update�

CALL HCDIR����HISTO���� �� � Make HISTO� current directory

CALL HRIN����������� � Read ID �� on file �

����

CALL HCDIR����HISTO���� �� � Make HISTO� current directory

CALL HRIN����������� � Read ID �� on file �

����

CALL HROUT����ICYCLE�� �� � Write ID �� to file �

CALL HREND��HISTO��� � Close file �

CALL HREND��HISTO��� � Close file �

In the previous example (and also in figures 7.3 and 7.5) it is shown how an external file is available via a
directory name inside HBOOK (and PAW), and that one can change from one to the other file by merely
changing directory, via the PAW command CDIR, which calls the HBOOK routine HCDIR.

7.2.2 Changing directories

One must pay attention to the fact that newly created histograms go to memory in the ��PAWC directory
(i.e. the �PAWC� common). As an example suppose that the current directory is ��LUN�, and an operation
is performed on two histograms. These histograms are first copied to memory ��PAWC, the operation is
performed and the result is only available in ��PAWC,

PAW
 CDIR ��LUN� � Set current directory to ��LUN�

PAW
 ADD �� �� �� � Add histograms �� and �� into ��

� Histogram �� is created in ��PAWC

PAW
 Histo�Plot ��PAWC��� � Show the result of the sum

PAW
 CD ��PAWC � Set the current directory to memory

PAW
 Histo�plot �� � Show the result once more

Similarly when histograms or Ntuples are plotted (e.g. by the HISTO�PLOT command), they are copied
to memory possibly replacing an old copy of the same ID. As long as the copy in memory is not changed,
each time the ID is read from the external file. This is because in a real time environment, e.g. using
global sections on VMS or modules with OS9, the data base on the external medium can be changed by
concurrent processes. However if the HBOOK data structure, associated with the histogram or Ntuple in
memory is altered (e.g. by a MAX� IDOPT� FIT command), then it becomes the default for subsequent
operations. If one wants the original copy one first must delete the copy from memory or explicitly use
the pathname for the external file.

PAW
 Histo�file � his�dat � The file contains ID���

PAW
 Histo�Plot �� � ID��� read from file and plotted

PAW
 H�plot �� � ID��� read again from file and plotted

PAW
 H�fit �� � G � Read from file� make a Gaussian fit on ��PAWC���

PAW
 H�plot �� � ID��� read from memory since it changed

PAW
 H�del �� � Delete histogram �� from memory

PAW
 H�plot �� � ID��� read again from file and plotted

254 Chapter 7. HBOOK

7.3 HBOOK batch as the first step of the analysis

MAINFRAME WORKSTATION

Batch Job

HBOOK

ZEBRA

Tapes

Raw Data

DST

Interactive Data

Analysis with PAW

KUIP

HPLOT

HBOOK

HIGZ

ZEBRA

SIGMA

COMIS

MINUITMany

Tapes

RZ Files

High quality

graphics output

Interactive access
via RLOGIN

or file transfer
using ZFTP

Figure 7.2: Schematic presentation of the various steps in the data analysis chain

Although it is possible to define histograms interactively in a PAW session, and then read the (many thou-
sands of) events, in general for large data samples the relevant variables are extracted from the Data Sum-

mary Files or DSTs and stored in histograms or an Ntuple. The histogram needs already that a certain
choice has to be made as to the range of values for the plotted parameter, because the binning, or the
coarseness, of the distribution has to be specified when the histogram is defined (booked). Also only one-
and two-dimensional histograms are possible, hence the correlations between various parameters can be
difficult to study. Hence it seems in many cases more appropriate to store the value of the important pa-
rameters for each event in an Ntuple. This approach preserves the correlation between the parameters
and allows selection criteria to be applied on the (reduced) data sample at a later stage.

In general, the time consuming job of analysing all events available on tape is run on a mainframe or
CPU server, and the important event parameters are stored in a Ntuple to allow further detailed study.
For convenience the Ntuple can be output to disk for each run, and then at a later stage the Ntuples can
be merged in order to allow a global interactive analysis of the complete data sample.

A typical batch job in which data are analysed offline and some characteristics are stored in HBOOK is
given in 7.3. After opening the RZ HBOOKfile, HBOOK is initialisedby a call toHLIMIT, which declares
a length of 20000 words for the length of the �PAWC� dynamic store. Then the one- and two- dimensional
histograms 110 and 210 are filled respectively according to the functionsHTFUN� and HTFUN�. The output
generated by the program is shown in Figure 7.4.

7.3. HBOOK batch as the first step of the analysis 255

PROGRAM HTEST
PARAMETER �NWPAWC�������
COMMON�PAWC�H�NWPAWC�
EXTERNAL HTFUN�
HTFUN�

��
CALL HLIMIT�NWPAWC�

� Book histograms and declare functions
CALL HBFUN�����
�Test of HRNDM��
���
��
��
HTFUN��
CALL HBOOK�����
�Filled according to HTFUN��
���
��
��
������
CALL HBFUN�����
�Test of HRNDM��
���
��
��
	�
��
��
HTFUN��
CALL HSCALE����
���
CALL HBOOK�����
�Fill according to HTFUN��
���
��
��
	�
��
��
����

� Fill histograms
DO �� I��
�����

X�HRNDM������
CALL HFILL����
X
��
���
CALL HRNDM�����
X
Y�
CALL HFILL����
X
Y
���

�� CONTINUE
� Save all histograms on file HTEST�DAT

CALL HRPUT��
�HTEST�DAT�
�N��
CALL HDELET�����
CALL HDELET�����
CALL HPRINT���
END
FUNCTION HTFUN��X
Y�

� Two�dimensional guassian
HTFUN��HTFUN��X��HTFUN��Y�
RETURN
END
FUNCTION HTFUN��X�

� Constants for gaussians
DATA C�
C����
����
DATA XM�
XM�����
��
�
DATA XS�
XS�����

�����

� Calculate the gaussians
A���������X�XM���XS�����
A���������X�XM���XS�����
X��C�
X��C�
IF�ABS�A���GT��������X��C��EXP�A��
IF�ABS�A���GT��������X��C��EXP�A��

� Return function value
HTFUN��X��X�
RETURN
END

Figure 7.3: Writing data to HBOOK with the creation of a HBOOK RZ file

Filled according to HTFUN1

HBOOK ID = 110 DATE 02/09/89 NO = 2

340 -

330 I -

320 I I

310 I I

300 I-I-

290 --I I

280 -I I-

270 I I

260 I I

250 -I I-

240 I I

230 -I I

220 I I-

210 -I I

200 I I -

190 I I-I

180 -I I

170 I I -

160 I I - -I- -

150 I I- I --I I- -I -

140 I I- -I--I I-II-I-

130 --I I- -I I

120 I I - -I I

110 I I I-I I--

100 I I- -I I

90 -I I- -I I----

80 -I I --I I-

70 I I -I I

60 -I I-- - I I- -

50 -I I-- ----I-I I-I-

40 I I-I I---

30 --I I--

20 --I I --

10 -------I I-II--

CHANNELS 100 0 1

10 0 1 2 3 4 5 6 7 8 9 0

1 1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

CONTENTS 100 111222222323222211111 1111111111111111111111

10 1 12224578227034888392975189442985544344445467789101235335456543453430088887545443322111

1. 22345055038484428230601947383077660674994445157562761227948358021717653142735611669210337304276

LOW-EDGE 1. 111111111122222222223333333333444444444455555555556666666666777777777788888888889999999999

*10** 1 0 0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

* ENTRIES = 10000 * ALL CHANNELS = 0.1000E+05 * UNDERFLOW = 0.0000E+00 * OVERFLOW = 0.0000E+00

* BIN WID = 0.1000E-01 * MEAN VALUE = 0.4846E+00 * R . M . S = 0.2199E+00

Fill according to HTFUN2

HBOOK ID = 210 DATE 02/09/89 NO = 4

CHANNELS 100 0 1

10 0 1 2 3 4 5 6 7 8 9 0

1 1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

**

OVE * * OVE

.975 * * 40

.95 * ++ 2 2 2++ +3 + ++ + + 2+ 3 2 + 2++++ + 2 + * 39

.925 * + + 2 ++ 32+++ +22 22+ +++ + + + + 22+2+++ +2++ + + + * 38

.9 * 223 +3+ +3 3++333223 +2 2 + + ++2+ + 232+322 2+++ +24+ + * 37

.875 * + ++ +2++++ 342533 443224++2 2 + + ++23 + +42+3222233+++3+++2 22+ ++ + + + * 36

.85 * ++ + 5+35+3333483475 65+2+ + ++ + +33+3 +2 +2335222+235 522 24+ ++ 2 * 35

.825 * ++ 2+2 558335876736583+ 2 +2+ + + 3 224+533623+35252+54 32+452++3 332 +++++ * 34

.8 * ++ + 532 656562546C8A88936324332+ +2+23 +332+2236433657234455556+4635+222 +23 +3 + * 33

.775 * +2 33 375B7274C6A66A782+323++2+23 +5++3+5222256768365258276374+86334+ 32 +++ + * 32

.75 * + 2+ 2 45523786A79FB98B6AD4855224+ + ++23323+5755552468283746644543 443324 5223++ 2 * 31

.725 * + ++4+22+637A785B8BBBA6B4656922++ 2 23 24 2+5464+435552843286C6246623636+3+ 2 3 2 3+2 * 30

.7 * + 22 +2 735ABCA89G8C8A6DA5765+3+322 2+2++52234445475+355864768724+B74632+23 +3 3+ + * 29

.675 * 23 +4+3364HBBAFCFCBB98945C7933++ 2 5+3 +4225243752 75787896C367+475443+32242422 2 + * 28

.65 * + + ++5+3795498GAC96CB9A79E6645 34 3+3 ++24537234424532777657445+4746235+2+3++ 4+2 2 * 27

.625 * + 3 647774A9CE67G99BAB6B233233 4+ 2 322 42 44364+657735+735736733+4+23234 +++++2 + * 26

.6 * + ++3+342233874B8C966896565+5242+5 +2+++++2+5225+42544535456A265357253+2222+ 2+2++ + +2 * 25

.575 * ++ + +5 74535525677984573453422 +2 ++ 2 +++4+2 3526525235+4243342+32+ 23 2+ * 24

.55 * ++ +226+584568349865+433 +2222 + ++ +4444352326542332823+444332 +2 2 + + * 23

.525 * ++++2+65436+3A753535+22+++2+++ ++ + ++2 +2 ++4++2+ 224224+32 2+ ++++ 2 + * 22

.5 * 22 4+23+6425 84543+++42 +2 +++2 2 + 2+2+ 3+ 24++2334223+ 223 +2 + + * 21

.475 * + +5334+7333+22 ++2+ + 3+ 2 +4 +32 2 222+2 + 33++ 222 + +3++ + * 20

.45 * + 433244397 2++23232+ 24 +2 ++ ++2+ 2+ +2+33 ++4 +3 ++2+3 + + * 19

.425 * + ++ 2+ 22+24636432646+5+322 4 +++ + 2++ ++ +22+533+3++3+ +432 +322++2+ 2+ ++ + * 18

.4 * +++3237549588A9725H724545++33+33 + + 2 24 4 +A4633 39 25636343322+82++ ++ + +2+ + * 17

.375 * +++3+374879CCCADLD48996CE54365232 +2+2342347+563264636547B47925542444434+2+322 2+ +2 * 16

.35 * +++ +4637549EC87D8IHDICI9B754655432++23233+2554368886H68B9667889677A635C+4+223333+22 + * 15

.325 * + ++++ 2445949CHHDFNHJRHIHKLDD5DC3545422233 24564875549A8E7899B4F4BC3CA7E597842+67242+++++ * 14

.3 * ++++++2667889EDFEHULQHI*IKFIFA878666336+6+48526B79777BCCEBBAEEED58E96997A4674763463++++ 2+ * 13

.275 * + ++++ 3546898BEMPNIURPH*NOECDC8958E442+3542+68554B37466AAGCEEACAC7A476599962365 343++2 +2 * 12

.25 * + 2344658A9DAJPLDENQGDHJEEBAA93 +3225322+4259A576784DA9B98B56A85CD859797A5843523223+ 22 * 11

.225 * 3 256778BA6CEJGIEAICGCHA4A242+43+++52427545466927A78866BB66795655763454656 2 3 +++ * 10

.2 * +2++4357A69BC88AAFAA5665432+434 +++ ++++343233668554584442CA7664745+4++34+++2 + +++ * 9

.175 * + 3 3436344766755264526++3 2+ + ++ +42 22 2+32345++353562 34 33+++4 +3 +++ + * 8

.15 * 2+ + +3+44+262542+4225 232 ++++ 222 + 2+ +23+242 32+222 2++342 22 22+ 2 + * 7

.125 * + +2 +++22+32+ 3+++2 + +42 + 2+ + + 2+ + + ++ * 6

.1 * + + + +2+ ++ + +2+ + ++ +++ + * 5

.075 * + 2 + + + + * 4

.05 * + * 3

.025 * + * 2

* * 1

UND * * UND

**

LOW-EDGE 0 0000000000111111111122222222223333333333444444444455555555556666666666777777777788888888889999999999

0 0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

* I I

* ENTRIES = 10000 PLOT ---------I---------I---------

* SATURATION AT= 31 I 9991 I

* SCALE .,+,2,3,.,., A,B, STATISTICS ---------I---------I---------

* STEP = 1 * MINIMUM=0 I I

Figure 7.4: Output generated by job HTEST

256 Chapter 7. HBOOK

7.3.1 Adding some data to the RZ file

The second run using program HTEST� shows how to add some data to the HBOOK RZ file created in the
job HTEST. After opening the file in question in update mode (�U� option) with the name EXAM�, a new
directory NTUPLE is created, known as ��EXAM��NTUPLE as seen in the output of HLDIR command at the
end of the output. A one- and a two-dimensional histogram and a Ntuple with identifiers of respectively
10, 20 and 30 are booked. Each Ntuple element or “event” is characterised by three variables (labelled
�X�, �Y� and �Z�). The Ntuple data, when the initial size of����words is exhausted, will be written to the
directory specified in the call to HBOOKN, i.e. ��EXAM��NTUPLE, and the data in memory are replaced with
those newly read. A one- and a two-dimensional projection of X and X Y are then made onto histograms 10
and 20 respectively, before they are printed and written on the HBOOK RZ file. At the end the current

and parent directories are listed. The contents of the latter shows that the data written in the first job
(HTEST) are indeed still present in the file under the top directory ��EXAM�. The call to RZSTAT shows
usage statistics about the RZ file.

Example of adding data to a HBOOK RZ file

PROGRAM HTEST�

PARAMETER �NWPAWC�������

COMMON�PAWC�H�NWPAWC�

DIMENSION X���

CHARACTER�� CHTAGS���

DATA CHTAGS�� X ��� Y ��� Z ��

��

CALL HLIMIT�NWPAWC�

� Reopen data base

CALL HROPEN����EXAM����HTEST�DAT�����U��

CALL HMDIR��NTUPLE���S��

CALL HBOOK������TEST�����������������

CALL HBOOK������TEST����������������������������

CALL HBOOKN�����N�TUPLE�������EXAM��NTUPLE��

 �����CHTAGS�

�

DO �� I��������

CALL RANNOR�A�B�

X����A

X����B

X����A�A B�B

CALL HFN����X�

�� CONTINUE

�

CALL HPROJ�����������������������

CALL HPROJ�������������������������

CALL HPRINT���

CALL HROUT���ICYCLE�� ��

CALL HLDIR�� ��� ��

CALL HCDIR��'�� ��

CALL HLDIR�� ��� ��

CALL RZSTAT�� ������� ��

CALL HREND��EXAM���

END

7.3. HBOOK batch as the first step of the analysis 257

TEST1

HBOOK ID = 10 DATE 02/09/89 NO = 1

280

270 - -

260 I I -

250 - I I I

240 - I I-I- I -

230 I-I--I I I-I-

220 -I I I I-

210 I I I I-

200 I I-I I-

190 - - --I I --

180 I-I-I I-II--

170 I I

160 I I--

150 - -I I --

140 -I-I I II

130 -I I-II-

120 -I I-

110 --I I--

100 --I I

90 I I

80 I I----

70 --I I-

60 -I I--

50 ---I I--

40 -----I I--

30 I I-----

20 - ----I I---

10 --------I-I I--------

CHANNELS 100 0 1

10 0 1 2 3 4 5 6 7 8 9 0

1 1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

CONTENTS 100 11111111111111122222222221222222111111111111111

10 1 1111333334446669000123434878888132522637496233109788775524421007777655443322222111

1. 1266487877127932587516069303434644322909949809367004036056844525243975324963516782565365312194856211

LOW-EDGE --

1. 3222222222222222211111111111111111 111111111111111112222222222222222

0 0988776554432211099887665543322100998776654433211000112334456677899001223345566788990112234455677889

0 0482604826048260482604826048260482604826048260482606284062840628406284062840628406284062840628406284

* ENTRIES = 10000 * ALL CHANNELS = 0.9969E+04 * UNDERFLOW = 0.1200E+02 * OVERFLOW = 0.1900E+02

* BIN WID = 0.6000E-01 * MEAN VALUE =-0.3907E-02 * R . M . S = 0.9857E+00

TEST�
HBOOK ID � �� DATE �������� NO � �
CHANNELS �� U � � � 	 O

� N ��	
��
�����	
��
�����	
��
��� V
��������������������������������������

OVE � � �� ��	����� ��� � OVE
��� � �� � �� � � � � 	�
��� � � �� �	
��� �� � � ��
��
 � �� 		��	
	� 	�� � � ��
��� � � � �

�	���	��
��	�� � � �

� � � ���	
����
A
� ���� � � ��
��� � � �����
�EBCDAA�		�
 �� � � ��
��� � ��	�
�CC�JFO�F��C���
	��� � �

��
 � 	

���AAGJJMEMIDFG��
�	�� � � �	
��� � ����

BBJGMQOPWNICCGI�
	���� � � ��
� � ���
�BGOMTSX�VYTJMCFA
����� � ��
�� � ��

��DHSRUX����VXRQJC�
�	�� � ��
�� � � ���CBEKLZ��������MXGGCI
	�� 	 � ��
�
 � �
�

�BN�U���������YOIFB��� � ��
�� � � �����CCLR������������OIHA
�
��
 � �

� � 	�	�ECX�T�����������YKPC

� � � ��
� �� � � �
�	D�LDS��X��������ZUMGC�
	� � � ��
� �
 � � �	

CAHSSX���������UMK
�D� 	 � � �

� �� � �		
AAKML�V����������IIH�

	�� � � �	
� �� � ������CLJL�X������Z�TL�H�
�� � � ��
� � � � � 	����EMLN����Q�ULLQMABB	
�� � � ��
� ��� � � ��	

BDIUS�P���TTUNBDA�
��� � ��
� ��
 � � � � ����E
KKNWUNRIHJCEA

���� � � �
� ��� � ��	�

BCMJIGOIKEIAAD��
	�� � � �
� ��� � � � ��������AA�HGJACB�
�������� �

� � � � � ��
	���EDC��

�	
�� � �
� ��� � � � �����

�

�
���	���� ��� � �
� ��
 � � �		�
���

��

�� � �

� ��� � �� � ���
����
�	
 � � � 	
� ��� � � 		�	�	���� � � �
� 	 � �� �� �� � �
�� � � �
UND � � � �	 ����� � � UND

��������������������������������������
LOW�EDGE ���������������

�� 	���������� ����������
� ���
����
����
���
����
����
��

� I �� I
� ENTRIES � ����� PLOT �������I��������I�������
� SATURATION AT� ��� �� I ��	� I ��
� SCALE ������	����� A�B� STATISTICS �������I��������I�������
� STEP � � � MINIMUM�� I �
 I

��

� NTUPLE ID� �� ENTRIES� ����� N�TUPLE �

��

� Var numb � Name � Lower � Upper �

��

� � � X � ��������E �� � ��������E �� �

� � � Y � ��������E �� � ��������E �� �

� � � Z � ��������E��� � ��������E �� �

��

���
 Directory 	 ��EXAM��NTUPLE

�� �N� N�TUPLE

�� ��� TEST�

�� ��� TEST�

���
 Directory 	 ��EXAM�

��� ��� Test of HRNDM�

��� ��� Filled according to HTFUN�

��� ��� Test of HRNDM�

��� ��� Fill according to HTFUN�

NREC NWORDS QUOTA�"� FILE�"� DIR� NAME

�� ����� ���� ���� ��EXAM��NTUPLE

�� ����� ���� ���� ��EXAM�

Figure 7.5: Adding data to a HBOOK RZ file

258 Chapter 7. HBOOK

7.4 Using PAW to analyse data

After transferring the HBOOK RZ file, which was created in the batch job as explained in the previous
section, we start a PAW session to analyse the data which were generated�. The PAW session below shows
that the file HTEST�DAT is first opened via a call to HISTO�FILE. The data on the file are now accessible as
the top directory ��LUN�. When listing with the LDIR command the contents of the top directory ��LUN�
and its NTUPLE subdirectory, the same information (histograms and Ntuples) is found as in the batch job
(figure 7.5)

Reading a HBOOK direct access file

PAW
 histo�file � htest�dat � open the HBOOK RZ file

PAW
 ldir � list current directory

�������������� Directory ���
 ��LUN� ����

Created ����������� Modified �����������

���
 List of subdirectories

NTUPLE Created ����������� at record �

���
 List of objects

HBOOK�ID CYCLE DATE�TIME NDATA OFFSET REC� REC�

��� � ����������� ��� � �

��� � ����������� �� ��� �

��� � ����������� ���� ��� � � ��
 �

��� � ����������� ��� ��� � �

NUMBER OF RECORDS � � NUMBER OF MEGAWORDS � � ���� WORDS

PER CENT OF DIRECTORY QUOTA USED � �����

PER CENT OF FILE USED � �����

BLOCKING FACTOR � ������

PAW
 ldir ntuple � list directory in NTUPLE

�������������� Directory ���
 ��LUN��NTUPLE ����

Created ����������� Modified �����������

���
 List of objects

HBOOK�ID CYCLE DATE�TIME NDATA OFFSET REC� REC�

�� � ����������� ���� ��� �� ��

� ����������� ���� ��� �� ��

�� � ����������� ��� ��� ��

�� � ����������� ��� ��� �� ��

NUMBER OF RECORDS � �� NUMBER OF MEGAWORDS � � ����� WORDS

PER CENT OF DIRECTORY QUOTA USED � �����

PER CENT OF FILE USED � �����

BLOCKING FACTOR � ������

Figure 7.6: Reading a HBOOK direct access file

�In fact it is possible to leave the data on the disk of the machine where they were written in the batch job, and connect with
NETWORK�RLOGIN host to the machine in question, getting access to the file via TCP/IP. See page 321 for more details.

7.4. Using PAW to analyse data 259

7.4.1 Plot histogram data

The analysis of the data can now start and we begin by looking at the histograms in the top directory.
Figure 7.7 shows the commands entered and the corresponding output plot. They should be compared
with the lineprinter output in figure 7.4.

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

Filled according to HTFUN1

Fill according to HTFUN2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 7.7: Plot of one- and two-dimensional histograms

Plotting histogram data

PAW
 zon � � � Divide picture into � vertically

PAW
 set htyp �� � Set hatch style for histogram

PAW
 hi�pl ��� � Plot ��dimensional histogram ���

PAW
 hi�pl ��� � Plot ��dimensional histogram ���

260 Chapter 7. HBOOK

7.5 Ntuples: A closer look

We now turn our attention to the NTUPLE directory to show the functionality and use of Ntuples. After
makingNTUPLE the current directory the available HBOOK objects are listed. The structure of the Ntuple
with identifier �� is PRINTed. The contents of the various Ntuple elements (“events”) can be viewed by
the NTUPLE�SCAN command. As with most Ntuple commands a selection criterion can be given to treat
only given “selected” subsamples of the Ntuple (two examples are seen with the further NTUPLE�SCAN
commands.

Looking at Ntuple elements

PAW
 cd ntuple � move to NTUPLE directory

PAW
 hi�li � list HBOOK objects

���
 Directory 	 ��LUN��NTUPLE

�� �N� N�TUPLE

�� ��� TEST�

�� ��� TEST�

PAW
 nt�print �� � print summary for Ntuple ��

��

� NTUPLE ID� �� ENTRIES� ����� N�TUPLE �

��

� Var numb � Name � Lower � Upper �

��

� � � X � ��������E �� � ��������E �� �

� � � Y � ��������E �� � ��������E �� �

� � � Z � ��������E��� � ��������E �� �

��

PAW
 nt�scan �� � scan the first elements

���

� ENTRY � X � Y � Z �

���

� � � ������� � ������ � ������ �

� � � ������� � ������� � ������ �

� � � ������� � ������ � ������ �

� � � �������� � ������� � ������ �

� � � ������� � ������� � ������ �

� � � ������� � ������� � ������ �

� � � �������� � ��������E���� ������� �

� � � ������ � ������� � ������ �

� � � �������� � �������� � ������� �

� �� � ������� � ������� � ������ �

� �� � �������E���� ������� � ������ �

� �� � �������� � ������� � ������ �

� �� � �������� � ������� � ������� �

� �� � �������� � �������E���� ������� �

� �� � ������� � �������� � ������� �

More���� � �CR
�N �	 N

��
 �� events have been scanned

PAW
 nt�sc �� z
�� � example of a condition on the Z variable

���

� ENTRY � X � Y � Z �

���

� �� � ������ � ������� � ������ �

� ���� � ������� � �������� � ������ �

7.5. Ntuples: A closer look 261

� ���� � ������� � ������� � ������ �

� ���� � ������� � ������� � ������ �

��
 � events have been scanned

PAW
 nt�sc �� abs�x�
��or�abs�y�
� � example of a more complex selection criterium

���

� ENTRY � X � Y � Z �

���

� ���� � ������� � �������� � ������ �

� ���� � ������� � ������� � ������ �

� ���� � ������� � ������� � ������ �

��
 � events have been scanned

7.5.1 Ntuple plotting

The general format of the command NTUPLE�PLOT to project and plot a Ntuple as a (1-Dim or 2-Dim)
histogram with automatic binning, possibly using a selection algorithm is:

NTUPLE/PLOT idn � uwfunc nevent ifirst nupd chopt�

IDN Ntuple Identifier and variable(s) (see table 7.1)

UWFUNC Selection function (see table 7.2) - Default no function

NEVENT Number of events to be processed (default is ������)

IFIRST First event to be procesed (default is �)

NUPD Frequency with which to update histogram (default is �������)

CHOPT HPLOT options (C,S,+,B,L,P,*,U,E,A)

262 Chapter 7. HBOOK

7.5.2 Ntuple variable and selection function specification

Format Explanation Example

IDN�CHNAME The variable named �CHNAME� ���x variable x

IDN�n The Ntuple variable at position n ���� variable �

IDN�expression Expression is any numerical expression
of Ntuple variables. It may include a call
to a COMIS function.

���X""��Y""�

���X"COMIS�FOR

IDN�B)A Scatter-plot of variable B versus A for each
event

���Y)X Y versus X

IDN��)� Scatter-plot of variable nb. � versus vari-
able nb. �

����)� � versus �

IDN�expr�)expr� expr� and expr� can be any numerical
expression of the Ntuple variables. They
can be COMIS functions.

���SQRT�X""��Y""��)SIN�Z�

���COMIS��FTN)COS�Z�

Any combination of the above ����)COMIS��FTN"SIN�X�

Table 7.1: Syntax for specifying Ntuple variables

Format Explanation Example

� or missing No selection is applied (weight is 1). NT�PLOT ���X

Combination
of cuts

A CUT or combination of CUTs, each cre-
ated by the command NTUPLE�CUTS

NT�PLOT ���X � (use cut 1)
NT�PLOT ���X ��AND��

NT�PLOT ���X �NOT����AND����OR��

Combination
of masks

A MASK or a combination of
MASKs, each created by a command
NTUPLE�MASK

Assuming there exists a mask vector MSK:
NT�PLOT ���X MSK��� (bit 4)
NT�PLOT ���X MSK����OR�MSK�
�

Logical
expression

Any logical combination of conditions be-
tween Ntuple variables, cuts and masks.

NT�PLOT ���X X!�����AND��Y Z����

NT�PLOT ���X ��AND�MASK����OR�Z ��

Numerical
expression

Any numerical combination of constants
and Ntuple variables. In this case the
value of the expression will be applied as
a weight to the element being plotted.

NT�PLOT ���X Y weight X by
Y NT�PLOT ���X X""��Y""�

weight X by X��Y�

Selection
function

Name of a selection function in a text
file of the form fun�ftn (Unix), FUN

FORTRAN (IBM) and FUN�FOR (VAX).
The function value is applied as a weight

NTUPLE�PLOT ���X SELECT�FOR For
each event the plotted value of X will be
multiplied by the value of the selection
function SELECT calculated for that event.

Any combination of the above NT�PL �����F��FTN�SIN
X� ��OR�F
�FTN

Table 7.2: Syntax of a selection function used with a Ntuple

7.5. Ntuples: A closer look 263

7.5.3 Ntuple selection mechanisms

With most Ntuple operations a selection “function” UWFUNC of a form described in table 7.2 can be used,
i.e. it can take the form of a simple or composed expression or an external FORTRAN function, exe-
cuted by COMIS [1], a cut or a mask. When used together with the NTUPLE�PLOT command the selection
function also acts as a weighting factor.

7.5.4 Masks

The mask facility allows the user to specify up to 32 selection criteria associated with a Ntuple. These
criteria are defined like cuts, but their value for each event are written to an external direct access file,
from which the information can be readily retrieved at a later stage, without recalculating the condition
value in question. In the example session below first a new mask file MNAME�MASK is defined, which can
contain information for up to 10000 Ntuple elements. Next we define event election criteria and store
their result at various bit positions in the mask vector MNAME.

Defining cuts and masks

PAW
 NT�CUT � Z
X��� � Define cut �

PAW
 NT�MASK MNAME N �����

PAW
 NT�PLOT ���X X��� Y���
�

MNAME���

PAW
 NT�PLOT ���X ��AND�Y
�

MNAME���

PAW
 NT�PLOT ���Y SIN�Z��GT�SIN�Y�

MNAME���

PAW
 NT�MASK MNAME P � Print mask definitions

�����
 Current active selections in mask MNAME

Bit Nevents Selection

� ���� X��� Y���
�

� ���� ��AND�Y
�

� ���� SIN�Z�
SIN�Y�

PAW
 NT�MASK MNAME C � close MNAME�MASK file

Of course doing this kind of gymnastics makes sense only if a time consuming selection mechanism is
used and only a few events are selected. In a subsequent run the mask file can then be read to display the
information much more quickly.

Using a mask file of a previous run

PAW
 NT�MASK MNAME � open the mask file for read

PAW
 NT�PLOT ���X MNAME��� � plot using bit �

PAW
 NT�PLOT ���X MNAME��� � plot using bit �

PAW
 NT�PLOT ���Y MNAME��� � plot using bit �

PAW
 NT�MASK MNAME C � close MNAME�MASK file

Cuts

A cut is identified by an integer (between � and ���) and is a logical expression of Ntuple elements, other
cuts, masks or functions.

Example of cuts

264 Chapter 7. HBOOK

PAW
 NT�CUT � ��X � variable

PAW
 NT�CUT � ����X�����AND�Y�SQRT�Z� � ditto

PAW
 NT�CUT � FUN�FOR � external function

PAW
 NT�CUT � FUN�FOR�AND�Z
X��� � ditto plus variable

PAW
 NT�CUT � ���AND����OR�� � combination of cuts

PAW
 NT�CUT � ��AND�Z�� � cut and variable

PAW
 NT�CUT � X � event weight

PAW
 NT�CUT � SQRT�Y� � ditto

PAW
 NT�CUT � MASK�����AND�� � mask and cut

Cut definitions can be written to a file and later re-read.

PAW
 NT�CUT � W cuts�dat � write all cuts to file

PAW
 NT�CUT � R cuts�dat � read cut � from file

PAW
 NT�CUT � P � print cut �

CUT number� � Points� � Variable� �

FUN�FOR�AND�Z
X���

Graphical cut

One can also define a cut on the screen in a graphical way, by pointing out the upper and lower limits
(1-dimensional case) or an area defined by up to 20 points (2-dimensional case) by using the mouse or
arrow keys (see figure 7.8).

Note that graphical cuts are only valid for the original Ntuple variables and not for combinations of the
latter.

Using graphical cuts

PAW
 nt�pl ���x"y � plot y versus x

PAW
 CUT � G � graphical cut � for current plot

PAW
 zon � � � define picture layout

PAW
 title �Graphical cuts� � title for picture

PAW
 �d ��� �X versus Y� �� ���� ��� �� ���� ��� �� � user binning

PAW
 �d ��� �X � Before and after cut� �� ��� �� �� � ditto

PAW
 �d ��� �Y � Before and after cut� �� ��� �� �� � ditto

PAW
 nt�pl ���x"y � ���� � plot y versus x in histogram ���

PAW
 cut � d � draw graphical cut �

PAW
 zon � � � s � redefine the picture layout

PAW
 nt�pl ���x � ���� � plot x BEFORE cut in histogram ���

PAW
 set htyp �� � use hatch for plot after cut

PAW
 nt�pl ���x � ���� � � S � plot x AFTER cut on same plot

PAW
 set htyp � � no hatch for plot without cut

PAW
 nt�pl ���y � ���� � plot y BEFORE cut in histogram ���

PAW
 set htyp �� � use hatch for plot after cut

PAW
 nt�pl ���y � ���� � � S � plot y AFTER cut on same plot

7.5. Ntuples: A closer look 265

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

0

50

100

150

200

250

300

350

400

450

-3 -2 -1 0 1 2 3

X versus Y

Graphical cuts

X - Before and after cut

Graphical cuts

Y - Before and after cut

Graphical cuts

0

50

100

150

200

250

300

350

400

450

-3 -2 -1 0 1 2 3

Figure 7.8: Graphical definition of cuts

266 Chapter 7. HBOOK

COMIS selection function

In the definition of a selection criterion an external function (in the sense that it has not been compiled
and linked together with PAW) can be used. This function is interpreted by the COMIS [1] package. The
functions which are callable from within such a function are given below.

Type of function List of callable routines

FORTRAN library SQRT LOG LOG�� EXP SIN COS TAN ASIN ACOS ATAN� ABS MOD

MIN MAX INT REAL DBLE LEN INDEX

HBOOK package HBOOK� HBOOK� HBOOKN HFILL HF� HPRINT HDELET HRESET

HFITGA HFITPO HFITEX HPROJ� HPROJ� HFN HGNPAR HROPEN

PAOPEN PACLOS PAREAD PAWRIT HPAK HPAKE HUNPAK HGIVE

HGN HGNF HF� HFF� HFF� HBFUN� HBFUN� HRIN HROUT HI HIE

HIX HIJ HIDALL HNOENT HX HXY HCOPY HSTATI HBPROF HOPERA

HIDOPT HDERIV HRNDM� HRNDM� HBARX HBARY

ZEBRA package FZIN FZOUT FZENDI FZENDO FZFILE RZCDIR RZLDIR RZFILE

RZEND RZIN RZOUT RZVIN RZVOUT

HPLOT package HPLOT HPLSYM HPLERR HPLEGO HPLNT HPLSUR HPLSOF HPLSET

HPLGIV HPLOC HPLSET HPLGIV HPLOC

KUIP package KUGETV KUDPAR KUVECT KILEXP KUTIME KUEXEL

HIGZ package IPL IPM IFA IGTEXT IGBOX IGAXIS IGPIE IGRAPH IGHIST

IGARC IGLBL IGRNG IGMETA IGSA IGSET IRQLC IRQST ISELNT

ISFAIS ISFASI ISLN ISMK ISVP ISWN ITX ICLRWK ISCR

KERNLIB library JBIT JBYT LENNOC RANNOR RNDM SBIT� SBIT� SBYT UCOPY

UCTOH UHTOC VZERO

COMMON blocks �PAWC�� �QUEST�� �KCWORK�� �PAWPAR�� �PAWIDN�

Table 7.3: Function callable and common blocks which can be referenced from an external function with
PAW.

The command NTUPLE�UWFUNC allows a selection function for a Ntuple to be prepared more easily. It
generates a function with a name specified by the user and with code making available the variables cor-
responding to the given Ntuple identifier via a COMMON block. As an example consider the Ntuple
number 30 used previously.

7.5. Ntuples: A closer look 267

Specifying a user selection function

PAW
 NTUPLE�UWFUNC �� SELECT�FOR PT � Generate SELECT�FOR

PAW
 EDIT SELECT�FOR � Look at file SELECT�FOR

REAL FUNCTION SELECT�XDUMMY�

REAL X � Y � Z

COMMON�PAWIDN�IDNEVT�VIDN��VIDN��VIDN��

 X � Y � Z

DIMENSION XDUMMY� ��

CHARACTER�� CHTAGS� ��

DATA CHTAGS�� X ��� Y ��� Z ��

�

SELECT���

PRINT �����IDNEVT

DO �� I��� �

PRINT �����I�CHTAGS�I��XDUMMY�I�

�� CONTINUE

�

���� FORMAT��H IDNEVT��I��

���� FORMAT��X�I���X�A��H��G�����

END

The user can add further FORTRAN code with the command EDIT. Remember that the value of the func-
tion can be used for weighting each event.

7.5.5 Examples

To put into practice the syntax explained above let us consider figure 7.9. We first plot variable Z with the
binning automatically calculated by HBOOK. Then we define a histogram with identifier ��� into which
we want HBOOK to plot the squared sums of the elements X and Y. This corresponds to the definition
of the Z variable as can be seen in the FORTRAN listing in figure 7.5. As the MEAN and RMS are only
calculated on the events within the histogram boundaries, they differ slightly between the top and bottom
plot in figure 7.9.

268 Chapter 7. HBOOK

Plotting Ntuples

PAW
 zon � � � � histograms one above the other

PAW
 opt STAT � Write statistics on plot

PAW
 NT�PL ���Z � plot variable Z of Ntuple ��

PAW
 �d ��� �Z recalculated and user binning� ��� �� ���

PAW
 NT�PL ���X��� Y��� � ���� � Recalculate variable Z plot with user binning

0

200

400

600

800

1000

0 2.5 5 7.5 10 12.5 15 17.5

Z

ID
Entries
Mean
RMS

 1000000
 10000
 2.014
 2.003

Z recalculated and user binning

ID
Entries
Mean
RMS

 300
 10000
 1.939
 1.811

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8 9 10

Figure 7.9: Read and plot Ntuple elements

7.5. Ntuples: A closer look 269

More complex Ntuple presentations

PAW
 zon � � � Divide plot in � zones

PAW
 opt STAT � Select option to write statistics on plot

PAW
 set HTYP �� � Define histogram hatch type

PAW
 �d ��� �NT�PL � X� ���� ���� ��� � Book � dim histogram

PAW
 nt�pl ���� � ���� � Plot variable � �x� using histogram ���

PAW
 �d ��� �NT�PL E option � Y� ���� ���� ��� � � dim histogram �different title�

PAW
 igset mtyp �� � Select market type for points on plot

PAW
 nt�pl ���y � ���� � � E � Plot y variable with Error bar option

PAW
 �d ��� �NT�PL B option � X� ��� ���� ��� � � dim histogram �different title binning�

PAW
 set barw ��� � Define bar width for bar chart

PAW
 set baro ��� � Define bar origin for bar chart

PAW
 csel NB ���� � Print selection criterion on plot

PAW
 set hcol ���� � Histogram colour black

PAW
 nt�pl ���x y
� ���� � � b � Plot x variable as bar chart

PAW
 �d ��� �NT�PL PL option � Y� ���� ���� ��� � � dim histogram �different title�

PAW
 max ��� ��� � Fix maximum for plotting hist ���

PAW
 nt�pl ���y sqrt�z�
� ���� � � pl � Plot y variable with PL option

0

40

80

120

160

200

240

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

40

80

120

160

200

240

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

0

40

80

120

160

200

240

280

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

NT/PL - X

ID
Entries

Mean
RMS

 401
 10000

-0.1638E-02
 0.9580

NT/PL E option - Y

ID
Entries

Mean
RMS

 402
 10000

-0.2674E-03
 0.9546

NT/PL B option - X

ID
Entries

Mean
RMS

 403
 5012

-0.7792E-02
 0.9643

NT/PL PL option - Y

ID
Entries

Mean
RMS

 404
 6090

-0.5530E-02
 1.166

0

20

40

60

80

100

120

140

160

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Figure 7.10: Selection functions and different data presentations

270 Chapter 7. HBOOK

7.6 Fitting with PAW/HBOOK/MINUIT

Minuit[5]� is conceived as a tool to find the minimum value of a multi-parameter function and analyze the
shape of the function around the minimum. The principal application is foreseen for statistical analysis,
working on chisquare or log-likelihood functions, to compute the best-fit parameter values and uncertain-
ties, including correlations between the parameters. It is especially suited to handle difficult problems,
including those which may require guidance in order to find the correct solution.

7.6.1 Basic concepts of MINUIT.

The MINUIT package acts on a multiparameter FORTRAN function to which one must give the generic
name FCN. In the PAW/HBOOK implementation, the function FCN is called HFCNH when the command
Histo�Fit (PAW) or the routine HFITH are invoked. It is called HFCNVwhen the command Vector�Fit
or the routine HFITV are invoked. The value of FCN will in general depend on one or more variable pa-
rameters.

To take a simple example, suppose the problem is to fit a polynomial through a set of data points with the
command Vector/Fit. Routine HFCNV called by HFITV calculates the chisquare between a polynomial and
the data; the variable parameters of HFCNV would be the coefficients of the polynomials. Routine HFITV
will request MINUIT to minimize HFCNV with respect to the parameters, that is, find those values of the
coefficients which give the lowest value of chisquare.

7.6.2 Basic concepts - The transformation for parameters with limits.

For variable parameters with limits, MINUIT uses the following transformation:

Pint � arcsin

�
�
Pext � a
b� a � �

�
Pext � a� b� a

� �sinPint � ��

so that the internal value Pint can take on any value, while the external value Pext can take on values
only between the lower limit a and the upper limit b. Since the transformation is necessarily non-linear, it
would transform a nice linear problem into a nasty non-linear one, which is the reason why limits should
be avoided if not necessary. In addition, the transformation does require some computer time, so it slows
down the computation a little bit, and more importantly, it introduces additional numerical inaccuracy into
the problem in addition to what is introduced in the numerical calculation of the FCN value. The effects
of non-linearity and numerical roundoff both become more important as the external value gets closer to
one of the limits (expressed as the distance to nearest limit divided by distance between limits). The user
must therefore be aware of the fact that, for example, if he puts limits of �	� �	��� on a parameter, then
the values 	�	 and ��	 will be indistinguishable to the accuracy of most machines.

The transformation also affects the parameter error matrix, of course, so MINUIT does a transformation
of the error matrix (and the “parabolic” parameter errors) when there are parameter limits. Users should
however realize that the transformation is only a linear approximation, and that it cannot give a mean-
ingful result if one or more parameters is very close to a limit, where �Pext��Pint
 	. Therefore, it is
recommended that:

– Limits on variable parameters should be used only when needed in order to prevent the parameter
from taking on unphysical values.

�The following information about Minuit has been extracted from the Minuit documentation.

7.6. Fitting with PAW/HBOOK/MINUIT 271

– When a satisfactory minimum has been found using limits, the limits should then be removed if
possible, in order to perform or re-perform the error analysis without limits.

7.6.3 How to get the right answer from MINUIT.

MINUIT offers the user a choice of several minimization algorithms. The MIGRAD (Other algorithms are
available with Interactive MINUIT, as described on Page 280) algorithm is in general the best minimizer
for nearly all functions. It is a variable-metric method with inexact line search, a stable metric updating
scheme, and checks for positive-definiteness. Its main weakness is that it depends heavily on knowledge
of the first derivatives, and fails miserably if they are very inaccurate. If first derivatives are a problem,
they can be calculated analytically inside the user function and communicated to PAW via the routine
HDERIV.

If parameter limits are needed, in spite of the side effects, then the user should be aware of the following
techniques to alleviate problems caused by limits:

Getting the right minimum with limits.

If MIGRAD converges normally to a point where no parameter is near one of its limits, then the existence
of limits has probably not prevented MINUIT from finding the right minimum. On the other hand, if one
or more parameters is near its limit at the minimum, this may be because the true minimum is indeed at
a limit, or it may be because the minimizer has become “blocked” at a limit. This may normally happen
only if the parameter is so close to a limit (internal value at an odd multiple of ��

� that MINUIT prints a
warning to this effect when it prints the parameter values.

The minimizer can become blocked at a limit, because at a limit the derivative seen by the minimizer
�F��Pint is zero no matter what the real derivative �F��Pext is.

�F

�Pint

�
�F

�Pext

�Pext

�Pint

�
�F

�Pext

� 	

Getting the right parameter errors with limits.

In the best case, where the minimum is far from any limits, MINUIT will correctly transform the error
matrix, and the parameter errors it reports should be accurate and very close to those you would have
got without limits. In other cases (which should be more common, since otherwise you wouldn’t need
limits), the very meaning of parameter errors becomes problematic. Mathematically, since the limit is an
absolute constraint on the parameter, a parameter at its limit has no error, at least in one direction. The
error matrix, which can assign only symmetric errors, then becomes essentially meaningless.

7.6.4 Interpretation of Parameter Errors:

There are two kinds of problems that can arise: the reliability of MINUIT’s error estimates, and their
statistical interpretation, assuming they are accurate.

Statistical interpretation:

For discussuion of basic concepts, such as the meaning of the elements of the error matrix, or setting of
exact confidence levels, see [12, 13, 14].

272 Chapter 7. HBOOK

Reliability of MINUIT error estimates.

MINUIT always carries around its own current estimates of the parameter errors, which it will print out on
request, no matter how accurate they are at any given point in the execution. For example, at initialization,
these estimates are just the starting step sizes as specified by the user. After a MIGRAD or HESSE step,
the errors are usually quite accurate, unless there has been a problem. MINUIT, when it prints out error
values, also gives some indication of how reliable it thinks they are. For example, those marked CURRENT
GUESS ERROR are only working values not to be believed, and APPROXIMATE ERROR means that they
have been calculated but there is reason to believe that they may not be accurate.

If no mitigating adjective is given, then at least MINUIT believes the errors are accurate, although there
is always a small chance that MINUIT has been fooled. Some visible signs that MINUIT may have been
fooled are:

– Warning messages produced during the minimization or error analysis.

– Failure to find new minimum.

– Value of EDM too big (estimated Distance to Minimum).

– Correlation coefficients exactly equal to zero, unless some parameters are known to be uncorrelated
with the others.

– Correlation coefficients very close to one (greater than 0.99). This indicates both an exceptionally
difficult problem, and one which has been badly parameterized so that individual errors are not very
meaningful because they are so highly correlated.

– Parameter at limit. This condition, signalled by a MINUIT warning message, may make both the
function minimum and parameter errors unreliable. See the discussion above “Getting the right

parameter errors with limits”.

The best way to be absolutely sure of the errors, is to use “independent” calculations and compare them,
or compare the calculated errors with a picture of the function. Theoretically, the covariance matrix for
a “physical” function must be positive-definite at the minimum, although it may not be so for all points
far away from the minimum, even for a well-determined physical problem. Therefore, if MIGRAD re-
ports that it has found a non-positive-definite covariance matrix, this may be a sign of one or more of the
following:

A non-physical region: On its way to the minimum, MIGRAD may have traversed a region which has
unphysical behaviour, which is of course not a serious problem as long as it recovers and leaves such a
region.

An underdetermined problem: If the matrix is not positive-definite even at the minimum, this may
mean that the solution is not well-defined, for example that there are more unknowns than there are data
points, or that the parameterization of the fit contains a linear dependence. If this is the case, then MI-
NUIT (or any other program) cannot solve your problem uniquely, and the error matrix will necessarily
be largely meaningless, so the user must remove the underdeterminedness by reformulating the parame-
terization. MINUIT cannot do this itself.

Numerical inaccuracies: It is possible that the apparent lack of positive-definiteness is in fact only due
to excessive roundoff errors in numerical calculations in the user function or not enough precision. This
is unlikely in general, but becomes more likely if the number of free parameters is very large, or if the

7.6. Fitting with PAW/HBOOK/MINUIT 273

parameters are badly scaled (not all of the same order of magnitude), and correlations are also large. In
any case, whether the non-positive-definiteness is real or only numerical is largely irrelevant, since in both
cases the error matrix will be unreliable and the minimum suspicious.

An ill-posed problem: For questions of parameter dependence, see the discussion above on positive-
definiteness.

Possible other mathematical problems are the following:

Excessive numerical roundoff: Be especially careful of exponential and factorial functions which get
big very quickly and lose accuracy.

Starting too far from the solution: The function may have unphysical local minima, especially at in-
finity in some variables.

7.6.5 Fitting histograms

The general syntax of the command to fit histograms is:

HISTOGRAM id func � chopt np par step pmin pmax errpar �

Only the parameters, which are of more general use, are described in detail. The full description can be
found in part 3 of this manual.

ID A histogram identifier (1-dim or 2-dim)
A bin range may be specified, e.g. Histo�Fit �������
� ���

FUNC Name of a function to be fitted to the histogram.
This function can be of various forms:

1 The name of a file which contains the user defined function to be minimized. Function
name and file name must be the same. For example file FUNC�FOR is:

FUNCTION FUNC�X� or FUNC�X�Y� for a ��Dim histogram

COMMON�PAWPAR�PAR���

FUNC�PAR����X PAR����EXP��X�

END

2 One of the keywords below (1-dim histograms only), which will use the parameteriza-
tion described at the right for the fit.

G Func�par���"exp�����"��x�par�����par����""��

E Func�exp�par����par���"x�

Pn Func�par����par���"x�par���"x""�����par�n���"x""n� � n ��

3 A combination of the keywords above with the 2 operators � or ".

Note that in this case, the order of parameters in PAR must correspond to the order of the
basic functions. Blanks are not allowed in the expression.

CHOPT All options of the HISTO�PLOT command plus the following additional ones:

� Do not plot the result of the fit. By default the fitted function is drawn unless the option
“N” below is specified.

274 Chapter 7. HBOOK

B Some or all parameters are bounded. In this case vectors STEP�PMIN�PMAXmust be spec-
ified. Default is: All parameters vary freely.

D The user is assumed to compute derivatives analytically using routine HDERIV. By default,
derivatives are computed numerically.

L Use Log Likelihood method. Default is �� method.

M Invokes interactive Minuit (See on Page 280)

N Do not st ore the result of the fit bin by bin with the histogram. By default the function is
calculated at the centre of each bin and the fit results stored with the histogram data struc-
ture.

Q Quiet mode. No output printed about the fit.

V Verbose mode. Results are printed after each iteration. By default only final results are
printed.

W Sets weights equal to 1.

NP Number of parameters in fit (� NP � �
)

PAR Vector containing the fit parameters.
Before the fit: Vector containing the initial values
After the fit: Vector containing the fitted values.

STEP Vector with step size for fit parameters

PMIN Vector with lower bounds for fit parameters

PMAX Vector with upper bounds for fit parameters

ERRPAR Vector with errors on the fitted parameters

When using predefined functions (case 2 for the FUNC parameter) initial values need not be specified when
NP��. In this case the parameter vectorPAR, if specified, is onlyfilled with thefitted parameters on output.

7.6.6 A simple fit with a gaussian

Example of simple fit with gaussian in PAW

PAW
 opt stat � Select option to show histogram statsitics on plot

PAW
 opt fit � Select option to show fitted parameters on plot

PAW
 hi�fit �� G � Fit histogram �� with a single gaussian

��

� �

� Function minimization by SUBROUTINE HFITGA �

� Variable�metric method �

� ID � �� CHOPT � T �

� �

��

Convergence when estimated distance to minimum �EDM� �LT� ����E���

FCN� �������� FROM MIGRAD STATUS�CONVERGED CALLS� ��� EDM� ����E���

STRATEGY� � ERROR DEF� ������

INT EXT PARAMETER STEP FIRST

NO� NO� NAME VALUE ERROR SIZE DERIVATIVE

� � Constant ������ ������ ������� �������E���

� � Mean ��������E��� �������E��� ������� ������

7.6. Fitting with PAW/HBOOK/MINUIT 275

� � Sigma ������� �������E��� ������� ��������

CHISQUARE � ������E �� NPFIT � ��

TEST1

ID
Entries
Mean
RMS

 10
 10000

-0.3923E-02
 0.9857
 1.021

Constant 239.8
Mean -0.5304E-02
Sigma 0.9877

0

40

80

120

160

200

240

280

-3 -2 -1 0 1 2 3

Figure 7.11: Example of a simple fit of a one-dimensional distribution

276 Chapter 7. HBOOK

Fit parts of histogram separately

PAW
 opt NSTA � Turn off option showing statistics on plot

PAW
 ve�cr par��� � Create a vector with � elements

PAW
 set fit ��� � Show fitted parameters errors on plot

PAW
 hi�fit �����	��� G � � par � Fit first half with a gaussian and plot

��

� �

� Function minimization by SUBROUTINE HFITGA �

� Variable�metric method �

� ID � ��� CHOPT � TR �

� �

��

Convergence when estimated distance to minimum �EDM� �LT� ����E���

FCN� �������� FROM MIGRAD STATUS�CONVERGED CALLS� ��� EDM� ����E���

STRATEGY� � ERROR DEF� ������

INT EXT PARAMETER STEP FIRST

NO� NO� NAME VALUE ERROR SIZE DERIVATIVE

� � Constant ������ ������ ������� �������E���

� � Mean ������� �������E��� ��������E��� ��������

� � Sigma �������E��� �������E��� ��������E��� �������

CHISQUARE � ������E �� NPFIT � ��

PAW
 hi�fit ������	��� G � � par��� � Fit second half with gaussian� do not plot

��

� �

� Function minimization by SUBROUTINE HFITGA �

� Variable�metric method �

� ID � ��� CHOPT � TR �

� �

��

Convergence when estimated distance to minimum �EDM� �LT� ����E���

FCN� �������� FROM MIGRAD STATUS�CONVERGED CALLS� ��� EDM� ����E���

STRATEGY� � ERROR DEF� ������

INT EXT PARAMETER STEP FIRST

NO� NO� NAME VALUE ERROR SIZE DERIVATIVE

� � Constant ������ ������ �������E��� �������E���

� � Mean ������� �������E��� �������E��� ������

� � Sigma ������� �������E��� ��������E��� ������

CHISQUARE � ������E �� NPFIT � ��

PAW
 hi�plot ��� SFUNC � Plot result of fit on Same plot

PAW
 ve�pr par��	�� � Print the fitted parameters in PAR

PAR � � � � ��������

PAR � � � � ���������

PAR � � � � ���������E���

PAR � � � � ��������

PAR � � � � ���������

PAR � � � � ���������

7.6. Fitting with PAW/HBOOK/MINUIT 277

Parameter Input value Result of Figure 7.12 Result of Figure 7.13

First Gaussian:

Height �� (normalised) �		��
� �	���
�

Mean value 	�� 	��	�� 	�		� 	��	�� 	�		�

Width (sigma) 	�	� 	�	�
� 	�		� 	�	�	� 	�		�

Second Gaussian:

Height 	�
 (normalised) �
��� �� �

��
�

Mean value 	�� 	��	�� 	�		� 	��	�� 	�		�

Width (sigma) 	��� 	���	� 	�		� 	����� 	�		�

Table 7.4: Results for the fitted parameters of the gaussian distributions as compared to the initial values
which the gaussian distributions were generated in the “batch” job in figure 7.3. The table also includes
the result of the double gaussian fit in section 7.13

.

Example of a more complex fit

PAW
 � Create vector of � elements and give initial values for combined fit of two gaussians

PAW
 ve�cr par���� r ��� ��� ��� ��� ��� ��� � initial values for the � fit parameters

PAW
 set fit ��� � display fitted parameters plus errors

PAW
 hi�fit �����	��� G G � � par� � perform the fit �sum of � gaussians�

��

� �

� Function minimization by SUBROUTINE HFITH �

� Variable�metric method �

� ID � ��� CHOPT � R �

� �

��

Convergence when estimated distance to minimum �EDM� �LT� ����E���

FCN� �������� FROM MIGRAD STATUS�CONVERGED CALLS� ��� EDM� ����E���

STRATEGY� � ERROR DEF� ������

INT EXT PARAMETER STEP FIRST

NO� NO� NAME VALUE ERROR SIZE DERIVATIVE

� � P� ������ ������ ������ ��������E���

� � P� ������� �������E��� �������E��� ������

� � P� �������E��� �������E��� �������E��� ������

� � P� ������ ������ ������� �������E���

� � P� ������� �������E��� �������E��� �������

� � P� ������� �������E��� �������E��� ������

CHISQUARE � ������E �� NPFIT � ��

278 Chapter 7. HBOOK

Filled according to HTFUN1

 2.159
Constant 300.3 4.921
Mean 0.3070 0.1052E-02
Sigma 0.7383E-01 0.6180E-03

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

Figure 7.12: Example of a fit using sub-ranges bins

7.6. Fitting with PAW/HBOOK/MINUIT 279

Filled according to HTFUN1

 0.6524
P1 307.9 5.346
P2 0.3026 0.1080E-02
P3 0.7002E-01 0.8478E-03
P4 153.6 3.012
P5 0.7030 0.2076E-02
P6 0.1187 0.1835E-02

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

Figure 7.13: Example of a fit using a global double gaussian fit

280 Chapter 7. HBOOK

7.7 Doing more with Minuit

When theHISTO�FIT orVECTOR�FIT command is invoked, PAW/HBOOK will set a default environment
for Minuit. Control may be given to Minuit if the option “M” is specified in the command. In this case,
the user may enter Minuit control statements.

Overview of available MINUIT commands

CLEar

Resets all parameter names and values to undefined. Must normally be followed by a PARAMETER
command or equivalent, in order to define parameter values.

CONtour par1 par2 �devs��ngrid�

Instructs MINUIT to trace contour lines of the user function with respect to the two parameters whose
external numbers are par1 and par2. Other variable parameters of the function, if any, will have their
values fixed at the current values during the contour tracing. The optional parameter �devs� (default
value 2.) gives the number of standard deviations in each parameter which should lie entirely within the
plotting area. Optional parameter �ngrid� (default value 25 unless page size is too small) determines
the resolution of the plot, i.e. the number of rows and columns of the grid at which the function will be
evaluated.

EXIT

End of Interactive MINUIT. Control is returned to PAW.

FIX parno

Causes parameter parno to be removed from the list of variable parameters, and its value will remain
constant (at the current value) during subsequent minimizations, etc., until another command changes its
value or its status.

HELP �SET��SHOw�

Causes MINUIT to list the available commands. The list of SET and SHOw commands must be requested
separately.

HESse �maxcalls�

Instructs MINUIT to calculate, by finite differences, the Hessian or error matrix. That is, it calculates
the full matrix of second derivatives of the function with respect to the currently variable parameters,
and inverts it, printing out the resulting error matrix. The optional argument �maxcalls� specifies the
(approximate) maximum number of function calls after which the calculation will be stopped.

IMProve �maxcalls�

If a previous minimization has converged, and the current values of the parameters therefore correspond
to a local minimum of the function, this command requests a search for additional distinct local minima.
The optional argument �maxcalls� specifies the (approximate) maximum number of function calls after
which the calculation will be stopped.

7.7. Doing more with Minuit 281

MIGrad �maxcalls��tolerance�

Causes minimization of the function by the method of Migrad, the most efficient and complete single
method, recommended for general functions (see also MINImize). The minimization produces as a by-
product the error matrix of the parameters, which is usually reliable unless warning messages are pro-
duced. The optional argument �maxcalls� specifies the (approximate) maximum number of function
calls after which the calculation will be stopped even if it has not yet converged. The optional argument
�tolerance� specifies required tolerance on the function value at the minimum. The default tolerance
is ���. Minimization will stop when the estimated vertical distance to the minimum (EDM) is less than
�����"�tolerance�"UP (see SET ERR).

MINImize �maxcalls��tolerance�

Causes minimization of the function by the method of Migrad, as does the MIGrad command, but switches
to the SIMplex method if Migrad fails to converge. Arguments are as for MIGrad.

MINOs �maxcalls��parno��parno�...

Causes a Minos error analysis to be performed on the parameters whose numbers �parno� are specified.
If none are specified, Minos errors are calculated for all variable parameters. Minos errors may be expen-
sive to calculate, but are very reliable since they take account of non-linearities in the problem as well as
parameter correlations, and are in general asymmetric. The optional argument �maxcalls� specifies the
(approximate) maximum number of function calls per parameter requested, after which the calculation
will be stopped for that parameter.

RELease parno

If parno is the number of a previouslyvariable parameter which has been fixed by a command: FIX parno,
then that parameter will return to variable status. Otherwise a warning message is printed and the com-
mand is ignored. Note that this command operates only on parameters which were at one time variable
and have been FIXed. It cannot make constant parameters variable; that must be done by redefining the
parameter with a PARAMETER command.

REStore �code�

If no �code� is specified, this command restores all previously FIXed parameters to variable status. If
�code�=1, then only the last parameter FIXed is restored to variable status.

SCAn �parno��numpts��from��to�

Scans the value of the user function by varying parameter number �parno�, leaving all other parameters
fixed at the current value. If �parno� is not specified, all variable parameters are scanned in sequence.
The number of points �numpts� in the scan is 40 by default, and cannot exceed 100. The range of the
scan is by default 2 standard deviations on each side of the current best value, but can be specified as
from �from� to �to�. After each scan, if a new minimum is found, the best parameter values are retained
as start values for future scans or minimizations. The curve resulting from each scan is plotted on the
output unit in order to show the approximate behaviour of the function. This command is not intended
for minimization, but is sometimes useful for debugging the user function or finding a reasonable starting
point.

282 Chapter 7. HBOOK

SEEk �maxcalls��devs�

Causes a Monte Carlo minimization of the function, by choosing random values of the variable parame-
ters, chosen uniformly over a hypercube centered at the current best value. The region size is by default
3 standard deviations on each side, but can be changed by specifying the value of �devs�.

SET ERRordef up

Sets the value of up (default value= 1.), defining parameter errors. MINUIT defines parameter errors as
the change in parameter value required to change the function value by up. Normally, for chisquared fits
up=1, and for negative log likelihood, up=0.5.

SET LIMits �parno��lolim��uplim�

Allows the user to change the limits on one or all parameters. If no arguments are specified, all limits are
removed from all parameters. If �parno� alone is specified, limits are removed from parameter �parno�.
If all arguments are specified, then parameter �parno� will be bounded between �lolim� and �uplim�.
Limits can be specified in either order, MINUIT will take the smaller as �lolim�and the larger as�uplim�.
However, if �lolim� is equal to �uplim�, an error condition results.

SET PARameter parno value

Sets the value of parameter parno to value. The parameter in question may be variable, fixed, or constant,
but must be defined.

SET PRIntout level

Sets the print level, determining how much output MINUIT will produce. The allowed values and their
meanings are displayed after a SHOw PRInt command. Possible values for level are:

�� No output except from SHOW commands

� Minimum output (no starting values or intermediate results)

� Default value, normal output

� Additional output giving intermediate results.

� Maximum output, showing progress of minimizations.

SET STRategy level

Sets the strategy to be used in calculatingfirst and second derivatives and in certain minimization methods.
In general, low values of level mean fewer function calls and high values mean more reliable minimiza-
tion. Currently allowed values are 0, 1 (default), and 2.

SHOw XXXX

All SET XXXX commands have a corresponding SHOw XXXX command. In addition, the SHOw com-
mands listed starting here have no corresponding SET command for obvious reasons. The full list of
SHOw commands is printed in response to the command HELP SHOw.

7.7. Doing more with Minuit 283

SHOw CORrelations

Calculates and prints the parameter correlations from the error matrix.

SHOw COVariance

Prints the (external) covariance (error) matrix.

SIMplex �maxcalls��tolerance�

Performs a function minimization using the simplex method of Nelder and Mead. Minimization termi-
nates either when the function has been called (approximately) �maxcalls� times, or when the estimated
vertical distance to minimum (EDM) is less than �tolerance�. The default value of �tolerance� is ���"UP
(see SET ERR).

Chapter 8: Graphics (HIGZ and HPLOT)

8.1 HPLOT, HIGZ and local graphics package

Graphics input/output in PAW is handled by the two packages HPLOT (Histograms PLOTting) and HIGZ
(High level Interface to Graphics and Zebra). HIGZ is the basic graphics system of PAW interfacing
an basic graphics package while HPLOT, sitting on top of HIGZ, is used for plotting HBOOK objects
(Histograms, Ntuples, etc.). The figure below shows the hierarchy between HPLOT, HIGZ and the basic
graphics package (GKS, DI3000, X Windows, etc.).

PAW

HPLOT

HIGZ

G Z

Basic Graphics Package

Figure 8.1: HPLOT and HIGZ in PAW

284

8.2. The metafiles 285

Graphics could be produced in PAW either directly by HIGZ commands or by HPLOT commands. In
both cases, all the graphics is under the control of HIGZ. Two distinct modes are available in HIGZ:
one is purely graphics (the G mode) interfacing the basic graphics package, and the second (the Z mode)
allows the management of the HIGZ structures (pictures). As an example, the simple PAW command
HISTOGRAM�PLOT is handled at the different levels as follows:

PAW Level HISTOGRAM�PLOT ID

HPLOT Level Takes care of ZONE, SET, OPTION, etc.

HIGZ Level Windows and Viewport, Axis, Boxes, Histogram, Text and Attributes

Basic graphics Line, Text, Attributes, etc.

8.2 The metafiles

Metafiles are text files used as device independent sources of graphics output for printers of different type.
PAW is able to produce two types of metafiles.

The first one is the basic graphics package metafile (for example a GKS metafile). This file is produced by
the basic graphics package and it usually needs a special interpreter to be sent to the printers. For example,
at CERN, the GKS metafile (workstation type �) must be printed with GRPLOT.

The second type of metafile is directly produced by HIGZ and is independent from the basic graphics
package used. This type of metafile is a PostScript metafile and could be sent directly to a PostScript
printer The PostScript workstation types have the following format:

��Format��Nx��Ny��Type�

Where:

Format Is an integer between 0 and 99 which defines the format of the paper. For example ifFormat=3
the paper is in the standard A3 format. Format=4 and Format=0 are the same and define an
A4 page. The A0 format is selected by Format=99. The US format Letter is selected by
Format=100. The US format Legal is selected by Format=200. The US format Ledger is
selected by Format=300.

Nx� Ny Specify respectively the number of zones on the x and y axis. Nx and Ny are integers between
1 and 9.

Type Can be equal to:

� Portrait mode with a small margin at the bottom of the page.

� Landscape mode with a small margin at the bottom of the page.

� Portrait mode with a large margin at the bottom of the page.

� Landscape mode with a large margin at the bottom of the page.
The large margin is useful for some PostScript printers (very often for the colour printers)
as they need more space to grip the paper for mechanical reasons.
Note that some PostScript colour printers can also use the so called ”special A4” format
permitting the full usage of the A4 area; in this case larger margins are not necessary and
Type=1 or 2 can be used.

286 Chapter 8. Graphics (HIGZ and HPLOT)

� Encapsulated PostScript. This Type permits the generation of files which can be in-
cluded in other documents, for example in LATEX files. Note that with this Type, Nx and
Ny must always be equal to 1, and Format has no meaning. The size of the picture must
be specified by the user via the SIZE command. Therefore the workstation type for En-
capsulated PostScript is -113. For example if the name of an Encapsulated PostScriptfile
is example�eps, the inclusion of this file into a LATEX file will be possible via (in the
LATEX file):

#begin$figure%

#epsffile$example�eps%

#caption$Example of Encapsulated PostScript in LaTeX�%

#label$EXAMPLE%

#end$figure%

Note that all the figures in this manual are included in this way.

With Type������ and � the pictures are centered on the page, and the usable area on paper is proportional
to the dimensions of A4 format.
Examples:
���� or ����� defines an A4 page not divided. �
��� define an A6 landscape page divided in 3 columns
and 2 rows.

1 2 3

4 5 6

The first picture will be drawn in the area 1. The next image will appear in the next area in the order
defined above. If a page is filled, a new page is used with the same grid. Note that empty pages are not
printed in order to save paper.
Ignoring formats smaller than A12, the total number of possible different PostScript workstation types is:

	 �	 �	 �� � � �
��� !
The command GRAPHICS�METAFILE LUN METAFL is designed to produce metafiles. LUN is the logical
unit number of an open FORTRAN file and METAFL the metafile type. For example, the following four
commands will produce a HIGZ/PostScript metafile with the name �PAW�PS� containing the graphics
representation of histogram number ��:

PAW
 FORTRAN�FILE �� PAW�PS

PAW
 GRAPHICS�META �� ����

PAW
 HISTO�PLOT ��

PAW
 FORTRAN�CLOSE ��

8.3 The HIGZ pictures

The HIGZ pictures have four main goals:
– HIGZ graphics primitives and attributes can be stored in a ZEBRA structure in memory in order to

display them later.
– They can be stored on direct access files (in a very compact way), in order to build a picture data

base.
– They can be modified with the graphics editor.
– They are structured i.e. they can contains so called “graphics objects” which are used to retrieve

objects names and type in the “direct graphics mode” of PAW++.

8.3. The HIGZ pictures 287

8.3.1 Pictures in memory

The general command to manage pictures in memory is: PICTURE�IZPICT. This command has two pa-
rameters:

PNAME Picture name:

CH Character string specifying picture name (must begin with a letter)

N Picture number as displayed by PICT�LIST.

" All pictures in memory.

� � A blank indicates the current picture.

CHOPT Option value:

AL Give a full listing of the pictures in memory.

C Picture PNAME becomes the current picture.

D Display the picture PNAME.

F First picture in memory becomes the current picture.

L List pictures in memory.

M Make a new picture in memory with the name PNAME.

N Next picture in memory becomes the current picture.

P Print the contents of the picture PNAME.

S Scratch picture PNAME from memory.

In addition, simpler and more mnemonic commands are available:

PAW
 PICT�CREATE PNAME � Create a picture in memory

PAW
 PICT�LIST � List pictures in memory

�	 PNAME ��� Current Picture

The last created picture in memory is called the current picture. All graphics primitives (line, text, his-
togram, etc.) produced by PAW commands will be stored in this picture if it is active, i.e. if mode Z is
on.

PAW
 SWITCH Z � Switch Z mode on

PAW
 PICT�LIST

�	 PNAME ��� Current Picture �Active�

Note that the command PICTURE�CREATE will switch automatically Z mode on.

PAW
 PICT�PLOT PNAME

will display picture PNAME. If picture PNAME is not in memory and if the current working directory (as
given by CDIR) is a picture file, PAW will try to take this picture from the file before displaying it.

HIGZ pictures can be created automatically by HPLOT via the command:

PAW
 OPTION ZFL

288 Chapter 8. Graphics (HIGZ and HPLOT)

If this command has been typed, each new plot produced by HPLOT will result in a HIGZ picture created
in memory. The following example shows how for each HIST�PLOT ID command a new HIGZ picture
is created with an automatic naming:

PAW
 HIST�PLOT ��

PAW
 HIST�PLOT ���

PAW
 HIST�PLOT ��

PAW
 PICT�LIST

�	 PICT�

�	 PICT�

�	 PICT� ��� Current Picture �Active�

A similar command is given by:

PAW
 OPTION ZFL�

which works exactly like OPTION ZFL except that only the last created picture is kept in memory. For
example, if we had typed OPTION ZFL� instead of OPTION ZFL in the example above, the result would
be:

PAW
 PICT�LIST

�	 PICT� ��� Current Picture �Active�

The following example is a useful macro showing how to use the HIGZ pictures (via OPTION ZFL�) and
the metafiles in order to produce a hard copy of the graphics screen:

Macro showing how to convert the current picture in PostScript

MACRO POST

FORTRAN�FILE �� PAW�PS � Open the FORTRAN file PAW�PS on unit ��

META ��� ���� � PAW�PS is an A� PostScript file

PICT�PLOT � � � Convert the current picture in PostScript

CLOSE �� � Close PAW�PS

SHELL PRINT PAW�PS � Send PAW�PS to the local printer

RETURN

Typing EXEC POST, the current HPLOT picture on the screen will be sent to the printer using the SHELL
command which issues a system-dependent “print” command to the local operating system (e.g. lp or
lpr on Unix).
The command PICTURE�PRINT do the same thing:

PAW
 PICT�PRINT PAW�PS

This command transform the current picture into a printable file. The file type is defined according to the
extension of the file name i.e.

� FILE = filename.ps A PostScript file is generated (-111)

� FILE = filename.eps A Encapsulated PostScript file is generated (-113)

� FILE = filename.tex A LaTex file is generated (-778)

With this command the metafile type is predefined. It is not possible to change it like in the macro POST

previously described. If FILE�HIGZPRINTER or FILE�� � the PostScript file paw.ps (-111) is generated
and the operating system command defined by the environment variable HIGZPRINTER is executed. The
environment variable HIGZPRINTER should be defined as follow:
On UNIX sytems:

8.3. The HIGZ pictures 289

setenv HIGZPRINTER �lp �dprinter
name paw�ps�

or

export HIGZPRINTER��lp �dprinter
name paw�ps�

On VAX/VMS sytems:

HIGZPRINTER �� &XPRINT paw�ps �PRINTER�printer
name&

On CERNVM:

setenv HIGZPRINTER �XPRINT PAW PS �PR printer
name�

Note that if the environment variable HIGZPRINTER is not defined the file paw�ps is created but not
printed.

Other available commands working on pictures in memory are:

PAW
 PICT�RENAME PNAME PNAME�

PAW
 PICT�COPY PNAME PNAME�

PAW
 PICT�DELETE PNAME

� PNAME can be the complete name, the picture number in memory or � �.

� PNAME� is the complete picture name.

8.3.2 Pictures on direct access files

HIGZ pictures are stored on direct-access files and hence access times to pictures are fast. Moreover, due
to the fact that HIGZ uses high level primitives to describe the picture’s structural tree, a storage com-
paction factor as compared to the equivalent GKS metafiles of between �� and ��� is routinely obtained.

As HIGZ is interfaced to various basic graphics packages, a picture file can be created on one system (e.g.
DECGKS, X11, GL etc.) and transported to another machine to be interpreted with a different graphics
package (e.g GKSGRAL, GDDM, DI3000 etc.).

290 Chapter 8. Graphics (HIGZ and HPLOT)

All available commands to handle pictures with ZEBRA files are shown below. Note that in the example
the picture names could be “"” (all pictures in memory), “ ” (current picture) or a number (picture number
in memory).

Handling pictures with ZEBRA

PAW
 � Open an existing picture file PICT�DAT on LUN � in Update mode

PAW
 PICT�FILE � PICT�DAT � U � Open the existing file PICT�DAT

PAW
 LDIR � List the content of the file PICT�DAT

�������������� Directory ���
 ��LUN� ����

Created ����������� Modified �����������

���
 List of objects

PICTURE NAME CYCLE

UNIX �

ZEBRA �

CERN �

MARKER �

PAW
 IZIN CERN � Put picture &CERN& in memory

PAW
 PICT�LIST � List pictures in memory

�	 CERN

PAW
 IZOUT CERN � Store picture &CERN& in PICT�DAT

PAW
 LDIR � List the content PICT�DAT

�������������� Directory ���
 ��LUN� ����

Created ����������� Modified �����������

���
 List of objects

PICTURE NAME CYCLE

UNIX �

ZEBRA �

CERN �

�

MARKER �

PAW
 PURGE � Purge the file PICTURES

PAW
 SCRATCH ZEBRA � Delete the picture ZEBRA from PICT�DAT

PAW
 LDIR � List the content of PICT�DAT

�������������� Directory ���
 ��LUN� ����

Created ����������� Modified �����������

���
 List of objects

PICTURE NAME CYCLE

UNIX �

CERN �

MARKER �

8.3. The HIGZ pictures 291

8.3.3 Automatic storage pictures in memory

After typing the command:

PAW
 IGSET AURZ �

the AURZ mode is on and all the subsequent created pictures are stored automatically in the last picture
file opened via the command PICTURE�FILE.

Example of the use of pictures in memory

PAW
 PICT�FILE � PICT�DAT � N � Open a new picture file PICT�DAT

PAW
 HIST�FILE � HEXAM�DAT � Open an existing histogram RZ file

PAW
 LDIR � List the contain of HEXAM�DAT

�������������� Directory ���
 ��LUN� ����

Created ����������� Modified �����������

���
 List of objects

HBOOK�ID CYCLE DATE�TIME NDATA OFFSET REC� REC�

�� � ����������� �� ��� ��

�� � ����������� ���� ��� �� ��

�� � ����������� ���� ��� �� ��

PAW
 OPT ZFL � Each new plot will result in a HIGZ picture

PAW
 IGSET AURZ � � Each new HIGZ picture is stored in PICT�DAT

PAW
 HIST�PLOT � � All histograms in HEXAM�DAT are plotted

PAW
 CDIR ��LUN� � Set the current working directory on PICT�DAT

PAW
 LDIR � List the content of PICT�DAT

�������������� Directory ���
 ��LUN� ����

Created ����������� Modified �����������

���
 List of objects

PICTURE NAME CYCLE

PICT� �

PICT� �

PICT� �

Note that if the command PICTURE�FILE is invoked with the option�A�, the AURZmode is automatically
enable.

8.3.4 HIGZ pictures generated in a HPLOT program

HIGZ pictures can be generated in a batch HPLOT program and later visualized in an interactive session
with PAW. The HIGZ picture file, like any HBOOK file, can be exchanged between computers using the
FTP in binary mode. As the size of the picture data base (see page 286), and hence the associated disk
storage requirements, is much smaller than the size of the metafile generated by the basic graphics pack-
age, transfer times are drastically reduced. The example below show how to interactively visualize (with
PAW) HIGZ pictures produced by HPLOT. In the same way we can visualize and edit pictures generated
by any HIGZ based application (GEANT, event scanning programs, etc.)

292 Chapter 8. Graphics (HIGZ and HPLOT)

Store HPLOT pictures with HIGZ

PROGRAM HPICT
�������������
�� HPLOT Program to demonstrate how to store HPLOT
�� pictures onto direct access HIGZ picture file
�������������

COMMON�PAWC�H�������
DIMENSION SIG���
CHARACTER��� TITLE

���
��

CALL HLIMIT�������
� �� Create histograms

DO �� ID�����
WRITE�TITLE������ID

���� FORMAT��Test number��I	�
CALL HBOOK��ID�TITLE������	��	�����

�� CONTINUE
� �� Fill histograms

DO 	� ID�����
DO �� I�������

CALL RANNOR�A�B�
CALL HFILL�ID�A�������

�� CONTINUE
CALL HFITGA�ID�COEFF�AV�SIGM�CHI����SIG�

	� CONTINUE
� �� Initialize HPLOT� Set various graphics options�

CALL HPLINT���
CALL HPLZON�������� ��
CALL HPLOPT��ZFL����
CALL HPLOPT��FIT����
CALL HPLOPT��STAT����
CALL HPLSET��STAT�����
CALL HPLSET��HTYP���

��
CALL HPLSET��FWID�����
CALL HPLSET��VFON���
���
CALL HPLSET��TFON�������
CALL HPLSET��PWID��
��
CALL HPLSET��BCOL�������
CALL HPLSET��CSIZ�������
CALL HPLSET��CFON�������

�
� Open a picture file called �hpict�dat��
� Option �A� means �Automatic saving of pictures�
� Option �N� means �New file�
� �option �U� instead of �N� updates an existing file�
�

CALL IZOPEN����Pictures���hpict�dat���AN�����
�ISTAT�
�
� Select HIGZ option to store graphics in ZEBRA memory only
� No calls to the local graphics package�
�

CALL IGZSET��Z��
� �� Plot all histograms

CALL HPLOT���� ��� ����
CALL HPLEND

�
END

Using the picture in Paw

PAW � PICT�FILE �� HPICT�DAT

PAW � LDIR

Directory ���� ��LUN�� ����

Created 	
��������� Modified 	
���������

���� List of objects

PICTURE NAME CYCLE

PICT� �

PICT� �

PICT
 �

PICT� �

PICT� �

PAW � META �� ����

PAW � PICT�PLOT PICT�

PAW � CLOSE ��

PAW � � Print metafile

PAW � � (see pages 286 and following)
PAW � SHELL print PAW�METAFILE

PAW � EXIT

0

4

8

12

16

20

24

28

32

-3 -2 -1 0 1 2 3

0

5

10

15

20

25

30

35

40

-3 -2 -1 0 1 2 3

Test number 3

ID 3

 0.6923

Constant 23.65

Mean -0.1082E-01

Sigma 0.9680

Test number 4

ID 4

 0.8654

Constant 22.03

Mean -0.9535E-02

Sigma 1.023

Figure 8.2: Visualising a HIGZ picture produced in a batch HPLOT program

8.4. Setting attributes 293

8.4 Setting attributes

Attributes are parameters like: colour, character font, etc. which could be changed interactively in PAW
via the commands PICTURE�IGSET, GRAPHICS�SET and GRAPHICS�OPTION. Each attribute is linked to
one or more objects (lines, histogram, etc.). The aim of this section is to give a complete description of
the attributes available in PAW and to clarify the differences between IGSET, which changes attributes at
the HIGZ level, and SET and OPTION, which act at the HPLOT level.

IGSET � CHOPT VAL �

This command is used to set the value of attributes related to primitives and macroprimitives. The first
parameter is the mnemonic name of the attribute, the second is the value to be assigned.

CHOPT Character variable specifying the name of the attribute to be set. This a character string of 4
characters.

VAL Value of the attribute. A value of � or no value specified, indicates that the attribute value must
be reset to its default value.

Examples of IGSET commands

PAW
 IGSET MTYP �� � Change marker type to ���

� This new marker is used by all subsequent

� commands using the current marker type�

PAW
 IGSET LWID � Set the line width to its default value�

PAW
 IGSET � Display actual and default values of all HIGZ attributes

PAW
 IGSET � � Set ALL HIGZ attributes to their default values

OPTION � CHOPT �

The OPTION command has one optional parameter:

CHOPT Option name (four characters). Special values are:

�"� Set all HPLOT options to their default values
� � Display actual and default values of all HPLOT options

SET � CHOPT VAL �

Sets an HPLOT parameter; see table 8.3 and figures 8.3, 8.4, 8.5 and 8.6 for details.

CHOPT Character variable of length 4 identifying the parameter to be redefined (must be given in up-
percase). Special values are:

�"� All parameters are set to their default values.
�SHOW� A list of all parameters and their values is printed.

VAR New value for the parameter specified. Special values are:

�� The corresponding parameters is set to its default value.

294 Chapter 8. Graphics (HIGZ and HPLOT)

NAME default Explanation

’AURZ’ �� If �� the last current picture is automatically saved on disk when a new picture
is created.

’AWLN’ ��� Axis wire length. Default is length=0 (no grid)

’BARO’ ���� Offset of the left edge of the bar with respect to the left margin of the bin for a
bar chart (expressed as a fraction of the bin width).

’BARW’ ���� Width of the bar in a bar chart (expressed as a fraction of the bin width).

’BASL’ ���� Basic segment length in NDC space (���) by (���) for dashed lines

’BORD’ �� Border flag. If = ��, a border is drawn in boxes, pie charts,.. . .

’CHHE’ ���� CHaracter HEight.

’CSHI’ ���� Distance between each shifted drawing of a character (in percentage of charac-
ter height) for characters drawn by TEXT

’FACI’ �� Fill Area Colour Index.

’FAIS’ �� Fill Area Interior Style (0.,1.,2.,3.).

’FASI’ �� Fill Area Style Index.

’LAOF’ ����� LAbels OFfset.

’LASI’ ����
 LAbels SIze (in World coordinates).

’LTYP’ �� Line TYPe.

’LWID’ ���� Line WIDth.

’MSCF’ ���� Marker SCale Factor.

’MTYP’ �� Marker TYPe.

’PASS’ �� Text width (given by number of PASSes) of characters drawn by TEXT. The
width is simulated by shifting the “pen” slightly at each pass.

’PICT’ �� Starting number for automatic pictures naming.

’PLCI’ �� PolyLine Colour Index.

’PMCI’ �� PolyMarker Colour Index.

’TANG’ ���� Text ANGle (for calculating Character up vector).

’TMSI’ ����� Tick Marks SIze (in world coordinates)

’TXAL’ �� 10*(horizontal alignment)+(vertical alignment).

’TXCI’ �� TeXt Colour Index.

’TXFP’ ��� 10*(TeXt Font) + (TeXt Precision).

(�: hard, �: string, �: soft)

’"’ All attributes are set to their default values.

’SHOW’ The current and default values of the parameters controlled by IGSET are
displayed.

Table 8.1: Parameters and default values for IGSET

8.4. Setting attributes 295

Table 8.2: Parameters and default values for OPTION

Default Alternative Effect

� � �A���

�A������

Picture size. Predefined options are: A�, A�, A�, A�, A�, A�, A

’NOPG’ ’"P’,’""P’,
’"""P’

Suppresses (’NOPG’) or adds a 1, 2 or 3 digit page numbers to a plot (Each
�"� stands for a digit). The page numbers are incremented automatically

’NEAH’ ’EAH’ Plots Errors bars And Histogram, if both are present

’VERT’ ’HORI’ Vertical or horizontal orientation of paper

’NAST’ ’AST’ Functions are drawn with (’AST ’) or without (’NAST’) asterisks in each
channel.

’NCHA’ ’CHA’ Scatter plot are plotted with dots randomised within each bin (’NCHA’) or
by printing a single character in the middle of the bin (’CHA ’)

’SOFT’ ’HARD’ Use SOFTware or HARDware characters

’TAB ’ ’NTAB’ tables (HTABLE) are plotted as tables (’TAB ’) or as scatter plots (’NTAB’)

’HTIT’ ’UTIT’ Option for printing titles. ’HTIT’ means use the hbook titles, while ’UTIT’
signals the use of user titles

’LINX’ ’LOGX’ The scale for the X axis is linear or logarithmic.

’LINY’ ’LOGY’ The scale for the Y axis is linear or logarithmic.

Note that if in hbook the HIDOPT option ’LOGY’ or HLOGAR was selected
for a particular ID and if neither options ’LINY’ nor ’LOGY’ are selected
then the scale will be logarithmic. If HLOGAR or HIDOPT with option
’LOGY’ was called and the option ’LINY’ is selected then the scale will be
linear

’LINZ’ ’LOGZ’ The scale for the Z axis is linear or logarithmic (for lego plots or surfaces).

’BOX ’ ’NBOX’ By default a rectangular box is drawn around a picture. ’NBOX’ suppresses
this box

’NTIC’ ’TIC’ Cross-wires are drawn (’TIC ’) or not drawn (’NTIC’) after each plot

’NSTA’ ’STA’ Statistics information are printed (’STA ’) or not printed (’NSTA’) on the
picture

’NFIT’ ’FIT’ Fit parameters are printed (’FIT ’) or not printed (’NFIT’) on the picture

’NSQR’ ’SQR’ The size of the histogram boxes is set to the largest square (SQR)

’NZFL’ ’ZFL’ The picture is stored (’ZFL ’) or not stored (’NZFL’) in a ZEBRA data base
The procedure to create a higz picture is given below.

’NZFL’ ’ZFL�’ ’ZFL�’ has the same effect as ’ZFL ’, but only the picture last created is
kept in memory.

’NPTO’ ’PTO’ “Please Turn Over”. With ’PTO ’ a carriage return is requested between
each new plot.

’NBAR’ ’BAR’ 1-dimensional histograms are plotted as “Bar charts” (’BAR ’) or as con-
tours (’NBAR’)

’DVXR’ ’DVXI’ Real (’DVXR’) or integer (’DVXI’) labels are computed for the X axis

’DVYR’ ’DVYI’ Real (’DVYR’) or integer (’DVYI’) labels are computed for the Y axis

296 Chapter 8. Graphics (HIGZ and HPLOT)

Table 8.2: Overview of the HPLOPT options (continued)

Default Alternative Effect

’GRID’ ’NGRI’ Grid on X and Y axis

’NDAT’ ’NDAT’ The date is printed or not on each plot

’NFIL’ ’NFIL’ The file name is printed or not on each plot

Table 8.3: Parameters and default values in SET

CHOPT VAR (default) Explanation

ASIZ 0.28 cm axis label size

BARO 0.25 bar offset for “bar charts”

BARW 0.5 bar width for “bar charts”

BCOL 1 zone fill area colour index

BTYP 0 zone fill area style index

BWID 1 box line width

CFON 2 comment font (��"font�precision)

CSHI 0.03 character shift between two pass

CSIZ 0.28 cm comment size

DASH 0.15 length of basic dashed segment for dashed lines

DATE 2 date position

DMOD 1 line style for histogram contour (see HPLOT)

ERRX 0.50 error on X (% of bin width)

FCOL 1 function fill area COLor

FILE 1 file name position

FIT 101 fit values to be plotted

FPGN 1 first PaGe Number

FTYP 0 function fill area TYPe

FWID 1 function line width

GFON 2 global title font (��"font�precision)

GRID 3 grid line type

GSIZ 0.28 cm global title size

HCOL 1 histogram fill area colour index

HMAX 0.90 histogram maximum for scale (in percent)

HTYP 0 histogram fill area style index

HWID 1 histogram line width

KSIZ 0.28 cm Hershey character size (cf. KEY)

LFON 2 axis labels font (��"font�precision)

NDVX 10510.00 number of divisions for X axis

NDVY 10510.00 number of divisions for Y axis

8.4. Setting attributes 297

Table 8.3: Parameters and default values in SET (continued)

CHOPT VAR (default) Explanation

NDVZ 10510.00 number of divisions for Z axis

PASS 1. number of pass for software characters

PCOL 1 picture fill area colour index

PSIZ 0.28 cm page number size

PTYP 0 picture fill area style index

PWID 1 picture line width

SMGR 0. stat margin right (in percent)

SMGU 0. stat margin up (in percent)

SSIZ 0.28 cm asterisk size (for functions)

STAT 1111 stat values to be plotted

TFON 2 general comments font (��"font�precision)

TSIZ 0.28 cm histogram title size

VFON 2 axis values font (��"font�precision)

VSIZ 0.28 cm axis values size

XCOL 1 X axis COLor

XLAB 1.40 cm distance Y axis to labels

XMGL 2.00 cm X margin left

XMGR 2.00 cm X margin right

XSIZ 20.0 cm length of picture along X

XTIC 0.30 cm X axis tick mark length

XVAL 0.40 cm distance between the Y axis and the axis values

XWID 1 X ticks width

XWIN 2.00 cm X space between zones

YCOL 1 Y axis COLor

YGTI 1.50 cm Y position of global title

YHTI 1.20 cm Y position of histogram title

YLAB 0.80 cm distance X axis to labels

YMGL 2.00 cm Y margin low

YMGU 2.00 cm Y margin up

YNPG 0.60 cm Y position for the page number

YSIZ 20.0 cm length of picture along Y

YTIC 0.30 cm Y axis tick mark length

YVAL 0.20 cm distance between the X axis and the axis values

YWID 1 Y ticks width

YWIN 2.00 cm Y space between zones

�SIZ 0.28 cm scatter plot and table character. size

298 Chapter 8. Graphics (HIGZ and HPLOT)

HISTOGRAM TITLE

HBOOK GLOBAL TITLE

0

20

40

60

80

100

120

140

160

180

0 0.2 0.4 0.6 0.8 1

HISTOGRAM TITLE

0

20

40

60

80

100

120

140

160

180

0 0.2 0.4 0.6 0.8 1

HISTOGRAM TITLE

0

25

50

75

100

125

150

175

200

0.1 0.2 0.3 0.4 0.5 0.6

ID

Entries

Mean

RMS

 2

 5000

 .4982

 .2205

GeV/C

E
xa

m
p

le
 o

f
ti

tl
e

a
lo

n
g

 Y

YTIC

XTIC

XVAL

YVAL

XSIZ

XMGL XWIN XMGR

XLAB

SMGU

Y
S

IZ

Y
M

G
U

Y
W

IN

Y
M

G
L

Y
H

T
I

T
S

IZ

Y
L
A

B

V
S

IZ

A
S

IZ

S
M

G
R

G
S

IZ

Y
G

T
I

HMAX

CSIZ

BARW

BARO

ERRX

Figure 8.3: A graphical view of the SET parameters

8.5. More on labels 299

8.5 More on labels

NDVX

If NDVX=12.10 the default value is taken (12.15) If NDVX=9.00 the default value is taken (9.01)

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

12.11

J
A
N

F
E
B

M
A
R

A
P
R

M
A
Y

J
U
N

J
U
L

A
U
G

S
E
P

O
C
T

N
O
V

D
E
C

12.12

J
A

N

F
E

B

M
A

R

A
P

R

M
A

Y

J
U

N

J
U

L

A
U

G

S
E

P

O
C

T

N
O

V

D
E

C

12.13

J
A

N

F
E

B

M
A

R

A
P

R

M
A

Y

J
U

N

J
U

L

A
U

G

S
E

P

O
C

T

N
O

V

D
E

C

12.14

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

12.15

J
A
N

F
E
B

M
A
R

A
P
R

M
A
Y

J
U
N

J
U
L

A
U
G

S
E
P

O
C
T

N
O
V

D
E
C

12.16

J
A

N

F
E

B

M
A

R

A
P

R

M
A

Y

J
U

N

J
U

L

A
U

G

S
E

P

O
C

T

N
O

V

D
E

C

12.17

J
A

N

F
E

B

M
A

R

A
P

R

M
A

Y

J
U

N

J
U

L

A
U

G

S
E

P

O
C

T

N
O

V

D
E

C

12.18

0 1 2 3 4 5 6 7 8 9

-9.01

0 1 2 3 4 5 6 7 8 9

-9.02

0 1 2 3 4 5 6 7 8 9

-9.03

0 1 2 3 4 5 6 7 8 9

-9.04

0 1 2 3 4 5 6 7 8

-9.05

0 1 2 3 4 5 6 7 8

-9.06

0 1 2 3 4 5 6 7 8

-9.07

0 1 2 3 4 5 6 7 8

-9.08

Figure 8.4: Example of labelling for horizontal axes

By default, labels used byAXIS and PIE are numeric labels. The command GRAPHICS�PRIMITIVES�LABELS
(or LABELS for short), allows the user to define up to nine alphanumeric set of labels (numbered from �

to �). These labels can then be used in subsequent commands using PIE or AXIS primitives of HIGZ.

The LABELS command has three parameters:

LABNUM An integer between � and �. It identifies the labels set.

NLABS The number of items to be placed on the labels (up to ��).

CHLABS NLABS character strings specifying the label items.

300 Chapter 8. Graphics (HIGZ and HPLOT)

The label sets thus defined can be used for axes on all plots produced by PAW (HPLOT histograms, graphs,
vectors drawing, etc.) via the SET NDVX �NDVY� command. These commands have the following struc-
ture:

Example of NXDV specification

SET NDVX i e�g� SET NDVX ���

or
SET NDVX i�jk e�g� SET NDVX �����

In the first case the number i contains ��� times the number of secondary divisions plus the number of
primary divisions. (e.g. ��� means �� primary and � secondary division. By adding ����� times N� to
i a third level of divisions is available.

In the second case the number in front of the dot �i� indicates the total number of divisions, the first digit
following the dot �j� the label identifier (LABNUM) (if this number is equal to � numeric labels are drawn).
The second digit after the �k� dot indicates the position where the labels have to be drawn (i.e. the text

justification parameter, in this case �, indicating horizontally written text centered on the interval). Study
figures 8.4 and 8.5 for details. These two figures show that the labels can be centered on the tick marks
(� to �) or on the divisions (� to
). If the labels are centered on the tick marks, note that the number of
items in the command LABELS must be equal to the number of tick marks (which is equal to the number
of divisions plus one), otherwise the last alphanumeric label on the axis will be undefined.

By default, the number of primary divisions given by SET NDVX n, SET NDVY n or SET NDVZ n is op-
timized to have a reasonable labelling. If the number of divisions has to be exactly equal to the number
given by SET NDVX n, SET NDVY n or SET NDVZ n, a negative value must be used i.e.:

Forcing an exact number of divisions

SET NDVX �i e�g� SET NDVX ����

or

SET NDVX �i�jk e�g� SET NDVX ������

For example to label each subsequent X-axis with the names of the months of the year centered in the
middle of each bin one can use:

Example of alphanumeric labels on an axis

PAW
 LABEL � �� JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

PAW
 SET NDVX ������

8.6 Colour, line width, and fill area in HPLOT

The aspect of HPLOT pictures can be modified via the xWID, xTYP and xCOL attributes, where x can be
H, B, P, or F, defined as follows:

B zone Box

F Function

H Histogram

8.6. Colour, line width, and fill area in HPLOT 301

NDVY

If NDVY=12.10 the default value is taken (12.16)

January

February

March

April

May

June

July

August

September

October

November

December

12.11

Left

January

February

March

April

May

June

July

August

September

October

November

December

12.12

Center

January

February

March

April

May

June

July

August

September

October

November

December

12.13

Right

January

February

March

April

May

June

July

August

September

October

November

December

12.14

Left

January

February

March

April

May

June

July

August

September

October

November

December

12.15

Center

January

February

March

April

May

June

July

August

September

October

November

December

12.16

Right

Figure 8.5: Example of labelling for vertical axes

302 Chapter 8. Graphics (HIGZ and HPLOT)

P Page

The values given to the parameters PTYP, BTYP, HTYP, and FTYP are the HIGZ fill area interior styles.
Interior style provided by the basic graphics package (i.e. GKS) can be used (cf the corresponding doc-
umentation) but in order to have the same result on all devices, numbers greater than ��� (HIGZ styles:
8.8) should be used. Figure 8.6 shows how to use the xTYP parameter.

The parameters PCOL, BCOL, HCOL and FCOL are equivalent to PTYP, BTYP, HTYP, and FTYP respectively,
but instead of changing the hatch style, they change the colour of the same areas. It is possible to specify
both the border and the inside color for the Histogram, Box Page, and Function (HCOL, BCOL, PCOL, FCOL).

Example of HCOL specification

Ex	

 ���� � The Histogram is filled

� � Only the border is drawn

� ��� Border color �here �� if the histogram is filled

�� � Inside color �here �� if the histogram is filled

���� Border color if the histogram is not filled

����

VVVV

SET HCOL ����

The same mechanism is also available for FCOL, BCOL and PCOL.

If PCOL, BCOL, HCOL or FCOL are between � and ��, then only the contour of the corresponding area is
changed. If they are between ���� and ����, then the surface is filled with the colour determined by the
corresponding fill area colour index (1 to 99). If they are between ���� and ����, then the surface is
filled with the colour determined by the corresponding fill area colour index (1 to 99) and the border is
drawn with the corresponding line color index (1 to 9).

If one of the "COL is greater than 1000 the corresponding value of the Fill Area Interior Style (for HTYP,
BTYP, PTYP or FTYP) is automatically set to � (solid).

In addition, BCOL has two digits after the dot. The first one specifies the colour of the zone box shadowing
and the second the colour of the statistic box shadowing.

8.6. Colour, line width, and fill area in HPLOT 303

0

20

40

60

80

100

120

140

160

0 0.25 0.5 0.75 1

-0.2

0

0.2

0.4

0.6

0.8

1

-2 0 2 4 6 8 10 12

0

20

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1

Examples of PTYP,BTYP,HTYP and FTYPExamples of PTYP,BTYP,HTYP and FTYPExamples of PTYP,BTYP,HTYP and FTYP

BTYP=0

HTYP=0

BTYP=0

FTYP=-3

BTYP=-3

HTYP=244

PTYP=0

Figure 8.6: Usage of fill area types in HPLOT

304 Chapter 8. Graphics (HIGZ and HPLOT)

8.7 Information about histograms

Four options are available to plot additional informations on HPLOT pictures: DATE, FILE, STAT and
FIT.

PAW
 OPTION DATE � Plot date and hour on current HPLOT picture

PAW
 OPTION FILE � Plot file name of current histogram

PAW
 OPTION STAT � Plot statistics of current histogram

PAW
 OPTION FIT � Plot Fit parameters of current histogram

For each of these OPTION commands a corresponding SET parameter is available:

PAW
 SET DATE i � Default is �

PAW
 SET FILE i � Default is �

where i defines the position of the date or file name:

i � � � Top left corner of page/current histogram.

i � � � Top right corner

i � � � Bottom left corner

i � � � Bottom right corner

For example the command:

PAW
 SET DATE �

sets the position of the date to the bottom left corner of the HPLOT pictures.

PAW
 SET STAT i � Default is ����

where i corresponds to binary status bits AOURMEI as follows:

A�� Draw the contents of all channels

O�� Draw number of overflows

U�� Draw number of underflows

R�� Draw R.M.S.

M�� Draw mean value

E�� Draw number of entries

I�� Draw histogram identifier

For example the command:

PAW
 SET STAT ��

sets the statistics informations to be only the number of entries.

8.7. Information about histograms 305

PAW
 SET FIT i � Default is ���

where i corresponds to binary status bits CEP as follows:

C�� Draw ��

E�� Draw errors

P�� Draw fit parameters

For example to draw only the result of the �� fit one would use:

PAW
 SET FIT ���

For all these OPTIONs, the character size is specified with the command SET CSIZ and the character font
used with SET CFON.

Fill area style, marker and line type

The Fill Area Interior Style, The Fill Area Style Index, the Marker TYPe and the Line TYPe are set re-
spectively using the IGSET parameters FAIS, FASI, MTYP and LTYPE.

Example
PAW
 IGSET FAIS � � Fill area are hatched

PAW
 IGSET FASI ��� � with the style index

PAW
 IGSET MTYP �� � Marker type is an empty square

PAW
 IGSET LTYP �� � Line type is dotted

HIGZ provides some portable fill area styles index coded using three digits ijk as follows:

i� Distance between each hatch in mm

j� Angle between �� and �
� degrees

k� Angle between � and �� degrees

These numbers are coded according to table 8.4 and examples are shown in figure 8.8.

i Distance j Angle k Angle

	 ��	� 	 	�

� 	��
mm � ��	� � �	�

� ��
	mm � ��	� � �	�

� ���
mm � �
	� � �	�

 ��		mm
 ��
�

�

 ���
mm
 not drawn
 not drawn

�
�
	mm � ��	� � �	�

�
��
mm � ��	� � �	�

� ��		mm � �		� � �	�

� ���
mm � �	� � �	�

Table 8.4: Codification for the HIGZ portable fill area interior styles

306 Chapter 8. Graphics (HIGZ and HPLOT)

Example

PAW
 IGSET FAIS � � Fill area interior style is hatched

PAW
 IGSET FASI ��� � Hatch type is ���

These commands will yield hatching with two sets of lines at �	� and 	� spaced 1 mm apart.

Colour Index : 0 Colour Index : 1

Colour Index : 2 Colour Index : 3

Colour Index : 4 Colour Index : 5

Colour Index : 6 Colour Index : 7

Figure 8.7: PostScript grey level simulation of the basic colours

8.7. Information about histograms 307

144

244

344

444

544

644

744

844

944

305 350

315 351

325 352

335 353

345 354

365 356

375 357

385 358

395 359

Figure 8.8: HIGZ portable hatch styles

308 Chapter 8. Graphics (HIGZ and HPLOT)

20

21

22

23

24

25

26

27

28

29

30

31

Marker Type Marker

Figure 8.9: HIGZ portable marker types

Line Index Line Type

12

13

14

15

Figure 8.10: HIGZ portable line types

8.8. Text drawing 309

8.8 Text drawing

In PAW, text output can be produced in two ways:

1. Automaticaly with commands like GRAPH or HISTO�PLOT in which a lot of text is drawn: the axis
labels, the histogram title, the global title, the statistics etc. . The attributes (font, colour or size)
and the placement of these texts are controled with the command SET. In the rest of the chapter, the
text produce automaticaly will be called HPLOT text

2. Directly with the commands ITX and TEXT. The attributes of ITX are controlled with the command
IGSET whereas the attributes of TEXT are given with the command parameters.

Text placement

The text placement specify where the text must be drawn. For the HPLOT text, the text position is always
in centimeters whereas for ITX or TEXT the current coordinate system is used.

HPLOT text

The possible text placements for HPLOT text are described in the following example:

PAW
 SET XVAL ���� � distance between the Y axis and the axis values

PAW
 SET YVAL ���� � distance between the X axis and the axis values

PAW
 SET YLAB ���� � distance X axis to labels

PAW
 SET XLAB ���� � distance Y axis to labels

PAW
 SET YGTI ���� � Y position of global title

PAW
 SET YHTI ���� � Y position of histogram title

PAW
 SET YNPG ���� � Y position for the page number

PAW
 HISTO�PLOT �� � the histogram �� is drawn with previous settings

See figure 8.3 for more details.

ITX

In the command ITX the text position is defined with two mandatory parameters (X and Y):

PAW
 SELNT � � cm coordinates

PAW
 ITX � � �Hello� � �Hello� is drawn at the position �����

TEXT

In the command TEXT the text position is defined with two mandatory parameters (X and Y):

PAW
 SELNT � � cm coordinates

PAW
 TEXT � � �Hello� � � �Hello� is drawn at the position �����

Text size

For all the texts drawn with PAW commands, the text size is always specified in centimeters.

310 Chapter 8. Graphics (HIGZ and HPLOT)

HPLOT text

The possible text sizes for HPLOT text are described in the following example:

PAW
 SET ASIZ ���� � axis label size

PAW
 SET CSIZ ���� � comment size

PAW
 SET GSIZ ���� � global title size

PAW
 SET KSIZ ���� � Hershey character size

PAW
 SET �SIZ ���� � scatter plot and table character� size

PAW
 SET TSIZ ���� � histogram title size

PAW
 SET VSIZ ���� � axis values size

PAW
 HISTO�PLOT �� � the histogram �� is drawn with previous settings

See figure 8.3 for more details.

ITX

The text character heigh attribute for use by future invocations of ITX is set using the CHHE parameter as
follows:

PAW
 IGSET CHHE � � set the character heigh to � cm�

PAW
 ITX � � �Hello� � the size of �Hello� is � cm�

TEXT

In the command TEXT the text size is a mandatory parameter (SIZE).

PAW
 TEXT � � �Hello� � � the size of �Hello� is � cm�

Text orientation

The text orientation is an angle (in degrees) between the X axis and the text axis. By default this angle is
equal to 0.

HPLOT text

Text orientation cannot be changed with some SET parameters for the HPLOT text. It is always automat-
icaly computed. For example in the command ATITLE, which draws the axis titles, the title on the Y axis
is automaticaly drawn with an angle of 90 degrees.

ITX

The text orientation attribute for use by future invocations of ITX is set using the TANG parameter as fol-
lows:

PAW
 IGSET TANG �� � set the text angle to �� degrees�

PAW
 ITX � � �Hello� � �Hello� is drawn with an angle of �� degrees�

8.8. Text drawing 311

TEXT

In the command TEXT the text orientation is an optional parameter (ANGLE).

PAW
 TEXT � � �Hello� � �� � �Hello� is drawn with an angle of �� degrees

Text alignment

The text alignment controls the placement of the character string with respect to the specified text position.

HPLOT text

Text alignment cannot be changed for the HPLOT text. It is automaticaly computed.

ITX

The text alignment attributes for use by future invocations of ITX are set using the TXAL parameter as
follows:

PAW
 IGSET TXAL �����horizontal alignment� �vertical alignment��

The horizontal and vertical alignments parameters must be in the range ���. The horizontal alignment
specifies which end of the string (or its geometric center) is aligned with the specified point given in ITX.
The vertical alignment controls whether the top of tall characters (or the bottom of capital letters) line up
with the specified point (see figure 8.11).

PAW
 IGSET TXAL �� � The horizontal and vertical alignments are centered

PAW
 ITX � � �Hello� � �Hello� is drawn center adjusted

TEXT

In the command TEXT the text aligment is an optional parameter (CHOPT). Only the horizontal alignement
can be changed among three possible values: Left, Center or Right.

PAW
 TEXT � � �Hello� � � L � �Hello� is drawn left adjusted �default�

PAW
 TEXT � � �Hello� � � C � �Hello� is drawn center adjusted

PAW
 TEXT � � �Hello� � � R � �Hello� is drawn right adjusted

Text colour

The text colour is define via a colour index in the colour table.

HPLOT text

PAW
 SET XCOL � � X axis color

PAW
 SET YCOL � � Y axis color

PAW
 HISTO�PLOT �� � the histogram �� is drawn with previous settings

312 Chapter 8. Graphics (HIGZ and HPLOT)

Horizontal alignment Vertical alignment

0 or 1: Left (Normal)

2: Centre

3: Right

0: Bottom (Normal)

1 or 2: Top

3: Centre

Figure 8.11: Text alignment

ITXALH horizontal alignment

� normal (usually same as 1)

� left end of string at specified point

� center of string at specified point

� right end of string at specified point

ITXALV vertical alignment

� normal

� top of tallest chars plus any built in spacing

� top of tallest chars

� halfway between 2 and 4

ITX

The text colour attribute for use by future invocations of ITX is set using the TXCI parameter as follows:

PAW
 IGSET TXCI � � set the text colour to green�

PAW
 ITX � � �Hello� � �Hello� is drawn in green�

TEXT

The text colour attribute for use by future invocations of TEXT is set using the TXCI parameter as follows:

PAW
 IGSET TXCI � � set the text colour to red�

PAW
 TEXT � � �Hello� � � �Hello� is drawn in red�

Text font and precision

Text font selects the desired character font e.g. a roman font, a sans-serif font, etc. Text precision specifies
how closely the graphics package implementation must follow the current size and orientation attributes.
String (�) precision is most liberal (hardware), stroke (�) precision is most strict. Character precision
is in the middle (�). The value of text font is dependent upon the basic graphics package used. How-
ever, font number �, with precision � is always available, independently from the basic graphics package
used.Hardware characters are available with all the basic graphics packages. With X11, a large variety of
font is available. They are the same as the PostScript fonts (see figure 8.15).

8.8. Text drawing 313

HPLOT text

PAW
 SET CFON ��� � comment font is Helvetica Bold

PAW
 SET GFON ��� � global title font is Times Bold

PAW
 SET LFON ��� � axis labels font is Helvetica Bold

PAW
 SET TFON ��� � general comments is Times Bold

PAW
 SET VFON ��� � axis values font is Helvetica Bold

PAW
 HISTO�PLOT �� � the histogram �� is drawn with previous settings

Note that SET "FON ffp set all the HPLOT text font to the same value ffp.

ITX

Text font and precision attributes for use by later invocations of ITX are set with TXFP as follows:

PAW
 IGSET TXFP �����Text font� �text precision��

TEXT

This command draws a software character text, independently from the basic graphics package used by
HIGZ. It can produce over 300 different graphic signs. The way in which software characters are defined
is via a string of valid characters, intermixed by other characters, acting as “escape” characters (e.g. a
change of alphabet, upper or lower case). The string is interpreted by TEXT and the resulting characters are
defined according to the figure 8.12, which shows the list of available software characters. This command
allows the user to mix different types of characters (roman, greek, special, upper and lower case, sub and
superscript). There are a total of 10 control characters.

List of escape characters and their meaning

� go to lower case � go to upper case (default)

� go to greek (Roman = default) � end of greek

” go to special symbols # end of special symbols

� go to superscript ? go to subscript

! go to normal level of script & backspace one character

$ termination character (optional)

Note that characters can be also entered directly in lower case or upper case instead of using the control
characters and !.

The boldface characters may be simulated by setting the attributes ’PASS’ and ’CSHI’ with IGSET. The
meaning of these attributes is the following: Every stroke used to display the character is repeated PASS

times, at a distance (in percentage of the character height) given by CSHI.

314 Chapter 8. Graphics (HIGZ and HPLOT)

Upper

Roman

Lower

Roman

Upper

Greek

Lower

Greek

Upper

Special

Lower

Special

Figure 8.12: Characters available in IGTEXT

8.8. Text drawing 315

PostScript text fonts

PostScript files the text can be generated with PostScript fonts. The figure 8.15 shows all the PostScript
fonts available on most PostScript printers. Note that the fonts ��� to ��� are the same than �� to ���,
but they are drawn in hollow mode.

The correspondence between ASCII and ZapfDingbats font is given on figures 8.16 and 8.17. TEXT con-
trol characters are taken into account. In addition the character
 switches to the ZapfDingbats character
set.

List of escape characters and their meaning

� go to lower case (optional) � go to upper case (optional)

� go to greek (Roman = default) � end of greek

” go to special symbols # end of special symbols

 go to ZapfDingbats # end of ZapfDingbats

� go to superscript ? go to subscript

! go to normal level of script & backspace one character

$ termination character (optional)

The PostScript fonts can be used with precision � or precision �. On the screen, a PostScript font used
with precision � appears like the TEXT characters, with precision 0 its appears as hardware character (X11
fonts). In both cases the PostScript file is the same.

Note that characters can also be entered directly in lower or upper case instead of using the escape char-
acters and !.

Example of PostScript text (result in figure 8.13)

PAW
 IGSET LWID �

PAW
 BOX � �� � �

PAW
 IGSET CHHE ���

PAW
 IGSET TXAL �

PAW
 IGSET TXFP ����

PAW
 ITX � � �K(���nstler in den gr(���(���ten st(���dten

PAW
 ITX � � �(���(��� l��(���uvre on conna(���t l��artisan(���

PAW
 ITX � � �(�proverbe fran(���ais(

PAW
 ITX � � �(���(���Ma(���ana(�� (���ag$(����das$(����(���� dit l��(���l(���ve�

316 Chapter 8. Graphics (HIGZ and HPLOT)

Künstler in den größten Städten
«À l’œuvre on connaît l’artisan»
(proverbe français).
“¡Mañana! Çağdaş”, dit l’élève.

Figure 8.13: PostScript fonts usage (1).

Example of PostScript text and maths (result in figure 8.14)

PAW
 IGSET LWID �

PAW
 BOX � �� � �

PAW
 IGSET CHHE ���

PAW
 IGSET TXAL ��

PAW
 IGSET TXFP ����

PAW
 ITX � � �e# �e#�� &�! Z#o� &�! ll$#��� qq$#(�����

PAW
 ITX � � �� a$#�(����� (��� b$#�(����� � � �(���� a#i�jk� b#kj�i�

PAW
 ITX�� � �i �&d!��m�y�$#(�����g#m�� m �y�$#(���� � � �& r! �)r! m#��� �y� � ��

PAW
 ITX � � �L�em� � e J#�m��em� A��m�� � J#�m��em��l$#(����� g�m��l � M#j�i� � �(���$�a�� A��a� t#a�j�i� �

e+e- A Zo A ll
-
, qq

–

| a
A

 • b
A

 | = - ai
jk+bkj

i

i (,+s
–
a+ + m s

–
) = 0 � (❒ + m2) s = 0

Lem = e J+em A+ , J
+
em=l

–
 a+l , M

j
i = -

_
 A_ o_j

i

Figure 8.14: PostScript fonts usage (2).

8.8. Text drawing 317

Font/Prec PostScript Font Style

ABCDEFghijlk0123456789 Times-Italic-1/0

ABCDEFghijlk0123456789 Times-Bold-2/0

ABCDEFghijlk0123456789 Times-BoldItalic-3/0

ABCDEFghijlk0123456789 Helvetica-4/0

ABCDEFghijlk0123456789 Helvetica-Oblique-5/0

ABCDEFghijlk0123456789 Helvetica-Bold-6/0

ABCDEFghijlk0123456789 Helvetica-BoldOblique-7/0

ABCDEFghijlk0123456789 Courier-8/0

ABCDEFghijlk0123456789 Courier-Oblique-9/0

ABCDEFghijlk0123456789 Courier-Bold-10/0

ABCDEFghijlk0123456789 Courier-BoldOblique-11/0

IJN6L\arffhg0123456789 Symbol-12/0

ABCDEFghijlk0123456789 Times-Roman-13/0

✡✢✣✤✥✦❇❈❉❊●❋✐✑✒✓✔✕✖✗✘✙ ZapfDingbats-14/0

Times-Italic-15/0

Times-Bold-16/0

Times-BoldItalic-17/0

Helvetica-18/0

Helvetica-Oblique-19/0

Helvetica-Bold-20/0

Helvetica-BoldOblique-21/0

Symbol-22/0

Times-Roman-23/0

ZapfDingbats-24/0

Figure 8.15: PostScript text fonts.

318 Chapter 8. Graphics (HIGZ and HPLOT)

Input
Roman Greek Special Zapf
Upper Upper UpperUpper

Input
Roman Greek Special Zapf
Upper Upper UpperUpper

Input
Roman Greek Special Zapf
Upper Upper UpperUpper

Input
Roman Greek Special Zapf
Upper Upper UpperUpper

Input
Roman Greek Special Zapf
Upper Upper UpperUpper

Input
Roman Greek Special Zapf
Lower Lower LowerLower

Input
Roman Greek Special Zapf
Lower Lower LowerLower

Input
Roman Greek Special Zapf
Lower Lower LowerLower

Input
Roman Greek Special Zapf
Lower Lower LowerLower

Input
Roman Greek Special Zapf
Lower Lower LowerLower

 A

 B

 C

 D

 E

 F

 G

 H

 I

 J

 K

 L

 M

 N

 O

 P

 Q

 R

 S

 T

 U

 V

 W

 X

 Y

 Z

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 .

 ,

 +

 -

 *

 /

 =

 (

)

 {

 }

 \47

 \74

 \76

 \133

 \135

 \42

 \43

 \136

 \77

 \41

 \46

 \44

 \176

 A
 B
 C
 D
 E
 F
 G
 H
 I
 J
 K
 L
 M
 N
 O
 P
 Q
 R
 S
 T
 U
 V
 W
 X
 Y
 Z
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 .
 ,
 +
 -
 *
 /
 =
 (
)
 {
 }

 ’
 <
 >
 [
]
 "
 #
 ^
 ?
 !
 &
 $
 ~

I
J
N
6
L
\
K
]
P
P
Q
R
S
T
V
W
O
X
Y
Z
[
]
1
U
^
M
0
1
2
3
4
5
6
7
8
9
.
,
+
<
�
/
=
(
)
{
}

~
<
>
[
]
�
#
�
?
!
&
�
¾

±
|
�
�
!
#
>
?
0
:
;
<
[
]
*
{
}
3
{
x
z
y
)
×
%
'
�
�
�
9
•
A
B
@
?
C
.
,
+
�
�
÷
&
>
w
{
}

~
<
>
[
]
�
#
�
?
!
&
�
¾

✡
✢
✣
✤
✥
✦
✧
★
✩
✪
✫
✬
✭
✮
✯
✰
✱
✲
✳
✴
✵
✶
✷
✸
✹
✺
✐
✑
✒
✓
✔
✕
✖
✗
✘
✙
✎
✌
☞
✍
☛
✏
✝
✈
✉
❛
❝

✇
✜
✞
✻
✽
✂
✃
✾
✟
✁
✆
✄
❞

 a

 b

 c

 d

 e

 f

 g

 h

 i

 j

 k

 l

 m

 n

 o

 p

 q

 r

 s

 t

 u

 v

 w

 x

 y

 z

 :

 ;

 \

 _

 |

 %

 \47

 \74

 \76

 \133

 \135

 \42

 \43

 \136

 \77

 \41

 \46

 \44

 \176

 a
 b
 c
 d
 e
 f
 g
 h
 i
 j
 k
 l

 m
 n
 o
 p
 q
 r
 s
 t
 u
 v
 w
 x
 y
 z

 :
 ;

 \
 _
 |

 %
 ’
 <
 >
 [
]
 "
 #
 ^
 ?
 !
 &
 $
 ~

_
`
d
b
¡
q
a
r
f
f
g
h
+
i
k
/
e
l
m
o
p
r
t
j
s
c

:
;

�
_
|

%
~
<
>
[
]
�
#
�
?
!
&
�
¾

5
�
�
,
ƒ
E
F
�
�
�
�
�
D
�
¢
�
�
�
�
�
�
�
&
�
¾
�

:
;

�
_
|

%
~
<
>
[
]
�
#
�
?
!
&
�
¾

❁
❂
❃
❄
❅
❆
❇
❈
❉
❊
❋
●
❍
■
❏
❐
❑
❒
▲
▼
◆
❖
◗
❘
❙
❚

✚
✛

✼
✿
❜
☎
✇
✜
✞
✻
✽
✂
✃
✾
✟
✁
✆
✄
❞

Figure 8.16: PostScript characters (1).

8.8. Text drawing 319

Input
Roman Greek Special Zapf
Upper Upper UpperUpper

Input
Roman Greek Special Zapf
Upper Upper UpperUpper

Input
Roman Greek Special Zapf
Upper Upper UpperUpper

Input
Roman Greek Special Zapf
Upper Upper UpperUpper

Input
Roman Greek Special Zapf
Upper Upper UpperUpper

Input
Roman Greek Special Zapf
Lower Lower LowerLower

Input
Roman Greek Special Zapf
Lower Lower LowerLower

Input
Roman Greek Special Zapf
Lower Lower LowerLower

Input
Roman Greek Special Zapf
Lower Lower LowerLower

Input
Roman Greek Special Zapf
Lower Lower LowerLower

 \241 \321

 \242 \322

 \243 \323

 \244 \324

 \245 \325

 \246 \326

 \247 \327

 \250 \330

 \251 \331

 \252 \332

 \253 \333

 \254 \334

 \255 \335

 \256 \336

 \257 \337

 \260 \340

 \261 \341

 \262 \342

 \263 \343

 \264 \344

 \265 \345

 \266 \346

 \267 \347

 \270 \350

 \271 \351

 \272 \352

 \273 \353

 \274 \354

 \275 \355

 \276 \356

 \277 \357

 \300 \360

 \301 \361

 \302 \362

 \303 \363

 \304 \364

 \305 \365

 \306 \366

 \307 \367

 \310 \370

 \311 \371

 \312 \372

 \313 \373

 \314 \374

 \315 \375

 \316 \376

 \317 \377

 \315 \375

 \316 \376

 \317 \377

 ¡ ç
 ¢ Ç
 £ é
 ⁄ É
 ¥ è
 ƒ È
 § ê
 ¤ Ê
 ' ë
 “ Ë
 « î
 ‹ Î
 › ï
 fi Ï
 fl ñ
 à Ñ
 – Æ
 † ô
 ‡ ª
 · Ô
 À ö
 ¶ Ö
 • û
 ‚ â
 „ Ø
 ” Œ
 » º
 … Û
 ‰ ü
 â Ü
 ¿ å
 Â
 ` æ
 ´ Å
 ˆ ÿ
 ˜ Ÿ
 ¯ ı
 ˘ á
 ˙ Á
 ¨ ã
 ä ø
 ˚ œ
 ¸ ß
 Ä ù
 ˝ Ù
 ˛
 ˇ

¯ ¢
v ®
) ©
⁄ ™
' .
ƒ 3
y u
z ¬
x �
{ �
C �
@ �
B �
A �
? �
° 9
± �
w ®
* ©
× ™
| -
, £
• ²
÷ ¤
& �
> ³
5 �
… ¨
° ©
± ª
¿ «
� ;
¼ �
½ 0
§ G
� �
� H
� ¥
E ´
F ¦
� �
� µ
� �
� ¬
� ­
D ®
�

¯ ¢
v ®
) ©
⁄ ™
' .
ƒ 3
y u
z ¬
x �
{ �
C �
@ �
B �
A �
? �
° 9
± �
w ®
* ©
× ™
| -
, £
• ²
÷ ¤
& �
> ³
5 �
… ¨
° ©
± ª
¿ «
� ;
¼ �
½ 0
§ G
� �
� H
� ¥
E ´
F ¦
� �
� µ
� �
� ¬
� ­
D ®
�

❡ ➑
❢ ➒
❣ ➓
❤ ➔
❥ →
❦ ↔
❧ ↕
♣ ➘
♦ ➙
♥ ➚
♠ ➛
① ➜
② ➝
③ ➞
④ ➟
⑤ ➠
⑥ ➡
⑦ ➢
⑧ ➣
⑨ ➤
⑩ ➥
❶ ➦
❷ ➧
❸ ➨
❹ ➩
❺ ➪
❻ ➫
❼ ➬
❽ ➭
❾ ➮
❿ ➯
➀
➁ ➱
➂ ➲
➃ ➳
➄ ➴
➅ ➵
➆ ➶
➇ ➷
➈ ➸
➉ ➹
➊ ➺
➋ ➻
➌ ➼
➍ ➽
➎ ➾
➏

 \241 \321

 \242 \322

 \243 \323

 \244 \324

 \245 \325

 \246 \326

 \247 \327

 \250 \330

 \251 \331

 \252 \332

 \253 \333

 \254 \334

 \255 \335

 \256 \336

 \257 \337

 \260 \340

 \261 \341

 \262 \342

 \263 \343

 \264 \344

 \265 \345

 \266 \346

 \267 \347

 \270 \350

 \271 \351

 \272 \352

 \273 \353

 \274 \354

 \275 \355

 \276 \356

 \277 \357

 \300 \360

 \301 \361

 \302 \362

 \303 \363

 \304 \364

 \305 \365

 \306 \366

 \307 \367

 \310 \370

 \311 \371

 \312 \372

 \313 \373

 \314 \374

 \315 \375

 \316 \376

 \317 \377

 ¡ ç
 ¢ Ç
 £ é
 ⁄ É
 ¥ è
 ƒ È
 § ê
 ¤ Ê
 ' ë
 “ Ë
 « î
 ‹ Î
 › ï
 fi Ï
 fl ñ
 à Ñ
 – Æ
 † ô
 ‡ ª
 · Ô
 À ö
 ¶ Ö
 • û
 ‚ â
 „ Ø
 ” Œ
 » º
 … Û
 ‰ ü
 â Ü
 ¿ å
 Â
 ` æ
 ´ Å
 ˆ ÿ
 ˜ Ÿ
 ¯ ı
 ˘ á
 ˙ Á
 ¨ ã
 ä ø
 ˚ œ
 ¸ ß
 Ä ù
 ˝ Ù
 ˛
 ˇ

¯ ¢
v ®
) ©
⁄ ™
' .
ƒ 3
y u
z ¬
x �
{ �
C �
@ �
B �
A �
? �
° 9
± �
w ®
* ©
× ™
| -
, £
• ²
÷ ¤
& �
> ³
5 �
… ¨
° ©
± ª
¿ «
� ;
¼ �
½ 0
§ G
� �
� H
� ¥
E ´
F ¦
� �
� µ
� �
� ¬
� ­
D ®
�

¯ ¢
v ®
) ©
⁄ ™
' .
ƒ 3
y u
z ¬
x �
{ �
C �
@ �
B �
A �
? �
° 9
± �
w ®
* ©
× ™
| -
, £
• ²
÷ ¤
& �
> ³
5 �
… ¨
° ©
± ª
¿ «
� ;
¼ �
½ 0
§ G
� �
� H
� ¥
E ´
F ¦
� �
� µ
� �
� ¬
� ­
D ®
�

❡ ➑
❢ ➒
❣ ➓
❤ ➔
❥ →
❦ ↔
❧ ↕
♣ ➘
♦ ➙
♥ ➚
♠ ➛
① ➜
② ➝
③ ➞
④ ➟
⑤ ➠
⑥ ➡
⑦ ➢
⑧ ➣
⑨ ➤
⑩ ➥
❶ ➦
❷ ➧
❸ ➨
❹ ➩
❺ ➪
❻ ➫
❼ ➬
❽ ➭
❾ ➮
❿ ➯
➀
➁ ➱
➂ ➲
➃ ➳
➄ ➴
➅ ➵
➆ ➶
➇ ➷
➈ ➸
➉ ➹
➊ ➺
➋ ➻
➌ ➼
➍ ➽
➎ ➾
➏

Figure 8.17: PostScript characters (2).

320 Chapter 8. Graphics (HIGZ and HPLOT)

8.9 The HIGZ graphics editor

The HIGZ pictures in memory can be modified interactively with the HIGZ graphics editor. The command
PICT�MODIFY invokes the HIGZ editor (see figure 8.18 for more details):

PAW
 PICT�MODIFY PNAME

PNAME can be the complete name, the picture number in memory or � �.

Primitives

Windows

Pictures

Files

Software text

Text

Fill area

Polyline

Polymarker

Axis

Arc

Box

Paving-block

Frame box

Arrow

Change Att.

Delete

Move

Front

Grid

Exit

PrimitivesPrimitives

Redr.Att. Undo

Create new primitives

Modify existing primitives

Draw a grid

Exit the graphics editor

Box

Box interior style

Box style index

Box color index

Border

Hatch

-3

Green

Yes

Attributes menus

Undo the last commands
Redraw the picture

Invoke the attributes menu

Editing space

To work on primitives
To work on Normalization Transf.
To work on pictures
To work on pictures files

Figure 8.18: The HIGZ graphics editor

Chapter 9: Distributed PAW

With the increasing number of workstations, it happens more and more frequently that a user wants to run
PAW on a mainframe or on a workstation. Several tools described in this chapter have been developed in
order to use in the most convenient way all the resources available in an heteregoneous environment of
workstations, superminis, data acquisition systems and mainframes.

TELNETG: A powerful terminal emulator. An alphanumeric window (line mode) is created on the local
workstation (e.g. Apollo) to create a session (like with TELNET) on a remote computer (e.g.
VAX). On the remote computer, a graphics program is run and a window is automatically
created on the local workstation to receive the graphics output.

3270G Same as the TELNETG emulator for the case of a connection with an IBM machine in full
screen mode under VM/CMS.

ZFTP The ZEBRA file transfer program optimized to transport ZEBRA RZ or FZ files between
machines with different data representations.

There exists also the possibility to access files on a remote computer from a PAW session on a work-
station. PAW can be used in a real time environment. Access to HBOOK histograms being filled by a
different process on the same machine (Global sections on VAX) or a computer on the network (e.g. OS9
modules).

Both ZFTP and real time access to histograms on a remote computer require the implementation of a PAW

server on this computer. The PAW server is automatically started from a PAW session, if PAW has been
implemented with the relevant options (PATCHY [15] flag CZ). PAW and the PAW server must be linked
with two special modules called CZ and TCPAW [16, 17].

CZ is a small FORTRAN package (about 300 lines). It provides an interface between the ZEBRA In-
put/Output routines and the high level transport routines of the TCPAW package.
TCPAW[16] is a networking package, written in C by Ben Segal (about 1500 lines). It provides a very
simple FORTRAN-callable interface to TCP/IP services. It supports client and server modules running on
UNIX, Apollo, VMS, VM/CMS and OS9 environments. Small parts of TCPAW are CERN specific but
it would be perfectly possible to transport it elsewhere with minor modifications. The package currently
requires the Wollongong (TWG) TCP/IP software to be present on VMS connected systems, the IBM FAL
1.2 Product on VM/CMS, and Microware TCP/IP on OS9. The UNIX systems Ultrix, CRAY Unicos,
SUN OS, IBM AIX, Apollo/Aegis, Apple A/UX and HP-UX are supported as delivered.

9.1 TELNETG and 3270G

Figure 9.1 describes the functionality of these two programs. They allow to run a graphics application
based on HIGZ (e.g. PAW, GEANT, etc.) on a host machine and to receive the graphics output on the local
machine. TELNETG is designed to work with operating systems supportinga command line interface and
3270G for a full screen interface.
TELNETG and 3270G supports both graphics Input and Output. The graphics locator (commands LO-
CATE, VLOCATE, etc.) as well as the various KUIP graphics menu styles (G and GP) may be used.

Both programs exploit the fact that the HIGZ macro primitives are very compact, therefore reducing the
amount of information to be sent through the network. Compared to more conventional emulators (4014,
4207, etc.) gains in speed are typically a factor of 10 when drawing one-dimensional histograms and may
reach a factor 100 for two-dimensional plots (lego, surface, scatterplot).

321

322 Chapter 9. Distributed PAW

TELNETG

LOCAL CPU (Workstation)

REMOTE CPU (Mainframe)

Standard Input

Standard Output

Telnet

Server

TELNETGGraphics Window

Alphanumeric Window

Application using

HIGZ in mode "M"

Figure 9.1: The TELNETG program

9.1. TELNETG and 3270G 323

TELNETG combines a slightly modified version of the standard TELNET program written in the C lan-
guage and an interface to the HIGZ system written in FORTRAN.

The following example shows how to use TELNETG from an Apollo to a VAX. The integer identifier of
the workstation type must be preceded by a minus sign (e.g. for an Apollo DN3000):

Example of a TELNETG session

� TELNETG vxcrna

Trying���

Open

This is the CERN Central VAXcluster running VMS V���

Username	 USERNAME

Password	 PASSWORD�not echoed�

Welcome to VAX�VMS version V��� on node VXCRNA

TERMINAL TYPE �� for HELP� No default
	D�

VxCrnA� PAW

��

� �

� W E L C O M E to P A W �

� �

� Version ������� �� March ���� �

� �

��

Workstation type ���HELP� �CR
����� 	 ������

VERSION ������� OF GKSGRAL STARTED

PAW
 hi�plot �� � The graphics is sent to the Apollo

PAW
 locate � Graphics input using the Apollo mouse

324 Chapter 9. Distributed PAW

9.2 ZFTP

The ZFTP program (ZEBRA File Transfer Program) provides the same functionality as the FTP program
which is available like TELNET on all workstations and mainframes supporting TCP/IP. In addition ZFTP
has been optimized to allow the transfer of ZEBRA binary files both sequential and direct access.

The direct access ZEBRA/RZ files (used for HBOOK histograms and HIGZ pictures) contain data in the
local data representation. Because ZEBRA is an object oriented language supporting machine indepen-
dent Input/Output, ZFTP is able to translate in flight all the ZEBRA data structures in a transparent way
in the network buffers. ZFTP copies the RZ files on the local machine with the same parameters (RECL,
quota, etc.) than on the remote machine. The original date and time of the objects is also preserved.

In addition to binaryfile transfer, ZFTP can also transfer alphanumeric text files (up to 80 characters/line).
On IBM/VM-CMS, these files must be of type RECFM�F�LRECL�
�.

The ZFTP user interface is based on KUIP and is the same on all systems. If several files have to be trans-
ferred (maybe on a regular basis), KUIP macros may be used. The following commands are available:

OPEN To start a communication with a remote machine.

CLOSE Close the current communication.

GETA Transfer an Alphanumeric text file from the remote machine.

PUTA Transfer an Alphanumeric text file to a remote machine.

GETRZ Transfer a RZ file from a remote machine.

PUTRZ Transfer a RZ file to a remote machine.

GETFZ Transfer a FZ file from a remote machine.

PUTFZ Transfer a FZ file to a remote machine.

RSHELL Send a command to a remote machine.

Example of a ZFTP session

! Start execution of the program from inside the PAW directory

� ZFTP

ZFTP
 open CERNVM �Starts communication with CERNVM

� �prompt for username�password�

ZFTP
 getrz RZFILE�DAT�D local�dat � Transfer IBM file &RZFILE�DAT&

� to local file &local�dat&

ZFTP
 puta local�car � Transfer local alphanumeric file

� &local�car& to IBM

� IBM file name will be &LOCAL CAR A&

ZFTP
 quit

9.3 Access to remote files from a PAW session

When running PAW, it is often necessary to access files (e.g. HBOOK files) which reside on a different
computer. The ZFTP program described above can be used if a very frequent access to the file is re-
quired. A more convenient mechanism is the possibility to access the files directly. On many systems,
one may now use NFS [18] for this purpose. Under some circumstances, for example if the HBOOK file

9.3. Access to remote files from a PAW session 325

is not in exchange mode and it is to be accessed from a computer running a different operating system, an
alternate approach is required. To fill this gap the PAW server is provided. This works using a conven-
tional Client/Server model. The client (PAW) typically runs on a workstation. When the PAW command
RLOGIN is invoked, a PAW server is automatically started on the remote machine, normally a mainframe
or data server.

Once the RLOGIN REMOTE command has been executed, the PAW Current Directory is set to ��REMOTE.
The PAW client can now instruct the PAW server to attach a file using the RSHELL command (e.g. rshell
file pawtest�dat). If an histogram with HBOOK ID=10 is on the remote file, than the PAW command
Histo�Plot �� will plot this histogram on the local workstation. The histogram resides on ��PAWC like
other histograms coming from local files.

The RSHELL command may be used to communicate with the PAW server. The expression typed fol-
lowing RSHELL is passed to the server. The current implementation of the PAW server recognizes the
commands:

rshell file filename Server connects filename

rshell cdir ��lun�� Server changes current directory

rshell ld Server lists current directory

rshell ld �� Server lists all connected files

rshell message Server pass message to operating system

Access to remote files from a workstation

PAW
 rlogin CERNVM � connect to CERNVM

PAW
 rshell file HRZTEST�DAT � PAW server connects HRZTEST DAT A to ��LUN��

PAW
 histo�plot �� � plot histogram �� from CERNVM

PAW
 histo�fit �� G � fit histo �� with a gaussian and plot it

PAW
 rlogin VXCRNA � connect to VXCRNA

PAW
 rshell file DISK�DL	�PAW�HEXAM�DAT�� � PAW server on VXCRNA connects file to ��LUN��

PAW
 histo�plot ��� � plot histogram ��� from VXCRNA

PAW
 rshell file HRZTEST�DAT � PAW server on VXCRNA connects file to ��LUN��

PAW
 histo�plot ��� s � plot histogram ��� from HRZTEST�DAT

� on VXCRNA on the existing picture

PAW
 rshell ld �� � list all files connected on VXCRNA

PAW
 cdir ��CERNVM � Change current PAW directory to CERNVM

PAW
 histo�plot ��� � plot histogram ��� from CERNVM

PAW
 histo�plot ��VXCRNA���� � plot histogram ��� from VXCRNA

PAW
 cdir ��PAWC � current directory to local memory

PAW
 histo�list � list all histograms in ��PAWC

PAW
 Histo�delete � � delete all histograms in memory

PAW
 hrin ��VXCRNA�� � read all histograms from VXCRNA

� file HRZTEST�DAT to ��PAWC

PAW
 cdir ��CERNVM � change directory to CERNVM

PAW
 rshell file NEW�DAT�D ���� N � creates a new file on the D disk

PAW
 hrout � � write all histograms from ��PAWC

� to CERNVM file NEW DAT D

326 Chapter 9. Distributed PAW

9.4 Using PAW as a presenter on VMS systems (global section)

PROGRAM PRODUCE

PARAMETER MAXPAGES����

COMMON�PAWC�IPAWC�����MAXPAGES�

CHARACTER�� GNAME

INTEGER�� HCREATEG

�

GNAME��GTEST�

WAIT
TIME���

NUMEVT�����

���������������� Create Global section

NPAGES�HCREATEG�GNAME�IPAWC�����MAXPAGES�

IF�NPAGES�GT��� THEN

PRINT �����GNAME

���� FORMAT�� Global Section	 ��A�� created��

ELSE

IERROR��NPAGES

PRINT �����IERROR

���� FORMAT�� Global Section Error�� I��

GO TO ��

ENDIF

CALL HLIMIT�����NPAGES�

���������������� Book histos�

CALL HBOOK������Test�����������������

CALL HBOOK������Test�����������������

���������������� Fill histos�

DO �� I���NUMEVT

DO �� J������

CALL RANNOR�A�B�

CALL HFILL����A�������

CALL HFILL����B�������

�� CONTINUE

CALL LIB�WAIT�WAIT
TIME�

�� CONTINUE

�

�� STOP

END

� fort produce

� link produce�SYS�INPUT�OPTIONS��

cern�library	packlib�lib�kernlib�lib

PSECT�PAWC�PAGE

PAW
 edit produce

macro produce ntimes����

nt��ntimes�

zone � �

histo�plot �� K

histo�plot �� K

loop	

histo�plot �� U

histo�plot �� U

wait � � �

nt��nt� ��

if nt
� goto loop

return

PAW
 global GTEST

PAW
 exec produce ntimes���

Test1

0

40

80

120

160

200

240

280

320

-4 -3 -2 -1 0 1 2 3 4

Test2

0

40

80

120

160

200

240

280

-4 -3 -2 -1 0 1 2 3 4

Figure 9.2: Visualise histograms in global section

In addition to the facilities described in the previous section, the standard version of PAW may be used
as an online presenter on VMS systems using the mechanism of global sections. It is possible for two
processes to reference the same histograms using global sections. For example, the first process may be
a histogram producer (e.g. a monitoring task) and the second process PAW. As the histograms are being
gradually filled by the first task, PAW can view them, and even reset them. To use the global sections,
it is also necessary to ”page align” the common which is in the global section. This is achieved in the
”link step” when making the process (see example). The relevant statements are SYS�INPUT�OPTIONS
to tell the linker that some options follow the link statement, and PSECT�PAWC�PAGEwhich is the option
to page align the �PAWC� common.

9.5. Using PAW as a presenter on OS9 systems 327

9.5 Using PAW as a presenter on OS9 systems

The technique described in previous sections may also be used to access HBOOK histograms being filled
by a monitoring task on OS9 systems from a standard PAW session running on a machine with the TCP/IP
software.

INDIRECT PAWC

PROGRAM PRODUCE

�

� Monitoring task MT� in processor OP��

�

PARAMETER NWPAW������

COMMON�PAWC�IPAWC�NWPAW�

�

CALL HLIMIT�NWPAW�

�

� Book histos�

�

CALL HBOOK������TEST�����������������

CALL HBOOK������TEST�����������������

�

� Fill histos�

�

NUMEVT������

DO �� I���NUMEVT

DO �� J������

CALL RANNOR�A�B�

CALL HFILL����A�������

CALL HFILL����B�������

�� CONTINUE

�� CONTINUE

�

�� STOP

END

PAW Client

running on

a computer

with TCP/IP

PAW >

(Apollos, SUNs)

(IBM, Central VAX)

(many clients)

PAW Server

running on

one OS9 node

MT1, MT2

OP1 OP2

OP3 OP4

MT1 MT1, MT2, MT3

MT1, MT2 MT1

TCP/IP

Ethernet

(one server per client)

(shared code)

OS9NET

OP1, OP2.. : OS9 processors

MT1, MT2.. : Monitoring tasks

Figure 9.3: Visualising histograms on OS9 modules
from PAW

Example of how to access OS9 modules from PAW

PAW
 rlogin O�OPAL�� � connect to an OS� machine

PAW
 rshell module OP��MT� � PAW server connects to OP��MT�

� �Processor OP�� Monitoring Task MT��

PAW
 histo�plot �� � plot histogram ��

PAW
 hrin � � read all histograms into ��PAWC

PAW
 Histo�File � local�dat ���� N � create a new file local�dat

� on the client machine

PAW
 hrout � � save all histograms from ��PAWC

� to the local file

PAW
 rshell module OP��MT� � PAW server connects to another

� OS� monitoring task

PAW
 Output �� os��listing � Change output file on client

PAW
 rshell ldir � list all histograms in MT�

� on file os��listing

PAW
 Output ��� � Change output file to default �unit ��

� file os��listing is closed

328 Chapter 9. Distributed PAW

Part III

PAW - Reference section

329

330

Notation used in the reference section

Optional parameters are enclosed in square brackets, e.g. �optpar�

The type of a parameter is indicated following its name as follows:

C Character data

I Integer data

R Real (floating point) data

Supplementary information is given at the end of the line describing the parameter:

D� Default value
e.g. D��S� for Character data or D��� for Integer data

R� Range of possible values
e.g. R���� means that the variable’s value lies between � and �.

R�� �L�P�"��� enumerates the possible values for the given Character variable.

Chapter 10: KUIP

Command Processor commands.

KUIP/HELP � item option �

ITEM C “Command or menu path” D��+�

OPTION C “View mode” D��N�

Possible OPTION values are:

EDIT The help text is written to a file and the editor is invoked,

E Same as ’EDIT’.

NOEDIT The help text is output on the terminal output.

N Same as ’NOEDIT’

Give the help of a command. If ITEM is a command its full explanation is given: syntax (as given by the
command USAGE), functionality, list of parameters with their attributes (prompt, type, default, range,
etc.). If ITEM=’/’ the help for all commands is given.

If HELP is entered without parameters or ITEM is a submenu, the dialogue style is switched to ’AN’,
guiding the user in traversing the tree command structure.

’HELP -EDIT’ (or just ’HELP -E’) switches to edit mode: instead of writing the help text to the terminal
output, it is written into a temporary file and the pager or editor defined by the command HOST˙PAGER
is invoked. (On Unix workstations the pager can be defined to display the help text asynchrously in a
separated window.) ’HELP -NOEDIT’ (or just ’HELP -N’) switches back to standard mode. The startup
value is system dependent.

KUIP/USAGE item

ITEM C “Command name”

Give the syntax of a command. If ITEM=’/’ the syntax of all commands is given.

KUIP/MANUAL item � output option �

ITEM C “Command or menu path”

OUTPUT C “Output file name” D��+�

OPTION C “Text formatting system” D��+�

Possible OPTION values are:

�+� plain text : plain text format

LATEX LaTeX format (encapsulated)

TEX LaTeX format (without header)

Write on a file the text formatted help of a command. If ITEM is a menu path the help for all commands

331

332 Chapter 10. KUIP

linked to that menu is written. If ITEM=’/’ the help for the complete command tree is written. If OUT-
PUT=’ ’ the text is written to the terminal.
The output file produced with option LATEX can be processed directly by LaTeX, i.e. it contains a stan-
dard header defining the meta commands used for formatting the document body. With option TEX only
the document body is written into the output file which can be included by a driver file containing cus-
tomized definitions of the standard meta commands. Example:

MANUAL � MAN�TEX LATEX

will produce the file MAN.TEX containg the documentation of all available commands in LaTeX format.

KUIP/EDIT fname

FNAME C “File name”

Invoke the editor on the file. The command HOST˙EDITOR can be used to define the editor.
If FNAME does not contain an extension the default filetype ’.KUMAC’ is supplied. The search path
defined by the command DEFAULTS is used to find an already existing file. If the file does not exist it is
created with the given name.

KUIP/PRINT fname

FNAME C “File name”

Send a file to the printer. The command HOST˙PRINT can be used to define the host command for print-
ing the file depending on it file extension.

KUIP/PSVIEW fname

FNAME C “File name”

Invoke the PostScript viewer on the file. The command HOST˙PSVIEWER can be used to define the
PostScript viewer.
If FNAME does not contain an extension the default filetype ’.PS’ is supplied.

KUIP/LAST � n fname �

N I “N last commands to be saved” D���� R�����

FNAME C “File name” D��+�

Perform various operations with the history file.
If FNAME is not specified, the current history file is assumed by default (the startup history file name is
LAST.KUMAC). To change the history file the command LAST 0 NEW-FNAME must be entered.
If N.EQ.-99 (default case) the default host editor is called to edit the current history file, containing all
the commands of the session.
If N.LT.0 the last -N commands are printed on the screen. On MVS this allows to edit and resubmit com-
mands. On workstations this allows to resubmit blocks of commands by mouse-driven cut-and-paste op-
erations.
If N.EQ.0 the history file FNAME is rewound and set as the current one (the command LAST 0 FNAME
itself is not recorded).
If N.GT.0 the last N commands of the session are saved in the current history file.
See also the command RECORDING.

333

KUIP/MESSAGE � string �

STRING C “Message string” D��+� Separate

Write a message string on the terminal. A useful command inside a macro. Several message strings can
be given in the same command line, each of them separated by one or more spaces (the usual parameter
separator); therefore multiple blanks will be dropped and only one will be kept. If multiple blanks should
not be dropped, the string must be surrounded by single quotes.

KUIP/SHELL � cmd �

CMD C “Shell command string” D��+�

Execute a command of the host operating system. The command string is passed to the command proces-
sor defined by HOST˙SHELL. If CMD=’ ’ the shell is spawned as interactive subprocess. To return from
the shell enter ’RETURN’ (the full word, not just hCRi) or ’exit’ (depending on the operation system).

KUIP/WAIT � string sec �

STRING C “Message string” D��+�

SEC R “Number of seconds” D�� R���

Make a pause (e.g. inside a macro). Wait a given number of seconds (if SEC.GT.0) or just until hCRi is
entered (if SEC.EQ.0). A message string is also written on the terminal before waiting.

KUIP/IDLE sec � string �

SEC I “Number of seconds” R���

STRING C “Command string” D��+�

Execute a command if program is idle. The command string is executed if there was no keyboard activity
during SEC seconds.

KUIP/UNITS

List all Input/Output logical units currently open. The files attached to them are also shown.

KUIP/EXIT

End of the interactive session.

KUIP/QUIT

End of the interactive session.

KUIP/FUNCTIONS

""" KUIP System Functions """

The function name (and arguments) is literally replaced, at run-time, by its current value. At present, the
following functions are available:

334 Chapter 10. KUIP

�DATE ����������������������� Current date in format DD�MM�YY

�TIME ����������������������� Current time in format HH�MM�SS

�CPTIME ��������������������� CP time elapsed since last call �in sec�

�RTIME ���������������������� Real time elapsed since last call �in sec�

�VDIM�VNAME�IDIM� ����������� Physical length of vector VNAME

on dimension IDIM ������

�VLEN�VNAME�IDIM� ����������� As above� but for the logical length

�i�e� stripping trailing zeroes�

�NUMVEC ��������������������� Current number of vectors

�VEXIST�VNAME� �������������� Index of vector VNAME

�����NUMVEC or � if VNAME does not exist�

�SUBSTRING�STRING�IX�NCH� ��� STRING�IX�IX�NCH���

�UPPER�STRING� �������������� STRING changed to upper case

�LOWER�STRING� �������������� STRING changed to lower case

�LEN�STRING� ���������������� Length of STRING

�INDEX�STR��STR�� ����������� Position of first occurrence of STR� in

STR�

�WORDS�STRING�SEP� ���������� Number of words separated by SEP

�WORD�STRING�K�N�SEP� ������� Extract N words starting at word K

�QUOTE�STRING� �������������� Add quotes around STRING

�UNQUOTE�STRING� ������������ Remove quotes around STRING

�EXEC��macro args�� ��������� EXITM value of EXEC call

�DEFINED��var�name�� �������� List of defined macro variables

�EVAL�Expression� ����������� Result of the Expression computed by KUIP

�SIGMA�Expression� ���������� Result of the Expression computed by SIGMA

�RSIGMA�Expression� ���������� As above but a decimal point is added to

integer results

�FORMAT�number�format� ������ Format a number according to a Fortran

format string� e�g�

�FORMAT�����F���� ��! � �����

�FORMAT�����I���� ��! �������

�ARGS ����������������������� Command line at program invocation

�KEYNUM ��������������������� Address of latest clicked key in style GP

�KEYVAL ��������������������� Value of latest clicked key in style GP

�LAST ����������������������� Latest command line executed

�ANUM ����������������������� Number of aliases

�ANAM�I� �������������������� Name of I�th alias

�AVAL�I� �������������������� Value of I�th alias

�STYLE ���������������������� Current style as defined by SET�STYLE

�OS ������������������������� Operating system name� e�g� UNIX or VMS

�MACHINE �������������������� Hardware or Unix brand� e�g� VAX or HPUX

�PID ������������������������ Process ID

�IQUEST�I� ������������������ Value of IQUEST�I� status vector

�ENV�var� ������������������� Value of environment variable

�FEXIST�file� ��������������� � if file exists or � otherwise

�SHELL�cmd�N� ��������������� N�th line of shell command output �Unix

335

only�

�SHELL�cmd�sep� ������������� Shell output with newlines replaced by sep

�SHELL�cmd� ����������������� Same as �SHELL�cmd�� ��

�CALL��fun�args��� ���������� Call a Fortran REAL FUNCTION

�ICALL��ifun�args��� �������� Call an INTEGER FUNCTION

�LCALL��lfun�args��� �������� Call a LOGICAL FUNCTION and return � or �

�DCALL��dfun�args��� �������� Call a DOUBLE PRECISION FUNCTION

�HCDIR�� �������������������� Current Hbook working directory

�HEXIST�id� ����������������� � if histogram ID exists or � otherwise

�HINFO�id��ENTRIES�� �������� Number of entries

�HINFO�id��MEAN�� ����������� Mean value

�HINFO�id��RMS�� ������������ Standard deviation

�HINFO�id��EVENTS�� ��������� Number of equivalent events

�HINFO�id��OVERFLOW�� ������� Content of overflow channel

�HINFO�id��UNDERFLOW�� ������ Content of underflow channel

�HINFO�id��MIN�� ������������ Minimum bin content

�HINFO�id��MAX�� ������������ Maximum bin content

�HINFO�id��SUM�� ������������ Total histogram content

�HINFO�id��NSLIX�� ���������� Number of X slices

�HINFO�id��NSLIY�� ���������� Number of Y slices

�HINFO�id��NBANX�� ���������� Number of X bandes

�HINFO�id��NBANY�� ���������� Number of Y bandes

�HINFO�id��NPROX�� ���������� Projection X �� or ��

�HINFO�id��NPROY�� ���������� Projection Y �� or ��

�HINFO�id��XBINS�� ���������� Number of bins in X direction

�HINFO�id��XMIN�� ����������� Lower histogram limit in X direction

�HINFO�id��XMAX�� ����������� Upper histogram limit in X direction

�HINFO�id��YBINS�� ���������� Number of bins in Y direction

�HINFO�id��YMIN�� ����������� Lower histogram limit in Y direction

�HINFO�id��YMAX�� ����������� Upper histogram limit in Y direction

�HTITLE�id� ����������������� Histogram title

�GRAFINFO��XZONES�� ��������� Number of zones in X direction

�GRAFINFO��YZONES�� ��������� Number of zones in Y direction

�GRAFINFO��NT�� ������������� Current Normalization Transformation number

�GRAFINFO��WNXMIN�� ��������� Lower X limit of window in current NT

�GRAFINFO��WNXMAX�� ��������� Upper X limit of window in current NT

�GRAFINFO��WNYMIN�� ��������� Lower Y limit of window in current NT

�GRAFINFO��WNYMAX�� ��������� Upper Y limit of window in current NT

�GRAFINFO��VPXMIN�� ��������� Lower X limit of viewport in current NT

�GRAFINFO��VPXMAX�� ��������� Upper X limit of viewport in current NT

�GRAFINFO��VPYMIN�� ��������� Lower Y limit of viewport in current NT

�GRAFINFO��VPYMAX�� ��������� Upper Y limit of viewport in current NT

�GRAFINFO��TXALIH�� ��������� Horizontal text alignment

�GRAFINFO��TXALIV�� ��������� Vertical text alignment

�GRAFINFO��TXFONT�� ��������� Text font

�GRAFINFO��TXPREC�� ��������� Text precision

336 Chapter 10. KUIP

�GRAFINFO���attr�� ���������� HPLOT�HIGZ attribute �see HELP SET for

valid names�

�RGBINFO�icol��R�� ���������� Weight of Red in color table

�RGBINFO�icol��G�� ���������� Weight of Green in color table

�RGBINFO�icol��B�� ���������� Weight of Blue in color table

�CUT�n� ��������������������� Cut expression �n

�CUTEXPAND�string� ���������� Replace �n in the �quoted� string by

�CUT�n�

KUIP/BUGREPORT � chopt �

CHOPT C “Options” D��B�

Possible CHOPT values are:

B Send a bug report

C Send a comment, suggestion, etc.

Email a bug report or comment to the PAW team. The local editor is invoked with a template to be filled
out. After the template has been edited, version information about PAW and the operating system is ap-
pended. The user is asked for a confirmation before the report is send.
In Paw++ this command can be accessed via the �Help� menu of the �Executive Window� or the �Main
Browser� (menu item �Mail Paw++ Developers�).
This command is implemented only on UNIX, VMS and VM systems.

10.1 ALIAS

Operations with aliases. Aliases are defined to provide shortcut abbreviations for the input line or some
part of it. When encountered on an input line an alias is replaced by its string value which can contain
further aliases. (Be careful not to define recursive aliases.)
To juxtaposition aliases, a double slash can be used as concatenation sign. Inside quoted strings and for
the ALIAS commands themselves the alias substitution is inhibited. Otherwise

ALIAS�CREATE ALPHA BETA

ALIAS�CREATE ALPHA BETA

whould create an recursive alias BETA and

ALIAS�CREATE ALPHA BETA

ALIAS�CREATE BETA GAMMA

ALIAS�DELETE ALPHA

would delete the alias name BETA instead of ALPHA itself.

KUIP/ALIAS/CREATE name value � chopt �

NAME C “Alias name”

VALUE C “Alias value”

CHOPT C “Option” D��A�

10.1. ALIAS 337

Possible CHOPT values are:

A create an Argument alias

C create a Command alias

N No alias expansion of value

Create an alias NAME which should be substituted by VALUE. An alias name is a sequence of letters
and digits starting with a letter. The underscores (’˙’), the at-sign (’@’) and the dollar-sign (’$’) count as
letters.
There are two types of aliases: Command aliases are recognized only if they occur in the command po-
sition, i.e. as the first token on the line. Argument aliases are recognized anywhere on the command line
(except inside quoted strings) if they are surrounded by one of the following separators:

blank � � � � �) � � �

Also switch ON the alias translation, i.e. ALIAS/TRANSLATION ON. If CHOPT=’C’ then the alias is
a command alias, i.e. an alias that will only be translated when it is the first token on a command line.
Example:

Alias�Create GG Graph�Struct�Scratch

Alias�Create FF File��Name��Name�

GG FF�ID

is equivalent to

Graph�Struct�Scratch File��Name��Name��ID

Alias�Create LS DIR C

is equivalent to

DIR

only when LS is the first token on a command line. In the following case LS will not be translated

SHELL LS

Aliases occuring inside an value are expanded indepedent whether the value is enclosed by quotes. The
option -N allows to suppress this implicit alias expansion.

KUIP/ALIAS/LIST � name �

NAME C “Alias name wildcard” D��"�

List all aliases matching the wildcard (names and values).

KUIP/ALIAS/DELETE name

NAME C “Alias name wildcard” Loop

Delete the definition of aliases matching the wildcard. NAME=’*’ deletes all aliases.

KUIP/ALIAS/TRANSLATION � option �

OPTION C “Option” D��ON�

Possible OPTION values are:

338 Chapter 10. KUIP

� show current setting

ON switch alias translation ON

OFF switch alias translation OFF

Switch ON/OFF the alias translation. If OFF, alias definitions are not used in parsing the command lines.
It is automatically switched ON when an alias is created. If OPTION=’?’ the current value is shown. The
startup value is OFF.

10.2 SET˙SHOW

Set or show various KUIP parameters and options.

KUIP/SET˙SHOW/STYLE � option sgylen sgsize sgyspa sgbord wktype �

OPTION C “Option” D����

SGYLEN R “max Y LENgth of each menu item box” D������ R�����������

SGSIZE R “space available for the application” D���
 R�������

SGYSPA R “max Y length of space between menus” D����� R����������

SGBORD R “X or Y border for menus” D������ R�������

WKTYPE I “Graphics workstation type” D��

Possible OPTION values are:

� show current style

C Command line : select Command line input

AN Menu with Numbers : select general Alpha menu (with Numbers)

AL Menu with Letters : select general Alpha menu (with Letters)

G Graphics menu hardware : select Graphics menu (with hardware character fonts)

GW Graphics menu shadowed : select Graphics menu (with shadowed Width effect)

GS Graphics menu Software : select Graphics menu (with Software character fonts)

GP Panel keys : select Graphics menu (with Panel keys only, i.e. no command tree menu)

XM Motif/X11 : select Motif/X11 interface

Select the user dialogue style (or working mode). The startup value is ’C’ (command mode). The current
value is returned by the system function $STYLE.
The G-styles are only available if the application program is calling KUWHAG instead of KUWHAT.
When one of these options is choosen the remaining parameters control the geometrical layout of the
menus on the screen and the graphics workstation type (in case HIGZ was not initialized).

Style ’XM’ is only available if the program is calling KUWHAM. In that case switching to other styles
is not possible.

KUIP/SET˙SHOW/PANEL line � gkey �

LINE R “Line number” D��

GKEY C “Graphics key value(s)” D��+�

10.2. SET˙SHOW 339

Set up a panel of graphics keys. The �panel interface� is available in �STYLE GP� and in KUIP/Motif
(not in the basic command mode). N.B. in �STYLE GP� only one panel of commands can be set up,
whereas in KUIP/Motif there is no limitation.

Examples:

PANEL � � reset the panel �in memory�

PANEL � A�L QUIT V�L � initialize line � with � graphics keys�

respectively A�L� QUIT� V�L

PANEL � A�L � � V�L � � � � � initialize line � with � graphics keys�

and fill �st and �rd keys

PANEL ���� MESSAGE � initialize �th key of �nd line to MESSAGE

PANEL ���� � clear �th key of �nd line

PANEL ����
 � initialize line � with
 graphics keys

PANEL �
��
 � initialize line
 with �
 graphics keys

Note that the key number on the right of the decimal point must always be defined with two digits.

Keys ending with a minus sign make an additional request of keyboard input; the complete command line
will be the key text, with a blank at the place of the minus, concatenated with the additional keyboard
input. Example:

PANEL ���� �VEC�PRI�� � entering VAB will execute VEC�PRI VAB�

Keys ending with a double minus sign behave as above but no blank is put at the place of the double
minus. Example:

PANEL ���� �VEC�PRI V��� � entering AB will execute VEC�PRI VAB

The dollar sign inside a key is replaced by additional keyboard input. Example:

PANEL ���� �VEC�PRI V���� � entering ����� will execute VEC�PRI V�������

In KUIP/Motif there are 2 addditinal commands in order to display or to close one panel:

PANEL � D �title� �geometry�

PANEL � C �title�

Examples:

� PANEL � D �This is my first panel� ���x��������
��

displays the panel which has been set in memory by the key definition, and sets the title to “This is my
first panel”, the window size to “500x300” (WxH) and the window position to “500 600” in x and y. If
no title and/or no geometry is specified one is given by default.

� PANEL � C �This is my first panel�

closes (destroys and erases from the screen) the panel whith title “This is my first panel”. If no title is
specified the last created panel is closed by default.

340 Chapter 10. KUIP

KUIP/SET˙SHOW/NEWPANEL line col title width height xpos ypos

LINE I “Number of lines” D�� R�����

COL I “Number of columns” D�� R�����

TITLE C “Panel Title” D��New Panel�

WIDTH I “Panel width (in pixels)” D���� R����

HEIGHT I “Panel height (in pixels)” D���� R����

XPOS I “X Position (in pixels)” D�� R���

YPOS I “Y Position (in pixels)” D�� R���

Set up a new panel with empty keys (to be filled interactively).

KUIP/SET˙SHOW/COMMAND � chpath �

CHPATH C “Path name for command line” D��+�

Set a filter for the parsing of command lines. If it has been called, it means that whenever a command
line is entered, if and only if it is not an existing command (not just ambiguous), it is inserted into the
CHPATH string, with $n (n=1..9) being replaced by the n-th token of the command (tokens are separated
by spaces), or $* being replaced by the whole command line. Examples:

COMMAND �V�CR �"�����

AA �! V�CR AA����

BB �! V�CR BB����

V�LIST �! V�LIST

COMMAND �VECTOR�PLOT �� ��� ���

AA E �! VECTOR�PLOT AA ��� E

BB �! VECTOR�PLOT BB ���

COMMAND �! shows its current value

COMMAND " �! reset �equivalent to COMMAND �"�

Note that COMMAND and subsequent command lines can be used inside macros, excepted when pro-
ducing macro statements (like EXEC, IF, GOTO, etc.). For example, the above examples would work
also inside macros, while COMMAND ’EXEC $*’ or COMMAND ’GOTO $1’ will not.

KUIP/SET˙SHOW/APPLICATION path � cmdex �

PATH C “Application name” D��+�

CMDEX C “Exit command” D��EXIT�

Set the application name. This means that all input lines will be concatenated to the string PATH (until
the command specified by the parameter CMDEX is executed, which resets the application to the null
string). The value of CMDEX may be specified if the default value EXIT has to be changed (i.e. because
already used by the application). APPLICATION can also be inserted in a macro: in this case at least 4
characters must be specified (i.e. APPL).

10.2. SET˙SHOW 341

KUIP/SET˙SHOW/ROOT � path �

PATH C “Root directory” D����

Set the root for searching commands. If PATH=’?’ the current root is shown. This allows to access com-
mands regardless of possible ambiguities with different menus. Commands are first searched starting
from the current root: if a command is found it is executed. Only if a command is not found a second
pass of search is done, starting now from the top root of the command tree (i.e. ’/’).

KUIP/SET˙SHOW/TIMING � option �

OPTION C “Option” D��ON�

Possible OPTION values are:

ON

OFF

ALL

Set ON/OFF/ALL the timing of commands. If ON, the real time and the CPU time for the latest executed
command (or macro) are presented. If ALL, the time is shown for each command being executed within
a macro. The startup value is OFF.

KUIP/SET˙SHOW/PROMPT prompt

PROMPT C “Prompt string” D��+�

Set the prompt string for the command mode dialogue. If PROMPT is blank the current prompt is left
unchanged. If PROMPT contains the character sequence ’[]’ the current command number is inserted
between the square brackets.

KUIP/SET˙SHOW/BREAK � option �

OPTION C “Option” D��ON�

Possible OPTION values are:

ON

OFF

TB

�

Set ON/OFF the break handling. If OPTION=’?’ the current value is shown. The startup value is ON.

Hitting the keyboard interrupt (CTRL/C on VMS or CTRL/Q on the Apollo) under break ON condition,
the current command or macro execution will be interrupted and the user will get again the application
prompt.

BREAK TB switch ON the traceback of the routines called, with their line numbers, when an error occurs.

342 Chapter 10. KUIP

This allows the detection of the routines which provoked the error.

KUIP/SET˙SHOW/COLUMNS � ncol �

NCOL I “Number of columns for terminal output” D�
� R����

Set the maximum number of columns for terminal output. If NCOL=0 the current number of columns is
shown. If NCOL=-1 the current number of columns is taken from the environment variable COLUMNS.
If COLUMNS is undefined the startup value is 80.

KUIP/SET˙SHOW/RECORDING � nrec �

NREC I “Rate for recording on history file” D��� R���

Set the recording rate for the history file. Every NREC commands of the session the current history file
is updated. If NREC=0 the history is not kept at all (i.e. the file is not written). See also the command
LAST.

KUIP/SET˙SHOW/HOST˙EDITOR � editor top left width height dxpad dypad npads

�

EDITOR C “Host editor command” D����

TOP I “Top position of the edit window” D��� R���

LEFT I “Left position of the edit window” D��� R���

WIDTH I “Width of the edit window” D�� R���

HEIGHT I “Height of the edit window” D�� R���

DXPAD I “X offset for help PAD windows” D��� R���

DYPAD I “Y offset for help PAD windows” D��� R���

NPADS I “Maximum number of shifted pads” D�� R���

Set the host command to invoke the editor. The EDIT command will invoke this editor. If EDITOR=’?’
the current host editor command is shown.

On Apollo the special value EDITOR=’DM’ invoke Display Manager pads. The special values EDI-
TOR=’WINDOW’ and ’PAD’ can be used to specify the window positions (in pixel units). ’WINDOW’
defines the parameters for edit pads, while ’PAD’ defines the parameters for read-only pads (e.g. used by
’HELP -EDIT’).

On VMS the special values EDITOR=’EDT’ and ’TPU’ invoke the callable editors. The startup time is
considerably lower compared to spawning the editor as a subprocess. The callable EDT has one disad-
vantage though: after an error, e.g. trying to edit a file in a non-existing directory, subsequent calls will
always fail. The TPU call can be augmented by command line options, e.g.

HOST�EDITOR TPU�DISP�DECW � DECwindow interface to EVE

On Unix a variety of editors are available, e.g.

HOST�EDITOR vi

HOST�EDITOR �emacs �geometry
�x�
�

10.2. SET˙SHOW 343

On Unix workstations it is possible to do asynchronous editing via the KUIP edit server, i.e. to start an
editor in a separate window while the application can continue to receive commands. In order to do that
the following conditions must be fulfilled:

� The KUIP edit server �kuesvr� must be found in the search path�

� The editor command set by HOST�EDITOR must end with an ampersand ��'���

� The environment variable �DISPLAY� must be set�

The ampersand flags your intention to use the edit server if possible. If the edit server cannot be used the
ampersand will be ignored, i.e. even with

HOST�EDITOR �vi '�

the KUIP/EDIT command will block until the editor terminates if either the ’kuesvr’ is not available or
’DISPLAY’ is undefined. When using the edit server the editor command is expected to create its own
window. ’vi’ being a frequent choice, the above command is automatically interpreted as

HOST�EDITOR �xterm �e vi '�

The startup value can be defined by the environment variable ’EDITOR’. Otherwise it is set to a system
dependent default: ’DM’ (Apollo), ’EDT’ (VMS), ’XEDIT’ (VM/CMS), ’vi’ (Unix).

KUIP/SET˙SHOW/HOST˙PAGER � pager �

PAGER C “Host pager command” D����

Set the host command to view a file in read-only mode. If OPTION=’?’ the current host pager command
is shown. The ’HELP -EDIT’ command will invoke this pager, e.g.

HOST�PAGER more

On Unix workstations the pager can be asynchronous by creating a separate window, e.g.

HOST�PAGER �xterm �e view '�

HOST�PAGER �ved '�

On Apollo the special value PAGER=’DM’ defines the use of Display Manager read-only pads. The pad
positions can be adjusted by the HOST˙EDITOR command.

The startup value can be defined by the environment variables ’KUIPPAGER’ or ’PAGER’. If neither of
them is defined the value set by the HOST˙EDITOR command is used. On VAX/VMS the startup value
is ’TYPE/PAGE’.

KUIP/SET˙SHOW/HOST˙PRINTER � command filetype �

COMMAND C “Host printer command” D����

FILETYPE C “File extension” D��+�

Set the host commands for printingfiles with KUIP/PRINT. The KUIP/PRINT command will use the host
command matching the file extension or use the default command defined for FILETYPE=’ ’.

If COMMAND=’?’ the currently set commands are shown. If COMMAND=’ ’ the currently defined
command is delete. The command string can contain ’$*’ and ’$-’ to indicate the position where the file
name with/without file extension should be inserted. For example,

344 Chapter 10. KUIP

MANUAL � refman�tex latex

HOST�PRINTER �latex �" & dvips ��� �tex

KUIP�PRINT refman�tex

invokes the shell command ’latex refman.tex ; dvips refman’. The predefined defaults are not guaranteed
to work since the actual print commands are very much installation dependent.

KUIP/SET˙SHOW/HOST˙PSVIEWER � psviewer �

PSVIEWER C “Host PostScript Viewer command” D����

Set the host command to invoke the PostScript Viewer. The PSVIEW command will invoke this PostScript
Viewer. If PSVIEWER=’?’ then the current viewer command is shown.

The startup value can be defined by the environment variables ’KUIPPSVIEWER’ or ’PSVIEWER’.

On Unix workstations it is by default set to ’ghostview’. On VAX/VMS the default commands is ’VIEW/FORM=PS/INTERFA

KUIP/SET˙SHOW/HOST˙SHELL � shell �

SHELL C “Host shell command” D����

Set the default host shell invoked by the KUIP/SHELL command. If OPTION=’?’ the current host shell
is shown. The startup value is taken from the ’SHELL’ environment variable.

KUIP/SET˙SHOW/RECALL˙STYLE � option �

OPTION C “Command recall and editing style” D����

Possible OPTION values are:

� show current setting

KSH Korn shell : Emacs like command line editing

KSHO Korn shell + Overwrite : like ’KSH’ but overwrite instead of insert mode

DCL VAX/VMS DCL : DCL command line editing

DCLO VAX/VMS DCL + Overwrite : like ’DCL’ but overwrite instead of insert mode

NONE disable command line editing

Set the command recall and editing style. If OPTION=’?’ the current style is shown. The startup value
is ’DCL’ on VAX/VMS, ’NONE’ on Cray and Apollo DM pads, and ’KSH’ on other systems.

If the terminal emulator returns ANSI escape sequences (hpterm doesn’t!) the up/down arrow keys can
be used to recall items from the command history list and the left/right arrow keys to move the cursor.

’KSH’ style provides the following control keys for editing:

(A�(E � Move cursor to beginning�end of the line�

(F�(B � Move cursor forward�backward one character�

(D � Delete the character under the cursor�

(H� DEL � Delete the character to the left of the cursor�

(K � Kill from the cursor to the end of line�

10.2. SET˙SHOW 345

(L � Redraw current line�

(O � Toggle overwrite�insert mode� Text added in overwrite mode

�including yanks� overwrites existing text� while insert mode

does not overwrite�

(P�(N � Move to previous�next item on history list�

(R�(S � Perform incremental reverse�forward search for string on

the history list� Typing normal characters adds to the

current search string and searches for a match� Typing

(R�(S marks the start of a new search� and moves on to

the next match� Typing (H or DEL deletes the last

character from the search string� and searches from the

starting location of the last search�

Therefore� repeated DELs appear to unwind to the match

nearest the point at which the last (R or (S was typed�

If DEL is repeated until the search string is empty the

search location begins from the start of the history

list� Typing ESC or any other editing character accepts

the current match and loads it into the buffer�

terminating the search�

(T � Toggle the characters under and to the left of the cursor�

(U � Kill from the prompt to the end of line�

(Y � Yank previously killed text back at current location�

Note that this will overwrite or insert� depending on

the current mode�

TAB � By default adds spaces to buffer to get to next TAB stop

�just after every
th column��

LF� CR � Returns current buffer to the program�

’DCL’ style provides the following control keys for editing:

BS�(E � Move cursor to beginning�end of the line�

(F�(D � Move cursor forward�backward one character�

DEL � Delete the character to the left of the cursor�

(A � Toggle overwrite�insert mode�

(B � Move to previous item on history list�

(U � Delete from the beginning of the line to the cursor�

TAB � Move to next TAB stop�

LF� CR � Returns current buffer to the program�

KUIP/SET˙SHOW/VISIBILITY cmd � chopt �

CMD C “Command name” D��+�

CHOPT C “?, OFF, ON” D����

Possible CHOPT values are:

�

346 Chapter 10. KUIP

OFF

ON

Set or show the visibility attributes of a command.

If CHOPT=’OFF’:

� the command it is not executable anymore

� STYLE G draws a shadowed box on the command

� HELP may be still requested on the command

The startup value is ON.

KUIP/SET˙SHOW/DOLLAR � option �

OPTION C “Substitution of environment variables” D����

Possible OPTION values are:

� show current setting

ON enable substitution

OFF disable substitution

Set or show the status of environment variable substitution.

This command allows to enable/disable the interpretation of environment variables in command lines.
The startup value is ’ON’, i.e. �$var� is substituted by the variable value.

Note that the system function�$ENV(var)�allows using environment variables even for ’DOLLAR OFF’
.

KUIP/SET˙SHOW/FILECASE � option �

OPTION C “Case conversion for filenames” D����

Possible OPTION values are:

� show current setting

KEEP filenames are kept as entered on the command line

CONVERT filenames are case converted

RESTORE restore previous FILECASE setting

Set or show the case conversion for filenames.

This command has only an effect on Unix systems to select whether filenames are kept as entered on the
command line. The startup value is ’CONVERT’, i.e. filenames are converted to lowercase.

On other systems filenames are always converted to uppercase.

The ’RESTORE’ optionset the conversion mode to the value effective before the last FILECASE KEEP/CONVERT
command. E.g. the sequence

10.2. SET˙SHOW 347

FILECASE KEEP& EDIT Read�Me& FILECASE RESTORE

forces case sensitivity for the EDIT command and restores the previous mode afterwards.

KUIP/SET˙SHOW/LCDIR � directory �

DIR"ECTORY C “Directory name” D��+�

Set or show the local working directory.

The current working directory is set to the given path name or the current directory is shown.

To show the current directory used LCDIR without argument. ’LCDIR ’ switches to the home directory.
’LCDIR .’ switches back to the working directory at the time the program was started.

Chapter 11: MACRO

Macro Processor commands.

MACRO/EXEC mname � margs �

MNAME C “Macro name”

MARGS C “Macro arguments” D��+� Separate

Execute the command lines contained in the macro MNAME. As a file can contain several macros, the
character ’#’ is used to select a particular macro inside a file as explained below.

If MNAME does not contain the character ’#’, the file MNAME.KUMAC is searched and the first macro
is executed (it may be an unnamed macro if a MACRO statement is not found as first command line in
the file).

If MNAME is of the form FILE#MACRO, the file named FILE.KUMAC is searched and the macro
named MACRO is executed.

Examples:

EXEC ABC to exec first �or unnamed� macro of file ABC�KUMAC

EXEC ABC�M to exec macro M of file ABC�KUMAC

The command MACRO/DEFAULTS can be used to define a directory search path for macro files.

MACRO/LIST � mname �

MNAME C “Macro name pattern” D��+�

List all macros in the search path defined by MACRO/DEFAULTS. Macros are files with the extension
KUMAC. MNAME may be specified to restrict the list to the macros containing such a string in the first
part of their name. For example,

MACRO�LIST ABC

will list only macros starting with ABC.

MACRO/TRACE � option level �

OPTION C “Option” D��ON�

LEVEL C “Level” D��+�

Possible OPTION values are:

ON

OFF

Possible LEVEL values are:

�+�

348

349

TEST

WAIT

FULL

DEBUG

Set ON/OFF the trace of commands during macro execution. If TRACE=’ON’ the next command is writ-
ten on the terminal before being executed. If LEVEL=’TEST’ the command is only echoed but not exe-
cuted. If LEVEL=’WAIT’ the command WAIT is automatically inserted after the execution of each com-
mand. The startup values are OPTION=’OFF’ and LEVEL=’ ’.

MACRO/DEFAULTS � path option �

PATH C “Search path for macro files” D����

OPTION C “Automatic EXEC” D����

Possible OPTION values are:

� show current setting

Command search for commands only

C same as ’Command’

Auto search for commands before macros

A same as ’Auto’

AutoReverse search for macros before commands

AR same as ’AutoReverse’

Set or show MACRO search attributes.

On Unix and VMS systems PATH defines a comma separated list of directories in which the commands
KUIP/EDIT, MACRO/EXEC, and MACRO/LIST search for macro files. For example,

MACRO�DEFAULT ���macro�,�macro� � Unix

MACRO�DEFAULT ������macro���macro�� � VMS

defines to search files first in the current directory, then in the subdirectory ’macro’ of the current directory,
and last the subdirectory ’macro’ of the home directory.

On VM/CMS system PATH defines a comma separated list of filemodes. E.g.

MACRO�DEFAULT �"� � search all disks

MACRO�DEFAULT �A�C� � search only disks A and C

If PATH=’?’ the currently defined search path is shown. If PATH=’.’ the search path is undefined, i.e.
files are search for in the current directory (A-disk on VM/CMS) only. The startup value is PATH=’.’.

The search path is not applied if the file specification already contains an explicit directory path or if it
starts with a ’-’ character (which is stripped off).

OPTION allows to define whether macros can be invoked by their name only without prepending the
KUIP/EXEC command:

350 Chapter 11. MACRO

DEFAULT �Command

CMD � CMD must be a command

DEFAULT �Auto

CMD � if CMD is not a command try EXEC CMD

DEFAULT �AutoReverse

CMD � try EXEC CMD first& if not found try command CMD

The startup value is ’Command’ (also reset by PATH=’.’).

Important note:

Inside macros the DEFAULT -A (or -AR) logic is disabled, i.e. DEFAULT -C is always assumed.

MACRO/DATA

Application command to store immediate data into a file. Example:

Application DATA vec�dat

� � �

� �

	
 �

vec�dat

vec�read x�y�z vec�dat

11.1 GLOBAL

Operations on global variables.

MACRO/GLOBAL/CREATE name � value text �

NAME C “Variable name” Loop

VALUE C “Initial value” D��+�

TEXT C “Comment text” D��+�

Create a global variable.

If used inside a macro the variable [name] is declared as global.

MACRO/GLOBAL/IMPORT name

NAME C “Variable name” Loop

Import global variables.

If used inside a macro the variables listed are declared as global. The name may contain ’*’ as a wildcard
matching any sequence of characters.

MACRO/GLOBAL/DELETE name

NAME C “Variable name” Loop

Delete global variables.

The global variables listed are deleted. The name may contain ’*’ as a wildcard matching any sequence
of characters.

11.2. SYNTAX 351

MACRO/GLOBAL/LIST � name file �

NAME C “Variable name” D��"�

FILE C “Output file” D��+�

List global variables.

If a file name is specified the output is the list of GLOBAL/CREATE commands to define the selected
global variables. The default file extension is .kumac.

11.2 SYNTAX

Explanation of KUIP macro syntax.

A macro is a set of command lines stored in a file, which can be created and modified with any text editor.

In addition to all available KUIP commands the special �macro statements� listed below are valid only
inside macros. Note that the statement keywords are fixed. Aliasing such as �ALIAS/CREATE jump
GOTO� is not allowed.

11.2.1 Expressions

Explanation of KUIP expression syntax.

KUIP has a built-in parser for different kinds of expressions: arithmetic expressions, boolean expressions,
string expressions, and �garbage expressions�.

MACRO/SYNTAX/Expressions/Arithmetic

Explanation of arithmetic expression syntax.

The syntactic elements for building arithmetic expressions are:

expr ��� number

� vector�name �for scalar vectors�

� vector�name�expr�

� vector�name�expr�expr�

� vector�name�expr�expr�expr�

� �variable�name� �if value is numeric or

the name of a scalar vector�

� �variable�name��expr���� �if value is a vector name�

� alias�name �if value is numeric constant�

� �system�function�����

� � expr

� expr � expr

� expr � expr

� expr " expr

� expr � expr

� �expr�

� ABS�expr�

� INT�expr�

� MOD�expr�expr�

352 Chapter 11. MACRO

They can be used in the macro statements DO, FOR, and EXITM, in macro variable assignments, as sys-
tem function arguments where a numeric value is expected, or as the argument to the $EVAL function.

Note that all arithmetic operations are done in floating point, i.e., �5/2� becomes �2.5�. If a floating point
result appears in a place where an integer is expected, for example as an index, the value is truncated.

MACRO/SYNTAX/Expressions/Boolean

Explanation of Boolean expression syntax.

Boolean expressions can only be used in the macro statements IF, WHILE, and REPEAT. The possible
syntactic elements are shown below.

bool ��� expr rel�op expr

� string eq�op string

� expr eq�op string

� �NOT� bool

� bool �AND� bool

� bool �OR� bool

� � bool �

rel�op ��� �LT� � �LE� � �GT� � �GE�

� � � � ! � !�

� eq�op

eq�op ��� �EQ� � �NE�

� � � !

MACRO/SYNTAX/Expressions/String

Explanation of string expression syntax.

String expressions can be used in the macro statements CASE, FOR, and EXITM, in macro variable
assignments, as system function arguments where a string value is expected, or as the argument to the
$EVAL function. They may be constructed from the syntactic elements shown below.

string ��� quoted�string

� unquoted�string

� string �� string �concatenation�

� expr �� string �expr represented as string�

� �variable�name�

� alias�name

� �system�function�����

MACRO/SYNTAX/Expressions/Garbage

Explanation of �garbage� expression syntax.

Expressions which do not satisfy any of the other syntax rules we want to call �garbage� expressions.
For example,

11.2. SYNTAX 353

s � �OS�MACHINE

is not a proper string expression. Unless they appear in a macro statement where specifically only an
arithmetic or a boolean expression is allowed, KUIP does not complain about these syntax errors. Instead
the following transformations are applied:

o alias substitution

o macro variable replacement& values containing a

blank character are implicitly quoted

o system function calls are replaced one by one with

their value provided that the argument is a syntactically

correct expression

o string concatenation

11.2.2 Variables

Explanation of KUIP macro variables.
Macro variables do not have to be declared. They become defined by an assignment statement,

name � expression

The right-hand side of the assignment can be an arithmetic expression, a string expression, or a garbage
expression (see MACRO/SYNTAX/Expressions). The expression is evaluated and the result is stored as
a string (even for arithmetic expressions).
A variable value can be used in other expressions or in command lines by enclosing the name in square
brackets, [name]. If the name enclosed in brackets is not a macro variable then no substitution takes place.

MACRO/SYNTAX/Variables/Numbered

Accessing macro arguments.
The EXEC command can pass arguments to a macro. The arguments are assigned to the numbered vari-
ables [1], [2], etc., in the order given in the EXEC command. The name of the macro, including the file
specification, is assigned to [0].
A numbered variable cannot be redefined, i.e., an assignment such as �1 = foo� is illegal. See MACRO/SYNTAX/SHIFT.

MACRO/SYNTAX/Variables/Special

Predefined special macro variables.
For each macro the following special variables are always defined:

��� Fully qualified name of the macro�

��� Number of macro arguments

�"� List of all macro arguments� separated by blanks

��� EXITM return code of the last macro called by

the current one� The value is ��� if the last

macro did not supply a return code or no macro

has been called yet�

As for numbered variables these names cannot be used on the left-hand side of an assignment. The values
or [#] and [*] are updated by the SHIFT statement.

354 Chapter 11. MACRO

MACRO/SYNTAX/Variables/Indirection

Referencing a macro variable indirectly.
Macro variables can be referenced indirectly. If the variable [name] contains the name of another variable
the construct

�)name�

is substituted by that other variable’s value. For example, this is another way to traverse the list of macro
arguments:

DO i������

arg � �)i�

���

ENDDO

There is only one level of indirection, i.e., the name contained in �name� may not start with another �%�.

MACRO/SYNTAX/Variables/Global

Declaring a global variable.

EXTERN name ���

The variable names listed in the EXTERN statement are declared as global variables. If a name has not
been defined with the GLOBAL/CREATE command, it is created implicitly and initialized to the empty
string. The name list may contain wildcards, for example

EXTERN "

makes all defined global variables visible.

MACRO/SYNTAX/Variables/READ

Reading a variable value from the keyboard.

READ name � prompt �

Variable values can be queried from the user during macro execution. The READ statement prompts for
the variable value. If name is already defined the present value will be proposed as default.

MACRO/SYNTAX/Variables/SHIFT

Manipulation numbered variables.
The only possible manipulation of numbered variables is provided by the SHIFT statement which copies
[2] into [1], [3] into [2], etc., and discards the value of the last defined numbered variable. For example,
the construct

WHILE ��� ! � � DO

arg � ���

���

SHIFT

ENDDO

allows to traverse the list of macro arguments.

11.2. SYNTAX 355

11.2.3 Definitions

Statements for defining macros.

MACRO/SYNTAX/Definitions/MACRO

Defining a macro.
A .kumac file may contain several macros. An individual macro has the form

MACRO macro�name � parameter�list �

statements

RETURN

Each statement is either a command line or one of the macro constructs described in this section (MACRO/SYNTAX).
For the first macro in the file the MACRO header can be omitted. For the last macro in the file the RE-
TURN trailer may be omitted. Therefore a .kumacfile containingonly commands (like the LAST.KUMAC)
already constitutes a valid macro.

MACRO/SYNTAX/Definitions/RETURN

Ending a macro definition

RETURN � value �

The RETURN statement flags the end of the macro definition and not the end of macro execution, i.e.,
the construct

IF ��� THEN

RETURN � error�

ENDIF

is illegal. See MACRO/SYNTAX/EXITM.
The value is stored into the variable [@] in the calling macro. If no value is given it defaults to zero.

MACRO/SYNTAX/Definitions/EXITM

Terminate macro execution and return to calling macro.

EXITM � value �

In order to return from a macro prematurely the EXITM statement must be used. The value is stored into
the variable [@] in the calling macro. If no value is given it defaults to zero.

MACRO/SYNTAX/Definitions/STOPM

Terminate macro execution and return to command line prompt.

STOPM

The STOPM statement unwinds nested macro calls and returns to the command line prompt.

MACRO/SYNTAX/Definitions/ENDKUMAC

Ignore rest of KUMAC file.
A logical �end of file� marker. The KUIP parser will not read any part of a .kumac file which appears
after the �ENDKUMAC� command.

356 Chapter 11. MACRO

11.2.4 Branching

Macro statements for general flow control.

MACRO/SYNTAX/Branching/CASE

Select one of many branches.

CASE expression IN

�label� statement � statements �

���

�label� statement � statements �

ENDCASE

The CASE switch evaluates the string expression and compares it one by one against the label lists until
the first match is found. If a match is found the statements up to the next label are executed before skipping
to the statement following the ENDCASE. None of the statements are executed if there is no match with
any label.

Each label is a string constant and the comparison witht the selection expression is case-sensitive. If the
same statement sequence should be executed for distinct values a comma-separated list of values can be
used.

The �*� character in a label item acts as wildcard matching any string of zero or more characters, i.e.,
�(*)� constitutes the default label.

MACRO/SYNTAX/Branching/GOTO˙and˙IF˙GOTO

Unconditional and conditional branching.

GOTO label

The simplest form of flow control is provided by the GOTO statement which continues execution at the
statement following the target �label:�. If the jump leads into the scope of a block statement, for example
a DO-loop, the result is undefined.

The target may be given by a variable containing the actual label name.

IF expression GOTO label

This old-fashioned construct is equivalent to

IF expression THEN

GOTO label

ENDIF

MACRO/SYNTAX/Branching/IF˙THEN

Conditional execution of statement blocks.

11.2. SYNTAX 357

IF expression THEN

statements

ELSEIF expression THEN

statements

���

ELSEIF expression THEN

statements

ELSE

statements

ENDIF

The general IF construct executes the statements following thefirst IF/ELSEIF clause for with the boolean
expression is true and then continues at the statement following the ENDIF. The ELSEIF clause can be re-
peated any number of times or can be omitted altogether. If none of the expressions is true, the statements
following the optional ELSE clause are executed.

MACRO/SYNTAX/Branching/ON˙ERROR

Installing an error handler.

Each command returns a status code which should be zero if the operation was successful or non-zero if
any kind of error condition occurred. The status code can be tested by $IQUEST(1) system function.

ON ERROR GOTO label

installs an error handler which tests the status code after each command and branches to the given label
when a non-zero value is found. The error handler is local to each macro.

ON ERROR EXITM � expression �

and

ON ERROR STOPM

are short-hand notations for a corresponding EXITM or STOPM statement at the targat label.

ON ERROR CONTINUE

continues execution with the next command independent of the status code. This is the initial setting when
entering a macro.

OFF ERROR

An error handler can be deactivated by this statement.

ON ERROR

An error handler can be reactivated by this statement.

358 Chapter 11. MACRO

11.2.5 Looping

Macro statements for construction loops.

MACRO/SYNTAX/Looping/DO

Loop incrementing a loop counter.

DO loop � start�expr� finish�expr �� step�expr �

statements

ENDDO

The step size (setp˙expr) defaults to �1�. The arithmetic expressions involved can be floating point values
but care must be taken of rounding errors.

Note that �DO i=1,0� results in zero iterations and that the expressions are evaluated only once.

MACRO/SYNTAX/Looping/FOR

Loop over items in an expression list.

FOR name IN expr�� � expr�� ��� expr�n �

statements

ENDFOR

In a FOR-loop the number of iterations is determined by the number of items in the blank-separated ex-
pression list. The expression list must not be empty. One by one each expression evaluated and assigned
to the variable name before the statements are executed.

The expressions can be of any type: arithmetic, string, or garbage expressions, and they do not need to
be all of the same type. In general each expression is a single list item even if the result contains blanks.

The variable [*] is treated as a special case being equivalent to the expression list �[1] [2] ... [n]� which
allows yet another construct to traverse the macro arguments:

FOR arg IN �"�

���

ENDFOR

MACRO/SYNTAX/Looping/REPEAT

Loop until condition becomes true.

REPEAT

statements

UNTIL expression

The body of a REPEAT-loop is executed at least once and iterated until the boolean expression evaluates
to true.

11.2. SYNTAX 359

MACRO/SYNTAX/Looping/WHILE

Loop while condition is true.

WHILE expression DO

statements

ENDWHILE

The WHILE-loop is iterated while the boolean expression evaluates to true. The loop body is not executed
at all if the boolean expression is false already in the beginning.

MACRO/SYNTAX/Looping/BREAKL

Terminate a loop.

BREAKL � level �

Allows to terminate a loop prematurely. The BREAKL continues executing after the end clause of a DO,
FOR, WHILE, or REPEAT block, where �level� indicates how many nested constructs to terminate. The
default value level=1 terminates the innermost loop construct.

MACRO/SYNTAX/Looping/NEXTL

Continue with next loop iteration.

NEXTL � level �

Allows to continue with the next loop iteration without executing the rest of the loop body. Execution con-
tinues just before the end clause of a DO, FOR, WHILE, or REPEAT block, where �level� indicates how
many nested blocks to skip. The default value level=1 skips to the end of the innermost loop construct.

Chapter 12: VECTOR

Vector Processor commands. Vectors are equivalent to FORTRAN 77 arrays and they use the same no-
tation except when omitting indexes (see last line below). Up to 3 dimensions are supported. Examples:

Vec���� �mono�dimensional with �� elements�

may be addressed by:

Vec for all elements

Vec���� for element ���th

Vec����� for elements ���th to last

Vec����� for elements first to ���th

Vec���
� for elements ��th to
�th

Vec������� ���dimensional with � columns by ��� rows��

may be addressed by:

Vec�����
� for elements ��th to
�th in ��nd column

Vec�������
� for elements ��th to
�th in ��nd to ��rd columns

Vec����� for element ��th in ��nd column

Vec����� for all elements in ��rd row

Vec��� for all elements in ��nd column �SPECIAL CASE�

The latest line shows the special (and non-standard with FORTRAN 77) notation such that missing in-
dexes are substituted to the right.

An ’invisible’ vector called ’?’, mono-dimensional and of length 100, is always present. Is is used for
communicating between user arrays and KUIP vectors, being equivalenced with the real array VEC-
TOR(100) in the labeled common block /KCWORK/.

VECTOR/CREATE vname � type values �

VNAME C “Vector name(length)”

TYPE C “Vector type” D��R�

VALUES C “Value list” D��+� Separate Vararg

Possible TYPE values are:

R

I

Create a vector named VNAME (elements are set to zero). The dimensions are taken from the name, for
example VEC(20), VEC(3,100), VEC(2,2,10). Up to 3 dimensions are supported. Dimensions which are
not specified are taken to 1, for example VEC(10) —iVEC(10,1,1) and VEC —iVEC(1,1,1). The vector
may be of type Real or Integer. A vector is filled at the same time if parameters are given after the TYPE:

VEC�CREATE V���� R � � � � �

 		

 �� ���

360

361

VEC�CREATE W���� R � � �

In the last example only the first three elements are filled. Vector elements may be changed later with the
command VECTOR/INPUT.

If many equal values have to be entered consecutively, one can specify just one value and precede it by a
repetition factor and an asterisk. Example:

VEC�CREATE Z���� R �"� � �"� ���! VEC�CREATE Z���� R � � � � � � � � �

�

Enter HELP VECTOR for more information on vector addressing.

VECTOR/LIST

List all vectors (name, dimensions, type).

VECTOR/DELETE vlist

VLIST C “Vector list” D��+� Loop

Delete from memory all vectors in the list VLIST. The vectors are separated in the list by a comma and
embedded blanks are not allowed. An asterisk at the end of VLIST acts as wild-card:

VEC�DEL AB" ���! deletes all vectors starting by AB

VEC�DEL " ���! deletes all vectors

VECTOR/COPY vnam� vnam�

VNAM� C “Source vector name”

VNAM� C “Destination vector name”

Copy a vector into another one. Mixed vector type copy is supported (e.g. Integer —iReal and viceversa).
If VNAM2 does not exist it is created with the required dimensions, not necessarily the same as the source
vector if a sub-range was specified. For example, if A is a 3 x 100 vector and B does not exist, COPY
A(2,11:60) B will create B as a 50 elements mono-dimensional vector; a special (and non-standard with
FORTRAN 77) notation is used such that, still using the above vectors, COPY A(2,1:100) B and COPY
A(2) B have the same effect.

Note that VECTOR/COPY does not allow a range for the destination vector not specifying consecutive
elements (i.e. along the first dimension):

VEC�COPY V��� W����� � O�K�

VEC�COPY V�������� V�������� � O�K�

VEC�COPY V�������� V�������� � O�K�

VEC�COPY V�������� V�������� � NOT allowed

VEC�COPY V�������� V�������� � NOT allowed

Enter HELP VECTOR for more information on vector addressing.

362 Chapter 12. VECTOR

VECTOR/INPUT vname � values �

VNAME C “Vector name”

VALUES C “Value list” D��+� Separate Vararg

Enter values into a vector from the terminal. Example:

VEC�INPUT V�
���� ��� ���� ����� ������ �������

If many equal values have to be entered consecutively, one can specify just one value and precede it by a
repetition factor and an asterisk. Example:

VEC�INPUT V �"� � �"� ���! VEC�INPUT V � � � � � � � � � �

Enter HELP VECTOR for more information on vector addressing.

VECTOR/PRINT vname � dense �

VNAME C “Vector name”

DENSE I “Output density” D�� R������

Write to the terminal the content of a vector. Enter HELP VECTOR for more information on vector ad-
dressing.

If DENSE.EQ.0 the output is one vector element per line. If DENSE.EQ.1 the output for a sequence of
identical vector elements is compressed to two lines stating the start and end indices. If DENSE.EQ.2 the
output for a sequence of identical vector elements is compressed to a single line.

VECTOR/READ vlist fname � format opt match �

VLIST C “Vector list”

FNAME C “File name” D��+�

FORMAT C “Format” D��+�

OPT C “Options” D��OC�

MATCH C “Matching pattern” D��+�

Possible OPT values are:

OC

O

�+�

C

Enter values into vector(s) from a file. A format can be specified, e.g. FORMAT=’F10.5,2X,F10.5’, or
the free format is used if FORMAT is not supplied.

If vector(s) are not existing they will be created of the size as read from the file.

Vectors in the list VLIST are separated by a comma and embedded blanks are not allowed. If subscripts
are present in vector names, the smallest one is taken.

363

OPT is used to select between the following options:

�OC� file is Opened� read and then Closed �default case�

�O� file is Opened and then read �left open for further reading�

� � file is read �already open� left so for further reading�

�C� file is read and then Closed �already open�

If the character ’Z’ is present in OPT, the vector elements equal to zero after reading are set to the latest
non-zero element value (for example reading 1 2 3 0 0 4 0 5 will give 1 2 3 3 3 4 4 5).

MATCH is used to specify a pattern string, restricting the vectorfilling only to the records in the file which
verify the pattern. Example of patterns:

�string� match a string �starting in column ��

��string� do not match a string �starting in column ��

�string��n� match a string� starting in column n

�string��"� match a string� starting at any column

Enter HELP VECTOR for more information on vector addressing.

VECTOR/WRITE vlist � fname format chopt �

VLIST C “Vector list”

FNAME C “File name” D��+�

FORMAT C “Format” D�����X�G���	��

CHOPT C “Options” D��OC�

Possible CHOPT values are:

OC

O

�+�

C

Write to a file the content of vector(s). If FNAME=’ ’ the content is written to the terminal. A format can
be specified, e.g. FORMAT=’F10.5,2X,F10.5’, or the default one is used if FORMAT is not supplied.

Vectors in the list VLIST are separated by a comma and embedded blanks are not allowed. If subscripts
are present in vector names, the smallest one is taken.

CHOPT is used to select between the following options:

�OC� file is Opened� written and then Closed �default case�

�O� file is Opened and then written �left open for further writing�

� � file is written �already open� left so for further writing�

�C� file is written and then Closed �already open�

Enter HELP VECTOR for more information on vector addressing.

VECTOR/DRAW vname � id chopt �

364 Chapter 12. VECTOR

VNAME C “Vector name”

ID C “Histogram Identifier” D��������

CHOPT C “Options” D��+�

Possible CHOPT values are:

�+� Draw an histogram.

C Draw a smooth curve.

S Superimpose plot on top of existing picture.

� Add contents of ID to last plotted histogram.

B Select Bar chart format.

L Connect channels contents by a line.

P Draw the current polymarker at each channel.

" Draw a * at each channel.

Draw vector VNAME interpreting it as a histogram. Optionally save the contents in histogram ID.

VECTOR/HFILL vname id

VNAME C “Vector name”

ID C “Histogram Identifier”

Fill the existing histogram ID with vector VNAME. Note that the command VECTOR/PLOT can auto-
matically book, fill and plot the contents of a vector.

VECTOR/PLOT vname � id chopt �

VNAME C “Vector name”

ID C “Histogram Identifier” D��������

CHOPT C “Options” D��+�

Possible CHOPT values are:

�+� Draw an histogram.

C Draw a smooth curve.

S Superimpose plot on top of existing picture.

� Add contents of ID to last plotted histogram.

B Select Bar chart format.

L Connect channels contents by a line.

P Draw the current polymarker at each channel.

" Draw a * at each channel.

Each element of VNAME is used to fill an histogram which is automatically booked with 100 channels
and then plotted. If VNAME has the form VNAME1%VNAME2 then a scatter-plot of vector VNAME1
versus VNAME2 is plotted. If ID is given different of 12345, then a 2-Dim histogram is created with

365

40 bins by 40 bins and filled. One can use the command VECTOR/HFILL to fill an already existing
histogram.

VECTOR/FIT x y ey func � chopt np par step pmin pmax errpar �

X C “Vector of X coordinates”

Y C “Vector of Y coordinates”

EY C “Vector of errors on Y” D����

FUNC C “Function name”

CHOPT C “Character options” D��+�

NP I “Number of parameters” D�� R�����

PAR C “Vector of parameters”

STEP C “Vector of steps size”

PMIN C “Vector of lower bounds”

PMAX C “Vector of upper bounds”

ERRPAR C “Vector of errors on parameters”

Possible CHOPT values are:

�+� Do the fit, plot the result and print the parameters.

� Do not plot the result of the fit. By default the fitted function is drawn unless the option
’N’ below is specified.

N Do not store the result of the fit bin by bin with the histogram. By default the function
is calculated at the middle of each bin and the fit results stored with the histogram data
structure.

Q Quiet mode. No print

V Verbose mode. Results after each iteration are printed By default only final results are
printed.

B Some or all parameters are bounded. The vectors STEP,PMIN,PMAX must be specified.
Default is: All parameters vary freely.

L Use Log Likelihood. Default is chisquare method.

D The user is assumed to compute derivatives analytically using the routine HDERIV. By
default, derivatives are computed numerically.

W Sets weights equal to 1. Default weights taken from the square root of the contents or
from HPAKE/HBARX (PUT/ERRORS).

M The interactive Minuit is invoked.

E Performs a better Error evaluation (MIGRAD + HESSE + MINOS).

Z FUNC is the user fitting model

Fit a user defined function to the points defined by the two vectors X and Y and the vector of associated
errors EY. See command Histo/Fit for explanation of parameters. Note that if option ’W’ is specified or
EY=’?’ (default), the array EY is ignored. Option ’L’ is not available.

When option �Z� is given� FUNC is the user fitting model�

366 Chapter 12. VECTOR

FUNC is a subroutine with the calling sequence�

Subroutine FUNC�N�X�Y�EY�NPAR�IFLAG�NPFITS�

where

� X�N��Y�N��EY�N� are the input vectors�

� NPAR the number of parameters

� NPFITS is an output parameter � Number of points used in the fit

The user must declare the common�HCFITD�FITPAD�����FITFUN in FUNC

12.1 OPERATIONS

Simple arithmetic operations between vectors. In all the operations only the minimum vector length is
considered, i.e. an operation between a vector A of dimension 10 and a vector B of dimension 5 will
involve the first 5 elements in both vectors. If the destination vector does not exist, it is created with the
same length as the source vector.

VECTOR/OPERATIONS/VBIAS vnam� bias vnam�

VNAM� C “Source vector name”

BIAS R “Bias value”

VNAM� C “Destination vector name”

VNAM2(I) = BIAS + VNAM1(I)

VECTOR/OPERATIONS/VSCALE vnam� scale vnam�

VNAM� C “Source vector name”

SCALE R “Scale factor”

VNAM� C “Destination vector name”

VNAM2(I) = SCALE * VNAM1(I)

VECTOR/OPERATIONS/VADD vnam� vnam� vnam�

VNAM� C “First source vector name”

VNAM� C “Second source vector name”

VNAM� C “Destination vector name”

VNAM3(I) = VNAM1(I) + VNAM2(I)

VECTOR/OPERATIONS/VMULTIPLY vnam� vnam� vnam�

VNAM� C “First source vector name”

VNAM� C “Second source vector name”

VNAM� C “Destination vector name”

VNAM3(I) = VNAM1(I) * VNAM2(I)

12.1. OPERATIONS 367

VECTOR/OPERATIONS/VSUBTRACT vnam� vnam� vnam�

VNAM� C “First source vector name”

VNAM� C “Second source vector name”

VNAM� C “Destination vector name”

VNAM3(I) = VNAM1(I) - VNAM2(I)

VECTOR/OPERATIONS/VDIVIDE vnam� vnam� vnam�

VNAM� C “First source vector name”

VNAM� C “Second source vector name”

VNAM� C “Destination vector name”

VNAM3(I) = VNAM1(I) / VNAM2(I) (or 0 if VNAM2(I)=0)

Chapter 13: HISTOGRAM

Manipulation of histograms, Ntuples. Interface to the HBOOK package.

HISTOGRAM/FILE lun fname � lrecl chopt �

LUN I “Logical unit number” R�����

FNAME C “File name”

LRECL I “Record length in words” D�����

CHOPT C “Options” D��+�

Possible CHOPT values are:

�+� Existing file is opened (read mode only).

N A new file is opened.

U Existing file is opened to be modified.

D Reset lock.

Open an HBOOK direct access file. If LUN is 0 the next free logical unit will be used. If LRECL is 0 the
system will determine the correct record length of an existing file.

HISTOGRAM/LIST � chopt �

CHOPT C “Options” D��+�

Possible CHOPT values are:

�+� List histograms and Ntuples in the current directory.

I A verbose format is used (HINDEX), (only for //PAWC).

S List with histograms sorted by increasing IDs.

List histograms and Ntuples in the current directory.

HISTOGRAM/DELETE id

ID C “Histogram Identifier” Loop

Delete histogram/Ntuple ID in Current Directory (memory). If ID=0 delete all histograms and Ntuples.
To delete histograms in disk files use command HIO/HSCRATCH.

HISTOGRAM/PLOT � id chopt �

ID C “Histogram Identifier” Loop Minus

CHOPT C “Options” D��+� Minus

Possible CHOPT values are:

368

369

�+� Draw the histogram.

C Draw a smooth curve.

S Superimpose plot on top of existing picture.

� Add contents of ID to last plotted histogram.

� Substract contents of ID to last plotted histogram.

�� Draw the delta with the last plotted histogram.

B Select Bar chart format.

L Connect channels contents by a line.

P Draw the current polymarker at each channel or cell.

" Draw a * at each channel.

K Must be given if option ’U’ is given later.

U Update channels modified since last call.

E Draw error bars and current marker.

E� Draw error bars without symbols clipping.

E� Draw small lines at the end of the error bars.

E� Draw error rectangles.

E� Draw a filled area through the end points of the vertical error bars.

E� Draw a smoothed filled area through the end points of the vertical error bars.

A Axis labels and tick marks are not drawn.

BOX Draw 2-Dim with proportional boxes.

COL Draw 2-Dim with a color table.

Z Used with COL or SURF, it draws the color map.

SURF Draw as a surface plot (angles are set via the command angle).

SURF� Draw as a surface with color levels

SURF� Same as SURF1 but without cell lines.

SURF� Same as SURF but with the contour plot (in color) on top.

SURF� Draw as a surface with Gouraud shading.

LEGO Draw as a lego plot (angles are set via the command angle).

LEGO� Draw lego plot with light simulation.

LEGO� Draw lego plot with color levels.

BB Suppress the Back Box on 3D plots.

FB Suppress the Front Box on 3D plots.

CONT Draw 2-Dim as a contour plot (15 levels).

TEXT Draw 2-Dim as a table.

CHAR Draw 2-Dim with characters (a la HBOOK).

HIST Draw only histogram (no errors or associated function).

FUNC Draw only the associated function (not the histogram).

CYL Cylindrical coordinates for 3D plots.

POL Polar coordinates for 3D plots.

SPH Spherical coordinates for 3D plots.

370 Chapter 13. HISTOGRAM

PSD Pseudo-rapidity/phi coordinates for 3D plots.

Plot a single histogram or a 2-Dim projection. If ID=0 or ID=* all the histograms in the current directory
are plotted. Each plotted histogram will start either a new picture or a new zone in the current picture.

Histogram subranges can be specified in � different ways�

�� h�pl id�ic��ic�� with ic� and ic� integers means plot

from channel ic� to channel ic�

�� h�pl id�x��x�� with x� and x� reals �with a �� means plot

from channel corresponding to x�

Note that the mixed mode h�pl id�x��ic�� is also accepted

This subrange works also for ��DIM cases�

Ex� Histo�plot ��������� or Histo�plot ������
���������

A specific histogram cycle can be accessed:

PAW ! h�pl id&nc � cycle number nc is used �default is highest cycle�

1 Dim histograms could be plotted with option LEGO or SURF. In this case the angles are THETA=1 and
PHI=-1. When option ’E’ is used, the marker type can be changed with SET MTYP, the marker size with
SET KSIZ, the marker color with SET PMCI.

To plot projection X of ID type

PAW ! HI�PLOT ID�PROX

To plot band � in Y of ID type

PAW ! HI�PLOT ID�BANY��

To plot slice � in Y of ID type

PAW ! HI�PLOT ID�SLIY��

In addition to the Cartesian coordinate systems, Polar, cylindrical, spherical, pseudo-rapidity/phi coordi-
nates are available for LEGO and SURFACE plots, including stacked lego plots. For example:

PAW ! Histo�plot �������� LEGO��CYL � stacked cylindrical lego plot

PAW ! Histo�plot �������� LEGO��POL � polar

PAW ! Histo�plot �������� LEGO��SPH � spherical

PAW ! Histo�plot �������� LEGO��PSD � pseudo�rapidity�phi

Note that the viewing angles may be changed via the command ANGLES. The axis, the front box, and
the back box can be suppressed on 3D plots with the options ’A’, ’FB’ and ’BB’.

HISTOGRAM/ZOOM � id chopt icmin icmax �

ID C “Histogram Identifier” Loop Minus

CHOPT C “Options” D��+�

ICMIN I “First channel” D��

ICMAX I “Last channel” D�����

Possible CHOPT values are:

371

�+� Plot the zoomed histogram.

C Draw a smooth curve.

S Superimpose plot on top of existing picture.

� Add contents of ID to last plotted histogram.

B Select Bar chart format.

L Connect channels contents by a line.

P Draw the current polymarker at each channel.

" Draw a * at each channel.

Plot a single histogram between channels ICMIN and ICMAX. Each plotted histogram will start either
a new picture or a new zone in the current picture. If no parameters are given to the command, then the
system waits for two points using the graphics cursor. To quit ZOOM, click the right button of the mouse
or CRTL/E.

HISTOGRAM/MANY˙PLOTS idlist

IDLIST C “List of histogram Identifiers” Vararg

Plot one or several histograms into the same plot. Plotted histograms are superimposed on the same zone
of the picture.

HISTOGRAM/PROJECT id

ID C “Histogram Identifier” Loop

Fill all booked projections of a 2-Dim histogram. Filling is done using the 2-D contents of ID.

HISTOGRAM/COPY id� id� � title �

ID� C “First histogram Identifier”

ID� C “Second histogram Identifier” Loop

TITLE C “New title” D��+�

Copy a histogram (not Ntuple) onto another one. Bin definition, contents, errors, etc. are preserved. If
TITLE is not given, ID2 has the same title as ID1.

HISTOGRAM/FIT id func � chopt np par step pmin pmax errpar �

ID C “Histogram Identifier”

FUNC C “Function name” D��+�

CHOPT C “Options” D��+�

NP I “Number of parameters” D�� R�����

PAR C “Vector of parameters”

STEP C “Vector of steps size”

PMIN C “Vector of lower bounds”

PMAX C “Vector of upper bounds”

ERRPAR C “Vector of errors on parameters”

Possible CHOPT values are:

372 Chapter 13. HISTOGRAM

�+� Do the fit, plot the result and print the parameters.

� Do not plot the result of the fit. By default the fitted function is drawn unless the option
’N’ below is specified.

N Do not store the result of the fit bin by bin with the histogram. By default the function
is calculated at the middle of each bin and the fit results stored with the histogram data
structure.

Q Quiet mode. No print

V Verbose mode. Results after each iteration are printed By default only final results are
printed.

B Some or all parameters are bounded. The vectors STEP,PMIN,PMAX must be specified.
Default is: All parameters vary freely.

L Use Log Likelihood. Default is chisquare method.

D The user is assumed to compute derivatives analytically using the routine HDERIV. By
default, derivatives are computed numerically.

W Sets weights equal to 1. Default weights taken from the square root of the contents or
from HPAKE/HBARX (PUT/ERRORS). If the L option is given (Log Likelihood), bins
with errors=0 are excluded of the fit.

M The interactive Minuit is invoked. (see Application HMINUIT below).

E Performs a better Error evaluation (MIGRAD + HESSE + MINOS).

U User function value is taken from /HCFITD/FITPAD(24),FITFUN.

K Keep the settings of Application HMINUIT for a subsequent command.

Fit a user defined (and parameter dependent) function to a histogram ID (1-Dim or 2-Dim) in the specified
range. FUNC may be:

A� The name of a file which contains the user defined

function to be minimized� Function name and file name

must be the same� For example file FUNC�FOR is�

FUNCTION FUNC�X� or FUNC�X�Y� for a ��Dim histogram

COMMON�PAWPAR�PAR���

FUNC�PAR���"X �PAR���"EXP��X�

END

Ex� His�fit �� func�for � � par

When the option U is given� the file FUNC�FOR should look like�

FUNCTION FUNC�X� or FUNC�X�Y� for a ��Dim histogram

DOUBLE PRECISION FITPAD�����FITFUN

COMMON�HCFITD�FITPAD�FITFUN

FITFUN�FITPAD���"X �FITPAD���"EXP��X�

FUNC�FITFUN

END

B� One of the following keywords ���Dim only��

G � to fit Func�par���"exp�����"��x�par�����par����""��

E � to fit Func�exp�par����par���"x�

13.1. 2D˙PLOT 373

Pn� to fit Func�par����par���"x�par���"x""��������par�n���"x""n

Ex� His�fit �� g

C� A combination of the keywords in B with the � operators � or "�

Ex� His�Fit �� p��g �
 par

His�Fit �� p�"g�g � � par

Note that in this case� the order of parameters in PAR must

correspond to the order of the basic functions�

For example� in the first case above� par����� apply to

the polynomial of degree � and par�
�
� to the gaussian while

in the second case par����� apply to the polynomial of degree ��

par���
� to the first gaussian and par�	��� to the second gaussian�

Blanks are not allowed in the expression�

For cases A and C, before the execution of this command, the vector PAR must be filled (via Vector/Input)
with the initial values. For case B, if NP is set to 0, then the initial values of PAR will be calculated
automatically. After the fit, the vector PAR contains the new values of parameters. If the vector ERRPAR
is given, it will contain the errors on the fitted parameters. A bin range may be specified with ID.

Ex� Histo�Fit �������
��

When the Histo/it command is used in a macro, it might be convenient to specify MINUIT directives in
the macro itself via the Application HMINUIT as described in this example:

Macro fit

Application HMINUIT exit

name � par�name�

name � par�name�

migrad

improve

exit

Histo�fit id fitfun�f M

Return

13.1 2D˙PLOT

Plotting of 2-Dim histograms in various formats.

HISTOGRAM/2D˙PLOT/LEGO � id theta phi chopt �

ID C “Histogram Identifier” Loop

THETA R “Angle THETA in degrees” D����

PHI R “Angle PHI in degrees” D����

CHOPT C “Options” D��+�

374 Chapter 13. HISTOGRAM

Possible CHOPT values are:

�+� Hidden line algorithm is used.

� Hidden surface algorithm is used. The colour of the lego is given by SET HCOL CI where
CI is a colour index. For the top and the sides of the lego the same hue is used but with a
different light.

� Hidden surface algorithm is used. The colour of each bar changes according to the value
of Z. It is possible to change the set of colours used with SET HCOL c.L where L define
a palette of colours given by the command ATT/PALETTE.

Draw a lego plot from 2-Dim or 1-Dim histograms. It is also possible to produce stacked lego plots. A
stacked lego plot consists of a superimposition of several histograms, whose identifiers are given in the
command LEGO separated by the character �+�.

PAW ! LEGO ID��ID��ID� � Maximum number of ID�s is ��� The colours of

� each IDn is given by the command ATT�PALETTE

Examples:

PAW ! SET HCOL � � The colour the histogram is � �red�

PAW ! LEGO �� � Display a lego with lines

PAW ! LEGO �� � � � � Display a lego with different lights

PAW ! LEGO �� � � � � Display a lego with colours

PAW ! PALETTE � � � � � � Create the palette number � with �

� elements� ���

PAW ! SET HCOL ��� � The subsequent stack lego plots will use list �

PAW ! LEGO �������� � Plot a stack of lego plots with lines

PAW ! LEGO �������� � � � � Plot a stack of lego plots with light

Notes: - The commands OPTION BAR, SET BARW and SET BARO act on lego plots

� The options � and � must be used only on selective erase

devices�

HISTOGRAM/2D˙PLOT/SURFACE � id theta phi chopt �

ID C “Histogram Identifier” Loop

THETA R “Angle THETA in degrees” D����

PHI R “Angle PHI in degrees” D����

CHOPT C “Options” D��+�

Possible CHOPT values are:

�+� Hidden line algorithm is used.

� Hidden surface algorithm is used and each cell is filled with a colour corresponding to
the Z value (or grey scale with PostScript). It is possible to change the set of colours
used with SET HCOL ic.L where L define a palette of colours given by the command
ATT/PALETTE.

13.2. CREATE 375

� Similar to option ’1’ except that the cell lines are not drawn. This is very useful to draw
contour plots with colours if THETA=90 and PHI=0.

� Surface is drawn with a contour plot in color on top. The contour plot is drawn with the
colors defined with the command PALETTE.

� Surface is drawn with Gouraud shading.

Draw a surface plot from 2-Dim or 1-Dim histograms. With this command it is possible to draw color
contour plots:

PAW ! ATT�PAL � � � � � � Define the palette � with � elements

PAW ! SET HCOL ��� � Set the list � as colours for histograms

PAW ! SET NDVZ � � Set the number of Z divisions to �

PAW ! SURF id �� � � � Draw the contour

Note: - The options 1 to 4 must be used only on selective erase devices.

HISTOGRAM/2D˙PLOT/CONTOUR � id nlevel chopt param �

ID C “Histogram Identifier” Loop

NLEVEL I “Number of contour lines” D���

CHOPT C “Options” D����

PARAM C “Vector of contour levels”

Possible CHOPT values are:

� Use colour to distinguish contours.

� Use line style to distinguish contours.

� Line style and colour are the same for all contours.

� The contour is drawn with filled colour levels. The levels are equidistant. The color in-
dices are taken in the current palette (defined with the command PALETTE). If the number
of levels (NLEVEL) is greater than the number of entries in the current palette, the palette
is explore again from the beginning in order to reach NLEVEL.

S Superimpose plot on top of existing picture.

Draw a contour plot from a 2-Dim histogram. If PARAM is not given, contour levels are equidistant. If
given, the vector PARAM may contain up to 50 values.

13.2 CREATE

Creation (�booking�) of HBOOK objects in memory.

HISTOGRAM/CREATE/1DHISTO id title ncx xmin xmax � valmax �

376 Chapter 13. HISTOGRAM

ID C “Histogram Identifier” Loop

TITLE C “Histogram title” D��+�

NCX I “Number of channels” D����

XMIN R “Low edge” D���

XMAX R “Upper edge” D�����

VALMAX R “Maximum bin content” D���

Create a one dimensional histogram. The contents are set to zero. If VALMAX=0, then a full word is
allocated per channel, else VALMAX is used as the maximum bin content allowing several channels to
be stored into the same machine word.

HISTOGRAM/CREATE/PROFILE id title ncx xmin xmax ymin ymax � chopt �

ID C “Histogram Identifier”

TITLE C “Histogram title” D��+�

NCX I “Number of channels” D����

XMIN R “Low edge in X” D���

XMAX R “Upper edge in X” D�����

YMIN R “Low edge in Y” D����E��

YMAX R “Upper edge in Y” D���E��

CHOPT C “Options” D��+�

Possible CHOPT values are:

�+� Error on mean

S Spread option

Create a profile histogram. Profile histograms accumulate statistical quantities of a variable y in bins of
a variable x. The contents are set to zero.

HISTOGRAM/CREATE/BINS id title ncx xbins � valmax �

ID C “Histogram Identifier”

TITLE C “Histogram title” D��+�

NCX I “Number of channels” D����

XBINS C “Vector of NCX+1 low-edges”

VALMAX R “Maximum bin content” D���

Create a histogram with variable size bins. The low-edge of each bin is given in vector XBINS (NCX+1)
values. The contents are set to zero. See 1DHISTO for VALMAX.

HISTOGRAM/CREATE/2DHISTO id title ncx xmin xmax ncy ymin ymax � valmax �

13.2. CREATE 377

ID C “Histogram Identifier” Loop

TITLE C “Histogram title” D��+�

NCX I “Number of channels in X” D���

XMIN R “Low edge in X” D���

XMAX R “Upper edge in X” D����

NCY I “Number of channels in Y” D���

YMIN R “Low edge in Y” D���

YMAX R “Upper edge in Y” D����

VALMAX R “Maximum bin content” D���

Create a two dimensional histogram. The contents are set to zero. See 1DHISTO for VALMAX.

HISTOGRAM/CREATE/PROX id

ID C “Histogram (2-Dim) Identifier” Loop

Create the projection onto the x axis. The projection is not filled until the Histo/Project command is ex-
ecuted.

To plot projection X of ID type�

PAW ! HI�PLOT ID�PROX

HISTOGRAM/CREATE/PROY id

ID C “Histogram (2-Dim) Identifier” Loop

Create the projection onto the y axis. The projection may be filled with Histo/Project.

To plot projection Y of ID type�

PAW ! HI�PLOT ID�PROY

HISTOGRAM/CREATE/SLIX id nslices

ID C “Histogram (2-Dim) Identifier” Loop

NSLICES I “Number of slices”

Create projections onto the x axis, in y-slices. The projection may be filled with Histo/Project.

To plot slice � in X of ID type�

PAW ! HI�PLOT ID�SLIX��

HISTOGRAM/CREATE/SLIY id nslices

ID C “Histogram (2-Dim) Identifier” Loop

NSLICES I “Number of slices”

Create projections onto the y axis, in x-slices. The projection may be filled with Histo/Project.

To plot slice � in Y of ID type�

PAW ! HI�PLOT ID�SLIY��

378 Chapter 13. HISTOGRAM

HISTOGRAM/CREATE/BANX id ymin ymax

ID C “Histogram (2-Dim) Identifier” Loop

YMIN R “Low edge in Y”

YMAX R “Upper edge in Y”

Create a projection onto the x axis, in a band of y. Several bands can be defined on the one histogram.
The projection may be filled with Histo/Project.

To plot band � in X of ID type�

PAW ! HI�PLOT ID�BANX��

HISTOGRAM/CREATE/BANY id xmin xmax

ID C “Histogram (2-Dim) Identifier” Loop

XMIN R “Low edge in X”

XMAX R “Upper edge in X”

Create a projection onto the y axis, in a band of x. Several bands can be defined on the one histogram.
The projection may be filled with Histo/Project.

To plot band � in Y of ID type�

PAW ! HI�PLOT ID�BANY��

HISTOGRAM/CREATE/TITLE˙GLOBAL � chtitl chopt �

CHTITL C “Global title” D��+�

CHOPT C “Options” D��+�

Possible CHOPT values are:

�+� The global title is plotted at the top of each picture.

U If the option ’UTIT’ is on, a user title is plotted at the bottom of each histogram.

Set the global title. The size and the Y position of the global title may be changed by the commands SET
GSIZ and SET YGTI respectively. The size and the Y position of the user title may be changed by the
commands SET TSIZ and SET YHTI respectively.

13.3 HIO

Input/Output operations of histograms.

HISTOGRAM/HIO/HRIN id � icycle iofset �

ID C “Histogram Identifier” Loop

ICYCLE I “Cycle number” D����

IOFSET I “Offset” D��

13.3. HIO 379

Read histogram/Ntuple ID from the current directory on direct access file to memory. An identical his-
togram is created but with an ID equal to that of the original histogram plus the offset IOFSET. Identifier
may be ’0’ or ’*’ (for all histograms). If ICYCLE i 1000 and ID=0 read all histograms in all subdirecto-
ries as well. If IOFSET = 99999 then the contents of histogram ID on the disk file are added to the current
histogram in memory if it exists. For example to add all histograms from FILE1 and FILE2 in memory,
the sequence of commands can be:

PAW ! Histo�File � FILE�

PAW ! Hrin �

PAW ! Histo�File � FILE�

PAW ! Hrin � � �����

HISTOGRAM/HIO/HROUT id � chopt �

ID C “Histogram Identifier” Loop

CHOPT C “Options” D��+�

Possible CHOPT values are:

�+� Write histo/Ntuple ID from memory to current directory.

T Writes all histograms in subdirectories as well.

Write histo/Ntuple ID from memory to current directory. Identifier may be ’0’ or ’*’ (for all histograms).

HISTOGRAM/HIO/HSCRATCH id

ID C “Histogram Identifier” Loop

Delete histogram ID in Current Directory on disk. If ID=’0’ or ’*’ delete all histograms. To delete his-
tograms in memory use command HISTO/DELETE.

HISTOGRAM/HIO/HFETCH id fname

ID C “Histogram Identifier”

FNAME C “File name”

Fetch histogram ID from file FNAME. FNAME has been created by the old version of HBOOK3 (Un-
formatted).

HISTOGRAM/HIO/HREAD id fname

ID C “Histogram Identifier”

FNAME C “File name”

Read histogram ID from file FNAME. FNAME has been created by the old version of HBOOK3 (For-
matted).

380 Chapter 13. HISTOGRAM

HISTOGRAM/HIO/PRINT id � chopt �

ID C “Histogram Identifier” Loop

CHOPT C “Options” D��+�

Possible CHOPT values are:

�+� Print histograms.

S Only statistics (Number of entries, mean, RMS, underflow, overflow) are printed.

Print histograms (line-printer format) on screen. The command OUTPUT˙LP may be used to change the
output file.

HISTOGRAM/HIO/DUMP id

ID C “Histogram Identifier” Loop

Dump the histogram ZEBRA data structure on the terminal.

HISTOGRAM/HIO/OUTPUT˙LP � lun fname �

LUN I “Logical unit number” D�

FNAME C “File name” D��+�

Change the HBOOK �line printer� file name. If FNAME=’ ’ then OUTPUT is appended to an already
opened file on unit LUN. If LUN is negative, the file is closed and subsequent output is directed to unit
6.

HISTOGRAM/HIO/GLOBAL˙SECT gname

GNAME C “Global section name” D��+�

Map the global section GNAME (VAX only). The current directory is changed to //GNAME.

HISTOGRAM/HIO/GRESET id

ID C “Histogram Identifier”

Reset histogram ID in the global section.

13.4 OPERATIONS

Histogram operations and comparisons.

HISTOGRAM/OPERATIONS/ADD id� id� id� � c� c� option �

ID� C “First histogram Identifier”

ID� C “Second histogram Identifier”

ID� C “Result histogram Identifier”

C� R “Scale factor for ID1” D���

C� R “Scale factor for ID2” D���

OPTION C “Option” D��+�

13.4. OPERATIONS 381

Possible OPTION values are:

�+�

E

Add histograms: ID3 = C1*ID1 + C2*ID2. Applicable to 1-Dim and 2-Dim histograms. See command
HRIN to add histograms with same IDS from different files. If option ’E’ is set, error bars are calculated
for ID3.

HISTOGRAM/OPERATIONS/SUBTRACT id� id� id� � c� c� option �

ID� C “First histogram Identifier”

ID� C “Second histogram Identifier”

ID� C “Result histogram Identifier”

C� R “Scale factor for ID1” D���

C� R “Scale factor for ID2” D���

OPTION C “Option” D��+�

Possible OPTION values are:

�+�

E

Subtract histograms: ID3 = C1*ID1 - C2*ID2. Applicable to 1-Dim and 2-Dim histograms. If option ’E’
is set, error bars are calculated for ID3.

HISTOGRAM/OPERATIONS/MULTIPLY id� id� id� � c� c� option �

ID� C “First histogram Identifier”

ID� C “Second histogram Identifier”

ID� C “Result histogram Identifier”

C� R “Scale factor for ID1” D���

C� R “Scale factor for ID2” D���

OPTION C “Option” D��+�

Possible OPTION values are:

�+�

E

Multiply histogram contents: ID3 = C1*ID1 * C2*ID2. Applicable to 1-Dim and 2-Dim histograms. If
option ’E’ is set, error bars are calculated for ID3.

HISTOGRAM/OPERATIONS/DIVIDE id� id� id� � c� c� option �

382 Chapter 13. HISTOGRAM

ID� C “First histogram Identifier”

ID� C “Second histogram Identifier”

ID� C “Result histogram Identifier”

C� R “Scale factor for ID1” D���

C� R “Scale factor for ID2” D���

OPTION C “Option” D��+�

Possible OPTION values are:

�+�

E

Divide histograms: ID3 = C1*ID1 / C2*ID2. Applicable to 1-Dim and 2-Dim histograms. If option ’E’
is set, error bars are calculated for ID3.

HISTOGRAM/OPERATIONS/RESET id � title �

ID C “Histogram Identifier” Loop

TITLE C “New title” D��+�

Reset contents and errors of an histogram. Bin definition is not modified.

HISTOGRAM/OPERATIONS/DIFF id� id� � chopt �

ID� C “First Histogram Identifier”

ID� C “Second Histogram Identifier”

CHOPT C “Options” D��D�

Possible CHOPT values are:

�+� The comparison is done only on the shape of the two histograms.

N Include also comparison of the relative normalization of the two histograms, in addition
to comparing the shapes. PROB is then a combined confidence level taking account of
absolute contents.

D Debug printout, produces a blank line and two lines of information at each call, including
the ID numbers, the number of events in each histogram, the PROB value, and the maxi-
mum Kolmogorov distance between the two histograms. For 2-Dim histograms, there are
two Kolmogorov distances (see below). If ’N’ is specified, there is a third line of output
giving the PROB for shape alone, and for normalization.

O Overflow, requests that overflow bins be taken into account.

U Underflow, requests that underflow bins be taken into account.

L Left: include x-underflows

R Right: include x-overflows

T Top: include y-overflows

B Bottom: include y-underflows

F� Histogram 1 has no error (is a function)

F� Histogram 2 has no error (is a function)

13.4. OPERATIONS 383

Test of compatibility for two 1-Dim histograms ID1 and ID2. A probability PROB is calculated as a num-
ber between zero and one, where PROB near one indicates very similar histograms, and PROB near zero
means that it is very unlikely that the two arose from the same parent distribution. For two histograms
sampled randomly from the same distribution, PROB will be (approximately) uniformly distributed be-
tween 0 and 1. See discussion in HBOOK manual under �HDIFF- Statistical Considerations�. By default
(if no options are selected with CHOPT) the comparison is done only on the shape of the two histograms,
without consideration of the difference in numbers of events, and ignoring all underflow and overflow
bins.

HISTOGRAM/OPERATIONS/SORT id � chopt �

ID C “Histogram Identifier” Loop

CHOPT C “Options” D��XA�

Possible CHOPT values are:

X X-axis is being treated.

Y Y-axis is being treated.

Z Z-axis is being treated.

A Alphabetically.

E Reverse alphabetical order.

D By increasing channel contents.

V By decreasing channel contents.

Sort the alphanumeric labels of the histogram ID according to the value of CHOPT.

HISTOGRAM/OPERATIONS/SMOOTH id � option sensit smooth �

ID C “Histogram or Ntuple Identifier” Minus

OPTION C “Options” D���M�

SENSIT R “Sensitivity parameter” D��� R�������

SMOOTH R “Smoothness parameter” D��� R�������

Possible OPTION values are:

� Replace original histogram by smoothed.

� Replace original histogram by smoothed.

� Store values of smoothed function and its parameters without replacing the original his-
togram (but see note below) - the smoothed function can be displayed at editing time - see
HISTOGRAM/PLOT.

M Invoke multiquadric smoothing (see HBOOK routine HQUAD).

Q Invoke the 353QH algorithm (see HBOOK routine HSMOOF).

S Invoke spline smoothing.

V Verbose (default for all except 1-D histogram).

N Do not plot the result of the fit.

F Write Fortran77 function to HQUADF.DAT (multiquadric only)

384 Chapter 13. HISTOGRAM

Smooth a histogram or �simple� ntuple. (�simple� = 1, 2, or 3 variables.)

For multiquadric smoothing, SENSIT controls the sensitivity to statistical fluctuations. SMOOTH con-
trols the (radius of) curvature of the multiquadric basis functions.

Notes:

1) The multiquadric basis functions are SQRT(R**2+D**2), where R is the distance from the �centre�,
and D is a scale parameter and also the curvature at the �centre�. �Centres� are located at points where
the 2nd differential or Laplacian of event density is statistically significant.

2) The data must be statistically independent, i.e. events (weighted or unweighted) drawn randomly from
a parent probability distribution or differential cross-section.

For spline smoothing, SENSIT and SMOOTH control the no. of knots (= 10 * SENSIT) and degree of
splines (= SMOOTH + 2) (thus if SENSIT and SMOOTH are at their default values a 10-knot cubic spline
is used).

Notes:

1) The spline option ALWAYS replaces the contents of a 2-D histogram. (Also chi-squared is unavailable
in this case.)

2) Use the SPLINE command for more flexibility.

HISTOGRAM/OPERATIONS/SPLINE id � isel knotx kx �

ID C “Histogram Identifier”

ISEL I “Option flag” D��

KNOTX I “Number of knots” D���

KX I “Degree of the spline” D��

Smooth 1-Dim or 2-Dim histogram ID using B-splines. If ID is a 1-Dim histogram then:

ISEL � ��� replace original histogram by smoothed�

� � superimpose as a function when editing�

If ID is a 2-Dim histogram then original contents are replaced.

HISTOGRAM/OPERATIONS/PARAM id � isel r�min maxpow �

ID C “Histogram Identifier”

ISEL I “Control word” D���

R�MIN R “Min correlation coefficient” D���

MAXPOW I “Max degree of polynomials” D�� R�����

Perform a regression on contents of the 1-Dim histogram ID. Find the best parameterization in terms of
elementary functions (regressors). See HBOOK guide HPARAM. Control word ISEL=1000*T +100*W
+10*S +P

S � � resulting parametric fit superimposed on histogram

� no superposition

P � � minimal output� the residual sum of squares is printed

� normal output� in addition� the problem characteristics and

options are printed& also the standard deviations and

13.5. GET˙VECT 385

confidence intervals of the coefficients�

� extensive output� the results of each iteration are printed

with the normal output�

W � � weights on histogram contents are already defined via HBARX

or HPAKE� If not they are taken to be equal to the

square�root of the contents�

� weights are equal to ��

T � � monomials will be selected as the elementary functions

� Chebyshev polynomials with a definition region� ������

� Legendre polynomials with a definition region� ������

� shifted Chebyshev polynomials with a definition region� �����

� Laguerre polynomials with a definition region� ����infinite�

� Hermite polynomials with a definition region� ��inf��inf�

The FORTRAN code of the parameterization is written onto the file FPARAM.DAT.

HISTOGRAM/OPERATIONS/HSETPR param value

PARAM C “Parameter name” D��FEPS�

VALUE R “Parameter value” D������

Set various parameters for command PARAM.

13.5 GET˙VECT

Fill a vector from values stored in HBOOK objects.

HISTOGRAM/GET˙VECT/CONTENTS id vname

ID C “Histogram Identifier”

VNAME C “Vector name”

Get contents of histogram ID into vector VNAME.

HISTOGRAM/GET˙VECT/ERRORS id vname

ID C “Histogram Identifier”

VNAME C “Vector name”

Get errors of histogram ID into vector VNAME.

HISTOGRAM/GET˙VECT/FUNCTION id vname

ID C “Histogram Identifier”

VNAME C “Vector name”

Get function associated to histogram ID into vector VNAME.

386 Chapter 13. HISTOGRAM

HISTOGRAM/GET˙VECT/ABSCISSA id vname

ID C “Histogram Identifier”

VNAME C “Vector name”

Get values of center of bins abscissa into vector VNAME.

HISTOGRAM/GET˙VECT/REBIN id x y ex ey � n ifirst ilast chopt �

ID C “Histogram Identifier”

X C “Name of vector X”

Y C “Name of vector Y”

EX C “Name of vector EX”

EY C “Name of vector EY”

N I “Number of elements to fill” D����

IFIRST I “First bin” D��

ILAST I “Last bin” D����

CHOPT C “Option” D��+�

Possible CHOPT values are:

N Do not normalize values in Y

The specified channels of the 1-Dim histogram ID are cumulated (rebinned) into new bins. The final
contents of the new bin is the average of the original bins by default. If the option N is given, the final
contents of the new bin is the sum of the original bins. Get contents and errors into vectors, grouping bins.
Bin width and centers are also extracted. Allow to combine 2, 3 or more bins into one.

E�g�� REBIN ��� X Y EX EY �� ��
�

will group by � channels �� to
� and return

new abscissa� contents and errors�

Errors in X are equal to ���"BINWIDTH�

N�B��

REBIN ID X Y EX EY is a convenient way to return in

one call abscissa� contents and errors for ��Dim histogram�

In this case the errors in X are equal to ���"BINWIDTH�

13.6 PUT˙VECT

Replace histogram contents with values in a vector.

HISTOGRAM/PUT˙VECT/CONTENTS id vname

ID C “Histogram Identifier”

VNAME C “Vector name”

Replace contents of histogram with values of vector VNAME.

13.7. SET 387

HISTOGRAM/PUT˙VECT/ERRORS id vname

ID C “Histogram Identifier”

VNAME C “Vector name”

Replace errors of histogram with values of vector VNAME.

13.7 SET

Set histogram attributes.

HISTOGRAM/SET/MAXIMUM id vmax

ID C “Histogram Identifier” Loop

VMAX R “Maximum value”

Set the maximum value on the Y axis. To select again an automatic scale, just set VMAX less then the
minimum.

HISTOGRAM/SET/MINIMUM id vmin

ID C “Histogram Identifier” Loop

VMIN R “Minimum value”

Set the minimum value on the Y axis. To select again an automatic scale, just set VMIN greater then the
maximum.

HISTOGRAM/SET/NORMALIZE˙FACTOR id � xnorm �

ID C “Histogram Identifier”

XNORM R “Normalization factor” D��

Set the contents/errors normalization factor. Only valid for histograms (1-Dim). (does not change con-
tents, only presentation).

HISTOGRAM/SET/SCALE˙FACTOR˙2D id � xscale �

ID C “Histogram Identifier”

XSCALE R “Scale factor” D��

Set the scale factor for histograms (2-Dim).

HISTOGRAM/SET/IDOPT id option

ID C “Histogram Identifier”

OPTION C “Options”

Set options for histogram ID. (* means default).

388 Chapter 13. HISTOGRAM

Possible OPTION values are:

SETD" Set all options to the default values

SHOW Print all the options currently set

BLAC 1 Dim histogram printed with X characters

CONT" 1 Dim histogram is printed with the contour option

STAR 1 Dim histogram is printed with a * at the Y value

SCAT" Print a 2 Dim histogram as a scatter-plot

TABL Print a 2 Dim histogram as a table

PROE" Plot errors as the error on mean of bin in Y for profile histograms

PROS Plot errors as the Spread of each bin in Y for profile histograms

STAT Mean value and RMS computed at filling time

NSTA" Mean value and RMS computed from bin contents only

ERRO Errors bars printed as SQRT(contents)

NERR" Do not print print error bars

INTE Print the values of integrated contents bin by bin

NINT" Do not print integrated contents

LOGY 1 Dim histogram is printed in Log scale in Y

LINY" 1 Dim histogram is printed in linear scale in Y

PCHA" Print channel numbers

NPCH Do not print channel numbers

PCON" Print bin contents

NPCO Do not print bin contents

PLOW" Print values of low edge of the bins

NPLO Do not print the low edge

PERR Print the values of the errors for each bin

NPER" Do not print the values of the errors

PFUN Print the values of the associated function bin by bin

NPFU" Do not print the values of the associated function

PHIS" Print the histogram profile

NPHI Do not print the histogram profile

PSTA" Print the values of statistics (entries,mean,RMS,etc.)

NPST Do not print values of statistics

ROTA Print histogram rotated by 90 degrees

NROT" Print histogram vertically

�EVL Force an integer value for the steps in the Y axis

AEVL" Steps for the Y axis are automatically computed

�PAG Histogram is printed over two pages

�PAG" Histogram is printed in one single page

AUTO" Automatic scaling

Chapter 14: FUNCTION

Operations with Functions. Creation and plotting.

FUNCTION/FUN1 id ufunc ncx xmin xmax � chopt �

ID C “Histogram Identifier”

UFUNC C “Name of the function”

NCX I “Number of channels” D���� R���

XMIN R “Low edge” D���

XMAX R “Upper edge” D�����

CHOPT C “Options” D��P�

Possible CHOPT values are:

P The function is drawn.

Create a one dimensional histogram and fill the bins with the values of a (single-valued) function. The
function UFUNC may be given in two ways:

-An expression of the variable x in case of a simple function.

Ex� FUN� �� sin�x��x ��� � ��

-UFUNC is the name of a COMIS function in a text file with the name UFUNC.FTN or UFUNC.FOR or
UFUNC FORTRAN (Apollo, VAX, IBM).

FUNCTION/FUN2 id ufunc ncx xmin xmax ncy ymin ymax � chopt �

ID C “Histogram (2-Dim) Identifier”

UFUNC C “Name of the function”

NCX I “Number of channels in X” D��� R���

XMIN R “Low edge in X” D���

XMAX R “Upper edge in X” D����

NCY I “Number of channels in Y” D��� R���

YMIN R “Low edge in Y” D���

YMAX R “Upper edge in Y” D����

CHOPT C “Options” D��S�

Possible CHOPT values are:

�+� Create the histogram.

S The function is drawn as a surface.

L The function is drawn as a lego plot.

C The function is drawn as a contour plot.

389

390 Chapter 14. FUNCTION

Create a two dimensional histogram and fill the bins with the values of a (two-valued) function. The
function UFUNC may be given in two ways:
-An expression of the variables x and y in case of a simple function.

Ex� FUN� �� abs�sin�x""��y""��� �� �� � �� �� � C

-UFUNC is the name of a COMIS function in a text file with the name UFUNC.FTN or UFUNC.FOR or
UFUNC FORTRAN (Apollo, VAX, IBM).

FUNCTION/DRAW ufunc � chopt �

UFUNC C “Name of function”

CHOPT C “Options” D��+�

Draw the function UFUNC in the current ranges specified by the command: RANGE XLOW XUP YLOW
YUP ZLOW ZUP and with THETHA and PHI angles specified by the command ANGLE THETA PHI.
The number of points to evaluate the function between XLOW, XUP YLOW, YUP, and ZLOW, ZUP can
be changed by the command POINTS NPX NPY NPZ.

The function UFUNC may be given in two ways: - As an expression of the variables X, Y, Z in the case
of a

simple function�

Ex�

PAW ! FUN�DRAW X"Y"Z � equivalent to �

PAW ! FUN�DRAW X"Y"Z��

PAW ! FUN�DRAW X""��Y""��Z""���

PAW ! FUN�DRAW X""��Y""����Z""�

- As a COMIS function in a text file with the name UFUNC.FTN or

UFUNC�FOR or UFUNC FORTRAN �Apollo� VAX� IBM��

Ex�

The file FTEST�FOR contains�

FUNCTION FTEST�X�Y�Z�

IF�X�LE����AND�Y�LE����THEN

FTEST��X�����""���Y�����""���Z�����""�����

ELSE

FTEST��X�����""���Y�����""���Z�����""�����

ENDIF

END

PAW ! RANGE �� � �� � �� � � Define the range as a cube between �� � in

the �

directions

PAW ! POINTS �� �� �� � FUN�DRAW will use �� points in the �

directions

PAW ! FUN�DRAW FTEST�FOR � Draw � spheres centered on ����������������

and ������������� with the radius SQRT�����

and SQRT�����

391

FUNCTION/PLOT ufunc xlow xup � chopt �

UFUNC C “Name of function”

XLOW R “Lower limit”

XUP R “Upper limit”

CHOPT C “Options” D��C�

Possible CHOPT values are:

C Draw a smooth curve.

S Superimpose plot on top of existing picture.

� Add contents of ID to last plotted histogram.

L Connect channel contents by a line.

P Draw the current polymarker at each channel.

" Draw a * at each channel.

Plot single-valued function UFUNC between XLOW and XUP. The function UFUNC may be given in
two ways:

-An expression of the variable x in case of a simple function.

Ex� FUN�PLOT sin�x��x � ��

-UFUNC is the name of a COMIS function in a text file with the name UFUNC.FTN or UFUNC.FOR or
UFUNC FORTRAN (Apollo, VAX, IBM). For example, if the file FTEST.FOR contains:

FUNCTION FTEST�X�

FTEST�SIN�X�"EXP�����"X�

END

Then, FUN/PLOT FTEST.FOR 0 10, will interpret the Fortran code in the file FTEST.FOR and draw the
function for x between 0 and 10.

The number of points to evaluate the function between XLOW and XUP can be changed by the command
/FUN/POINTS. Only 1-Dim functions are supported. For 2-Dim use FUN2.

FUNCTION/POINTS � npx npy npz �

NPX I “Number of points on X axis” D��� R�������

NPY I “Number of points on Y axis” D��� R�������

NPZ I “Number of points on Z axis” D��� R�������

Change the number of points to be used by FUN/DRAW and FUN/PLOT. Note that the default for NPX
is 20 for 3-Dim plots (FUN/DRAW) but it is 100 for 1-Dim plots (FUN/PLOT).

FUNCTION/RANGE � xlow xup ylow yup zlow zup �

392 Chapter 14. FUNCTION

XLOW R “X Lower limit” D����

XUP R “X Upper limit” D���

YLOW R “Y Lower limit” D����

YUP R “Y Upper limit” D��

ZLOW R “Z Lower limit” D����

ZUP R “Z Upper limit” D���

Change the range used by FUN/DRAW.

FUNCTION/ANGLE � theta phi �

THETA R “Angle THETA in degrees” D����

PHI R “Angle PHI in degrees” D����

Change the angle used by FUN/DRAW and HISTO/PLOT.

Chapter 15: NTUPLE

Ntuple creation and related operations.

NTUPLE/CREATE idn title nvar chrzpa nprime varlist

IDN C “Ntuple Identifier”

TITLE C “Ntuple title” D��+�

NVAR I “Number of variables” D�� R������

CHRZPA C “RZ path” D��+�

NPRIME I “Primary allocation” D�����

VARLIST C “Names of the NVAR variables” Vararg

Create a Row˙Wise˙Ntuple. (See below how to create a Column˙Wise˙Ntuple). The Ntuple may be cre-
ated either purely in memory or possibly using an automatic overflow to an RZ file. Memory allocation
works in the following way. If CHRZPA = ’ ’, then a bank of NPRIME words is created. When the space
in this bank is exhausted at filling time, a new linear structure of length NPRIME is created and this pro-
cess will be repeated should the structure become exhausted. If CHRZPA contains the top directory name
of an already existing RZ file (as declared with HISTO/FILE), then a bank of length NPRIME is also cre-
ated, but at filling time, this bank is moved to the RZ file when full, and then it is overwritten by any new
entries. The Ntuple can be filled by calling HFN from an interactively defined subroutine called by the
command NTUPLE/LOOP or by NTUPLE/READ. The number of variables per data point is given in the
parameter NVAR.

To create a Column˙Wise˙Ntuple, create a file, eg. newnt.f with:

Subroutine Newnt

character"
 mother�in��in�

common�ntupc�mother�in��in�

common�ntupr�xover

lin���

lout���

id��

open�unit�lin�file��datafile�dat��status��old��

call hropen�lout��NTUPLE���New�Ntuple�hbook���N�������istat�

call hbnt�id��New Ntuple��� ��

call hbname�id��ntupr��xover��XOVER��

call hbnamc�id��ntupc��mother��MOTHER�c"
�in��c"
�in��c"
��

�� read�lin������end����err����xover�mother�in��in�

1000 format(e15.7,2x,a,7x,a,7x,a)

call hfnt���

go to ��

�� call hrout�id�icycle�� ��

call hrend��NTUPLE��

close �lin�

close �lout�

end

393

394 Chapter 15. NTUPLE

and then call this routine via the CALL command:

PAW ! call newnt�f

NTUPLE/LIST

List all Ntuples in the Current Directory. Note that the command HISTO/LIST lists all histograms and
Ntuples in the Current Directory.

NTUPLE/PRINT idn

IDN C “Ntuple Identifier”

Print a summary about Ntuple IDN. Number of entries, variables names and limits are listed.

NTUPLE/HMERGE outfile infiles

OUTFILE C “Output file name” D��+�

INFILES C “Input file names” D��+� Vararg

Merge HBOOK files containing histograms and/or ntuples. Ntuples are merged and histograms with the
same ID are added. The INFILES are merged into a new file OUTFILE. If OUTFILE already exists, it is
overwritten.

NTUPLE/DUPLICATE id� id� � newbuf title option �

ID� C “Source Ntuple”

ID� I “New Ntuple”

NEWBUF I “Buffer size” D���

TITLE C “Title of ID2” D��+�

OPTION C “Options” D��A�

Possible OPTION values are:

�+�

A Set the Addresses of variables in common /PAWCR4,etc/.

M Create ID2 as a Memory resident Ntuple.

�+� Copy ID1 structure in ID2. Reset addresses of variables.

The structure of Ntuple ID1 is duplicated in a new ntuple ID2. This command is useful when one wants
to create an ntuple with the same variables but only a subset of the events. NEWBUF is the buffer size
for ID2. If NEWBUFh0 the buffer size of ID1 is taken. If NEWBUF=0 the current buffer size is taken
(10000 words for RWNs). NEWBUFi0 will be the new buffer size. If TITLE=’ ’ ID2 has the same title
as ID1. In case of a disk-resident ntuple (default), ID2 is created into the current working directory which
must be open in WRITE mode.

Example of use�

Macro Dup

395

Histo�file � source�hbook

Histo�file � New�hbook � N

Ntuple�Dupl ��lun���� ��

Nt�loop ��lun���� duplic�f

Hrout ��

Return

File duplic�f�

real function duplic�dum�

include �

"�" The call to HGNT is only necessary for CWNs

"�" For RWNs� replace HFNT by HFN����xvar� where xvar is the name

"�" of the first variable in �PAWCR��

if�some�condition�then

call hgnt����idnevt�ierr�

call hfnt����

endif

duplic���

end

NTUPLE/RECOVER idn

IDN I “Ntuple Identifier”

To recover Ntuple ID. If the job producing the Ntuple crashed or the header was not stored correctly in the
file with HROUT, RECOVER will scan the Ntuple to rebuild the header table and recompute the number
of entries. The file on which the Ntuple resides must be open in Update mode.

NTUPLE/SCAN idn � uwfunc nevent ifirst option varlis �

IDN C “Ntuple Identifier”

UWFUNC C “User cut function” D����

NEVENT I “Number of events” D���������

IFIRST I “First event” D��

OPTION C “Options” D��+�

VARLIS C “Names of the NVARS variables to scan” D��+� Vararg

Possible OPTION values are:

�+�

S Graphical scan (spider plot).

�+� Alphanumeric output of the Ntuple.

A Used with �S� it displays the average spider.

Scan the entries of an Ntuple subject to user cuts. Scan the variables for NEVENT events starting at
IFIRST, requiring that the events satisfy cut UWFUNC. In the case of Alphanumeric output Up to 8 vari-

396 Chapter 15. NTUPLE

ables may be scanned, the default is to scan the first 8 variables.

When the option S (Spider plot) is specified, each event is presented in a graphical form (R versus PHI
plot) to give a multi dimensional view of the event. Each variable is represented on a separate axis with
a scale ranging from the minimum to the maximum value of the variable. A line joins all the current
points on every axis where each point corresponds to the current value of the variable. When the HCOL
parameter is specified (eg SET HCOL 1002) a fill area is drawn.

VARLIS may contain a list of the original variables, expressions of the original variables or/and ranges
of variables. A range can be given in the following form:

� means all variables �default��

var��var� means from variable var� to variable var� included�

var�� means from variable var� to the last�

�var� means from variable � to variable var�

For example, if IDN=30 has the 3 variables X,Y,Z,U,V,W one can do:

PAW ! scan ��

PAW ! scan �� option�s

each event is drawn as a spider plot�

PAW ! scan �� option�sa

each event is drawn as a spider plot and the average spider

plot is also drawn�

PAW ! scan �� option�s X�Z W

PAW ! scan �� z!��

PAW ! scan �� z!�� � � � z abs�x� y�z x func�for

where func�for is a COMIS function returning an expression

of the original variables� This function func�for may be

generated automatically by the PAW command�

PAW ! uwfunc �� func�for

NTUPLE/LOOP idn uwfunc � nevent ifirst �

IDN C “Identifier of Ntuple”

UWFUNC C “Selection function or cut identifier” D��+�

NEVENT I “Number of events” D���������

IFIRST I “First event” D��

Invoke the selection function UWFUNC for each event starting at event IFIRST. In UWFUNC, the user
can fill one or several histograms previously booked. The loop will be terminated if UWFUNC returns a
negative value. For more information about UWFUNC, see command NTUPLE/PLOT.

NTUPLE/MERGE idn� idn� � uwfunc nevent ifirst �

IDN� C “Identifier of first Ntuple”

IDN� C “Identifier of second Ntuple”

UWFUNC C “Selection function or cut identifier” D��+�

NEVENT I “Number of events” D���������

IFIRST I “First event” D��

397

Merge two Disk-Resident Row-Wise-Ntuples. Invoke the selection function UWFUNC for each of the
NEVENT events starting at event IFIRST of Ntuple IDN1. Suppose you have 4 files containing Ntuple
ID=10 and you want to merge the 4 files into the file 4, the sequence is:

PAW !Histo�file � file�

PAW !Histo�file � file�

PAW !Histo�file � file�

PAW !Histo�file � file� ���� U

PAW !Ntuple�Merge ��lun���� ��lun����

PAW !Ntuple�Merge ��lun���� ��lun����

PAW !Ntuple�Merge ��lun���� ��lun����

PAW !Ntuple�plot ���x ���������

Only the events with UWFUNCi0 are appended to IDN2. IDN2 may be empty. Note that the Ntuple vari-
ables may be redefined inside UWFUNC. For more information about UWFUNC, see command NTU-
PLE/PLOT. Note that this command cannot be used for memory resident ntuples or CWNs. Use instead
the command HMERGE.

NTUPLE/PROJECT idh idn � uwfunc nevent ifirst �

IDH C “Identifier of histogram to fill”

IDN C “Identifier of Ntuple”

UWFUNC C “Selection function or cut identifier” D��+�

NEVENT I “Number of events” D���������

IFIRST I “First event” D��

Project an Ntuple onto a 1-Dim or 2-Dim histogram, possibly using a selection function or predefined
cuts. IDN may be given as IDN or IDN.X , IDN.Y%X , IDN.1, IDN.2%1. Y%X means variable Y of
Ntuple IDN versus variable X. For more information about UWFUNC, see command NTUPLE/PLOT.
The histogram IDH is not reset before filling. This allows several PROJECTs from different Ntuples.

NTUPLE/READ idn fname � format chopt nevent �

IDN C “Ntuple Identifier”

FNAME C “File name”

FORMAT C “Format” D��"�

CHOPT C “Options” D��+�

NEVENT I “Number of events” D��������

Read Ntuple values from the alphanumeric file FNAME with the format specifications in FORMAT. Be-
fore executing this command, the Ntuple IDN must have been created with the command Ntuple/Create.

NTUPLE/PLOT idn � uwfunc nevent ifirst nupd option idh �

398 Chapter 15. NTUPLE

IDN C “Ntuple Identifier”

UWFUNC C “Selection function” D����

NEVENT I “Number of events” D���������

IFIRST I “First event” D��

NUPD I “Frequency to update histogram” D����������

OPTION C “Options” D��+�

IDH I “Identifier of histogram to fill” D��������

Possible OPTION values are:

�+�

C Draw a smooth curve.

S Superimpose plot on top of existing picture.

� Add contents of IDN to last plotted ntuple.

B Bar chart format.

L Connect channels contents by a line.

P Draw the current polymarker at each channel or cell.

" Draw a * at each channel.

U Update channels modified since last call.

E Compute (HBARX) and draw error bars with current marker.

A Axis labels and tick marks are not drawn.

�+� Draw the ntuple as an histogram.

PROF Fill a Profile histogram (mean option).

PROFS Fill a Profile histogram (spread option).

PROFI Fill a Profile histogram (integer spread option).

Project and plot an Ntuple as a (1-Dim or 2-Dim) histogram with automatic binning (ID=1000000), pos-
sibly using a selection algorithm. See parameter CHOPT in command HISTO/PLOT to have more details
on the possible OPTION.

IDN may be given as IDN

IDN�X

IDN�Y)X

IDN��

IDN��)�

IDN�expression�

IDN�expression�)expression�

Y%X means a scatter-plot Y(I) versus X(I) where I is the event number. 2%1 means a scatter-plot vari-
able 2 versus variable 1. In this example, X and Y are the names of the variables 1 and 2 respectively.
Expression 1 is any numerical expression of the Ntuple variables. It may include a call to a COMIS func-
tion.

UWFUNC may have the following forms�

399

�� UWFUNC���� or missing �only IDN given�� No selection is applied�

�� UWFUNC is a CUT or combination of valid CUTS created by the

command NTUPLE�CUTS� Ex�

UWFUNC��� means use cut ��

UWFUNC����AND���

UWFUNC��NOT�����AND����

UWFUNC�����OR�����AND���

�� UWFUNC is a FORTRAN expression

Ex� X!�����AND��Y Z������

�� UWFUNC is a variable name or an arithmetic expression

Ex� NT�PLOT ���X Y weight of each event is variable Y

NT�PLOT ���X X""��Y""�

�� UWFUNC is the name of a selection function in a text file with

the name UWFUNC�FTN� UWFUNC�FOR� UWFUNC FORTRAN �Apollo� VAX� IBM��

The command UWFUNC may be used to generate automatically this function. For example if IDN=30
is an Ntuple with 3 variables per event and 10000 events, then

NTUPLE�PLOT ���X SELECT�FOR

will process the 10000 events of the Ntuple IDN=30. For each event, the function SELECT is called. It
returns the weight of the event. Example:

FUNCTION SELECT�X�

DIMENSION X���

IF�X���""��X���""��LT�����THEN

SELECT���

ELSE

SELECT���

ENDIF

END

The file SELECT.FOR (VAX), SELECT.FTN (Apollo) or SELECT FORTRAN (IBM) can be edited from
PAW using the command EDIT. Note that if the suffix (.FTN, .FORTRAN or .FOR) is omitted, then
COMIS will start from the precompiled version in memory and not from the file. Results of a selection
can be saved in a MASK (See NTUPLE/MASK).

Ex� NT�PLOT ���X Z ���!!MNAME���

means mark bit � in mask MNAME for all events satisfying

the condition Z ���

A MASK may also be given as input to a selection expression.

Ex� NT�PLOT ���X MNAME����and�Z ���

means all events satisfying bit � of MNAME AND Z ���

It is possible to plot expressions of the original variables.

400 Chapter 15. NTUPLE

Ex �� NT�PLOT ���SIN�X�)SQRT�Y""��Z""�� Z ���

plots a scatter�plot of variable U versus V for all events

satisfying the condition Z ���� U and V are defined as being

U�SIN�X� and V�SQRT�X""��Y""��

Ex �� NT�PLOT ���FUNC�FTN�X�)�SIN�Y����� Z ����and�TEST�FTN!

plots a scatter�plot of variable U versus V for all events

satisfying the condition �Z ��� and the result of the COMIS

function TEST�FTN !
�� U and V are defined as being

U�Result of the COMIS function FUNC�FTN� V�SIN�Y����

The default identifier of the histogram being filled is IDH=1000000. At the next invocation of this com-
mand, it will be overwritten. If either NEVENT or IFIRST or NUPD are negative, then the identifier of
the histogram being filled will be taken as IDH=-NEVENT or IDH=-IFIRST or IDH=-NUPD. IDH may
have been created with H/CREATE. Before filling IDH, the contents of IDH are reset if IDH already ex-
ists. Use NTUPLE/PROJECT to cumulate several passes into IDH. Note that IDH not equal to 1000000
is a convenient way to force user binning. Every NUPD events, the current status of the histogram is
displayed.

NTUPLE/CHAIN � cname entry �

CNAME C “Chain Name” D��+�

ENTRY C “Chain Member(s) j -P Path” D��+� Vararg

Using the chain command one can build logical Ntuples of unlimited size. The chain command creates
an Ntuple chain CNAME and add member(s) ENTRY. If the chain already exists the member is simply
added. More than one member may be specified at a time. A chain can contain three different type of
members: files, logical units and other chains. The member type is deduced from the format of the mem-
ber. Entries containing the characters . / : ; $ are considered to be files, entries like //LUN4 are assumed
to be logical units and all other type of entries are chains. Chain names must be unique. After a chain has
been defined it can be traversed, by all Ntuple commands (NT/PLOT, NT/PROJ, NT/LOOP), by chang-
ing the current working directory to the chain: CD //CNAME. A member may be deleted from a chain
by preceding it by a - sign. A complete chain can be deleted by preceding the chain name by a -. All
chains can be deleted by giving a - as chain name. Not specifying any parameters results in the listing of
all defined chains. A chain tree will be printed by appending a i character to the chain name. The path
of all chain members, from chain CNAME downwards, can be changed by specifying a chain path. This
is done by giving a chain name followed by the -P option and a path specification. The chain path will
be pre-pended to the member names. Chains down the tree can override a path specified higher up in the
tree.

Examples of chain �Ntuple tree� definition�

CHAIN Year�� Jan Feb March April May ���

CHAIN Jan Week� Week� Week� Week�

CHAIN Week� file��hbook file��hbook ���

CHAIN Week� file��hbook file��hbook ���

CD ��Jan

NT�PLOT ���e & loop over all files in chains Week�� Week�� Week�� ���

CD ��Year�� & loop over all files in chains Jan� Feb� March� ���

CHAIN Year�� �P �user�delphi & all files from chain Year�� downward will

401

be changed to �user�delphi�file��hbook�

���

CHAIN Year��! & print the chain tree Year��

CHAIN �Feb & delete chain Feb

CHAIN Jan �file��hbook & delete file��hbook from chain Jan

NTUPLE/DRAW idn � value option �

IDN C “Ntuple Identifier”

VALUE C “Isosurface value (for 3-D)” D����

OPTION C “Options” D��+�

Draw a simple ntuple (1, 2 or 3 variables). For simple ntuples, with 1, 2 or 3 variables per event, this
command will draw a histogram with HPLOT options. If the ntuple has an associated functional repre-
sentation, as the result, e.g., of using SMOOTH, it will also draw the function. No selections are allowed.

For 3-variable ntuples which have been SMOOTHed, give a VALUE for the isosurface of event density. If
VALUE=0, an isosurface value half way between the minimum and maximum fitted smoothing function
values will be used.

NTUPLE/WAVE idn � lun �

IDN C “Ntuple Identifier”

LUN I “Logical unit no.” D���

Produce a formatted file suitable for Wavefront’s Data Visualiser. Only for simple 3-variable ntuples
which have been SMOOTHed. A file with logical unit no. LUN must previously have been opened with
the FORTRAN/FILE command.

NTUPLE/CUTS cutid � option fname wkid �

CUTID C “Cut identifier”

OPTION C “Options” D��P� Minus

FNAME C “File name” D��+�

WKID I “Workstation identifier” D��

Possible OPTION values are:

G Define a new cut CUTID using graphics input on the latest 1-Dim or 2-Dim projection of
the Ntuple. For a 1-Dim projection, give 2 points cutmin,cutmax. For a 2-Dim projection,
give up to 20 points to delimit the selected area. The polygon will automatically be closed
by PAW.

X Same as G but with a tracking cross cursor.

P Print definition of cut CUTID.

� Reset cut CUTID.

R Read definition of cut CUTID from file FNAME.

W Write definition of cut CUTID on file FNAME (text file).

D Draw cut contour.

402 Chapter 15. NTUPLE

Define the CUTID with the format $nn. nn is an integer between 1 and 99. This cut can then be used in
subsequent commands NTUPLE/PLOT, PROJECT.

OPTION��expression� allows to define the cut CUTID� For example

the command�

PAW ! CUTS �� X ��
�and�Y SQRT�X�

defines the cut ���

Note that CUTID=$0 means all cuts except for ’G’ option. When option G is selected, graphical cuts are
only operational for plots of the original Ntuple variables, not for expressions of these variables. WKID
allows to define in which window the locator is performed (option ’G’ or ’X’ only).

NTUPLE/CSELECT � chopt csize �

CHOPT C “Options” D��N�

CSIZE R “Comment size” D����

Possible CHOPT values are:

�+� Comment is left adjusted to the current zone

R Comment is right adjusted to the current zone

C Comment is centered to the current zone

B Comment is drawn below the top zone line

N All subsequent NTUPLE/PLOT commands will print the selection mechanism with the
options specified in CHOPT.

To write selection mechanism as a comment on the picture. By default, the comment is drawn left justified
above the top zone line. Example:

CSEL All coming NT�PLOT commands will draw a comment

of size CSIZE����
cm Left justified�

CSEL NRB ��� All coming NT�PLOT commands will draw a comment

of size ��� cm Right justified Below the top line�

CSEL CB Draw previous selection mechanism Centered Below

the top zone line�

The Global title font (SET GFON) with precision 1 is used to draw the text.

NTUPLE/MASK mname � chopt number �

MNAME C “Mask name”

CHOPT C “Options” D��+�

NUMBER I “Bit number” D��

Possible CHOPT values are:

�+� Existing mask on file MNAME.MASK is attached for READ only.

403

U Existing mask on file MNAME.MASK is attached for UPDATE.

N A new mask on file MNAME.MASK is created for NUMBER events.

P The comments for all active bits is printed.

C Mask is closed.

R Reset bit number NUMBER.If NUMBER=99, resets all bits.

Perform Operations with masks. A mask is a direct-access file with the name MNAME.MASK. It must
contain as many 32 bit words as there are events in the associated Ntuple. Masks are interesting when
only a few events of a Ntuple are selected with a time consuming selection algorithm. For example if the
command:

NT�PLOT ���X Z ����AND�SELECT�FTN!!MNAME�
�

then for all events in Ntuple 30 satisfying the condition above, the bit 6 in the corresponding mask words
will be set. One can then use the mask as selection mechanism. Example:

NT�PLOT ���X MNAME�
�

will produce the same results than the NT/PLOT command above, but will be much faster if only a small
fraction of all the events is selected. MASKS are automatically saved across PAW sessions on files. Ex-
ample:

MASK TEST N �����

creates a new mask on file TEST�MASK with enough words to

process a Ntuple with ����� events

MASK TEST UP

opens an existing mask for update and

prints the active selection bits with explanation

NTUPLE/UWFUNC idn fname � chopt �

IDN C “Ntuple Identifier”

FNAME C “File name”

CHOPT C “Options” D��+�

Possible CHOPT values are:

�+� Generate the FORTRAN skeleton of a selection function.

E Present the selection function in the local editor.

P Code to print events is generated (not valid for new Ntuples).

T Names of the Ntuple variables are generated in DATA statements (not valid for new
Ntuples).

To generate the FORTRAN skeleton of a selection function or the INCLUDE file with the columns dec-
laration.
A FORTRAN function is generated if the FNAME is of the form, xxx.f, xxx.for, xxx.fortran. Otherwise

404 Chapter 15. NTUPLE

an INCLUDE file is generated. Example: If Ntuple ID=30 has variable names [X,Y,Z,ETOT,EMISS,etc]
then:

NTUPLE/UWFUNC 30 SELECT.FOR will generate the file SELECT.FOR with:

FUNCTION SELECT�XDUMMY�

COMMON�PAWIDN�IDNEVT�VIDN��VIDN��VIDN��X�Y�Z�ETOT�EMISS�etc

SELECT���

END

Then using the command EDIT one can modify this file which could then look something like (IDNEVT
is the event number):

FUNCTION SELECT�XDUMMY�

COMMON�PAWIDN�IDNEVT�VIDN��VIDN��VIDN��X�Y�Z�ETOT�EMISS�etc

IF�X""��Y""��GT�Z""��OR�ETOT�GT�����THEN

SELECT���

ELSE

SELECT���

ENDIF

END

If in a subsequent command NTUPLE/PLOT, the selection function SELECT is used, then:

If NTUPLE�PLOT ���ETOT SELECT�FOR

VIDN��ETOT

If NTUPLE�PLOT ���SQRT�X""��Y""��)�ETOT�EMISS�

VIDN��ETOT�EMISS

VIDN��SQRT�X""��Y""��

NTUPLE/UWFUNC 30 SELECT.INC will generate an include file. This include file may be referenced
in a selection function in the following way:

FUNCTION SELECT�XDUMMY�

include �select�inc�

SELECT���

IF�X�LE�Y�SELECT���

END

NTUPLE/LINTRA idn � chopt nevent ifirst nvars varlis �

IDN C “Ntuple Identifier”

CHOPT C “Options” D��+�

NEVENT I “Number of events” D���������

IFIRST I “First event” D��

NVARS I “Number of the most significant variables ” D��� R�����

VARLIS C “Names of the NVARS most significant variables ”

Possible CHOPT values are:

405

N The variables are normalized. This option is useful in the case the ranges of variables are
very different

P Print more results about the analysis

Data reduction on Ntuple. The method used is the PRINCIPAL COMPONENTS ANALYSIS. The Prin-
cipal Components Analysis method consists in applying a linear transformation to the original variables
of a ntuple. This transformation is described by an orthogonal matrix and is equivalent to a rotation of
the original space to a new set of coordinates vectors, which hopefully provide easier identification and
dimensionality reduction. This matrix is real positive definite and symmetric and has all its eigenval-
ues greater than zero. Among the family of all complete orthonormal bases, the basis formed by the
eigenvectors of the covariance matrix and belonging to the largest eigenvalues corresponds to the most
significant features for the description of the original ntuple. Reduction of the variables for NEVENT
events starting at IFIRST The default is to take all the 20 first variables. This command creates a file :
-i XTOXSI.FORTRAN or xtoxsi.for,xtoxsi.ftn. This file contains a Fortran function which computes the
new variables. These new variables can be visualized in PAW with for example:

PAW ! Ntuple�plot id�xtoxsi�ftn���

PAW ! Ntuple�plot id�xtoxsi�ftn���)xtoxsi�ftn���

NTUPLE/VMEM � mxsize �

MXSIZE I “Maximum size of dynamic memory buffer in MBytes” D��� R������

Change or show the size of the dynamic memory buffer used to store Ntuple columns during Ntuple anal-
ysis. The default is 10 MB. Giving a value of 0 turns the buffer facility off. The upper limit is 128 MB, but
be sure you have enough swap space and realize that when the buffer is swapped to disk you loose part of
the benefit of the buffer facility (which is to reduce the number of disk accesses). Omitting the argument
or specifying -1 will show you the current upper limit and used and free space. Giving -2 shows which
columns are currently stored in memory.

Chapter 16: GRAPHICS

Interface to the graphics packages HPLOT and HIGZ.

GRAPHICS/SET � chatt value �

CHATT C “Attribute name” D��SHOW�

VALUE R “Attribute value” D��

Set a specific HPLOT attribute. If CHATT=’SHOW’, print defaults and current values for all attributes. If
CHATT=’*’, restore default values for all attributes. If VALUE=0, the attribute is set to its default value.

���

� HPLSET � Current values in use �

���

� Parameter � Current value � Default value � Explanation �

���

� XSIZ � ����� � ����� � Size along X �

� YSIZ � ����� � ����� � Size along Y �

� XMGL � ���� � ���� � X MarGin Left �

� XMGR � ���� � ���� � X MarGin Right �

� XLAB � ���� � ���� � distance y axis to LABel �

� XVAL � ��� � ��� � distance y axis to axis VALues �

� XTIC � ��� � ��� � X axis TICk marks length �

� YMGL � ���� � ���� � Y MarGin Low �

� YMGU � ���� � ���� � Y MarGin Up �

� YLAB � �
� � �
� � distance x axis to LABel �

� YVAL � ��� � ��� � distance x axis to axis VALues �

� YTIC � ��� � ��� � Y axis TICk marks length �

� YNPG � �
� � �
� � Y position for Number of PaGe �

� YGTI � ���� � ���� � Y position of Global TItle �

� YHTI � ���� � ���� � Y position of Histogram TItle �

� SMGR � ��� � ��� � Stat MarGin Right �)� �

� SMGU � ��� � ��� � Stat MarGin Up �)� �

� KSIZ � ��
 � ��
 � Hershey charact� �HPLKEY� SIZe �

� GSIZ � ��
 � ��
 � Global title SIZe �

� TSIZ � ��
 � ��
 � histogram Title SIZe �

� ASIZ � ��
 � ��
 � Axis label SIZe �

� CSIZ � ��
 � ��
 � Comment and stat SIZe �

� PSIZ � ��
 � ��
 � Page number SIZe �

� VSIZ � ��
 � ��
 � axis Values SIZe �

� SSIZ � ��
 � ��
 � aSterisk SIZe �for functions� �

� �SIZ � ��
 � ��
 � scatter�plot ' table char� SIZe�

� XWIN � ���� � ���� � X space between WINdows �

� YWIN � ���� � ���� � Y space between WINdows �

� HMAX � ��� � ��� � Histogram MAXimum for scale �

� PASS � ���� � ���� � number of PASS for characters �

406

407

� CSHI � ��� � ��� � Character SHIft between � pass �

� BARO � ��� � ��� � BAR histogram Offset �)� �

� BARW � ��� � ��� � BAR histogram Width �)� �

� DASH � ��� � ��� � length of basic DASHed segment �

� DMOD � � � � � Dash MODe �or type� for lines �

� GRID � � � � � GRID line type �

� DATE � � � � � DATE position �

� FILE � � � � � FILE name position �

� STAT � ���� � ���� � STAT values to be plotted �

� FIT � ��� � ��� � FIT values to be plotted �

� HTYP � � � � � Histogram fill area TYPe �

� BTYP � � � � � Box fill area TYPe �

� PTYP � � � � � Picture fill area TYPe �

� FTYP � � � � � Function fill area TYPe �

� HCOL � ��� � ���� � Histogram fill area COLor �

� BCOL � ���� � ���� � Box fill area and shading COLor�

� PCOL � � � � � Picture fill area COLor �

� FCOL � � � � � Function fill area COLor �

� XCOL � � � � � X axis COLor �

� YCOL � � � � � Y axis COLor �

� HWID � � � � � Histogram line WIDth �

� BWID � � � � � Box line WIDth �

� PWID � � � � � Picture line WIDth �

� FWID � � � � � Function line WIDth �

� XWID � � � � � X ticks WIDth �

� YWID � � � � � Y ticks WIDth �

� TFON � � � � � Text �and Title� FONT and PREC �

� GFON � � � � � Global title FONT and PREC �

� VFON � � � � � axis Values FONT and PREC �

� LFON � � � � � axis Labels FONT and PREC �

� CFON � � � � � Comment FONT and PREC �

� NDVX � �������� � �������� � Number of DIVisions for X axis �

� NDVY � �������� � �������� � Number of DIVisions for Y axis �

� NDVZ � �������� � �������� � Number of DIVisions for Z axis �

� FPGN � � � � � First PaGe Number �

� ERRX � ��� � ��� � ERRor on X �) of bin width� �

� �DEF � � � � � �D Plot Option �

� �DEF � � � � � �D Plot Option �

���

���

� IGSET � Current values in use �

���

� Parameter � Current value � Default value � Explanation �

���

� FAIS � � � � � Fill area interior style �

� FASI � � � � � Fill area style index �

408 Chapter 16. GRAPHICS

� LTYP � � � � � Line type �

� BASL � ���� � ���� � Basic segment length �NDC� �

� LWID � ����� � ����� � Line width �

� MTYP � � � � � Marker type �

� MSCF � ����� � ����� � Marker scale factor �

� PLCI � � � � � Polyline color index �

� PMCI � � � � � Polymarker color index �

� FACI � � � � � Fill area color index �

� TXCI � � � � � Text color index �

� TXAL � � � � � � � Text alignment �

� CHHE � ��
� � ���� � Character height �

� TANG � ���� � ���� � Text angle �

� TXFP � � � � � � � Text font and precision �

� PICT � � � � � Current automatic number �

� BORD � � � � � Border flag �

� PASS � � � � � Number of pass in IGTEXT �

� CSHI � ���� � ���� � IGTEXT shift �

� LASI � ���
 � ���
 � Label axis size �

� LAOF � ���� � ���� � Label axis offset �

� TMSI � ���� � ���� � Tick marks size �

� AWLN � ���� � ���� � Axis wire lenght �

� BARO � ���� � ���� � Offset of IGHIST �IGRAPH� bars�

� BARW � ���� � ���� � Width of IGHIST �IGRAPH� bars �

� NCOL �
 �
 � Number of COLors �

� CLIP � � � � � Clipping mode �

� NLIN � �� � �� � Number of line for �D shapes �

� AURZ � � � � � Automatic saving flag �

� DIME � � � � � Dimension used ��D or �D� �

���

GRAPHICS/OPTION � choptn �

CHOPTN C “Option name” D��SHOW�

Set general plotting options for HPLOT. If CHOPTN=’SHOW’ print all current and default options. If
CHOPTN=’*’, restore all default options.

���

� HPLOPT � Option values �

���

� Current � Default � Alternative � Explanation �

���

� VERT � VERT � HORI � VERTical or HORIzontal �

� � � � orientation of paper �

� NEAH � NEAH � EAH � Error bars And Histogram are �

� � � � plotted �if both are present� �

� NCHA � NCHA � CHA � scatter plots drawn with dots �

409

� � � � �NCHA� or � char��bin �CHA� �

� NAST � NAST � AST � functions drawn with �AST� �

� � � � or without �NAST� asterisks �

� SOFT � SOFT � HARD � SOFTware or HARDware characters �

� � � � are used �

� NSQR � NSQR � SQR � size is set to the largest �

� � � � square �SQR� �

� HTIT � HTIT � UTIT � HBOOK TITle �HTIT� �

� � � � or User TITle �UTIT� is printed �

� TAB � TAB � NTAB � table printed as TABles �TAB� �

� � � � or scatter plots �NTAB� �

� BOX � BOX � NBOX � a box is �BOX� or is not �NBOX� �

� � � � drawn around picture �

� NTIC � NTIC � TIC � cross�wires are drawned �TIC� �

� � � � or not �NTIC� on each plot �

� NSTA � NSTA � STA � STAtistics are printed �STA� �

� � � � or not �NSTA� on each plot �

� NFIT � NFIT � FIT � FIT parameters are printed �

� � � � or not �NFIT� on each plot �

� NZFL � NZFL � ZFL � picture is �ZFL� or is not �

� � � � �NZFL� put in Z data base �

� NPTO � NPTO � PTO � PTO �Please Turn Over� �

� � � � �NPTO� �

� NBAR � NBAR � BAR � BAR charts for histogram �

� � � � �NBAR� �

� DVXR � DVXR � DVXI � Integer �DVXI� or Real �DVXR� �

� � � � divisions for X axis �

� DVYR � DVYR � DVYI � Integer �DVYI� or Real �DVYR� �

� � � � divisions for Y axis �

� NGRI � NGRI � GRID � GRID or not grid �NGRI� �

� � � � on X and Y axis �

� NDAT � NDAT � DATE � DATE is printed �DATE� �

� � � � or not �NDAT� on each plot �

� NFIL � NFIL � FILE � FILE name is printed �FILE� �

� � � � or not �NFIL� on each plot �

� A� � A� � A��
 � page format for the plotter �

� � � � �A��A��A��A��A��A��A
� �

� NOPG � NOPG � P � page number is �P � �

� � � � or is not �NOPG� printed �

� LINY � LINY � LOGY � LINear or LOGarithmic scale �

� � � � in Y �

� LINX � LINX � LOGX � LINear or LOGarithmic scale �

� � � � in X �

� LINZ � LINZ � LOGZ � LINear or LOGarithmic scale �

� � � � in Z �Lego or Surface� �

� NHST � HSTA � HNST � Filling statistics �HSTA� �

410 Chapter 16. GRAPHICS

� � � � �HNST� �

���

GRAPHICS/METAFILE � lun metafl chmeta �

LUN I “Logical unit number” D��

METAFL I “Metafile ID” D��

CHMETA C “Metafile name” D��+�

Set the metafile logical unit and metafile type. This command controls the destination of the subsequent
graphics output. Example:

LUN ���� output only on metafile opened on unit ��&

LUN � � output only on screen&

LUN � �� output on both screen and metafile opened on unit ��&

Use the command FORTRAN/FILE to open a new file, FORTRAN/CLOSE to close it. Note that PAW
opens the file PAW.METAFILE on the unit 10 at initialization time.

METAFL� � Appendix E GKS�

METAFL����� HIGZ�PostScript �Portrait��

METAFL����� HIGZ�PostScript �Landscape��

METAFL����� HIGZ�Encapsulated PostScript�

METAFL����� HIGZ�PostScript Color �Portrait��

METAFL����� HIGZ�PostScript Color �Landscape��

METAFL��			 HIGZ�LaTex Encapsulated�

METAFL��		
 HIGZ�LaTex�

The PostScript metafile types have the following format:

��Format��Nx��Ny��Type�

Where�

[Format] Is an integer between 0 and 99 which defines the format of the

paper� For example if Format�� the paper is in the standard

A� format� Format�� and Format�� are the same and

define an A� page�

The A� format is selected by Format����

The US format Letter is selected by Format�����

The US format Legal is selected by Format�����

The US format Ledger is selected by Format�����

[Nx, Ny] Specify respectively the number of zones on the x and y axis.

Nx and Ny are integers between � and ��

[Type] Can be equal to:

411

�� Portrait mode with a small margin at the bottom of the page�

�� Landscape mode with a small margin at the bottom of the page�

�� Portrait mode with a large margin at the bottom of the page�

�� Landscape mode with a large margin at the bottom of the page�

The large margin is useful for some PostScript printers �very

often for the colour printers� as they need more space to grip

the paper for mechanical reasons� Note that some PostScript

colour printers can also use the so called �special A�� format

permitting the full usage of the A� area& in this case larger

margins are not necessary and $#tt Type%�� or � can be used�

�� Encapsulated PostScript� This Type permits the generation of

files which can be included in other documents� for example

in LaTeX files� Note that with this Type� Nx and Ny must always

be equal to �� and Format has no meaning� The size of the

picture

must be specified by the user via the SIZE command� Therefore

the workstation type for Encapsulated PostScript is ����� For

example if the name of an encapsulated PostScript file is

example�eps� the inclusion of this file into a LaTeX file will

be possible via �in the LaTeX file��

#begin$figure%

#epsffile$example�eps%

#caption$Example of Encapsulated PostScript in LaTeX�%

#label$EXAMPLE%

#end$figure%

With Type=1,2,4 and 5 the pictures are centered on the page, and the usable area on paper is proportional
to the dimensions of A4 format. Examples: -111 or -4111 defines an A4 page not divided. -6322 define
an A6 landscape page divided in 3 columns and 2 rows.

�������������������������

� � � � � � �

�������������������������

� � � � �
 �

�������������������������

The first picture will be drawn in the area 1. After each clear the screen, the graphics output will appear
in the next area in the order defined above. If a page is filled, a new page is used with the same grid.
Note that empty pages are not printed in order to save paper. Ignoring formats smaller than A12, the total
number of possible different PostScript workstation types is: 4x9x9x13+1 = 4213 !

GRAPHICS/WORKSTATION iwkid � chopt iwtyp �

IWKID I “Workstation ID” D�� Loop

CHOPT C “Options” D��OA�

IWTYP I “Workstation type” D��

Possible CHOPT values are:

412 Chapter 16. GRAPHICS

O Open a new workstation

C Close a workstation

A Activate a workstation

D Deactivate a workstation

L Give the list of open workstations

To create/delete workstations or change status.

IWKID ! � Do the action specified by CHOPT on the

workstation identified by IWKID�

IWKID � � Do the action specified by CHOPT on all

workstations�

IWKID � Do the action specified by CHOPT on the

workstation identified by �IWKID and the

complementary action on all the others�

GRAPHICS/SLIDE

Invoke the SLIDE package.

16.1 MISC

Miscellaneous HPLOT functions.

GRAPHICS/MISC/NEXT

Clear the screen. Initialize a new HIGZ picture if option ZFL or ZFL1 has been selected. Select the
Normalization Transformation number 1 (cm).

GRAPHICS/MISC/CLR

Clear the screen.

GRAPHICS/MISC/LOCATE � ntpri chopt wkid �

NTPRI C “Transformation with highest priority” D�����

CHOPT C “Options” D��R�

WKID I “Workstation identifier” D��

Possible CHOPT values are:

R Request mode is used to locate the points (default)

S Sample mode is used to locate the points

I Integrate an histogram between 2 bins

� Use the tracking cross (default is cross-hair)

T The output is done on the terminal.

16.2. VIEWING 413

Locate points on the screen using the graphics cursor and output coordinates on terminal. Control is re-
turned when the BREAK (right) mouse button is clicked (or CRTL/E) or when 20 points are located. The
optional parameter NTPRI may be specified to locate a point in the specific transformation number NT-
PRI. NTPRI=-1 (default) means that all the histogram transformation numbers (10, 20, etc.) have priority
on transformation number 1. WKID allows to define in which window the locator is performed.

Note� With the Motif version of PAW the locator is automatically

invoke when the mouse cursor enter the window.

GRAPHICS/MISC/VLOCATE vecx vecy � chopt ntpri wkid �

VECX C “Vector for coordinates X”

VECY C “Vector for coordinates Y”

CHOPT C “Options” D��+� Minus

NTPRI I “Transformation with highest priority” D���

WKID I “Workstation identifier” D��

Possible CHOPT values are:

�+� Use the cross-hair

� Use the tracking cross

� Use the rubber line

L Connect points by a polyline

P Draw the current polymarker at each point

" Draw a * at each point

S Sample mode is used. Allows to see the coordinates of point before clicking

Locate a set of points using the graphics cursor. Return corresponding coordinates in vectors X and Y. If
vectors X or Y do not exist, they are automatically created. Control is returned when the point is outside
picture limits or when the BREAK (right) mouse button is clicked (or CRTL/E). The optional parameter
NTPRI may be specified to locate a point in the specific transformation number NTPRI (see LOCATE).
WKID allows to define in which window the locator is performed.

GRAPHICS/MISC/HMOVE

Change the contents of a histogram channel using the cursor. Position the cursor to the channel to be
changed, trigger graphics input, position the cursor to the new channel value (a rubber band box is used
to visualize the change), trigger graphics input to fix the new value.

16.2 VIEWING

To define Normalization transformations. Either automatically (ZONE and SIZE) or ’by hand’ (SVP,
SWN and SELNT).

GRAPHICS/VIEWING/ZONE � nx ny ifirst chopt �

414 Chapter 16. GRAPHICS

NX I “Number of divisions along X” D��

NY I “Number of divisions along Y” D��

IFIRST I “First division number” D��

CHOPT C “Option” D��+�

Possible CHOPT values are:

�+�

S Redefine zones on current picture

�+� Define the zones for all subsequent pictures.

Subdivide the picture into NX by NY zones, starting at zone IFIRST (count along X first).

GRAPHICS/VIEWING/SIZE � xsize ysize �

XSIZE R “Size along X” D����

YSIZE R “Size along Y” D����

Set the size of the picture. On the terminal, the pictures will have the ratio YSIZE/XSIZE, and, if a metafile
is produced, pictures will be YSIZE by XSIZE cm. This command sets the parameters for the normaliza-
tion transformation number 1 to [0-XSIZE], [0-YSIZE].

GRAPHICS/VIEWING/SVP nt x� x� y� y�

NT I “Normalization transformation number”

X� R “Low X of viewport in NDC” D�� R����

X� R “High X of viewport in NDC” D�� R����

Y� R “Low Y of viewport in NDC” D�� R����

Y� R “High Y of viewport in NDC” D�� R����

Set the viewport of the normalization transformation NT in the Normalized Device Coordinates (NDC).
Note that the command SELNT should be invoke in order to validate the viewport parameters.

GRAPHICS/VIEWING/SWN nt x� x� y� y�

NT I “Normalize transformation number”

X� R “Low X of window in WC” D��

X� R “High X of window in WC” D���

Y� R “Low Y of window in WC” D��

Y� R “High Y of window in WC” D���

Set the window of the normalization transformation NT in World Coordinates (WC). Note that the com-
mand SELNT should be invoke in order to validate the window parameters. For example:

PAW ! Nul � � �� � � Draw an empty frame �����x������

PAW ! Line � � � � � Draw a line in �����x������

PAW ! Swn �� � �� � �� � Change the coordinates to ������x������

PAW ! Selnt �� � Activate the coordinates ������x������

PAW ! Line � � � � � Draw a line in ������x������

16.3. PRIMITIVES 415

GRAPHICS/VIEWING/SELNT nt

NT I “Normalization transformation number”

Select a normalization transformation number.

If ZONE � � is active � then� If ZONE � � is active� then�

�������������������������������� �������������������������������

� � � �

� ������������ ����������� � � ������������������������� �

� � � � � � � � � �

� � NT��� � � NT��� � � � � � �

� � � � � � � � � �

� ������������ ����������� � � � � �

� � � � NT��� � �

� ������������ ����������� � � � � �

� � � � � � � � � �

� � NT��� � � NT��� � � � � � �

� � � � � � � � � �

� ������������ ����������� � � � � �

� � � ������������������������� �

� NT�� � � NT�� �

�������������������������������� �������������������������������

16.3 PRIMITIVES

Call HIGZ drawing primitives

GRAPHICS/PRIMITIVES/PLINE n x y

N I “Number of points”

X C “Vector name for X coordinates”

Y C “Vector name for Y coordinates”

Draw a polyline of N points X,Y in the current Normalization transformation. The PLINE attributes can
be changed with the command SET.

Example:

SET " & OPT " � Reset the defaults

NUL �� � � � � Draw a frame �cf HELP NULL�

" Create vector X and Y �cf HELP SIGMA�

SIGMA X�ARRAY����������

SIGMA Y�X"X

SET PLCI � � The line color is blue

SET LWID
 � The line width is

SET LTYP � � The line type is dashed

PLINE ��� X Y � Draw a ��� points line

416 Chapter 16. GRAPHICS

GRAPHICS/PRIMITIVES/LINE x� y� x� y�

X� R “X first coordinate”

Y� R “Y first coordinate”

X� R “X second coordinate”

Y� R “Y second coordinate”

Draw a line connecting points (X1,Y1) and (X2,Y2) in the current Normalization transformation. This
command is kept for backward compatibility. It has a reverse calling sequence compare to BOX or AR-
ROW and it doesn’t take LOG scales into account. It is recommended to use DLINE instead. The LINE
attributes can be changed with the command SET.

Example:

SET " & OPT " � Reset the defaults

NUL � � � � � Draw a frame �cf HELP NULL�

SET PLCI � � The line color is red

SET LWID
 � The line width is

SET LTYP � � The line type is dotted

LINE � � � � � Draw a line

GRAPHICS/PRIMITIVES/DLINE x� x� y� y�

X� R “X first coordinate”

X� R “X second coordinate”

Y� R “Y first coordinate”

Y� R “Y second coordinate”

Draw a line connecting points (X1,Y1) and (X2,Y2) in the current Normalization transformation taking
care of logarithmic scales. The DLINE attributes can be changed with the command SET.

Example:

SET " & OPT " � Reset the defaults

OPTION LOGY � Log scale on the Y axis�

NUL � � � ��� � Draw a frame �cf HELP NULL�

SET PLCI � � The line color is red

SET LWID
 � The line width is

SET LTYP � � The line type is solid

DLINE � � � �� � Draw a line

GRAPHICS/PRIMITIVES/FAREA n x y

N I “Number of points”

X C “Vector name for X coordinates”

Y C “Vector name for Y coordinates”

Fill the area defined by the N points X,Y in the current Normalization transformation. The FAREA at-
tributes can be changed with the command SET.

Example:

16.3. PRIMITIVES 417

SET " & OPT " � Reset the defaults

NUL ���� ��� ���� ��� � Draw a frame �cf HELP NULL�

" Create vector X and Y �cf HELP SIGMA�

SIGMA X�ARRAY����������������

SIGMA Y�SIN�X�"COS�X�

SIGMA X�COS�X�

SET FACI � � The fill area color is red

SET FAIS � � The fill area interior style is solid

FAREA ��� X Y � Draw a ��� points line

SET FACI � � The fill area color is black

SET FAIS � � The fill area interior style is hollow

FAREA ��� X Y � Draw a ��� points line

SET FAIS � � The fill area interior style is hatched

SET FASI ��� � Defines the type of hatches

FAREA ��� X Y � Draw a ��� points line

GRAPHICS/PRIMITIVES/PMARKER n x y

N I “Number of points”

X C “Vector name for X coordinates”

Y C “Vector name for Y coordinates”

Draw polymarkers at the N points X,Y in the current Normalization transformation. The PMARKER
attributes can be changed with the command SET.

Example:

SET " & OPT " � Reset the defaults

NUL ���� ��� �� � � Draw a frame �cf HELP NULL�

" Create vector X and Y �cf HELP SIGMA�

SIGMA X�ARRAY����������������

SIGMA Y�SIN�X�"COS�X�

SET PMCI
 � The marker color is magenta

SET MTYP � � The marker type is "

SET MSCF � � The marker size is �

PMARKER ��� X Y � Draw a ��� points polymarker

GRAPHICS/PRIMITIVES/BOX x� x� y� y�

X� R “X coordinate of first corner”

X� R “X coordinate of second corner”

Y� R “Y coordinate of first corner”

Y� R “Y coordinate of second corner”

Draw and fill a box with the current fill area and line attributes. Use the current Normalization transfor-
mation. The BOX attributes can be changed with the command SET.

Example:

418 Chapter 16. GRAPHICS

SET " & OPT " � Reset the defaults

NULL � �� � �� � Draw a frame �cf HELP NULL�

SET FAIS � � Fill area interior style hollow

BOX � � � � � Draw a box

SET FAIS � � Fill area interior style solid

BOX � � � � � Draw a box

SET FAIS � � Fill area interior style hatched

SET FASI ��� � Changes the type of hatches

BOX � � � 	 � Draw a box

SET FASI � � Changes the type of hatches

BOX � � � 	 � Draw a box

SET BORD � � The border is requested

SET PLCI � � Line color is red

SET FASI � � Changes the type of hatches

BOX � 	 � 	 � Draw a box

GRAPHICS/PRIMITIVES/FBOX x� x� y� y� x� x� y� y�

X� R “X coord of first corner of ext box”

X� R “X coord of second corner of ext box”

Y� R “Y coord of first corner of ext box”

Y� R “Y coord of second corner of ext box”

X� R “X coord of first corner of int box”

X� R “X coord of second corner of int box”

Y� R “Y coord of first corner of int box”

Y� R “Y coord of second corner of int box”

Draw and fill a frame (2 nested boxes) with the current fill area and line attributes. Use the current Nor-
malization transformation. The FBOX attributes can be changed with the command SET.

Example:

SET " & OPT " � Reset the defaults

NULL � �� � �� � Draw a frame �cf HELP NULL�

SET FAIS � � Fill area interior style hatched

SET FASI � � Changes the type of hatches

SET FACI � � Fill are color is red

SET PLCI � � Line color is blue

SET LWID
 � The line width is

SET BORD � � The border is requested

FBOX � � � � � 	 � 	 � Draw a frame box

GRAPHICS/PRIMITIVES/ARROW x� x� y� y� � size �

16.3. PRIMITIVES 419

X� R “X coordinate of start point”

X� R “X coordinate of end point”

Y� R “Y coordinate of start point”

Y� R “Y coordinate of end point”

SIZE R “Arrow size” D����

Draw an arrow Use the current Normalization transformation. The ARROW attributes can be changed
with the command SET. ARROW and LINE attributes are the same.

�X��Y�� ����! �X��Y�� if SIZE!��

�X��Y�� ���! �X��Y�� if SIZE ��

Example:

SET " & OPT " � Reset the defaults

NULL � �� � 	 � Draw a frame �cf HELP NULL�

ARROW � � � � �� � Draw a simple arrow �left to right�

ARROW � � � � �� � Draw a simple arrow �right to left�

ARROW � � � � ��
 � Draw a double arrow

SET PLCI � � Arrow color is red

ARROW � � � � ��
 � Draw a double arrow

SET LWID
 � Arrow line width is

ARROW � � � � ��
 � Draw a double arrow

SET LTYP � � Arrow line type is dotted

ARROW � �

 ��
 � Draw a double arrow

GRAPHICS/PRIMITIVES/HELIX � x� y� x� y� r wi phi �

X� R “X coordinate of the begin of helix” D���

Y� R “Y coordinate of the begin of helix” D���

X� R “X coordinate of the end of helix” D����

Y� R “Y coordinate of the end of helix” D����

R R “Radius of helix” D���

WI R “Number of turns ” D���

PHI R “Projection angle ” D����

Draw an helix with the current line attributes. Use the current Normalization transformation. Feynman
graph: gluon phi = 30, photon phi = 0.
Example:

SET " & OPT " � Reset the defaults

NUL � �� � �� �AB� � Draw a frame �cf HELP NULL�

HELIX � � � � � �� � � Draw an helix

SET LWID
 � Helix line width is

HELIX � � 	 	 � � � � Draw an helix

SET PLCI � � Arrow color is red

SET LTYP � � Helix line type is dashed

HELIX 	 	 �� �� �� � �� � Draw an helix

420 Chapter 16. GRAPHICS

GRAPHICS/PRIMITIVES/ARCHELIX � x� y� x� y� r wi phi rl �

X� R “X coordinate of the begin of helix” D���

Y� R “Y coordinate of the begin of helix” D���

X� R “X coordinate of the end of helix” D����

Y� R “Y coordinate of the end of helix” D����

R R “Radius of helix” D���

WI R “Number of turns ” D���

PHI R “Projection angle ” D����

RL R “Radius of loop ” D����

Draw an archelix with the current line attributes. Use the current Normalization transformation. Feynman
graph: gluon phi = 30, photon phi = 0.
Example:

SET " & OPT " � Reset the defaults

NUL � �� � �� �AB� � Draw a frame �cf HELP NULL�

ARCHELIX � � � � � � � � � Draw an helix

SET LWID
 � Helix line width is

ARCHELIX � � 	 	 � � � � � Draw an helix

SET PLCI � � Arrow color is red

SET LTYP � � Helix line type is dashed

ARCHELIX 	 	 �� �� � � � � � Draw an helix

GRAPHICS/PRIMITIVES/ARLINE � x� y� x� y� h �

X� R “X coordinate of the begin” D���

Y� R “Y coordinate of the begin” D���

X� R “X coordinate of the end” D����

Y� R “Y coordinate of the end” D����

H R “arrow size” D���

Draw a line with arrow in middle (fermion line) with the current line and fill area attributes. Use the
current Normalization transformation.
Example:

SET " & OPT " � Reset the defaults

NULL � �� �
 � Draw a frame �cf HELP NULL�

ARLINE � � � � �� � Draw a arrow line �left to right�

ARLINE � � � � �� � Draw a arrow line �right to left�

SET PLCI � � Arrow color is red

SET FAIS � � Fill area interior style solid

ARLINE � � � � �� � Draw a arrow line �right to left�

SET LWID
 � Arrow line width is

SET FACI � � The fill area color is blue

ARLINE � � � � �� � Draw a arrow line �right to left�

SET LTYP � � Arrow line type is dotted

ARLINE � � � � �� � Draw a arrow line �right to left�

16.3. PRIMITIVES 421

GRAPHICS/PRIMITIVES/FPOINT � x y r �

X R “X ” D���

Y R “Y ” D���

R R “Radius ” D���

Draw a filled point (vertex) with the current fill area attributes. Use the current Normalization transfor-
mation.

Example:

SET " & OPT " � Reset the defaults

NULL � �� � �� � Draw a frame �cf HELP NULL�

SET FAIS � � Fill area interior style solid

FPOINT � � �� � Draw a filled point

FPOINT � � �� � Draw a filled point

FPOINT � � �� � Draw a filled point

SET FACI � � The fill area color is blue

FPOINT � 	 �� � Draw a filled point

FPOINT � � �� � Draw a filled point

GRAPHICS/PRIMITIVES/AXIS x� x� y� y� wmin wmax ndiv � chopt �

X� R “X axis origin in WC”

X� R “X end axis in WC”

Y� R “Y axis origin in WC”

Y� R “Y end axis in WC”

WMIN R “Lowest value for labels”

WMAX R “Highest value for labels”

NDIV I “Number of divisions” D����

CHOPT C “Options” D��+� Minus

Possible CHOPT values are:

�+� Draw an axis with default values.

G Logarithmic scale, default is linear.

B Blank axis. Useful to superpose axis.

U Unlabeled axis, default is labeled.

� Tick marks are drawn on Positive side. (default)

� Tick marks are drawn on the negative side.

� Tick marks are drawn on Equal side

P Labels are drawn Parallel to the axis

O Labels are drawn Orthogonal to the axis (Top to Down).

� Labels are drawn Orthogonal to the axis (Down to Top).

R labels are Right adjusted on tick mark.

422 Chapter 16. GRAPHICS

L labels are Left adjusted on tick mark.

C labels are Centered on tick mark.

M In the Middle of the divisions.

Y Direction of labels DOWN . Default is RIGHT

� Dot obligatory

T Alphanumeric labels .

S Tick marks Size

H Labels Height

D Distance labels-axis

N No bining optimization

I Integer labeling

Draw an axis in the current Normalization transformation.

NDIV�N� � ���"N� � �����"N�

N�� N�� N� � Number of �st� �nd� �rd divisions respectively� eg��

NDIV�� ��! no tick marks�

NDIV�� ��! � divisions� one tick mark in the middle

of the axis�

Orientation of tick marks on axis� Tick marks are normally drawn

on the positive side of the axis�However� if X��X�� then Negative �

CHOPT����� tick marks are drawn on Positive side� �default�

CHOPT����� tick marks are drawn on the negative side�

i�e� ���� ��! tick marks are drawn on both sides of the axis�

Position of labels on axis� Labels are normally drawn on side

opposite to tick marks�However�

CHOPT� ��� on Equal side

Orientation of labels on axis� Labels are normally drawn

parallel to the axis� However if X��X�� then Orthogonal

if Y��Y�� then Parallel

CHOPT� �P� � Parallel to the axis

CHOPT� �O� � Orthogonal to the axis �Top to Down��

CHOPT� ��� � Orthogonal to the axis �Down to Top��

Position of labels on tick marks� Labels are centered on

tick marks� However � if X��X�� then they are right adjusted�

CHOPT��R�� labels are Right adjusted on tick mark�

�default is centered�

CHOPT��L�� labels are Left adjusted on tick mark�

CHOPT��C�� labels are Centered on tick mark�

CHOPT��M�� In the Middle of the divisions�

Direction of labels� Default is RIGHT

CHOPT��Y�� Down

Format of labels� Blank characters are stripped� and then the

label is correctly aligned� The dot�if last character of the

string� is also stripped� unless

16.3. PRIMITIVES 423

CHOPT���� Dot obligatory

In the following� we have some parameters� like

tick marks length and characters height �in percentage

of the length of the axis��The default values are as follows�

Primary tick marks� ���)

Secondary tick marks� ���)

Third order tick marks� �	�)

Characters height for labels� �)

Characters spacing �related to height�� ��)

Labels offset� ���)

Type of labels� Labels are normally numeric � However� alphanumeric

labels can be drawn �see command LABEL��

CHOPT��T�� Alphanumeric labels �

Intrinsic parameters� These values can be changed with the command

SET� The default value is used unless the corresponding option is

selected by CHOPT�

CHOPT��D� The distance between the labels and the axis

�the offset� is given by the preceding command

SET with the parameter LAOF�

CHOPT��H� The size �height� of the labels is given by the

preceding command SET with the parameter LASI�

CHOPT��S� The size of the tick marks is given by the preceding

command SET with the parameter TMSI�

Axis bining optimization� By default the axis bining is optimized �

CHOPT��N�� No bining optimization

CHOPT��I�� Integer labeling

Example:

SET " & OPT " � Reset the defaults

NUL � �� � �� �A� � Draw a frame �cf HELP NULL�

AXIS � �� � � � ��� ��� �A� � Axis with arrow

AXIS � �� � � � ����� ��� �G� � LOG axis

LABEL � �� a b c d e f g h i j k � define alphanumeric labels

AXIS � �� � � � �� �� �NATY� � alphanumeric labeling

AXIS � ��

 ���� � ��� �A�

AXIS �� � 	 	 ���� �
�� �A��� � Double side tick marks

AXIS � ��
 �� � �����
	
�� �A� � exponent is required

GRAPHICS/PRIMITIVES/ARC x� y� r� � r� phimin phimax �

X� R “X coordinate of centre”

Y� R “Y coordinate of centre”

R� R “Inner radius”

R� R “Outer radius” D����

PHIMIN R “Minimum angle” D���

PHIMAX R “Maximum angle” D��
��

424 Chapter 16. GRAPHICS

Draw an arc of circle with the current fill area and line attributes. Use the current Normalization transfor-
mation. If R1 is not equal to R2 the area between the two arcs of radius R1 and R2 is filled according to the
current fill area attributes. The border is never drawn unless the interior style is hollow or the command
SET BORD 1 has been called. If R1 is equal to R2 a polyline is drawn.

Example:

SET " & OPT " � Reset the defaults

NULL � �� � �� �AB� � Draw a frame �cf HELP NULL�

SET PLCI � � Line color is red

SET LWID
 � Line width is

ARC � � � � � � � Draw an circle

ARC � �� � � �� �
� � Draw an arc of circle

SET FAIS � � Fill area with hatches

SET FASI � � Type of hatches

ARC �� �� � � � � � Draw an arc

SET BORD � � Border is requested

ARC �� � � � �� � � Draw an arc

GRAPHICS/PRIMITIVES/PIE x� y� radius n values � chopt iao ias iac �

X� R “X coordinate of centre of the pie”

Y� R “Y coordinate of centre of the pie”

RADIUS R “Radius of the pie chart”

N I “Number of values”

VALUES C “Vector name for N values”

CHOPT C “Options” D��+�

IAO C “Name of vector with offsets” D��+�

IAS C “Name of vector with styles” D��+�

IAC C “Name of vector with colors” D��+�

Possible CHOPT values are:

�+� Draw a Pie Chart with default values.

C Colours array is present.

L Alphanumeric labels are required.

O Offset array is present.

N The label of each slice will be the corresponding numeric value in array VALUES.

P The label of each slice will be in expressed in percentage.

S Style array is present.

H Force the labels size to be the current character height. Without this option the labels size
is computed automatically.

R Draw the labels aligned on the radius of each slice.

Draw a pie chart in the current Normalization transformation.

16.3. PRIMITIVES 425

Example:

SET " & OPT " � Reset the defaults

NULL � �� � �� �AB� � Draw a frame

LABEL � � �Lab�� �Lab�� �Lab�� �Lab�� �Lab�� � define labels

" Initialize vectors

V�CRE VWS��� R �
�� �
�
 �
�� ���� ���	

V�CRE OFFSET��� R �"�� �"��� ��

V�CRE COLOUR��� R � � � �

SET FAIS � � Fill solid

SET BORD � � Draw the border

PIE ��� ��� 	� � VWS �L� OFFSET � COLOUR � Draw the pie chart

GRAPHICS/PRIMITIVES/TEXT x y text size � angle chopt �

X R “X coordinate”

Y R “Y coordinate”

TEXT C “Text to be drawn”

SIZE R “Text size” D����

ANGLE R “Comment angle” D��

CHOPT C “Justification option” D��L�

Possible CHOPT values are:

L Text is Left justified.

C Text is Centered.

R Text is Right justified.

Draw text at position X,Y in the current normalization transformation using the software font IGTEXT.
SIZE is always given in centimeters (as defined by the command SIZE). A boldface effect can be obtained
using the parameters PASS and CSHI of the command SET. The text color can be changed by SET TXCI.
Example:

SET " & OPT " � Reset the defaults

NULL � �� � �� � Draw a frame

TEXT � � �Left justified� �� �� L

TEXT � � �Centered� �� �� C

TEXT � � �Right justified� �� �� R

TEXT � � ��� �� degrees� �� ��� L

TEXT � � ���
� degrees� ��
�� L

TEXT � � ��� �� degrees� �� ��� L

TEXT � � ��� ��� degrees� �� ���� L

TEXT � � ��� ��� degrees� �� ���� L

TEXT �
 �Some Greek ��� �a� b� c� d�� �� �� C

Set PASS 	 � Number of passes

TEXT � � �Bold TEXT� �� �� C

426 Chapter 16. GRAPHICS

GRAPHICS/PRIMITIVES/ITX x y text

X R “X coordinate”

Y R “Y coordinate”

TEXT C “Text to be drawn”

Draw text at position X,Y in the current Normalization transformation, using the current font parame-
ters. The font and the precision can be changed by SET TXFP. The character size can be changed by
SET CHHE. The text color can be changed by SET TXCI. The text orientation can be changed with SET
TXAL. The text angle can be changed by SET TANG.
Example:

SET " & OPT " � Reset the defaults

NULL � �� �
 � Draw a frame

SET TXFP ��� � Times bold

SET CHHE �� � Text size ��� cm

SET TXAL �� � Horizontal align� Left

ITX � � �Left justified�

SET TXAL �� � Horizontal align� Center

ITX � � �Centered�

SET TXAL �� � Horizontal align� Right

ITX � � �Right justified�

SET TXAL �� � Vertical align� Top

ITX �� � �Top justified�

SET TXAL �� � Vertical align� Middle

ITX �� � �Middle justified�

SET TXAL � � Default align�

SET TANG �� � Angle �� degrees

ITX � � ��� �� degrees ���

GRAPHICS/PRIMITIVES/LABELS labnum nlabs chlabs

LABNUM I “Label identifier” D�� R����

NLABS I “Number of labels” D�� R�����

CHLABS C “List of labels” D��+� Vararg

Define a list of alphanumeric labels to be used by subsequent commands such as PIE and AXIS. The
position of the labels on the axis may be changed with SET NDVX (NDVY).
Example:

SET " & OPT " � Reset the defaults

ZONE � �

LABEL � � AAAAA BBBBB CCCCC � Define labels

SET NDVX ���� � � div� lab id �� ��center on bin

NULL � �� � � � Draw a frame

SET NDVX ���� � � div� lab id �� ��center on tick

NULL � �� � � � Draw a frame

SET NDVX ���
 � � div� lab id ��
�bottom �! up

NULL � �� � � � Draw a frame

16.3. PRIMITIVES 427

A full description of the possible alignments is given in the PAW manual (see NDVX in the index).

GRAPHICS/PRIMITIVES/PAVE x� x� y� y� � dz isbox isfram chopt �

X� R “X bottom left corner of box”

X� R “X top right corner of box”

Y� R “Y bottom left corner of box”

Y� R “Y top right corner of box”

DZ R “Box width” D����

ISBOX I “Box style” D��

ISFRAM I “Frame style” D��

CHOPT C “Option” D��TR�

Possible CHOPT values are:

TR Top and Right frame are drawn

TL Top and Left frame

BR Bottom and Right frame

BL Bottom and Left frame

L Left frame only

R Right frame only

T� Top frame only pointing left

B� Bottom frame only pointing left

S Shadow mode

K Key mode

Draw a paving-block (box with 3D effect). ISBOX (ISFRAM) may be 1000+ICOLOR where ICOLOR
is the color index of the box (frame), otherwise the style index. If ISBOX (ISFRAM) = 0, only the box
contour is drawn with the current polyline attributes.

Example:

SET " & OPT " � Reset the defaults

NULL � �� � �� � Draw a frame

PAVE � � � � � � ���� CHOPT�TRS

PAVE � � � � � � ���� CHOPT�BLS

PAVE � � � � � � � CHOPT�TR

PAVE � � � � � � � CHOPT�BL

GRAPHICS/PRIMITIVES/HIST n x y � chopt �

N I “Number of values”

X C “Vector name for X coordinates”

Y C “Vector name for Y coordinates”

CHOPT C “Options” D��AHW�

428 Chapter 16. GRAPHICS

Possible CHOPT values are:

A X and Y axes are drawn (default).

H An histogram is drawn as a contour (default).

W The Window/Viewport parameters are automatically computed from the X and Y values
(default).

R The histogram is Rotated, i.e. the values in X are used for the ordinate and the values in
Y for the abscissa (default is the contrary). If option R is selected (and option ’N’ is not
selected), the user must give: 2 values for Y (Y(1)=YMIN and Y(2)=YMAX) N values
for X, one for each bin. Otherwise the user must give: N values for Y, one for each bin.
2 values for X (X(1)=XMIN and X(2)=XMAX) If option ’N’ is selected see below.

N Non equidistant bins (default is equidistant). The arrays X and Y must be dimensioned
as follows: If option R is not selected (default) then give: (N+1) values for X (limits of
bins). N values for Y, one for each bin. Otherwise give: (N+1) values for Y (limits of
bins). N values for X, one for each bin.

F The area delimited by the histogram is filled according to the fill area interior style and
the fill area style index or colour index. Contour is not drawn unless CHOPT=’H’ is also
selected.

C A Smooth curve is drawn across points at the centre of each bin of the histogram.

L A straight Line is drawn across points at the centre of each bin of the histogram.

" A star is plotted at the center of each bin of the histogram.

P Idem as ’*’ but with the current marker.

B A Bar chart with equidistant bins is drawn as fill areas. (Contours are drawn). The bar
origin and the bar width can be controlled by the routine SET using the options BARO
and BARW respectively.

Draw an histogram defined by arrays X and Y. The number of components needed in vectors X and/or in
Y may be dependent upon the value of CHOPT (see options ’R’ and ’N’). To set Log scales in X and/or Y,
use OPT LOGX/LOGY. Note that when an option is specified, it is also necessary to specify the options
’W’ or ’HW’ in order to start a new zone or/and draw the axes.

Example

SET " & OPT " � Reset the defaults

Zone � �

" This command needs vectors

V�CREATE Y���� r � � � � � � � � � �

V�CREATE X���� r � � �

 �� �� �
 �� �� ��

HIST �� X Y �WH� � Equidistant bins

HIST �� X Y �HWN� � Non Equidistant bins

GRAPHICS/PRIMITIVES/GRAPH n x y � chopt �

16.4. ATTRIBUTES 429

N I “Number of values”

X C “Vector name for X coordinates”

Y C “Vector name for Y coordinates”

CHOPT C “Options” D��ALW�

Possible CHOPT values are:

A X and Y axes are drawn (default).

L Every point is connected with a straight line. (default)

W The Window/Viewport parameters are automatically computed from the X and Y values
(default).

C The values in Y are plotted in the form of a smooth curve. A Spline approximation algo-
rithm is used.

F A fill area is drawn. If the option ’CF’ is used the contour of the fill area is smooth. The
border of the fill area is drawn if the command SET BORD 1 has been typed. The fill area
type may be changed via the SET parameters FASI and FASI

R The graph is Rotated, i.e. the values in X are used for the ordinate and the values in Y for
the abscissa (default is the contrary).

B A Bar chart with equidistant bins is drawn as fill areas. (Contours are drawn). The bar
origin and the bar width can be controlled by the routine SET using the options BARO
and BARW respectively.

" A star is plotted at every point.

P A marker is plotted at every point, according to current marker type and polymarker colour
index.

Draw a curve through a set of points. To set Log scales in X and/or Y, use OPT LOGX/LOGY. Note that
when an option is specified, it is also necessary to specify the options ’AW’ or ’ALW’ in order to start a
new zone or/and draw the axes.

Example

SET " & OPT " � Reset the defaults

ZONE � �

" This command needs vectors

V�CREATE Y���� r � � � � � � � � � �

V�CREATE X���� r � � �

 �� �� �
 �� ��

GRAPH �� X Y �WC"L� � Draw an �open� graph

SET FAIS � � Interior style� hatched

SET FASI ��� � Define hatches type

SET BORD � � Border requested

NULL � �� �
 � define new scales

GRAPH �� X Y �CF"� � Draw an �closed� graph

16.4 ATTRIBUTES

Change HIGZ attributes.

430 Chapter 16. GRAPHICS

GRAPHICS/ATTRIBUTES/COLOR˙TABLE icol � red green blue �

ICOL I “Color Index” D��

RED R “Weight of red” D��� R������

GREEN R “Weight of green” D��� R������

BLUE R “Weight of blue” D��� R������

Define the color ICOL.

GRAPHICS/ATTRIBUTES/PALETTE palnb � nel list �

PALNB I “Palette number” D�� R����

NEL I “Number of elements in the palette” D�� R�����

LIST I “List of the palette elements” D��

Define a palette of attributes. The palette number is used in the command SET. The command SET HCOL
0.1 defines the palette number 1 as colour indices used by the command LEGO in case of stacked lego
plots and plotting of SURFACE with options 1 or 2, LEGO with option 2 and CONTOUR with option 3.

By default the palettes are initialized with 6 elements: 2,3,4,5,6,7.

If the number of elements (NEL) is equal to 0 (default), the palette is filled automatically according to the
number of colours defined with the command SET NCOL:

a� If NCOL is smaller or equal to
� the palette is filled with a

subset of the
 basic colours�

Examples�

PAW ! SET NCOL
 � Define the number of colours

PAW ! PALETTE � � The palette � is filled with

�
 elements� ����	���
������

PAW ! SET NCOL � � Define the number of colours

PAW ! PALETTE � � The palette � is filled with

� � elements� ����	��

b� If NCOL is greater than
� the palette is filled

with colours varying continuously from blue to red� This is

called a �geographical palette��

Examples�

PAW ! SET NCOL �
 � Define the number of colours

PAW ! PALETTE � � Fill palette � with
 elements

� �
��������������������� varying

� continuously from blue to red

Note that after the command SET NCOL� the color indices from

 to NCOL are set with gray levels� The command PALETTE �

reset the same indices with a �geographical palette� varying

continuously from blue to red�

16.5 HPLOT

Draw various HPLOT objects (symbols, errors, key, etc.).

16.5. HPLOT 431

GRAPHICS/HPLOT/SYMBOLS x y n � isymb ssize �

X C “Vector of X coordinates”

Y C “Vector of Y coordinates”

N I “Number of points” D��

ISYMB I “Symbol number” D���

SSIZE R “Symbol size” D����

Draw the same symbol at several points x,y in the current normalization transformation.

GRAPHICS/HPLOT/ERRORS x y ex ey n � isymb ssize chopt �

X C “Vector of X coordinates”

Y C “Vector of Y coordinates”

EX C “Vector of X error bars”

EY C “Vector of Y error bars”

N I “Number of points” D��

ISYMB I “Symbol number” D���

SSIZE R “Symbol size” D����

CHOPT C “Options” D��+�

Possible CHOPT values are:

�+� Coordinates are expressed in histogram coordinates (of the last drawn histogram). Error
bars are drawn.

C Coordinates are expressed in centimeters.

W A new window is defined and axis are drawn.

� Draw small lines at the end of the error bars.

� Draw error rectangles.

� Draw a filled area through the end points of the vertical error bars.

� Draw a smoothed filled area through the end points of the vertical error bars.

� Turn off the symbols clipping.

Draw (according to the CHOPT value) a series of points using a symbol and error bars in horizontal and
vertical direction in the current normalization transformation. By default, the symbols are not drawn if
they are on the edges of the plot: the option ’0’ allows to turn off this symbols clipping. If ISYMB = 0
or SSIZE = 0. no symbol is drawn. Note that the options can be cumulated.

GRAPHICS/HPLOT/AERRORS x y exl exu eyl eyu n � isymb ssize chopt �

X C “Vector of X coordinates”

Y C “Vector of Y coordinates”

EXL C “Vector of X error bars (Low)”

EXU C “Vector of X error bars (Up)”

EYL C “Vector of Y error bars (Low)”

432 Chapter 16. GRAPHICS

EYU C “Vector of Y error bars (Up)”

N I “Number of points” D��

ISYMB I “Symbol number” D���

SSIZE R “Symbol size” D����

CHOPT C “Options” D��+�

Possible CHOPT values are:

�+� Coordinates are expressed in histogram coordinates (of the last drawn histogram). Error
bars are drawn.

C Coordinates are expressed in centimeters.

W A new window is defined and axis are drawn.

� Draw small lines at the end of the error bars.

� Draw error rectangles.

� Draw a filled area through the end points of the vertical error bars.

� Draw a smoothed filled area through the end points of the vertical error bars.

� Turn off the symbols clipping.

Draw (according to the CHOPT value) a series of points using a symbol and asymmetric error bars in
horizontal and vertical direction in the current normalization transformation. By default, the symbols are
not drawn if they are on the edges of the plot: the option ’0’ allows to turn off this symbols clipping. If
ISYMB = 0 or SSIZE = 0. no symbol is drawn. Note that the options can be cumulated.

GRAPHICS/HPLOT/KEY x y � isymb text �

X R “X coordinate of comment”

Y R “Y coordinate of comment”

ISYMB I “Symbol number” D���

TEXT C “Legend” D��+�

Draw one symbol and its explanation (legend) at a point x,y in the current normalization transformation.

GRAPHICS/HPLOT/TICKS � chopt xval yval �

CHOPT C “Options” D��+�

XVAL R “X position” D���E��

YVAL R “Y position” D���E��

Possible CHOPT values are:

�+� Tick marks are drawn on the edges of the picture

X Cross-wire drawn perpendicular to the X-axis

Y Cross-wire drawn perpendicular to the Y-axis

A Value drawn Above cross-wire

B Value drawn Below cross-wire

16.5. HPLOT 433

L Value drawn Left of cross-wire

R Value drawn Right of cross-wire

Draw ’cross-wires’ on a picture, optionally with tick marks and values. Cross-wires are lines perpendic-
ular to the X and/or Y axis.

XVAL intersection on the X�axis

YVAL intersection on the Y�axis

The values of XVAL are always histogram coordinates. The tick marks will be drawn on both side of the
cross wire, unless the cross-wires are requested on the boundary of the box surrounding the histogram
(i.e. at the extreme limits of the drawn histogram). In this case tick marks will only be drawn inside the
box. The options ’A’ and ’B’ (for Above and Below) refer only to the cross-wire perpendicular to the Y
axis. In each case only one cross-wire will be drawn. Similarly ’L’ and ’R’ (Left and Right) refer only to
the cross-wires perpendicular to the X-axis. It is possible to redefine the length of tick marks on the X or
Y axis with SET XTIC or SET YTIC. The position of the axis values may be changed with SET XVAL
or SET YVAL.

GRAPHICS/HPLOT/ATITLE � xtit ytit ztit �

XTIT C “X Axis title” D��+�

YTIT C “Y Axis title” D��+�

ZTIT C “Z Axis title” D��+�

Draw axis titles on the axes of the present plot zone.

GRAPHICS/HPLOT/GRID

Draw a grid in cm.

GRAPHICS/HPLOT/NULL � xmin xmax ymin ymax chopt �

XMIN R “Low range in X” D���

XMAX R “High range in X” D���

YMIN R “Low range in Y” D���

YMAX R “High range in Y” D���

CHOPT C “Options” D��+�

Possible CHOPT values are:

�+� Draw a frame box only.

S Redefine the scale for the current zone.

A Axis labels and tick marks are not drawn.

B The box is not drawn.

Draw a frame box. If XMIN, XMAX, etc. are given, draw a frame box with the window coordinates set
to XMIN, XMAX, YMIN, YMAX. Axis labels and tick marks are drawn by default.

Chapter 17: PICTURE

Creation and manipulation of HIGZ pictures.

PICTURE/FILE lun fname � lrecl chopt �

LUN I “Logical unit number” R�����

FNAME C “File name”

LRECL I “Record length in words” D�����

CHOPT C “Options” D��+�

Possible CHOPT values are:

�+� Existing file is opened.

N A new file is opened.

U Existing file is modified.

A Automatic saving.

Open a HIGZ direct access picture file. If CHOPT=’AU’ or ’AN’, pictures will be automatically saved
on the direct access file. This automatic saving facility can be switched off using SET AURZ 0.

PICTURE/LIST

List all the HIGZ pictures currently stored in memory.

PICTURE/CREATE pname

PNAME C “Picture name” Loop

Create a new picture, named PNAME, in memory. Note that all commands which start a new picture
(clear workstation) automatically create pictures named PICT1, PICT2, etc. if the command OPTION
ZFL or OPTION ZFL1 has been executed.

PICTURE/DELETE pname

PNAME C “Picture name” D��+� Loop

Delete the picture PNAME from memory. PNAME=’*’ means all pictures.

PICTURE/SCRATCH pname � icycle �

PNAME C “Picture name” D��+� Loop

ICYCLE I “Cycle number ” D�����

Delete the picture PNAME from current directory on disk.

PICTURE/PLOT � pname �

PNAME C “Picture name” D��+� Loop

Plot the picture PNAME. PNAME=’ ’ means the current picture. PNAME=’*’ means all pictures.

434

435

PICTURE/MODIFY � pname chopt �

PNAME C “Picture name” D��+�

CHOPT C “Options” D��+�

Possible CHOPT values are:

S Software characters are used for the text in menus.

A The option shadow is used.

Edit the picture PNAME. PNAME=’ ’ means the current picture. This command is only available on
workstations.

PICTURE/MERGE pname � x y scale chopt �

PNAME C “Picture name”

X R “X coordinates (NDC) where to draw PNAME” D��

Y R “Y coordinates (NDC) where to draw PNAME” D��

SCALE R “Scale factor” D���

CHOPT C “Options” D��+�

Possible CHOPT values are:

�+� Merge the picture PNAME with the current picture.

D Picture PNAME is displayed during merging.

Add the picture PNAME to the current picture.

PICTURE/COPY pname� pname�

PNAME� C “Picture name”

PNAME� C “New picture name” Loop

Copy a picture.

PICTURE/RENAME pname� pname�

PNAME� C “Old picture name”

PNAME� C “New picture name”

Rename a picture.

PICTURE/PRINT � file �

FILE C “File name” D��+�

Print the current picture. The current picture is transformed into a printable file. The file type is defined
according to the extension of the file name i.e.

436 Chapter 17. PICTURE

FILE � filename�ps A PostScript file is generated ������

FILE � filename�eps A Encapsulated PostScript file

is generated ������

FILE � filename�tex A LaTex file is generated ��		
�

Do HELP META for details about the metafile types. Note that a new picture is automatically created for
each new plot if the OPTION ZFL1 is on.

If FILE=HIGZPRINTER or FILE=’ ’ the PostScript file paw.ps (-111) is generated and the operating sys-
tem command defined by the environment variable HIGZPRINTER is executed.

The environment variable HIGZPRINTER should be defined as follow:

On UNIX sytems�

setenv HIGZPRINTER �lp �dprinter�name paw�ps�

or

export HIGZPRINTER��lp �dprinter�name paw�ps�

On VAX�VMS sytems�

HIGZPRINTER �� �XPRINT paw�ps �PRINTER�printer�name�

On CERNVM�

setenv HIGZPRINTER �XPRINT PAW PS �PR printer�name�

Note that if the environment variable HIGZPRINTER is not defined the file paw.ps is created but not
printed.

PICTURE/IZOUT � pname �

PNAME C “Picture name” D��+� Loop

Write the picture PNAME to a direct access picture file (see command PICTURE/FILE). PNAME=’ ’
means the current picture. PNAME=’*’ means all pictures.

PICTURE/IZIN pname � icycle �

PNAME C “Picture name” Loop

ICYCLE I “Cycle number ” D�����

Read picture into memory from a direct access picturefile. (see command PICTURE/FILE). PNAME=’*’
means all pictures.

PICTURE/IZPICT pname � chopt �

PNAME C “Picture name”

CHOPT C “Options” D��M�

Possible CHOPT values are:

M Make a new picture in memory with name PNAME. An empty structure is created in
memory and becomes the current picture. If PNAME = ’ ’, the picture is automatically
named as PICTnnn, where the starting value of nnn is either 0 (default), or the value as-
signed by SET to the parameter PICT.

437

D Display the picture PNAME in memory.

S Scratch the picture PNAME from memory. If PNAME = ’ ’ the current picture is
scratched.

N The picture following the current picture in memory becomes the current picture. If the
current picture is the last one in memory, the first picture in memory becomes the current
picture.

L Give the list of the pictures in memory, following the sequence of their storage in memory.

F The First picture in memory becomes the current picture.

P Print the picture data structure. Useful to debug programs.

C Set Current picture. All calls to HIGZ graphic functions are stored in the current structure
according to the option selected be IGZSET.

Perform various operations on a picture. PNAME=’ ’ means the current picture. PNAME=’*’ means all
pictures.

PICTURE/SWITCH � chopt �

CHOPT C “Options” D��G�

Possible CHOPT values are:

G graphics output only.

Z Graphics primitives stored in ZEBRA memory only.

Set the graphics switch to control plotting output to terminal (G) and/or picture in memory (Z).

PICTURE/IGSET � chatt value �

CHATT C “Attribute name” D��SHOW�

VALUE R “Attribute value” D���

Set a HIGZ attribute. If CHATT=’SHOW’ print default and current values for all attributes. If CHATT=’*’
restore default values for all attributes. If VALUE=0, the attribute is set to its default value.

���

� IGSET � Current values in use �

���

� Parameter � Current value � Default value � Explanation �

���

� FAIS � � � � � Fill area interior style �

� FASI � � � � � Fill area style index �

� LTYP � � � � � Line type �

� BASL � ���� � ���� � Basic segment length �NDC� �

� LWID � ����� � ����� � Line width �

� MTYP � � � � � Marker type �

� MSCF � ����� � ����� � Marker scale factor �

438 Chapter 17. PICTURE

� PLCI � � � � � Polyline color index �

� PMCI � � � � � Polymarker color index �

� FACI � � � � � Fill area color index �

� TXCI � � � � � Text color index �

� TXAL � � � � � � � Text alignment �

� CHHE � ��
� � ���� � Character height �

� TANG � ���� � ���� � Text angle �

� TXFP � � � � � � � Text font and precision �

� PICT � � � � � Current automatic number �

� BORD � � � � � Border flag �

� PASS � � � � � Number of pass in IGTEXT �

� CSHI � ���� � ���� � IGTEXT shift �

� LASI � ���
 � ���
 � Label axis size �

� LAOF � ���� � ���� � Label axis offset �

� TMSI � ���� � ���� � Tick marks size �

� AWLN � ���� � ���� � Axis wire lenght �

� BARO � ���� � ���� � Offset of IGHIST �IGRAPH� bars�

� BARW � ���� � ���� � Width of IGHIST �IGRAPH� bars �

� NCOL �
 �
 � Number of COLors �

� CLIP � � � � � Clipping mode �

� NLIN � �� � �� � Number of line for �D shapes �

� AURZ � � � � � Automatic saving flag �

� DIME � � � � � Dimension used ��D or �D� �

���

Chapter 18: ZEBRA

Interfaces to the ZEBRA RZ, FZ and DZ packages.

18.1 RZ

ZEBRA/RZ package: direct access Input/Output.

ZEBRA/RZ/FILE lun fname � lrecl chopt �

LUN I “Logical unit number” R�����

FNAME C “File name”

LRECL I “Record length in WORDS” D�����

CHOPT C “Options” D��+�

Possible CHOPT values are:

�+� Read only mode.

U Update mode.

Open an existing direct access file.

ZEBRA/RZ/MAKE lun fname � lrecl nrec nwkey chform chtags �

LUN I “Logical unit number” R�����

FNAME C “File name”

LRECL I “Record length in WORDS” D�����

NREC I “Number of records” D�����

NWKEY I “Number of words per Key” D��

CHFORM C “Key format” D��I�

CHTAGS C “List of Tags” D��HBOOK�ID�

Possible CHFORM values are:

I

B

A

H

Open a new direct access file.

ZEBRA/RZ/MDIR chdir � nwkey chform chtags �

439

440 Chapter 18. ZEBRA

CHDIR C “Directory name”

NWKEY I “Number of words per Key” D��

CHFORM C “CHFORM” D��I�

CHTAGS C “List of Tags” D��HBOOK�ID�

Create a new RZ directory below the current directory.

ZEBRA/RZ/DDIR chdir

CHDIR C “Directory name”

Delete the directory CHDIR from the current directory.

ZEBRA/RZ/LDIR � chpath chopt �

CHPATH C “Path name” D��+�

CHOPT C “Options” D��+�

Possible CHOPT values are:

�+� List contents of a directory.

A List all the Ntuple extensions.

T List a directory Tree.

List contents of a directory (memory or disk). To list all RZ files currently opened, type ’LD //’. Note
that if the Current Directory is //PAWC, this command uses the same format as HISTO/LIST.

ZEBRA/RZ/CDIR � chpath chopt �

CHPATH C “Path name” D��+�

CHOPT C “Options” D��+�

Change the current working directory (CWD). IF CHPATH is given make it the new CWD. Otherwise,
print the pathname of the CWD.

Ex� CD dir� & make DIR� the new CWD

CD ��file��dir� & make ��FILE��DIR� the new CWD

CD & print the name of the CWD

ZEBRA/RZ/PURGE � keep �

KEEP I “Number of cycles to be kept” D��

Purge an RZ directory.

ZEBRA/RZ/LOCK � chlock �

CHLOCK C “Lock identifier” D��RZFILE�

Lock an RZ directory.

18.2. FZ 441

ZEBRA/RZ/FREE � chlock �

CHLOCK C “Lock identifier” D��RZFILE�

Free an RZ directory.

ZEBRA/RZ/STAT chpath

CHPATH C “Name of top directory”

Print space statistics for an RZ file.

18.2 FZ

ZEBRA/FZ package: sequential access Input/Output.

ZEBRA/FZ/FILE lun fname � lrecl chopt �

LUN I “Logical unit number” R�����

FNAME C “File name”

LRECL I “Record length in words” D����

CHOPT C “Options” D��IX�

Possible CHOPT values are:

I Input file.

O Output file.

X Binary exchange mode.

A Alphanumeric exchange mode.

Open an FZ sequential formatted or unformatted file.

ZEBRA/FZ/TOFZ lun � chopt �

LUN I “Logical unit number of FZ file” R�����

CHOPT C “Options” D��+�

Copy the current directory tree onto an FZ file.

ZEBRA/FZ/FRFZ lun � chopt �

LUN I “Logical unit number of FZ file” R�����

CHOPT C “Options” D��+�

Copy the FZ file into the current directory tree.

ZEBRA/FZ/TOALPHA fname

FNAME C “Name of the FZ text file”

Copy the current directory tree onto a FZ file. An alphanumeric format is used. The file FNAME can be
exchanged between different machines.

442 Chapter 18. ZEBRA

ZEBRA/FZ/FRALPHA fname

FNAME C “Name of the FZ text file”

Copy the FZ alphanumeric file into the current directory.

18.3 DZ

ZEBRA/DZ package: debugging.

ZEBRA/DZ/SHOW name � number chopt �

NAME C “Bank name”

NUMBER I “Bank number” D��

CHOPT C “Options” D��BSV�

Possible CHOPT values are:

B Print the bank.

S Print the bank contents from left to right Sideways with up to ten elements per line.

V Print the vertical (down) structure.

D Print the bank contents from top to bottom Downwards with five elements per line.

L Print the linear structure.

Z Print the data part of each bank in hexadecimal format

Display the contents of a bank or a data structure identified by its NAME and NUMBER. The output
format of the data part is controlled by the internal or external I/O characteristic.

ZEBRA/DZ/SURV name � number �

NAME C “Bank name”

NUMBER I “Bank number” D��

Print a survey of the structure identified by NAME, NUMBER.

ZEBRA/DZ/SNAP � idiv chopt �

IDIV I “Division number ” D�� R�����

CHOPT C “Options” D��M�

Possible CHOPT values are:

M Print Map entry for each bank

E Extend map entry to dump all links of each bank (otherwise only as many links as will fit
on a line)

F Full. Dump all active banks, links and data

K Kill. Dropped banks to be treated as active (dropped banks are not normally dumped under
D or F option)

18.3. DZ 443

L Dump all Link areas associated with the store

W Dump the Working space, links and data

Z Dump the information in hexadecimal.

Snap of one or more divisions. Provides a snapshot of one or more divisions in a ZEBRA store. The kind
of information provided is controlled by CHOPT.

ZEBRA/DZ/VERIFY � idiv chopt �

IDIV I “Division number ” D�� R�����

CHOPT C “Options” D��CLSU�

Possible CHOPT values are:

C Check chaining of banks only

L Check validity of the structural links (implies ’C’)

S Check the store parameters

U Check the validity of the up and origin (implies ’C’)

F Errors are considered fatal and generate a call to ZFATAL

Check the structure of one or more ZEBRA divisions. The verification detail depends on the settings in
CHOPT.

ZEBRA/DZ/STORE � ixstor �

IXSTOR I “Store number” D�� R�����

Display the structure of the ZEBRA store IXSTOR. Output the parameters characterizing the store, fol-
lowed by a list of all divisions and all link areas associated with the store in question.

Chapter 19: FORTRAN

Interface to MINUIT, COMIS, SIGMA and FORTRAN Input/Output.

FORTRAN/HMINUIT

To input commands for Interactive MINUIT in a macro. Example:

Application HMINUIT EXIT

SET EPS ��E���

MIGRAD

SET PRIN �

MINOS

EXIT

Histo�fit �� g m

FORTRAN/COMIS

Invoke the COMIS FORTRAN interpreter. COMIS allows to execute FORTRAN routines without re-
compiling and relinking. It communicates with PAW commands through vectors and functions. COMIS
has its PAW-independent command structure. Example in command mode:

PAW ! Comis

CS ! do �� i�����

MND! x�sqrt�i�"���

MND! print "�i�x

MND! �� continue

MND! END

CS ! quit

PAW !

COMIS code may be inserted into a macro. Example:

Vector�Create Y���� r � � � � �
 	
 � ��

"

" In the following COMIS code� the statement �Vector Y� declares

" to COMIS an existing KUIP vector� KUIP dimension is assumed�

" The statement �Vector X����� creates a new KUIP vector�

" �Note that SUBROUTINEs must be declared before the MAIN program�

" �KUIP vectors cannot be created into the MAIN program�

"

APPLIcation COMIS QUIT

SUBROUTINE DEMO

Vector Y

Vector X����

do �� i�����

XX�i

X�i��Y�i�"sqrt�XX�"���

�� CONTINUE

444

445

END

CALL DEMO

END

QUIT

Vector�print X � Print KUIP vector created by COMIS

FORTRAN/CALL urout

UROUT C “User routine”

Execute the routine UROUT. UROUT may be a routine compiled and linked with PAW. For example :
CALL HPRINT(10).

UROUT may also be the name of a file which can be edited interactively with the command EDIT. For
example if file UROUT.FOR contains:

SUBROUTINE UROUT�N�

SUM���

DO �� I���N

SUM�SUM�I

�� CONTINUE

PRINT "�SUM

END

Then one can type CALL UROUT.FOR(10). The routine UROUT may also contain references to the
library routines mentioned below.

The functions $CALL, $ICALL, and $DCALL allow to call REAL, INTEGER, and DOUBLE PRECI-
SION functions, respectively. The function call must be enclosed in quotes, for example:

�CALL��fun�f�������

with file fun.f containing

FUNCTION FUN�X�

FUN�X""�

END

The following routines from the CERN Program Library can be called:

From HBOOK�

HBOOK��HBOOK��HBOOKN�HFILL�HF��HPRINT�HDELET�HRESET

HFITGA�HFITPO�HFITEX�HPROJ��HPROJ��HFN�HGFIT�HRENID

HROPEN�PAOPEN�PACLOS�PAREAD�PAWRIT�HCDIR�HGIVEN�HKIND

HTITLE�HBFUN��HBFUN��HRNDM��HRNDM��HBARX�HBARY�HDIFFB

HPAK�HPAKE�HUNPAK�HGIVE�HGN�HGNF�HGNPAR�HF��HFF��HFF�

HRIN�HROUT�HI�HIE�HIX�HIJ�HIF�HIDALL�HNOENT�HX�HXY

HTITLE�HCOPY�HSTATI�HBPROF�HOPERA�HIDOPT�HDERIV�HBAR�

HMAXIM�HMINIM�HMAX�HMIN�HSUM�HNORMA�HMCINI�HMCMLL

HEXIST�HREND�HRGET�HRPUT�HSCR�HFIND�HCX�HCXY�HLABEL

446 Chapter 19. FORTRAN

HBPROX�HBPROY�HBANDX�HBANDY�HBSLIX�HBSLIY�HPROF�

HBOOKB�HBSTAT�HDIFF�HUNPKE�HREBIN�HERROR�HGNTB�HSTAF

HOUTPU�HERMES�HISTDO�HFUNC�HXI�HIJXY�HXYIJ�HLPOS�HFC�

HSPLI��HSPLI��HMDIR�HLDIR�HLOCAT�HFITH�HFITV�HFINAM

HBNT�HBNAME�HBNAMC�HFNT�HFNTB�HGNT�HGNTF�HGNTV�HBSET

HRENAME�HNTDUP

From HPLOT�

HPLOT�HPLSYM�HPLERR�HPLEGO�HPLNT�HPLSUR�HPLSOF�HPLFRA

HPLABL�HPLSET�HPLGIV�HPLOC�HPLTOC�HPLNEW�HPLOPT

From ZEBRA�

MZSTOR�MZDIV�MZLINK�MZWORK�MZBOOK�MZDROP�MZPUSH

MZWIPE�MZGARB�MZFORM�LZFIND�LZFID�DZSHOW�DZVERI

FZIN�FZOUT�FZFILE�FZENDI�FZENDO

RZCDIR�RZLDIR�RZFILE�RZEND�RZIN�RZOUT�RZVIN�RZVOUT

RZOPEN�RZIODO�RZCLOS�RZQUOT

From KUIP�

KUGETV�KUDPAR�KUVECT�KILEXP�KUTIME�KUEXEL�KUPROS

KUNWG�KUCMD�KUGUID�KUNDPV�KUPAR�KUPVAL�KUACT

From HIGZ�

IPL�IPM�IFA�IGTEXT�IGBOX�IGAXIS�IGPIE�IGRAPH�IGHIST

IGARC�IGLBL�IGRNG�IGMETA�IGSA�IGSET�IRQLC�IRQST�ISCR

ISELNT�ISFAIS�ISFASI�ISLN�ISMK�ISVP�ISWN�ITX�ICLRWK

IGPAVE�IGTERM�ISFACI�IGHTOR�IGONT

From KERNLIB�

VZERO�UCOPY�RANNOR�LENOCC�SBIT��SBIT��SBYT

JBIT�JBYT�UCTOH�UHTOC�CLTOU�CUTOL�ERF�ERFC�FREQ�GAMMA

PROB�DENLAN�DSTLAN�DIFLAN�XM�LAN�XM�LAN�RANLAN

RNDM�RDMIN�RDMOUT�SORTZV�CSF		

The following common blocks may be referenced�

�PAWC�� �QUEST�� �KCWORK�� �PAWPAR�� �PAWIDN�

�HCFITS�� �HCFITD�� �RZCLUN�

FORTRAN/LOOP ntimes urout

NTIMES I “Number of calls” D��

UROUT C “User routine”

The routine UROUT is called NTIMES times. See command CALL for explanation of UROUT.

FORTRAN/FILE lun fname � status �

LUN I “Logical unit number”

FNAME C “File name”

STATUS C “File status” D��DONTKNOW�

Possible STATUS values are:

447

OLD Open existing file for reading.

APPEND Open existing file and position at EOF.

NEW Create new file; error if already existing.

UNKNOWN Open existing or create new file.

DONTKNOW Like UNKNOWN except on VMS opens highest cycle.

Open a FORTRAN formatted text file. UNKNOWN opens a file for write access withoutflagging an error
if the file already exists. On VMS a new cycle is created. DONTKNOW is the same as UNKNOWN
except on VMS where the highest cycle is opened. This option should be used if it is not yet known
whether the file will be read or written.

FORTRAN/CLOSE lun

LUN I “Logical unit number” R�����

Close the file on unit LUN. If the file has been opened with HISTO/FILE, PICTURE/FILE, etc, then be-
fore closing the unit, PAW will close correctly the file with CALL HREND or FZENDI(O), ICLWK, etc.
Giving 0 as unit will close all open files.

FORTRAN/REWIND lun

LUN I “Logical unit number” R�����

Rewind the file on unit LUN.

FORTRAN/SIGMA � expr �

EXPR C “Expression” D��+�

Invoke the SIGMA package. SIGMA is an array manipulation package using its own vector-oriented
language, outside the PAW command conventions. SIGMA may be invoked in one of the three following
ways:

�� Using the KUIP �SIGMA function� Example�

PAW ! Vector�Create x���� r � � � � �
 	
 � ��

PAW ! Graph �� x �sigma�sqrt�x��

�� Using the SIGMA command� Example�

PAW ! sigma x�array���������

PAW ! sigma y�sqrt�x�

PAW ! Graph �� x y

�� Using the APPLication command� Example�

PAW ! APPLication SIGMA

SIGMA ! x�array���������

SIGMA ! y�sqrt�x�

SIGMA ! exit

PAW ! Graph �� x y

Chapter 20: NETWORK

To access files on remote computers. To send messages to a remote process (ZEBRA server)

NETWORK/RLOGIN host

HOST C “Host name” D��+�

Start a communication with a remote machine HOST. Current Directory will be changed to //HOST.

NETWORK/RSHELL message

MESSAGE C “Message to remote host” D��+�

Send MESSAGE to current remote host. Note that the Current Directory must be //HOST (see RLOGIN).
Some PAW commands (Histo/Plot, Histo/List) can communicate directly with HOST.

20.1 PIAF

To establish and control the connection to the Piaf server. The Parallel Interactive Analysis Facility (Piaf)
is a cluster of 5 high-performance HP workstations.

A locally running PAW session (client) connected to the Piaf server can access Hbook RZ files stored
on the server side in a transparent way. Commands with high CPU or I/O requirements, e.g. NT/PLOT
and NT/PROJECT are processed by the server and only the resulting histograms etc. are sent back to the
client.

In order to use the Piaf server the PAW client must have been compiled with the communications option
CZ using TCP/IP as transport protocol.

NETWORK/PIAF/CONNECT � server node �

SERVER C “Server name” D��piaf�

NODE C “Front-end node” D����
����������
�

Establish a connection to the Piaf server. Subsequent HISTO/FILE commands can refer to files on the
server using path names ’//piaf/file.hbook’.

NETWORK/PIAF/STAGE source � target option �

SOURCE C “Source file identifier”

TARGET C “Target file name” D��+�

OPTION C “Options” D��+�

Possible OPTION values are:

N NoWait. Submit the request to the staging system and return immediately.

Stage an Ntuple file on the Piaf server. The source file identifier can be the name of a local file on the
client system, a Fatmen path, or a tape identifier. If the target file name is not specified it is constructed
from the source identifier.

448

20.1. PIAF 449

Unless the option N is used the STAGE command waits until the staging is completed and thefile is ready
to be used.

NETWORK/PIAF/GET remote � local format recl �

REMOTE C “Remote file name”

LOCAL C “Local file name” D��+�

FORMAT C “Text or binary” D��RZ�

RECL I “Record length in bytes” D�� R���

Possible FORMAT values are:

T Text file.

RZ Zebra RZ file in exchange format.

BIN Binary file with record length given by RECL.

Copy a file from the Piaf server to the client system. If not specified the local file name will be same as
the remote file name. RECL needs to be specified only for BIN format. For IBM only: A text file with
RECL=0 is written in V-format. Otherwise it is written in F-format with the given LRECL.

NETWORK/PIAF/PUT local � remote format �

LOCAL C “Local file name”

REMOTE C “Remote file name” D��+�

FORMAT C “Text or binary” D��RZ�

Possible FORMAT values are:

T Text file.

RZ Zebra RZ file in exchange format.

BIN Binary file.

Copy a file from the client system to the Piaf server. If not specified the remote file name will be same as
the local file name. Note for VMS: Avoid text files with variable record length. Use Stream˙LF format
instead.

NETWORK/PIAF/LS � files �

FILES C “File pattern” D��+�

List files stored on the Piaf server.

NETWORK/PIAF/CAT file

FILE C “File name”

Print a Piaf file on the terminal.

450 Chapter 20. NETWORK

NETWORK/PIAF/RM file

FILE C “File name”

Delete a Piaf file.

NETWORK/PIAF/MV from to

FROM C “Old file name”

TO C “New file name”

Rename a Piaf file.

NETWORK/PIAF/CP from to

FROM C “Old file name”

TO C “New file name”

Copy a Piaf file to a new file.

NETWORK/PIAF/PWD

Show current Piaf working directory.

NETWORK/PIAF/MKDIR dir

DIR C “Directory name”

Create a new directory on Piaf.

NETWORK/PIAF/RMDIR dir

DIR C “Directory name”

Delete a directory on Piaf.

NETWORK/PIAF/MESSAGE mess

MESS C “Message”

Send a message to Piaf.

NETWORK/PIAF/STATUS

Inquire the status of the Piaf server.

NETWORK/PIAF/MODE � option �

OPTION C “Processing mode” D����

Possible OPTION values are:

� Inquire the current mode.

SEQ Set sequential processing mode.

PAR Set parallel processing mode.

20.1. PIAF 451

Inquire or change the processing mode of the Piaf server. In parallel mode the Piaf server uses slave
servers to process Ntuple requests on all available machines in parallel.

With certain types of COMIS selection functions, e.g. when reading from an external file for each event,
parallel processing is not possible. The Piaf server should be switched to sequential mode, i.e. the master
server alone processes the Ntuple request.

NETWORK/PIAF/LOGLEVEL level

LEVEL I “Log level” D��

Set the level of diagnostic output from the Piaf server.

NETWORK/PIAF/DISCONNECT

Close the connection to the Piaf server.

Chapter 21: OBSOLETE

Obsolete commands

21.1 GRAPHICS

21.1.1 ATTRIBUTES

OBSOLETE/GRAPHICS/ATTRIBUTES/SMK � mkt �

MKT I “Marker type” D��

Set the marker type. Obsolete command use SET MTYP

OBSOLETE/GRAPHICS/ATTRIBUTES/SLN � iln �

ILN I “Line style” D�� R���

Set the line style. Obsolete command use SET LTYP.

OBSOLETE/GRAPHICS/ATTRIBUTES/SFAIS � ints �

INTS I “Fill area interior style” D�� R����

Set the fill area interior style. Obsolete command use SET FAIS.

OBSOLETE/GRAPHICS/ATTRIBUTES/SFASI � styli �

STYLI I “Fill area style index” D��

Set the fill area style index. Obsolete command use SET FASI.

OBSOLETE/GRAPHICS/ATTRIBUTES/SFACI � ifaci �

IFACI I “Fill area color index” D��

Set the fill area color index. Obsolete command use SET FACI.

OBSOLETE/GRAPHICS/ATTRIBUTES/SPLCI � iplci �

IPLCI I “Polyline color index” D��

Set the polyline color index. Obsolete command use SET PLCI.

OBSOLETE/GRAPHICS/ATTRIBUTES/SPMCI � ipmci �

IPMCI I “Polymarker color index” D��

Set the polymarker color index. Obsolete command use SET PMCI.

OBSOLETE/GRAPHICS/ATTRIBUTES/STXCI � itxci �

ITXCI I “Text color index” D��

Set the text color index. Obsolete command use SET TXCI.

452

21.1. GRAPHICS 453

OBSOLETE/GRAPHICS/ATTRIBUTES/STXFP � ifont iprec �

IFONT I “Font number” D��

IPREC I “Font precision” D��

Set text font and precision. Obsolete command use SET TXFP.

OBSOLETE/GRAPHICS/ATTRIBUTES/SCHH � chh �

CHH R “Character height” D����

Set the character height. Obsolete command use SET CHHE.

OBSOLETE/GRAPHICS/ATTRIBUTES/SLWSC � lw �

LW R “Line width” D�� R���

Set the line width scale factor. Obsolete command use SET LWID.

Appendix A: PAW tabular overview

Table A.1: Alphabetical list of PAW commands

Calling sequence Page

�DHISTO �HISTOGRAM�CREATE��DHISTO� id title ncx xmin xmax � valmax � 375
�DHISTO �HISTOGRAM�CREATE��DHISTO� id title ncx xmin xmax ncy ymin ymax � valmax � 376
ABSCISSA �HISTOGRAM�GET
VECT�ABSCISSA� id vname 386
ADD �HISTOGRAM�OPERATIONS�ADD� id� id� id� � c� c� option � 380
AERRORS �GRAPHICS�HPLOT�AERRORS� x y exl exu eyl eyu n � isymb ssize chopt � 431
ANGLE �FUNCTION�ANGLE� � theta phi � 392
APPLICATION �KUIP�SET
SHOW�APPLICATION� path � cmdex � 340
ARC �GRAPHICS�PRIMITIVES�ARC� x� y� r� � r� phimin phimax � 423
ARCHELIX �GRAPHICS�PRIMITIVES�ARCHELIX� � x� y� x� y� r wi phi rl � 420
ARLINE �GRAPHICS�PRIMITIVES�ARLINE� � x� y� x� y� h � 420
ARROW �GRAPHICS�PRIMITIVES�ARROW� x� x� y� y� � size � 418
ATITLE �GRAPHICS�HPLOT�ATITLE� � xtit ytit ztit � 433
AXIS �GRAPHICS�PRIMITIVES�AXIS� x� x� y� y� wmin wmax ndiv � chopt � 421
Arithmetic �MACRO�SYNTAX�Expressions�Arithmetic� 351
BANX �HISTOGRAM�CREATE�BANX� id ymin ymax 378
BANY �HISTOGRAM�CREATE�BANY� id xmin xmax 378
BINS �HISTOGRAM�CREATE�BINS� id title ncx xbins � valmax � 376
BOX �GRAPHICS�PRIMITIVES�BOX� x� x� y� y� 417
BREAK �KUIP�SET
SHOW�BREAK� � option � 341
BREAKL �MACRO�SYNTAX�Looping�BREAKL� 359
BUGREPORT �KUIP�BUGREPORT� � chopt � 336
Boolean �MACRO�SYNTAX�Expressions�Boolean� 352
CALL �FORTRAN�CALL� urout 445
CASE �MACRO�SYNTAX�Branching�CASE� 356
CAT �NETWORK�PIAF�CAT� file 449
CDIR �ZEBRA�RZ�CDIR� � chpath chopt � 440
CHAIN �NTUPLE�CHAIN� � cname entry � 400
CLOSE �FORTRAN�CLOSE� lun 447
CLR �GRAPHICS�MISC�CLR� 412
COLOR
TABLE �GRAPHICS�ATTRIBUTES�COLOR
TABLE� icol � red green blue � 430
COLUMNS �KUIP�SET
SHOW�COLUMNS� � ncol � 342
COMIS �FORTRAN�COMIS� 444
COMMAND �KUIP�SET
SHOW�COMMAND� � chpath � 340
CONNECT �NETWORK�PIAF�CONNECT� � server node � 448
CONTENTS �HISTOGRAM�GET
VECT�CONTENTS� id vname 385
CONTENTS �HISTOGRAM�PUT
VECT�CONTENTS� id vname 386
CONTOUR �HISTOGRAM��D
PLOT�CONTOUR� � id nlevel chopt param � 375
COPY �HISTOGRAM�COPY� id� id� � title � 371
COPY �PICTURE�COPY� pname� pname� 435
COPY �VECTOR�COPY� vnam� vnam� 361
CP �NETWORK�PIAF�CP� from to 450
CREATE �KUIP�ALIAS�CREATE� name value � chopt � 336
CREATE �MACRO�GLOBAL�CREATE� name � value text � 350
CREATE �NTUPLE�CREATE� idn title nvar chrzpa nprime varlist 393
CREATE �PICTURE�CREATE� pname 434
CREATE �VECTOR�CREATE� vname � type values � 360
CSELECT �NTUPLE�CSELECT� � chopt csize � 402
CUTS �NTUPLE�CUTS� cutid � option fname wkid � 401
DATA �MACRO�DATA� 350
DDIR �ZEBRA�RZ�DDIR� chdir 440

454

455

Table A.1: Overview of PAW command sequences (continued)

Calling sequence Page

DEFAULTS �MACRO�DEFAULTS� � path option � 349
DELETE �HISTOGRAM�DELETE� id 368
DELETE �KUIP�ALIAS�DELETE� name 337
DELETE �MACRO�GLOBAL�DELETE� name 350
DELETE �PICTURE�DELETE� pname 434
DELETE �VECTOR�DELETE� vlist 361
DIFF �HISTOGRAM�OPERATIONS�DIFF� id� id� � chopt � 382
DISCONNECT �NETWORK�PIAF�DISCONNECT� 451
DIVIDE �HISTOGRAM�OPERATIONS�DIVIDE� id� id� id� � c� c� option � 381
DLINE �GRAPHICS�PRIMITIVES�DLINE� x� x� y� y� 416
DO �MACRO�SYNTAX�Looping�DO� 358
DOLLAR �KUIP�SET
SHOW�DOLLAR� � option � 346
DRAW �FUNCTION�DRAW� ufunc � chopt � 390
DRAW �NTUPLE�DRAW� idn � value option � 401
DRAW �VECTOR�DRAW� vname � id chopt � 363
DUMP �HISTOGRAM�HIO�DUMP� id 380
DUPLICATE �NTUPLE�DUPLICATE� id� id� � newbuf title option � 394
EDIT �KUIP�EDIT� fname 332
ENDKUMAC �MACRO�SYNTAX�Definitions�ENDKUMAC� 355
ERRORS �GRAPHICS�HPLOT�ERRORS� x y ex ey n � isymb ssize chopt � 431
ERRORS �HISTOGRAM�GET
VECT�ERRORS� id vname 385
ERRORS �HISTOGRAM�PUT
VECT�ERRORS� id vname 387
EXEC �MACRO�EXEC� mname � margs � 348
EXIT �KUIP�EXIT� 333
EXITM �MACRO�SYNTAX�Definitions�EXITM� 355
FAREA �GRAPHICS�PRIMITIVES�FAREA� n x y 416
FBOX �GRAPHICS�PRIMITIVES�FBOX� x� x� y� y� x� x� y� y� 418
FILE �FORTRAN�FILE� lun fname � status � 446
FILE �HISTOGRAM�FILE� lun fname � lrecl chopt � 368
FILE �PICTURE�FILE� lun fname � lrecl chopt � 434
FILE �ZEBRA�FZ�FILE� lun fname � lrecl chopt � 441
FILE �ZEBRA�RZ�FILE� lun fname � lrecl chopt � 439
FILECASE �KUIP�SET
SHOW�FILECASE� � option � 346
FIT �HISTOGRAM�FIT� id func � chopt np par step pmin pmax errpar � 371
FIT �VECTOR�FIT� x y ey func � chopt np par step pmin pmax errpar � 365
FOR �MACRO�SYNTAX�Looping�FOR� 358
FPOINT �GRAPHICS�PRIMITIVES�FPOINT� � x y r � 421
FRALPHA �ZEBRA�FZ�FRALPHA� fname 442
FREE �ZEBRA�RZ�FREE� � chlock � 441
FRFZ �ZEBRA�FZ�FRFZ� lun � chopt � 441
FUN� �FUNCTION�FUN�� id ufunc ncx xmin xmax � chopt � 389
FUN� �FUNCTION�FUN�� id ufunc ncx xmin xmax ncy ymin ymax � chopt � 389
FUNCTION �HISTOGRAM�GET
VECT�FUNCTION� id vname 385
FUNCTIONS �KUIP�FUNCTIONS� 333
GET �NETWORK�PIAF�GET� remote � local format recl � 449
GLOBAL
SECT �HISTOGRAM�HIO�GLOBAL
SECT� gname 380
GOTO
and
IF
GOTO �MACRO�SYNTAX�Branching�GOTO
and
IF
GOTO� 356
GRAPH �GRAPHICS�PRIMITIVES�GRAPH� n x y � chopt � 428
GRESET �HISTOGRAM�HIO�GRESET� id 380
GRID �GRAPHICS�HPLOT�GRID� 433
Garbage �MACRO�SYNTAX�Expressions�Garbage� 352
Global �MACRO�SYNTAX�Variables�Global� 354
HELIX �GRAPHICS�PRIMITIVES�HELIX� � x� y� x� y� r wi phi � 419

456 Appendix A. PAW tabular overview

Table A.1: Overview of PAW command sequences (continued)

Calling sequence Page

HELP �KUIP�HELP� � item option � 331
HFETCH �HISTOGRAM�HIO�HFETCH� id fname 379
HFILL �VECTOR�HFILL� vname id 364
HIST �GRAPHICS�PRIMITIVES�HIST� n x y � chopt � 427
HMERGE �NTUPLE�HMERGE� outfile infiles 394
HMINUIT �FORTRAN�HMINUIT� 444
HMOVE �GRAPHICS�MISC�HMOVE� 413
HOST
EDITOR �KUIP�SET
SHOW�HOST
EDITOR� � editor top left width height dxpad dypad npads � 342
HOST
PAGER �KUIP�SET
SHOW�HOST
PAGER� � pager � 343
HOST
PRINTER �KUIP�SET
SHOW�HOST
PRINTER� � command filetype � 343
HOST
PSVIEWER �KUIP�SET
SHOW�HOST
PSVIEWER� � psviewer � 344
HOST
SHELL �KUIP�SET
SHOW�HOST
SHELL� � shell � 344
HREAD �HISTOGRAM�HIO�HREAD� id fname 379
HRIN �HISTOGRAM�HIO�HRIN� id � icycle iofset � 378
HROUT �HISTOGRAM�HIO�HROUT� id � chopt � 379
HSCRATCH �HISTOGRAM�HIO�HSCRATCH� id 379
HSETPR �HISTOGRAM�OPERATIONS�HSETPR� param value 385
IDLE �KUIP�IDLE� sec � string � 333
IDOPT �HISTOGRAM�SET�IDOPT� id option 387
IF
THEN �MACRO�SYNTAX�Branching�IF
THEN� 356
IGSET �PICTURE�IGSET� � chatt value � 437
IMPORT �MACRO�GLOBAL�IMPORT� name 350
INPUT �VECTOR�INPUT� vname � values � 362
ITX �GRAPHICS�PRIMITIVES�ITX� x y text 426
IZIN �PICTURE�IZIN� pname � icycle � 436
IZOUT �PICTURE�IZOUT� � pname � 436
IZPICT �PICTURE�IZPICT� pname � chopt � 436
Indirection �MACRO�SYNTAX�Variables�Indirection� 354
KEY �GRAPHICS�HPLOT�KEY� x y � isymb text � 432
LABELS �GRAPHICS�PRIMITIVES�LABELS� labnum nlabs chlabs 426
LAST �KUIP�LAST� � n fname � 332
LCDIR �KUIP�SET
SHOW�LCDIR� � directory � 347
LDIR �ZEBRA�RZ�LDIR� � chpath chopt � 440
LEGO �HISTOGRAM��D
PLOT�LEGO� � id theta phi chopt � 373
LINE �GRAPHICS�PRIMITIVES�LINE� x� y� x� y� 416
LINTRA �NTUPLE�LINTRA� idn � chopt nevent ifirst nvars varlis � 404
LIST �HISTOGRAM�LIST� � chopt � 368
LIST �KUIP�ALIAS�LIST� � name � 337
LIST �MACRO�GLOBAL�LIST� � name file � 351
LIST �MACRO�LIST� � mname � 348
LIST �NTUPLE�LIST� 394
LIST �PICTURE�LIST� 434
LIST �VECTOR�LIST� 361
LOCATE �GRAPHICS�MISC�LOCATE� � ntpri chopt wkid � 412
LOCK �ZEBRA�RZ�LOCK� � chlock � 440
LOGLEVEL �NETWORK�PIAF�LOGLEVEL� level 451
LOOP �FORTRAN�LOOP� ntimes urout 446
LOOP �NTUPLE�LOOP� idn uwfunc � nevent ifirst � 396
LS �NETWORK�PIAF�LS� � files � 449
MACRO �MACRO�SYNTAX�Definitions�MACRO� 355
MAKE �ZEBRA�RZ�MAKE� lun fname � lrecl nrec nwkey chform chtags � 439
MANUAL �KUIP�MANUAL� item � output option � 331
MANY
PLOTS �HISTOGRAM�MANY
PLOTS� idlist 371

457

Table A.1: Overview of PAW command sequences (continued)

Calling sequence Page

MASK �NTUPLE�MASK� mname � chopt number � 402
MAXIMUM �HISTOGRAM�SET�MAXIMUM� id vmax 387
MDIR �ZEBRA�RZ�MDIR� chdir � nwkey chform chtags � 439
MERGE �NTUPLE�MERGE� idn� idn� � uwfunc nevent ifirst � 396
MERGE �PICTURE�MERGE� pname � x y scale chopt � 435
MESSAGE �KUIP�MESSAGE� � string � 333
MESSAGE �NETWORK�PIAF�MESSAGE� mess 450
METAFILE �GRAPHICS�METAFILE� � lun metafl chmeta � 410
MINIMUM �HISTOGRAM�SET�MINIMUM� id vmin 387
MKDIR �NETWORK�PIAF�MKDIR� dir 450
MODE �NETWORK�PIAF�MODE� � option � 450
MODIFY �PICTURE�MODIFY� � pname chopt � 435
MULTIPLY �HISTOGRAM�OPERATIONS�MULTIPLY� id� id� id� � c� c� option � 381
MV �NETWORK�PIAF�MV� from to 450
NEWPANEL �KUIP�SET
SHOW�NEWPANEL� line col title width height xpos ypos 340
NEXT �GRAPHICS�MISC�NEXT� 412
NEXTL �MACRO�SYNTAX�Looping�NEXTL� 359
NORMALIZE
FACTOR �HISTOGRAM�SET�NORMALIZE
FACTOR� id � xnorm � 387
NULL �GRAPHICS�HPLOT�NULL� � xmin xmax ymin ymax chopt � 433
Numbered �MACRO�SYNTAX�Variables�Numbered� 353
ON
ERROR �MACRO�SYNTAX�Branching�ON
ERROR� 357
OPTION �GRAPHICS�OPTION� � choptn � 408
OUTPUT
LP �HISTOGRAM�HIO�OUTPUT
LP� � lun fname � 380
PALETTE �GRAPHICS�ATTRIBUTES�PALETTE� palnb � nel list � 430
PANEL �KUIP�SET
SHOW�PANEL� line � gkey � 338
PARAM �HISTOGRAM�OPERATIONS�PARAM� id � isel r�min maxpow � 384
PAVE �GRAPHICS�PRIMITIVES�PAVE� x� x� y� y� � dz isbox isfram chopt � 427
PIE �GRAPHICS�PRIMITIVES�PIE� x� y� radius n values � chopt iao ias iac � 424
PLINE �GRAPHICS�PRIMITIVES�PLINE� n x y 415
PLOT �FUNCTION�PLOT� ufunc xlow xup � chopt � 391
PLOT �HISTOGRAM�PLOT� � id chopt � 368
PLOT �NTUPLE�PLOT� idn � uwfunc nevent ifirst nupd option idh � 397
PLOT �PICTURE�PLOT� � pname � 434
PLOT �VECTOR�PLOT� vname � id chopt � 364
PMARKER �GRAPHICS�PRIMITIVES�PMARKER� n x y 417
POINTS �FUNCTION�POINTS� � npx npy npz � 391
PRINT �HISTOGRAM�HIO�PRINT� id � chopt � 380
PRINT �KUIP�PRINT� fname 332
PRINT �NTUPLE�PRINT� idn 394
PRINT �PICTURE�PRINT� � file � 435
PRINT �VECTOR�PRINT� vname � dense � 362
PROFILE �HISTOGRAM�CREATE�PROFILE� id title ncx xmin xmax ymin ymax � chopt � 376
PROJECT �HISTOGRAM�PROJECT� id 371
PROJECT �NTUPLE�PROJECT� idh idn � uwfunc nevent ifirst � 397
PROMPT �KUIP�SET
SHOW�PROMPT� prompt 341
PROX �HISTOGRAM�CREATE�PROX� id 377
PROY �HISTOGRAM�CREATE�PROY� id 377
PSVIEW �KUIP�PSVIEW� fname 332
PURGE �ZEBRA�RZ�PURGE� � keep � 440
PUT �NETWORK�PIAF�PUT� local � remote format � 449
PWD �NETWORK�PIAF�PWD� 450
QUIT �KUIP�QUIT� 333
RANGE �FUNCTION�RANGE� � xlow xup ylow yup zlow zup � 391

458 Appendix A. PAW tabular overview

Table A.1: Overview of PAW command sequences (continued)

Calling sequence Page

READ �MACRO�SYNTAX�Variables�READ� 354
READ �NTUPLE�READ� idn fname � format chopt nevent � 397
READ �VECTOR�READ� vlist fname � format opt match � 362
REBIN �HISTOGRAM�GET
VECT�REBIN� id x y ex ey � n ifirst ilast chopt � 386
RECALL
STYLE �KUIP�SET
SHOW�RECALL
STYLE� � option � 344
RECORDING �KUIP�SET
SHOW�RECORDING� � nrec � 342
RECOVER �NTUPLE�RECOVER� idn 395
RENAME �PICTURE�RENAME� pname� pname� 435
REPEAT �MACRO�SYNTAX�Looping�REPEAT� 358
RESET �HISTOGRAM�OPERATIONS�RESET� id � title � 382
RETURN �MACRO�SYNTAX�Definitions�RETURN� 355
REWIND �FORTRAN�REWIND� lun 447
RLOGIN �NETWORK�RLOGIN� host 448
RM �NETWORK�PIAF�RM� file 450
RMDIR �NETWORK�PIAF�RMDIR� dir 450
ROOT �KUIP�SET
SHOW�ROOT� � path � 341
RSHELL �NETWORK�RSHELL� message 448
SCALE
FACTOR
�D �HISTOGRAM�SET�SCALE
FACTOR
�D� id � xscale � 387
SCAN �NTUPLE�SCAN� idn � uwfunc nevent ifirst option varlis � 395
SCHH �OBSOLETE�GRAPHICS�ATTRIBUTES�SCHH� � chh � 453
SCRATCH �PICTURE�SCRATCH� pname � icycle � 434
SELNT �GRAPHICS�VIEWING�SELNT� nt 415
SET �GRAPHICS�SET� � chatt value � 406
SFACI �OBSOLETE�GRAPHICS�ATTRIBUTES�SFACI� � ifaci � 452
SFAIS �OBSOLETE�GRAPHICS�ATTRIBUTES�SFAIS� � ints � 452
SFASI �OBSOLETE�GRAPHICS�ATTRIBUTES�SFASI� � styli � 452
SHELL �KUIP�SHELL� � cmd � 333
SHIFT �MACRO�SYNTAX�Variables�SHIFT� 354
SHOW �ZEBRA�DZ�SHOW� name � number chopt � 442
SIGMA �FORTRAN�SIGMA� � expr � 447
SIZE �GRAPHICS�VIEWING�SIZE� � xsize ysize � 414
SLIDE �GRAPHICS�SLIDE� 412
SLIX �HISTOGRAM�CREATE�SLIX� id nslices 377
SLIY �HISTOGRAM�CREATE�SLIY� id nslices 377
SLN �OBSOLETE�GRAPHICS�ATTRIBUTES�SLN� � iln � 452
SLWSC �OBSOLETE�GRAPHICS�ATTRIBUTES�SLWSC� � lw � 453
SMK �OBSOLETE�GRAPHICS�ATTRIBUTES�SMK� � mkt � 452
SMOOTH �HISTOGRAM�OPERATIONS�SMOOTH� id � option sensit smooth � 383
SNAP �ZEBRA�DZ�SNAP� � idiv chopt � 442
SORT �HISTOGRAM�OPERATIONS�SORT� id � chopt � 383
SPLCI �OBSOLETE�GRAPHICS�ATTRIBUTES�SPLCI� � iplci � 452
SPLINE �HISTOGRAM�OPERATIONS�SPLINE� id � isel knotx kx � 384
SPMCI �OBSOLETE�GRAPHICS�ATTRIBUTES�SPMCI� � ipmci � 452
STAGE �NETWORK�PIAF�STAGE� source � target option � 448
STAT �ZEBRA�RZ�STAT� chpath 441
STATUS �NETWORK�PIAF�STATUS� 450
STOPM �MACRO�SYNTAX�Definitions�STOPM� 355
STORE �ZEBRA�DZ�STORE� � ixstor � 443
STXCI �OBSOLETE�GRAPHICS�ATTRIBUTES�STXCI� � itxci � 452
STXFP �OBSOLETE�GRAPHICS�ATTRIBUTES�STXFP� � ifont iprec � 453
STYLE �KUIP�SET
SHOW�STYLE� � option sgylen sgsize sgyspa sgbord wktype � 338
SUBTRACT �HISTOGRAM�OPERATIONS�SUBTRACT� id� id� id� � c� c� option � 381
SURFACE �HISTOGRAM��D
PLOT�SURFACE� � id theta phi chopt � 374

459

Table A.1: Overview of PAW command sequences (continued)

Calling sequence Page

SURV �ZEBRA�DZ�SURV� name � number � 442
SVP �GRAPHICS�VIEWING�SVP� nt x� x� y� y� 414
SWITCH �PICTURE�SWITCH� � chopt � 437
SWN �GRAPHICS�VIEWING�SWN� nt x� x� y� y� 414
SYMBOLS �GRAPHICS�HPLOT�SYMBOLS� x y n � isymb ssize � 431
Special �MACRO�SYNTAX�Variables�Special� 353
String �MACRO�SYNTAX�Expressions�String� 352
TEXT �GRAPHICS�PRIMITIVES�TEXT� x y text size � angle chopt � 425
TICKS �GRAPHICS�HPLOT�TICKS� � chopt xval yval � 432
TIMING �KUIP�SET
SHOW�TIMING� � option � 341
TITLE
GLOBAL �HISTOGRAM�CREATE�TITLE
GLOBAL� � chtitl chopt � 378
TOALPHA �ZEBRA�FZ�TOALPHA� fname 441
TOFZ �ZEBRA�FZ�TOFZ� lun � chopt � 441
TRACE �MACRO�TRACE� � option level � 348
TRANSLATION �KUIP�ALIAS�TRANSLATION� � option � 337
UNITS �KUIP�UNITS� 333
USAGE �KUIP�USAGE� item 331
UWFUNC �NTUPLE�UWFUNC� idn fname � chopt � 403
VADD �VECTOR�OPERATIONS�VADD� vnam� vnam� vnam� 366
VBIAS �VECTOR�OPERATIONS�VBIAS� vnam� bias vnam� 366
VDIVIDE �VECTOR�OPERATIONS�VDIVIDE� vnam� vnam� vnam� 367
VERIFY �ZEBRA�DZ�VERIFY� � idiv chopt � 443
VISIBILITY �KUIP�SET
SHOW�VISIBILITY� cmd � chopt � 345
VLOCATE �GRAPHICS�MISC�VLOCATE� vecx vecy � chopt ntpri wkid � 413
VMEM �NTUPLE�VMEM� � mxsize � 405
VMULTIPLY �VECTOR�OPERATIONS�VMULTIPLY� vnam� vnam� vnam� 366
VSCALE �VECTOR�OPERATIONS�VSCALE� vnam� scale vnam� 366
VSUBTRACT �VECTOR�OPERATIONS�VSUBTRACT� vnam� vnam� vnam� 367
WAIT �KUIP�WAIT� � string sec � 333
WAVE �NTUPLE�WAVE� idn � lun � 401
WHILE �MACRO�SYNTAX�Looping�WHILE� 359
WORKSTATION �GRAPHICS�WORKSTATION� iwkid � chopt iwtyp � 411
WRITE �VECTOR�WRITE� vlist � fname format chopt � 363
ZONE �GRAPHICS�VIEWING�ZONE� � nx ny ifirst chopt � 413
ZOOM �HISTOGRAM�ZOOM� � id chopt icmin icmax � 370

Bibliography

[1] CERN. COMIS – Compilation and Interpretation System, nProgram Library L210, January 1994.

[2] CN/ASD Group. HBOOK Users Guide (Version 4.21), nProgram Library Y250. CERN, January
1994.

[3] CN/ASD Group. HIGZ/HPLOT Users Guide, nProgram Library Q120 and Y251. CERN, 1993.

[4] CN/ASD Group. KUIP – Kit for a User Interface Package, nProgram library I202. CERN, January
1994.

[5] CN/ASD Group. MINUIT – Users Guide, nProgram Library D506. CERN, 1993.

[6] CN/ASD Group. PAW users guide, nProgram Library Q121. CERN, October 1993.

[7] CN/ASD Group and J. Zoll/ECP. ZEBRA Users Guide, nProgram Library Q100. CERN, 1993.

[8] L. Lamport. LATEX A Document Preparation System (2nd Edition). Addison-Wesley, 1994.

[9] Adobe. PostScript Language Manual (Second Edition). Addison Wesley, 1990.

[10] R. Bock et al. HIGZ Users Guide, nProgram Library Q120. CERN, 1991.

[11] R. Brun and H. Renshall. HPLOT users guide, nProgram Library Y251. CERN, 1990.

[12] F. James. Interpretation of the errors on parameters as given by MINUIT, nSupplement to “CERN

Program Library Long writeup D506”. CERN, 1978.

[13] F. James. Determining the statistical Significance of experimental Results. Technical Report
DD/81/02 and CERN Report 81–03, CERN, 1981.

[14] W. T. Eadie, D. Drijard, F. James, M. Roos, and B. Sadoulet. Statistical Methods in Experimental

Physics. North-Holland, 1971.

[15] H. J. Klein and J. Zoll. PATCHY Reference Manual, nProgram Library L400. CERN, 1988.

[16] B. Segal. The TCPAW package. CERN, 1989.

[17] R. Brun and B. Segal. A distributed Physics Analysis workbench. CERN, 1989.

[18] Sun Microsystems. Network File System Version 2. Sun Microsystems, 1987.

460

Index

"

IGSET parameter, 294
"""P

OPTION parameter, 295
""P

OPTION parameter, 295
"COL

SET parameter, 302
"P

OPTION parameter, 295
�"�, 204, 210
���, 204
���, 201, 204, 210
���, 204
���, 200, 204
OBSOLETE, 235, 453
RETURN, 40
�SIGMA, 239
�DHISTO �HISTOGRAM�CREATE��DHISTO�,375

�DHISTO �HISTOGRAM�CREATE��DHISTO�,376

�SIZ

SET parameter, 297
3270G, 321

A�

OPTION parameter, 295
A�

OPTION parameter, 295
A�

OPTION parameter, 295
A�

OPTION parameter, 295
A�

OPTION parameter, 295
A�

OPTION parameter, 295
A

OPTION parameter, 295
abbreviation, 9, 22
ABSCISSA �HISTOGRAM�GET�VECT�ABSCISSA�,

386

active picture, 287
ADD �HISTOGRAM�OPERATIONS�ADD�, 380

addressing of vectors, 237
AERRORS �GRAPHICS�HPLOT�AERRORS�, 431

alias, 9, 182
ALIAS�CREATE, 182–184
alldef.kumac, 31
alphanumeric

labels, 299
ANGLE �FUNCTION�ANGLE�, 392

ANY, 241
ANY (SIGMA), 242

Apollo, 15
APPLICATION �KUIP�SET�SHOW�APPLICATION�,

340

APPLICATION, 198, 199, 236
application SIGMA, 239
ARC �GRAPHICS�PRIMITIVES�ARC�, 423

arc
border, 294

ARCHELIX �GRAPHICS�PRIMITIVES�ARCHELIX�,
420

Arithmetic �MACRO�SYNTAX�Expressions�Arithmetic�,
351

ARLINE �GRAPHICS�PRIMITIVES�ARLINE�,420

ARRAY, 236
array, 236

filling, 240
in SIGMA, 240

ARRAY (SIGMA), 240

ARROW �GRAPHICS�PRIMITIVES�ARROW�,418

ASIZ

SET parameter, 296
AST

OPTION parameter, 295
AST

OPTION parameter, 295
asterisk size (for functions), 297
ATITLE �GRAPHICS�HPLOT�ATITLE�, 433

ATITLE, 310
attribute, 293
AURZ

IGSET parameter, 294
SET parameter, 291

automatic
storage of pictures, 291

automatic naming of pictures, 294
AWLN

IGSET parameter, 294

461

462 INDEX

AXIS �GRAPHICS�PRIMITIVES�AXIS�, 421

AXIS, 299
axis

divisions, 300
labels

font and precision, 297
size, 297

labels offset, 294
labels size, 294
tick marks size, 294
title, 130
values

font and precision, 297
size, 297

backspace, 313, 315
band, 14
BANX �HISTOGRAM�CREATE�BANX�, 378

BANY �HISTOGRAM�CREATE�BANY�, 378

BAR

OPTION parameter, 295
bar

chart, 296
histogram

offset, 297
width, 297

BAR

OPTION parameter, 295
bar charts, 136
BARO

IGSET parameter, 294
SET parameter, 296

BARW

IGSET parameter, 294
SET parameter, 296

bash shell, 6
basic operator in SIGMA, 240
BASL

IGSET parameter, 294
batch, 3, 16
BCOL

SET parameter, 296, 302
binning

alphanumeric, 136
automatic, 128
user defined, 128

BINS �HISTOGRAM�CREATE�BINS�, 376

book histogram, 13
Boolean �MACRO�SYNTAX�Expressions�Boolean�,

352

boolean value in SIGMA, 240
BORD

IGSET parameter, 294
BOX �GRAPHICS�PRIMITIVES�BOX�, 417

box
around picture, 296
border, 294
fill area

colour, 297
BOX

OPTION parameter, 295
BREAK �KUIP�SET�SHOW�BREAK�, 341

BREAKL �MACRO�SYNTAX�Looping�BREAKL�,359

BREAKL, 199, 211
Browsable, 214, 218
Browsable window, 214, 231
Browser, 214
Browser initialization, 218
BTYP

SET parameter, 296, 302
BUGREPORT �KUIP�BUGREPORT�, 336

BWID

SET parameter, 296

CALL �FORTRAN�CALL�, 445

CASE �MACRO�SYNTAX�Branching�CASE�,356

CASE, 209
CASE, 199
CAT �NETWORK�PIAF�CAT�, 449

CDF (Command Definition File), 214, 216, 218,
222, 225

CDF Command Definition File, 9
CDIR �ZEBRA�RZ�CDIR�, 440

CDIR, 253, 287
CERN Program Library

NEW, 15
OLD, 15
PRO, 15

CERNLIB, 18
CFON

SET parameter, 296
CHA

INDEX 463

OPTION parameter, 295
CHA

OPTION parameter, 295
CHAIN �NTUPLE�CHAIN�, 400

change directory, 252
character

escape, 313
key size, 297
shift, 297

CHHE

IGSET parameter, 294
SET parameter, 310

chisquare, 12
client, 327
CLOSE �FORTRAN�CLOSE�, 447

CLR �GRAPHICS�MISC�CLR�, 412

cmd�, 179
cmd�, 179
cmd�, 179
CMS, 15
CMZ, 233
COLOR�TABLE �GRAPHICS�ATTRIBUTES�COLOR�TABLE�,

430

colour, 293, 300, 302
COLUMNS �KUIP�SET�SHOW�COLUMNS�, 342

COMIS, 12, 46, 53, 64, 66, 80, 98, 146, 189, 190,
192, 236, 238, 266

COMIS �FORTRAN�COMIS�, 444

COMMAND �KUIP�SET�SHOW�COMMAND�, 340

command
abbreviation, 9, 22
definition file (CDF), 9
parameter, 40

mandatory, 22
optional, 22

search path, 15
structure, 22
visibility, 171

Command Argument Panel, 216, 217, 224
comment

and statistic size, 297
font and precision, 297

common �PAWC�, 252
components

of PAW, 9
CONNECT �NETWORK�PIAF�CONNECT�, 448

CONTENTS �HISTOGRAM�GET�VECT�CONTENTS�,
385

CONTENTS �HISTOGRAM�PUT�VECT�CONTENTS�,
386

CONTOUR �HISTOGRAM��D�PLOT�CONTOUR�,375

control operator in SIGMA, 240
coordinate systems

cylindrical, 104
polar, 104
pseudo rapidy, 104
spherical, 104

COPY �HISTOGRAM�COPY�, 371

COPY �PICTURE�COPY�, 435

COPY �VECTOR�COPY�, 361

correlation, 12
CP �NETWORK�PIAF�CP�, 450

CREATE �KUIP�ALIAS�CREATE�, 336

CREATE �MACRO�GLOBAL�CREATE�, 350

CREATE �NTUPLE�CREATE�, 393

CREATE �PICTURE�CREATE�, 434

CREATE �VECTOR�CREATE�, 360

create
vector, 236

cross-wires, 296
CSELECT �NTUPLE�CSELECT�, 402

CSHI

IGSET parameter, 294, 313
SET parameter, 296

CSIZ

SET parameter, 296
current

directory, 252
picture, 287

cut, 8, 13, 261, 263
graphical, 264

Cut Editor, 21
CUTS �NTUPLE�CUTS�, 401

CZ, 321

DASH

SET parameter, 296
dash mode for lines, 297
DATA �MACRO�DATA�, 350

data structure, 252
DATE

OPTION parameter, 304

464 INDEX

SET parameter, 296, 304
date, 304

and hour on pictures, 296, 304
position, 297

DDIR �ZEBRA�RZ�DDIR�, 440

DECNET, 15, 321
default setting, 9
DEFAULTS �MACRO�DEFAULTS�, 349

DEL, 241
DELETE �HISTOGRAM�DELETE�, 368

DELETE �KUIP�ALIAS�DELETE�, 337

DELETE �MACRO�GLOBAL�DELETE�, 350

DELETE �PICTURE�DELETE�, 434

DELETE �VECTOR�DELETE�, 361

DEL (SIGMA), 242

delta function, 242
DI3000, 11
dialogue style, 9
DIFF, 243
DIFF �HISTOGRAM�OPERATIONS�DIFF�, 382

DIFF, 241
DIFF (SIGMA), 243

diologue
style, 9

directory
PAWC, 92
change, 252
current, 92, 252
ZEBRA, 9

DISCONNECT �NETWORK�PIAF�DISCONNECT�,451

display, 15
distance

x axis
to labels, 297
to to axis values, 297

y axis
to labels, 297
to to axis values, 297

DIVIDE �HISTOGRAM�OPERATIONS�DIVIDE�,381

divisions, 300
DLINE �GRAPHICS�PRIMITIVES�DLINE�,416

DMOD

SET parameter, 296
DO �MACRO�SYNTAX�Looping�DO�, 358

DO, 199
DOLLAR �KUIP�SET�SHOW�DOLLAR�, 346

Domain, 15
DRAW �FUNCTION�DRAW�, 390

DRAW �NTUPLE�DRAW�, 401

DRAW �VECTOR�DRAW�, 363

driver, 15
DST, 12, 251, 254

Data Summary Tape, 12
DUMP �HISTOGRAM�HIO�DUMP�, 380

DUPLICATE �NTUPLE�DUPLICATE�, 394

DVXI

OPTION parameter, 295
DVXR

OPTION parameter, 295
DVYI

OPTION parameter, 295
DVYR

OPTION parameter, 295

EAH

OPTION parameter, 295
EDIT �KUIP�EDIT�, 332

EDIT, 184, 232, 267
editor, 320
EDM, 281, 283
ELSE, 199
emacs, 6
Encapsulated PostScript, 285
ENDCASE, 209
ENDKUMAC �MACRO�SYNTAX�Definitions�ENDKUMAC�,

355

ENDKUMAC, 198, 199
error

bars, 296
ERRORS �GRAPHICS�HPLOT�ERRORS�, 431

ERRORS �HISTOGRAM�GET�VECT�ERRORS�,385

ERRORS �HISTOGRAM�PUT�VECT�ERRORS�,387

errors on fitted parameters, 271
ERRX

SET parameter, 296
event, 13
exchange input/output, 12
exclamation mark character

place-holder, 22
EXEC �MACRO�EXEC�, 348

EXEC, 171, 198–204, 288

INDEX 465

Executive Window, 18, 20, 215, 218, 219, 224,
227, 230, 231

EXIT �KUIP�EXIT�, 333

EXITM �MACRO�SYNTAX�Definitions�EXITM�,
355

EXITM, 189, 199, 200, 212

FACI

IGSET parameter, 294
FAIS

IGSET parameter, 294
SET parameter, 305

FAREA �GRAPHICS�PRIMITIVES�FAREA�,416

FASI

IGSET parameter, 294
SET parameter, 305

FBOX �GRAPHICS�PRIMITIVES�FBOX�, 418

FCOL

SET parameter, 296, 302
Feynman diagrams, 156
FILE �FORTRAN�FILE�, 446

FILE �HISTOGRAM�FILE�, 368

FILE �PICTURE�FILE�, 434

FILE �ZEBRA�FZ�FILE�, 441

FILE �ZEBRA�RZ�FILE�, 439

FILE

OPTION parameter, 304
SET parameter, 296, 304

file name
on pictures, 296, 304
position, 297

FILECASE �KUIP�SET�SHOW�FILECASE�,346

FILECASE, 173
fill

area, 300
interior style, 305
style index, 305

histogram, 13
vector, 236

fill area
colour index, 294
interior style, 294
style index, 294

first page number, 297
FIT �HISTOGRAM�FIT�, 371

FIT �VECTOR�FIT�, 365

FIT

OPTION parameter, 295, 304
SET parameter, 305

fit, 12, 13, 270
parameters on pictures, 296, 304
values to be plotted, 297
vector, 238

FIT

OPTION parameter, 295
SET parameter, 296

font, 293
PostScript, 315
text, 312

fonts, 306
FOR �MACRO�SYNTAX�Looping�FOR�, 358

FOR, 199
FORTRAN, 444–448
FPGN

SET parameter, 296
FPOINT �GRAPHICS�PRIMITIVES�FPOINT�,421

FRALPHA �ZEBRA�FZ�FRALPHA�, 442

FREE �ZEBRA�RZ�FREE�, 441

FRFZ �ZEBRA�FZ�FRFZ�, 441

FTP, 324
FTYP

SET parameter, 296, 302
FUN� �FUNCTION�FUN��, 389

FUN� �FUNCTION�FUN��, 389

FUNCTION, 389–393
FUNCTION �HISTOGRAM�GET�VECT�FUNCTION�,

385

function, 13, see sstem function185
drawing

one-dimensional, 56, 58
three-dimensional, 66
two-dimensional, 62

fill area
colour, 297
type, 297

in SIGMA, 241
line width, 297
range, 66

FUNCTIONS �KUIP�FUNCTIONS�, 333

FWID

SET parameter, 296

466 INDEX

Garbage �MACRO�SYNTAX�Expressions�Garbage�,
352

GDDM, 15
GDDM (IBM), 11
GET �NETWORK�PIAF�GET�, 449

GFON

SET parameter, 296
GKS, 11, 15, 26, 285
GL (Silicon Graphics), 11
Global �MACRO�SYNTAX�Variables�Global�,

354

global
section, 253, 321, 326
title

font and precision, 297
size, 297

GLOBAL�CREATE, 206
GLOBAL�IMPORT, 206, 207
GLOBAL�SECT �HISTOGRAM�HIO�GLOBAL�SECT�,

380

GMR3D (Apollo), 11
GOTO, 199
GOTO�and�IF�GOTO �MACRO�SYNTAX�Branching�GOTO�and�IF�GOTO�,

356

GPR, 15
GPR (Apollo), 11
GRAPH, 238
GRAPH �GRAPHICS�PRIMITIVES�GRAPH�,428

GRAPH, 309
graphical

cut, 264
output, 238

GRAPHICS, 406–434
graphics

editor, 320
terminal, 15

Graphics Window, 18, 20, 21
Greek letters, 313, 315
GRESET �HISTOGRAM�HIO�GRESET�, 380

GRID �GRAPHICS�HPLOT�GRID�, 433

GRID

OPTION parameter, 296
SET parameter, 296

grid, 296
line type, 297

GRPLOT, 285

GSIZ

SET parameter, 296

HARD

OPTION parameter, 295
hardware characters, 296
hatch style, 305, 307
HBOOK, 9, 42, 80, 84, 88, 122, 124, 136, 140,

251, 266, 295
Title, 296

HCDIR, 252, 253
HCOL

SET parameter, 296, 302
HDERIV, 271
HELIX �GRAPHICS�PRIMITIVES�HELIX�,419

HELP, 15, 23
HELP �KUIP�HELP�, 331

HELP, 171
HELP FUNCTIONS, 185
HESSE, 272
HFCNH, 270
HFCNV, 270
HFETCH �HISTOGRAM�HIO�HFETCH�, 379

HFILL �VECTOR�HFILL�, 364

HFITH, 270
HFITV, 270
HIDOPT, 295
HIFIT, 280
HIGZ, 11, 18, 26, 152, 191, 252, 266, 284, 286,

291, 293, 295
G mode, 285
graphics editor, 320
Z mode, 285, 287

HIST, 238
HIST �GRAPHICS�PRIMITIVES�HIST�, 427

HIST�PLOT, 288
HISTO�FIL, 183
HISTO�PLOT, 175, 179, 309
HISTOFILE, 258
HISTOGRAM, 368–389
histogram, 7, 13, 251

1D, 7
2D, 8
archiving, 88
booking, 13
contour, 102

INDEX 467

non equidistant, 102
creation, 80
file, 80, 84

subdirectories, 88
fill area

colour, 297
type, 297

filling, 13, 80
fit, 90
line width, 297
list, 84, 86
maximum, 42
maximum for scale, 297
minimum, 42
operations, 92

graphical, 96, 98
plot, 84
presentation, 300
profile, 140
project, 138
stacked lego plots, 110
subrange, 108, 110
title size, 297
two-dimensional representations, 100
update, 96

Histogram Style Panel, 18, 20
HISTOGRAM�PLOT, 285
history file, 9
HLIMIT, 252
HLOGAR, 295
HMAX

SET parameter, 296
HMERGE �NTUPLE�HMERGE�, 394

HMINUIT �FORTRAN�HMINUIT�, 444

HMOVE �GRAPHICS�MISC�HMOVE�, 413

HORI

OPTION parameter, 295
host, 15
HOST�EDITOR �KUIP�SET�SHOW�HOST�EDITOR�,

342

HOST�EDITOR, 232, 234
HOST�PAGER �KUIP�SET�SHOW�HOST�PAGER�,

343

HOST�PRINTER �KUIP�SET�SHOW�HOST�PRINTER�,
343

HOST�PSVIEWER �KUIP�SET�SHOW�HOST�PSVIEWER�,
344

HOST�SHELL �KUIP�SET�SHOW�HOST�SHELL�,
344

HOST�SHELL, 187, 232
HPLOPT, 296
HPLOT, 9, 191, 251, 266, 284, 291, 293
HPLOT�E, 185
HREAD �HISTOGRAM�HIO�HREAD�, 379

HRFILE, 252
HRIN �HISTOGRAM�HIO�HRIN�, 378

HRIN, 252
HROUT �HISTOGRAM�HIO�HROUT�, 379

HROUT, 252
HSCRATCH �HISTOGRAM�HIO�HSCRATCH�,379

HSETPR �HISTOGRAM�OPERATIONS�HSETPR�,385

HTABLE, 295
HTIT

OPTION parameter, 295
HTYP

SET parameter, 296, 302
HWID

SET parameter, 296

IBM, 15
IBM 3192G graphics terminal, 15
IDLE �KUIP�IDLE�, 333

IDOPT �HISTOGRAM�SET�IDOPT�, 387

IF, 199
IF�THEN �MACRO�SYNTAX�Branching�IF�THEN�,

356

IGSET, 40
IGSET (), 293

IGSET �PICTURE�IGSET�, 437

IGSET

", 294
AURZ, 294
AWLN, 294
BARO, 294
BARW, 294
BASL, 294
BORD, 294
CHHE, 294
CSHI, 294, 313
FACI, 294
FAIS, 294

468 INDEX

FASI, 294
LAOF, 294
LASI, 294
LTYP, 294
LWID, 294
MSCF, 294
MTYP, 294
PASS, 294, 313
PICT, 294
PLCI, 294
PMCI, 294
SHOW, 294
TANG, 294
TMSI, 294
TXAL, 294
TXCI, 294
TXFP, 294

IGSET, 293, 294, 305, 309, 313
IGTEXT, 314
IMPORT �MACRO�GLOBAL�IMPORT�, 350

Indirection �MACRO�SYNTAX�Variables�Indirection�,
354

initialisation, 17
INPUT �VECTOR�INPUT�, 362

Input Pad, 18, 20, 218–221, 230
input/output, 12
integer or real divisions on axis, 296
interactive, 3
IQUEST, 187

IQUEST���, 187, 211
ITX �GRAPHICS�PRIMITIVES�ITX�, 426

ITX, 309–313
IZIN �PICTURE�IZIN�, 436

IZOUT �PICTURE�IZOUT�, 436

IZPICT, 287
IZPICT �PICTURE�IZPICT�, 436

KERNLIB, 266
KEY �GRAPHICS�HPLOT�KEY�, 432

KEY, 296
KSIZ

SET parameter, 296
KUGETI, 194
KUGETR, 194
KUGETV, 192

KUIP, 9, 148, 170–175, 178–180, 182, 185, 190,
192, 193, 196–199,203, 205, 214, 217–
219, 221–225, 231–233, 235, 252, 266,
331–348

vector, 238
KUIP�EDIT, 233
KUIP/Motif, 214, 215, 218, 219, 221–225, 228–

231, 234
KUVECT, 192
KUWHAM, 229

label, 299
text justification, 300

label�, 199
LABELS �GRAPHICS�PRIMITIVES�LABELS�,426

LABELS, 299
LAOF

IGSET parameter, 294
LASI

IGSET parameter, 294
LAST �KUIP�LAST�, 332

LAST, 180
LATEX

PostScript, 286
LCDIR �KUIP�SET�SHOW�LCDIR�, 347

LDIR �ZEBRA�RZ�LDIR�, 440

LDIR, 258
LEGO �HISTOGRAM��D�PLOT�LEGO�, 373

length of
basic dashed segment, 297
X axis, 297
Y axis, 297

LFON

SET parameter, 296
library functions in SIGMA, 249
limits on fitted parameters, 271
LINE �GRAPHICS�PRIMITIVES�LINE�, 416

line
type, 305, 308
width, 300

linear scale, 296
lines, 293
LINTRA �NTUPLE�LINTRA�, 404

LINX

OPTION parameter, 295
LINY

INDEX 469

OPTION parameter, 295
LINZ

OPTION parameter, 295
LIST �HISTOGRAM�LIST�, 368

LIST �KUIP�ALIAS�LIST�, 337

LIST �MACRO�GLOBAL�LIST�, 351

LIST �MACRO�LIST�, 348

LIST �NTUPLE�LIST�, 394

LIST �PICTURE�LIST�, 434

LIST �VECTOR�LIST�, 361

LOCATE �GRAPHICS�MISC�LOCATE�, 412

LOCK �ZEBRA�RZ�LOCK�, 440

logarithmic scale, 296
on lego plots, 106

logical operator in SIGMA, 240
LOGLEVEL �NETWORK�PIAF�LOGLEVEL�, 451

LOGX

OPTION parameter, 295
LOGY

OPTION parameter, 295
LOGZ

OPTION parameter, 295
LOOP �FORTRAN�LOOP�, 446

LOOP �NTUPLE�LOOP�, 396

lower case letters, 313, 315
LS, 243
LS �NETWORK�PIAF�LS�, 449

LS, 241
LS (SIGMA), 243

LTYP

IGSET parameter, 294
LTYPE

SET parameter, 305
��LUN�, 253
LVMAX, 241
LVMAX (SIGMA), 244

LVMIM, 241
LVMIN (SIGMA), 244

LWID

IGSET parameter, 294

MACRO, 348–360
MACRO �MACRO�SYNTAX�Definitions�MACRO�,

355

MACRO, 198, 199, 202, 203
macro, 9, 14

conditional statement, 48
flow control, 48
indexed positional parameters, 60
loop, 46
parameter, 9
parameter list, 60
variable, 46

macro statements, 198, 199
flow control, 208

macro variable, 178
argument count, see ���

argument list, see �"�

file name, see ���

indirection, 206
numbered, see ���

return code, see ���

special, 204
undefined, 202, 203

MACRO�DEFAULT, 171
Macros, 9
Main Browser, 18, 214–216, 218, 219, 222
MAKE �ZEBRA�RZ�MAKE�, 439

making slides, 161
mandatory parameter, 22
Mandelbrot distribution, 64
MANUAL �KUIP�MANUAL�, 331

MANY�PLOTS �HISTOGRAM�MANY�PLOTS�,371

marker
type, 305, 308

MASK �NTUPLE�MASK�, 402

MASK, 262
mask, 8, 13, 261, 263
match, 54
MAX, 241
MAXIMUM �HISTOGRAM�SET�MAXIMUM�, 387

MAX (SIGMA), 245

MAXV, 241
MAXV (SIGMA), 245

MDIR �ZEBRA�RZ�MDIR�, 439

menu, 22
MERGE �NTUPLE�MERGE�, 396

MERGE �PICTURE�MERGE�, 435

MESSAGE �KUIP�MESSAGE�, 333

MESSAGE �NETWORK�PIAF�MESSAGE�, 450

MESSAGE, 177, 189
METAFILE �GRAPHICS�METAFILE�, 410

470 INDEX

METAFILE, 286
metafile, 8, 14, 26, 285
MIGRAD, 271, 272
MIN, 241
minimisation, 12, 270
MINIMUM �HISTOGRAM�SET�MINIMUM�, 387

MIN (SIGMA), 245

MINUIT, 12, 270
MINV, 241
MINV (SIGMA), 245

MIPS, 3
MKDIR �NETWORK�PIAF�MKDIR�, 450

MODE �NETWORK�PIAF�MODE�, 450

mode
HIGZ

G mode, 285
Z mode, 285, 287

MODIFY �PICTURE�MODIFY�, 435

MODIFY, 320
Motif, 9, 18, 214
MSCF

IGSET parameter, 294
MTYP

IGSET parameter, 294
SET parameter, 305

MULTIPLY �HISTOGRAM�OPERATIONS�MULTIPLY�,
381

MV �NETWORK�PIAF�MV�, 450

NAST

OPTION parameter, 295
native input/output, 12
NBAR

OPTION parameter, 295
NBOX

OPTION parameter, 295
NCHA

OPTION parameter, 295
NCO, 241
NCO (SIGMA), 246

NDAT

OPTION parameter, 296
NDVX

SET parameter, 296, 300
NDVY

SET parameter, 296

NDVZ

SET parameter, 297
NEAH

OPTION parameter, 295
NETWORK, 448–452
NEWPANEL �KUIP�SET�SHOW�NEWPANEL�,340

NEXT �GRAPHICS�MISC�NEXT�, 412

NEXTL �MACRO�SYNTAX�Looping�NEXTL�,359

NEXTL, 199, 211
NFIL

OPTION parameter, 296
NFIT

OPTION parameter, 295
NGRI

OPTION parameter, 296
NOPG

OPTION parameter, 295
NORMALIZE�FACTOR �HISTOGRAM�SET�NORMALIZE�FACTOR�,

387

NPTO

OPTION parameter, 295
NSQR

OPTION parameter, 295
NSTA

OPTION parameter, 295
NTAB

OPTION parameter, 295
NTCUT, 263, 264
NTCUTS, 262
NTIC

OPTION parameter, 295
NTMASK, 263
NTPLOT, 263
NTUPLE, 393–406
Ntuple, 8, 13, 251, 260

cut, 261
mask, 261
weight, 261

ntuple
and vector, 142
chain, 144
creation

CWN, 124
RWN, 122

cuts, 134, 136
loop, 134, 142

INDEX 471

masks, 134
print, 122

CWN, 127
RWN, 127

profile histogram, 140
project, 128, 138
read

CWN, 124
RWN, 122

scan, 130, 132
selection criteria, 130

Ntuple Viewer, 18, 21
NTUPLEPLOT, 261
NULL �GRAPHICS�HPLOT�NULL�, 433

number of
divisions for

X axis, 297
Y axis, 297

passes for software characters, 297
Numbered �MACRO�SYNTAX�Variables�Numbered�,

353

NZFL

OPTION parameter, 295

Object window, 214, 230
OBSOLETE, 452
OFF ERROR, 199, 213
ON ERROR, 199, 213
ON ERROR CONTINUE, 199
ON ERROR EXITM, 199
ON ERROR GOTO, 199, 212
ON ERROR STOPM, 199
ON�ERROR �MACRO�SYNTAX�Branching�ON�ERROR�,

357

operating system, 9
operation on vectors, 237
operator in SIGMA, 240
OP (SIGMA), 242

OPTION (), 293

OPTION �GRAPHICS�OPTION�, 408

OPTION

"""P, 295
""P, 295
"P, 295
A�, 295
A�, 295

A�, 295
A�, 295
A�, 295
A�, 295
A
, 295
AST , 295
AST, 295
BAR , 295
BAR, 295
BOX , 295
CHA , 295
CHA, 295
DATE, 304
DVXI, 295
DVXR, 295
DVYI, 295
DVYR, 295
EAH, 295
FILE, 304
FIT , 295
FIT, 295, 304
GRID, 296
HARD, 295
HORI, 295
HTIT, 295
LINX, 295
LINY, 295
LINZ, 295
LOGX, 295
LOGY, 295
LOGZ, 295
NAST, 295
NBAR, 295
NBOX, 295
NCHA, 295
NDAT, 296
NEAH, 295
NFIL, 296
NFIT, 295
NGRI, 296
NOPG, 295
NPTO, 295
NSQR, 295
NSTA, 295
NTAB, 295
NTIC, 295

472 INDEX

NZFL, 295
PTO , 295
PTO, 295
SOFT, 295
SQR, 295
STA , 295
STAT, 304
STA, 295
TAB , 295
TIC , 295
TIC, 295
UTIT, 295
VERT, 295
ZFL , 295
ZFL�, 295
ZFL, 295

OPTION, 285, 288, 293, 304, 305
optional parameter, 22
ORDER, 241
ORDER (SIGMA), 246

OS9, 327
module, 253, 321

OSI, 321
OUTPUT�LP �HISTOGRAM�HIO�OUTPUT�LP�,380

page
format, 296
number, 296
number size, 297

PALETTE �GRAPHICS�ATTRIBUTES�PALETTE�,
430

PAWMAIN, 252
PANEL �KUIP�SET�SHOW�PANEL�, 338

PANEL, 224
panel

menu, 22
PANEL interface, 218, 221–223, 225
paper orientation, 296
PARAM �HISTOGRAM�OPERATIONS�PARAM�,384

parameter, 9
errors (fit), 271

PASS

IGSET parameter, 294, 313
SET parameter, 297

path, 15
PAVE �GRAPHICS�PRIMITIVES�PAVE�, 427

PAW, 30, 31, 36, 42, 46, 80, 98, 136, 146, 156,
169, 214, 216, 229, 270

access, 15
entities, 26
initialisation, 17
object, 26
server, 321, 327
structure, 9

PAW (Physics Analysis Workstation), 18
PAW++, 18, 20, 21
PAW++ Locate, 21
�PAWC� common, 252
�PAWC� common, 252, 253
��PAWC directory, 253
PAWINT, 252
PAWLOGON, 15–17
PCOL

SET parameter, 297, 302
PG terminal type, 15
PICT

IGSET parameter, 294
PICT�LIST, 287
PICTURE, 434–439
picture, 8, 14, 286, 296

fill area
colour, 297
type, 297

line width, 297
print, 165

PICTURE�CREATE, 287
PICTURE�FILE, 291
PICTURE�PRINT, 288
PIE, 238
PIE �GRAPHICS�PRIMITIVES�PIE�, 424

PIE, 299
place-holder

exclamation mark character, 22
PLCI

IGSET parameter, 294
PLINE �GRAPHICS�PRIMITIVES�PLINE�,415

PLOT
commands, 26

PLOT �FUNCTION�PLOT�, 391

PLOT �HISTOGRAM�PLOT�, 368

PLOT �NTUPLE�PLOT�, 397

PLOT �PICTURE�PLOT�, 434

INDEX 473

PLOT �VECTOR�PLOT�, 364

PLOTHIS, 253
PMARKER �GRAPHICS�PRIMITIVES�PMARKER�,

417

PMCI

IGSET parameter, 294
POINTS �FUNCTION�POINTS�, 391

polyline
colour index, 294
type, 294
width, 294

polymarker
colour index, 294
scale factor, 294
type, 294

PostScript, 14, 26, 152, 164, 285
colour printers, 285
fonts, 315

Courier, 315
Courier-Bold, 315
Courier-BoldOblique, 315
Courier-Oblique, 315
Helvetica, 315
Helvetica-Bold, 315
Helvetica-BoldOblique, 315
Helvetica-Oblique, 315
Symbol, 315
Times-Bold, 315
Times-BoldItalic, 315
Times-Italic, 315
Times-Roman, 315
ZapfDingbats, 315

special A4, 285
precision

text, 312
prefix SIGMA, 239
presenter, 326, 327
PRINT

commands, 26
PRINT �HISTOGRAM�HIO�PRINT�, 380

PRINT �KUIP�PRINT�, 332

PRINT �NTUPLE�PRINT�, 394

PRINT �PICTURE�PRINT�, 435

PRINT �VECTOR�PRINT�, 362

PROD, 241
PROFILE �HISTOGRAM�CREATE�PROFILE�,376

PROF (SIGMA), 247

PROJECT �HISTOGRAM�PROJECT�, 371

PROJECT �NTUPLE�PROJECT�, 397

projection, 13
PROMPT �KUIP�SET�SHOW�PROMPT�, 341

PROX �HISTOGRAM�CREATE�PROX�, 377

PROY �HISTOGRAM�CREATE�PROY�, 377

PSIZ

SET parameter, 297
PSVIEW �KUIP�PSVIEW�, 332

PTO

OPTION parameter, 295
PTO

OPTION parameter, 295
PTO (Please Turn Over), 296
PTYP

SET parameter, 297, 302
pull-down menu, 22
PURGE �ZEBRA�RZ�PURGE�, 440

PUT �NETWORK�PIAF�PUT�, 449

put
contents, 42

PWD �NETWORK�PIAF�PWD�, 450

PWID

SET parameter, 297

QUAD, 241
QUAD (SIGMA), 247

QUEST, see IQUEST

QUIT �KUIP�QUIT�, 333

RANGE �FUNCTION�RANGE�, 391

READ �MACRO�SYNTAX�Variables�READ�,354

READ �NTUPLE�READ�, 397

READ �VECTOR�READ�, 362

READ, 199, 201
real time, 253
REBIN �HISTOGRAM�GET�VECT�REBIN�, 386

RECALL, 182
RECALL�STYLE �KUIP�SET�SHOW�RECALL�STYLE�,

344

RECORDING �KUIP�SET�SHOW�RECORDING�,342

RECORDING, 180
RECOVER �NTUPLE�RECOVER�, 395

remote
access, 258, 321
file, 324

474 INDEX

login, 324, 327
shell, 324, 327

RENAME �PICTURE�RENAME�, 435

REPEAT �MACRO�SYNTAX�Looping�REPEAT�,358

REPEAT, 199
replay, 11
RESET �HISTOGRAM�OPERATIONS�RESET�,382

RETURN �MACRO�SYNTAX�Definitions�RETURN�,
355

RETURN, 198–200
REWIND �FORTRAN�REWIND�, 447

RLOGIN, 324, 327
RLOGIN �NETWORK�RLOGIN�, 448

RM �NETWORK�PIAF�RM�, 450

RMDIR �NETWORK�PIAF�RMDIR�, 450

ROOT �KUIP�SET�SHOW�ROOT�, 341

RSHELL, 324, 327
RSHELL �NETWORK�RSHELL�, 448

RZ file, 12

SCALE�FACTOR��D �HISTOGRAM�SET�SCALE�FACTOR��D�,
387

SCAN �NTUPLE�SCAN�, 395

SCAN, 260
scatter plot

and table character size, 297
table, 251

SCHH �OBSOLETE�GRAPHICS�ATTRIBUTES�SCHH�,
453

SCRATCH �PICTURE�SCRATCH�, 434

selection
function, 261, 263, 266

SELNT �GRAPHICS�VIEWING�SELNT�, 415

server, 327
SET, 40
SET (), 293

SET �GRAPHICS�SET�, 406

SET

"COL, 302
�SIZ, 297
ASIZ, 296
AURZ, 291
BARO, 296
BARW, 296
BCOL, 296, 302
BTYP, 296, 302

BWID, 296
CFON, 296
CHHE, 310
CSHI, 296
CSIZ, 296
DASH, 296
DATE, 296, 304
DMOD, 296
ERRX, 296
FAIS, 305
FASI, 305
FCOL, 296, 302
FILE, 296, 304
FIT , 296
FIT, 305
FPGN, 296
FTYP, 296, 302
FWID, 296
GFON, 296
GRID, 296
GSIZ, 296
HCOL, 296, 302
HMAX, 296
HTYP, 296, 302
HWID, 296
KSIZ, 296
LFON, 296
LTYPE, 305
MTYP, 305
NDVX, 296, 300
NDVY, 296
NDVZ, 297
PASS, 297
PCOL, 297, 302
PSIZ, 297
PTYP, 297, 302
PWID, 297
SMGR, 297
SMGU, 297
SSIZ, 297
STAT, 297, 304
TANG, 310
TFON, 297
TSIZ, 297
TXAL, 311
TXCI, 312

INDEX 475

TXFP, 313
VFON, 297
VSIZ, 297
XCOL, 297
XLAB, 297
XMGL, 297
XMGR, 297
XSIZ, 297
XTIC, 297
XVAL, 297
XWID, 297
XWIN, 297
YCOL, 297
YGTI, 297
YHTI, 297
YLAB, 297
YMGL, 297
YMGU, 297
YNPG, 297
YSIZ, 297
YTIC, 297
YVAL, 297
YWID, 297
YWIN, 297

SET, 285, 293, 300, 304, 305, 309, 310
SET , 293
SET�APPLICATION, 198, 200
SET�COMMAND, 172, 235
SET�DOLLAR, 185
SET�ROOT, 235
SET�VISIBILITY, 171
SFACI �OBSOLETE�GRAPHICS�ATTRIBUTES�SFACI�,

452

SFAIS �OBSOLETE�GRAPHICS�ATTRIBUTES�SFAIS�,
452

SFASI �OBSOLETE�GRAPHICS�ATTRIBUTES�SFASI�,
452

SHELL �KUIP�SHELL�, 333

SHELL, 231, 232, 288
shell

bash, 6
tcsh, 6

SHIFT �MACRO�SYNTAX�Variables�SHIFT�,354

SHIFT, 199, 204
SHOW �ZEBRA�DZ�SHOW�, 442

SHOW

IGSET parameter, 294
SIGMA, 12, 44, 46, 50, 102, 146, 150, 189, 190,

192, 236, 237, 239–250
�SIGMA, 239
access, 239
APPLication SIGMA, 239
array, 240
filling, 240
structure, 240

basic operator, 240
boolean value, 240
control operator, 240
function, 241
library functions, 249
logical operator, 240
prefix SIGMA, 239
vector, 240

SIGMA �FORTRAN�SIGMA�, 447

SIZE �GRAPHICS�VIEWING�SIZE�, 414

SIZE, 286
slice, 14
SLIDE �GRAPHICS�SLIDE�, 412

SLIX �HISTOGRAM�CREATE�SLIX�, 377

SLIY �HISTOGRAM�CREATE�SLIY�, 377

SLN �OBSOLETE�GRAPHICS�ATTRIBUTES�SLN�,
452

SLWSC �OBSOLETE�GRAPHICS�ATTRIBUTES�SLWSC�,
453

SMGR

SET parameter, 297
SMGU

SET parameter, 297
SMK �OBSOLETE�GRAPHICS�ATTRIBUTES�SMK�,

452

SMOOTH �HISTOGRAM�OPERATIONS�SMOOTH�,383

SMOOTH, 175
SNAP �ZEBRA�DZ�SNAP�, 442

SOFT

OPTION parameter, 295
software

characters, 296
SORT �HISTOGRAM�OPERATIONS�SORT�, 383

Special �MACRO�SYNTAX�Variables�Special�,
353

special symbols, 25, 313, 315

476 INDEX

SPLCI �OBSOLETE�GRAPHICS�ATTRIBUTES�SPLCI�,
452

SPLINE �HISTOGRAM�OPERATIONS�SPLINE�,384

SPMCI �OBSOLETE�GRAPHICS�ATTRIBUTES�SPMCI�,
452

SQR

OPTION parameter, 295
SSIZ

SET parameter, 297
STA

OPTION parameter, 295
STA

OPTION parameter, 295
STAGE �NETWORK�PIAF�STAGE�, 448

STAT �ZEBRA�RZ�STAT�, 441

STAT

OPTION parameter, 304
SET parameter, 297, 304

statistic
analysis, 12
parameters on pictures, 296, 304
values to be plotted, 297

STATUS �NETWORK�PIAF�STATUS�, 450

STOPM �MACRO�SYNTAX�Definitions�STOPM�,
355

STOPM, 199, 200, 212
STORE �ZEBRA�DZ�STORE�, 443

STRING, 177
String �MACRO�SYNTAX�Expressions�String�,

352

structure of PAW, 9
STXCI �OBSOLETE�GRAPHICS�ATTRIBUTES�STXCI�,

452

STXFP �OBSOLETE�GRAPHICS�ATTRIBUTES�STXFP�,
453

STYLE �KUIP�SET�SHOW�STYLE�, 338

style, 8
STYLE G, 171
style of dialogue, 9
subscript, 313, 315
SUBTRACT �HISTOGRAM�OPERATIONS�SUBTRACT�,

381

SUMV, 241
SUMV (SIGMA), 248

superscript, 313, 315
SURFACE �HISTOGRAM��D�PLOT�SURFACE�,374

SURV �ZEBRA�DZ�SURV�, 442

SVP �GRAPHICS�VIEWING�SVP�, 414

SWITCH
Z, 287

SWITCH �PICTURE�SWITCH�, 437

SWN �GRAPHICS�VIEWING�SWN�, 414

SYMBOLS �GRAPHICS�HPLOT�SYMBOLS�, 431

symbols, 25
system function, 178, 185

�ANAM, 186

�ANUM, 186

�ARGS, 187

�AVAL, 186

�CPTIME, 187, 187

�DATE, 187

�DEFINED, 187, 205, 206
�ENV, 187

�EVAL, 189, 189, 190, 194
�EXEC, 189

�FEXIST, 187

�FORMAT, 190

�INDEX, 187

�INLINE, 191, 191, 204
�IQUEST, 187, 212
�KEYNUM, 186

�KEYVAL, 186

�LAST, 186

�LEN, 187, 187

�LOWER, 187

�MACHINE, 187, 187, 188
�NUMVEC, 186, 192
�OS, 187, 187, 188
�PID, 187

�QUOTE, 188, 189
�RSIGMA, 190, 190

�RTIME, 187, 187

�SHELL, 187, 187

�SIGMA, 189, 190, 193
�STYLE, 186

�SUBSTRING, 187

�TIME, 187

�UNQUOTE, 189, 197
�UPPER, 187

�VDIM, 186, 186

�VEXIST, 186

�VLEN, 186

INDEX 477

�WORDS, 188

�WORD, 188

arguments, 185
name separators, 185

TAB

OPTION parameter, 295
TANG

IGSET parameter, 294
SET parameter, 310

TCP/IP, 15, 258, 321, 327
TCPAW, 321
tcsh shell, 6
Tektronix, 15
TELNET, 321, 324
TELNETG, 321
termination character, 313, 315
TEXT �GRAPHICS�PRIMITIVES�TEXT�, 425

TEXT, 294, 309–313, 315
text, 102

(and title) font and precision, 297
alignment, 294

horizontal, 311
vertical, 311

angle, 294
character height, 294
colour index, 294
data, 26
font, 294, 312
precision, 294, 312
width, 294

text alignment, 312
TFON

SET parameter, 297
TIC

OPTION parameter, 295
TIC

OPTION parameter, 295
tick marks, 300
TICKS �GRAPHICS�HPLOT�TICKS�, 432

TIMING �KUIP�SET�SHOW�TIMING�, 341

title, 104
title font and precision, 297
TITLE�GLOBAL �HISTOGRAM�CREATE�TITLE�GLOBAL�,

378

TMSI

IGSET parameter, 294
tn3270, 15
TOALPHA �ZEBRA�FZ�TOALPHA�, 441

TOFZ �ZEBRA�FZ�TOFZ�, 441

TRACE �MACRO�TRACE�, 348

Transcript Pad, 18, 20, 218–221, 230
TRANSLATION �KUIP�ALIAS�TRANSLATION�,337

TSIZ

SET parameter, 297
TXAL

IGSET parameter, 294
SET parameter, 311

TXCI

IGSET parameter, 294
SET parameter, 312

TXFP

IGSET parameter, 294
SET parameter, 313

UNITS �KUIP�UNITS�, 333

Unix, 6
unix, 15
UNTIL, 199
upper case letters, 313, 315
USAGE �KUIP�USAGE�, 331

USAGE, 172
USAGE command, 25
user

title, 296
UTIT

OPTION parameter, 295
UWFUNC �NTUPLE�UWFUNC�, 403

UWFUNC, 178, 266

VADD �VECTOR�OPERATIONS�VADD�, 366

VAX, 15, 321
VAX/VMS, 326
Vaxstation, 15
VBIAS �VECTOR�OPERATIONS�VBIAS�, 366

VDIVIDE �VECTOR�OPERATIONS�VDIVIDE�,367

VECDEF, 192
VECTOR, 360–368
VECTOR, 236
vector, 8, 14, 236

address, 237
and COMIS, 142
and ntuple, 142

478 INDEX

arithmetic, 237, 240
create, 36, 236
delete, 36
dimensions, 38
draw, 36, 38, 40, 42
fill, 236
fit, 50
graph, 36, 158
hfill, 42
in SIGMA, 240
input, 36
operations, 44, 240
plot, 42
read, 46

using match, 54
subranges, 38
write, 38

VECTOR�CREATE, 192
VECTOR�LIST, 192
VECTOR�READ, 192
VECTOR�WRITE, 192
VEFIT, 280
VERIFY �ZEBRA�DZ�VERIFY�, 443

version, 15
VERT

OPTION parameter, 295
VFON

SET parameter, 297
VISIBILITY �KUIP�SET�SHOW�VISIBILITY�,

345

VISIBILITY, 171
VLOCATE �GRAPHICS�MISC�VLOCATE�, 413

VM-CMS, 15
VMAX, 241
VMAX (SIGMA), 249

VMEM �NTUPLE�VMEM�, 405

VMIN, 241
VMIN (SIGMA), 249

VMS, 15, 326
VMULTIPLY �VECTOR�OPERATIONS�VMULTIPLY�,

366

VSCALE �VECTOR�OPERATIONS�VSCALE�,366

VSIZ

SET parameter, 297
VSUBTRACT �VECTOR�OPERATIONS�VSUBTRACT�,

367

VSUM, 241
VSUM (SIGMA), 249

WAIT �KUIP�WAIT�, 333

WAVE �NTUPLE�WAVE�, 401

weight, 261
weighting factor, 263
WHILE �MACRO�SYNTAX�Looping�WHILE�,359

WHILE, 199
WORKSTATION �GRAPHICS�WORKSTATION�,411

workstation, 3, 15
type, 17

workstation type, 285
WRITE �VECTOR�WRITE�, 363

X axis
colour, 297
tick marks length, 297

X margin
left, 297
right, 297

X space between windows, 297
X windows, 11, 15
X11, 15, 18
XCOL

SET parameter, 297
XLAB

SET parameter, 297
XMGL

SET parameter, 297
XMGR

SET parameter, 297
XSIZ

SET parameter, 297
XTIC

SET parameter, 297
XVAL

SET parameter, 297
XWID

SET parameter, 297
XWIN

SET parameter, 297

Y axis
colour, 297
tick marks length, 297

Y margin

INDEX 479

low, 297
up, 297

Y position of
global title, 297
histogram title, 297
page number, 297

Y space between windows, 297
YCOL

SET parameter, 297
YGTI

SET parameter, 297
YHTI

SET parameter, 297
YLAB

SET parameter, 297
YMGL

SET parameter, 297
YMGU

SET parameter, 297
YNPG

SET parameter, 297
YSIZ

SET parameter, 297
YTIC

SET parameter, 297
YVAL

SET parameter, 297
YWID

SET parameter, 297
YWIN

SET parameter, 297

ZEBRA, 12, 84, 252, 266, 321, 439–444
FRALFA, 26
FZ file, 26
RZ file, 26, 324
TOALFA, 26

ZFL

OPTION parameter, 295
ZFL

OPTION parameter, 295
ZFL (option), 287
ZFL�

OPTION parameter, 295
ZFL1 (option), 288
ZFTP, 324

zftp, 321
ZONE �GRAPHICS�VIEWING�ZONE�, 413

ZONE, 285
ZOOM �HISTOGRAM�ZOOM�, 370

