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Abstract For any system, whether physical or non-physical, knowgeolgthe form and strength
of inter-individual interactions is a key-information. Bn approach based on statistical physics
one needs to know the interaction in order to write the Hami#in of the systemi = Hfpge +
Hinteraction FOr non-physical systems, based on qualitative argunsmiiar to those used in
physical chemistry, interaction strength gives usefueslabout the macroscopic properties of the
system, e.g. for an institution the dropout rate is expetddze smaller when inter-individual attrac-
tion is stronger.

Even though our ultimate objective is the understandingoofad phenomena, we found that sys-
tems composed of insects (or other living organisms) areestgonvenience for investigatiggoup
effects In this paper we show how to design experiments that enaldie estimate the strength of in-
teraction in groups of insects. By repeating the same exyggris with increasing numbers of insects,
ranging from less than 10 to several hundreds, one is ablgptore key-properties of the interaction.
The data turn out to be consistent with a global interactiat ts independent of distance (at least
within a range of a few centimeters). Estimates of the awe@gss-correlation will be given for
ants, beetles and fruit flies. The experimental resultsiglexclude an Ising-like interaction, that is
to say one that would be restricted to nearest neighbordhecase of fruit flies the average cross-
correlation appears to be negative which means that insteaal inter-individual attraction there is a
(weak) repulsive effect.

In our conclusion we insist on the fact that such “physiks-kexperiments” on insect populations
provide a valuable complement or alternative to computaukitions. When testable group effects
are predicted by a model, the required experiments can hgséthin a short timethus permitting

to confirm or disprove the model. This marks a significant pgeg with respect to modeling of so-
cial systems where, all too often, the requested statigtata just do not exist, thus obstructing any
fruitful dialogue between theory and observation.
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In a first version of the paper the title made reference tai&ieal physics” rather
than to “physical chemistry”. Although chemistry itselfagk no role in our inves-
tigation, we think it is important to emphasize that at thisnp it relies rather on
the approach of “physical chemistry” than on the more forapgdroach of statistical
mechanics. The reasons for that will be explained latér on

Rationale and motivations

By using the theoretical framework of statistical mechawice can derive the macro-
scopic properties of a system from the characteristicssafmicroscopic elements.
This is a major achievement and so it is hardly surprisingriésearchers from other
disciplines (e.g. biology, demography, sociology or ecois) have been tempted
to adapt such a powerful tool to their own field. In light of theccessful record
of statistical mechanics in physics there is little doulatthuch extensions appear
highly desirable. Yet, to our best knowledge, in spite of ynattempts in this direc-
tion such attempts have not been highly successful go far

Obstacles

As a matter of fact this is hardly surprising for there aresd many obstacles.

e Statistical physics is fundamentally a theory of systemequilibrium. For
systems which are (strongly) out of equilibrium the very cgpt of temperature
becomes meaningless.

e Statistical physics relies on the connection between eblgeaverages (which
are predicted theoretically) and time-averages (whichregasured in experiments).
This so-called ergodic hypothesis may be valid for physsyatems which move
from one state to another every picosecond so that thereiioms$ of transitions
during an observation time of a few seconds. Yet, it is noti@ly that such an
assumption can still be accepted for socio-economic systenmvhich the transition
rates are much slower

e Last but not least, one should not forget that in order to hsetheoretical
framework of statistical mechanics one needs to know theiltaman H of the
system which indicates how energy is distributed. Generdlincludes three parts:

H = H() + Hinter+ HeXO

1A preliminary but extended version (some 120 pages) of thegnt paper is available on the following website:
http://www.Ipthe.jussieu.fr/ roehner/effusion.pdf. dde readers who, on the contrary, wish to get a quick accamt c
read the vivid and clear review posted on the following wesi
http://www.technologyreview.com/view/509486/firstygits-like-experiments-for-measuring-group-behawiofdliving-creatures/

2Recently, some promising breakthroughs were made in théstibn by a group of Japanese economists; see Aoki
and Yoshikawa (2007), lyetomi et al. (2011), lyetomi (2012)

3The highest transition rates are probably those in curreschange markets with hundreds of orders (worldwide)
every second. Recently so-called high speed trading, $htatsay transaction orders passed by computers, has reduced
transition times to a few micro-seconds at least for a nurobactively traded securities.
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where H,, stands for the free particle$/;o, for the interaction energy between
them andHexo for the energy of the particles when an exogenous field isweeb
For instanced, ~ X p;/m for a system containing the molecules of a gdg,io ~

) m when one wants to take into account the van der Waals fordesber the
molecules, andiexo ~ X S;H (i) for the energy of a set of spins in an external
magnetic field.

Whereas the third term can possibly be omitted when the erpatal device can
be shielded from external fields, the interaction term nalistiysbe taken into ac-
count. Needless to say, there are almost no biological or soc&esys for which
one has a clear knowledge of their interactions. It is pedgithe main purpose of
the present paper to explain how such interactions can bsurexh

Reasons for optimism

The previous list of obstacles could appear discouragipgaally if one realizes
that there are many other problems in non-physical systastdgr defining key-
variables such as velocity or energy. However, there aegdsd reasons for opti-
mism as we will see now.

First, it can be observed that the theory of phase transitiais been used to describe
the transition between ordinary hadronic matter and qgarkn plasma. As such
states are characterized by temperature of the orded'éK and life-times of the
order of 10-%’s, it means that this theory is applied well beyond the liroftshe
phenomenafor which it was originally developed. Does the ergodic asstion
hold for such extremely short time intervals? Nobody knows probably nobody
cares. The strategy of physicists is to use this framewotkoumt giving too much
concern to underlying assumptions. If sensible resultsrgeehis will provide so
to sayex posjustification.

Secondly, it can be observed that the title of this paper doésefer to statistical
physics but to physical chemistry. Why?

¢ Although the objective of physical chemistry is also to explthe properties of
macroscopic systems in terms of molecular interactioresetiare two main differ-
ences with the approach of statistical mechanics. Firgsipal chemistry considers
a broad range of molecules rather than just the simplestamesdone in physics.
Thus, because many cases are being considered, it becairggseimsable to adopt a
comparative perspective. Why is the melting point of argmmer than the melting
point of water? Why is the equilibrium vapor pressure higioerethanol than for
water? And so on and so forth.

4Even in order to use a mean field approximation one must knewottm of Hinter-
SE.g. second order phase transitions such as the paramafgretimagnetic transition in iron.



e Because it would be an almost impossible task to propose gatve) full-
fledged models for all these cases, physical chemistry athlar resort to qualitative
arguments. For instance, a standard argument is to obdsat¢he stronger are
molecular interactions in a liquid, the fewer moleculed wd able to escape which
in turn will lead to a low equilibrium vapor pressure above tiguid. Whereas this
argument relies on a specific mechanism describing how migleteave the liquid,
it does not require any of the assumptions that we listedquely. Even equilibrium
IS not strictly required. Indeed, if the container is lefeopno equilibrium will take
place and no equilibrium vapor pressure can be defined, bigaime argument can
nevertheless be used for explaining differences in thearadipn rate.

Such kind of argument can be used with success to explain ptarsycal properties.
For instance, the boiling temperature of alkanegH#%x+2) is expected to increase
with n because the so-called London attraction forces (due tacedipolarization
which create short-lived dipoles that attract one anotbgigt betweerall atoms
and therefore, in the absence of any other force, attragtithribe stronger for big
molecules than for small ones. Through a similar argumeatayuld also expect the
heat of vaporization to increase with These predictions are indeed confirmed by
experimental data; two graphs displaying such data canuredfm Roehner (2004,
p. 663).

In short, once one knows the strength of interaction in aesgsbne should be able
to derive several of its macroscopic properties. Thus, weagain confronted to the
same key-questioriiow can we measure interaction strengths?

The simplifications that we have already made consistedyfirstsaying that we

do not need to care too much about the underlying hypothdstatistical physics,

secondly that (at least in a first stage) there is no need ttheseathematical frame-
work of statistical mechanics. Now, for the purpose of meaaglcoupling strength,
we introduce a third simplification which concerns the kifidgstems on which the
experiments will be performed.

It is often said that for socio-economic systems one canaderexperimenfs How-
ever, this is only partially true. In fact, social scienceseaarchers are in the same
position as astrophysicists. While they cannot perfemy observation that they
would like to do, nevertheless they can make such obsensts allowed by the
statistical data that exist Yet, one must recognize that in many investigations the

8In the discussion which follows we leave apart so-calledssimom experiments that are performed with small groups
of students. Such experiments can be useful to study howl@edpreact in specific circumstances such as in response
to auction rules. However, one does not see how collectiiader can truly be studied in such a way because the
experiment will only reflect genuine behavior if the people ot told that they are involved in an experiment. In the
1970s and 1980s the psycho-sociologist Stanley Milgrafopaed experiments of this kind. However, such an approach
raises major ethical problems and should rather be avoided.

’Researchers who have appropriate funding can even orgamizeys in order to collect data that would not be
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very data that one would need turn out to be unavailable. i§tasserious obstacle.
The task of designing appropriate measurement methodicautlienough in itself;
it would become altogether impossible if at each step pssjiehindered by a lack
of data.

There is a simple solution. Instead of studying people westady populations of
living organisms such as bacteria, insects or small fishesalFthese populations
there exists a broad range of species. Different specidshaife different inter-
individual interactions. Thus, one is very much in the sam&itpn as in physical
chemistry. In what follows we will limit ourselves to poptilans of insects.

Our goal is to study groups of insects not at all as an entogistlovould do but from
the perspective of physical chemistry. In this respechgvworganisms have another
important advantage over social or economic systems. knsrg key-notion in
physics. While it is not obvious how to define the “energy” adet of stocks or a
sample of companies, it is easy to define the velocity andikie@ergy of a group
of ants. In other words, systems of living organisms are neloker to physical
systems than are socio-economic systems.

In the next section we explain how we designed and implendeniie experiments.
In the following sections we propose some consistency td@stgir results and we
discuss their significance.

Design of the experiments

The experiment will be described for ants but their desigiairty similar for other
insects such as fruit flies or beetles.

A numbern of ants are contained in a rectangular box (15cm long and 5ice, w
4mm high) (see Fig. 1). In this box one defines two parts: aa.drend the pariB
of the box which does not belong th For the sake of simplicity we can think dff
as being the left-hand side of the box. However, one showdg kemind thatd can
also be much smaller than one half of the box. This allows pcee the behavior
of the ants at smaller scales.

The ants can choose the compartment in which they wish to gostay. We record
the number 4(¢) of ants which are in compartmentat timet.

The idea of the experiment is the following.

e Suppose for a moment that the movements of the ants are dehylerrelated.
This means that if one ant goes framto B (or from B to A) all the others will
follow. Thus at each time step(¢) will experience huge jumps, either fromto 0

available otherwise.
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or vice versa.

e Suppose now that there is a zero correlation between themens of the ants.
This means that if one ant goes framto B it will not be imitated by others. Of
course, other ants may make the same move but they will dodepéndently from
one another. As a result their moves will follow a binomiabgess. A move of all
the ants together is not completely excluded but it will gosith a probability of
(1/2)" that decreases exponentially wheimcreases.

Beginning of drift to the right

—E N\

\

’
I——

297 ants % | detailed
view of
§ |wo
ants

80 ants

Fig.1 Experiments with ants in a two-compartment device.The picture shows two different initial condi-
tions. (i) The situation where all ants are on the same sidlgeistarting point of “evaporation” experiments.
(i) The situation with similar numbers on each side is tretsig point for the measurement of the average
cross-correlation.

This argument suggests that there is a connection betweestahdard deviation of
n4(t) and the average correlation between the movements of tee &lgedless to
say, we wish to know the mathematical form of this relatiopsihen, by recording
the fluctuations oh 4(¢) we will be able to compute its variance and to derive the
average correlation between ants. This average cornelatio be considered as a
measure of their interaction strength.

Formalization

8n.4(t) records only thdalanceof the moves from 1 to 2 and 2 to 1. Would it not be better to rétbese moves
separately? After all if they happen to be identiecal¢) will remain constant and fail to reflect those separate flatans.
However, if the moves are independent random variables Xsayt) and X (¢), identical changes on each side are
unlikely. As a matter of fact, under this assumptiofi(n4(t)) = 0?(X12(t)) + 02(Xa1(t)) = 20%(X12(t)). In other
words,n 4 (t) will reflect individual moves adequately.
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To each ant we associate a random variable which takes the valué when:

is in compartmentd and0 otherwise. Thus, at any moment t, the number of ants
in compartmentd will be given by: S,, = 37 X;. If na(t) is astationaryrandom
function, it is reasonabldo assume that the variance computed from the time series
n4(t) coincides with the probabilistic (i.e. ensemble) variaoic#ae random variable

Sh.

Various assumptions can be made regarding inter-indiVichti@raction. Each as-
sumption leads to different correlations between_he We will examine two spe-
cific cases: global correlation which means that= r(X;, X) is basically the same
for all pairs(i, 7) and correlations which decrease exponentially when tlierdiice
i — j increasest;; ~ nli=J|
Global correlation
In this caseg?(S,,) = 0?(n,) is given by the following proposition.
Variance of a sum of correlated variables. We consider a surfy,, of n iden-
tically distributed random variables; of variancer?. We assume that between
Xi, X;,1 # j there are cross-correlationg, the average of which is is denoted
by 7 = m 7;ri;. Then, the variance o, = X; + ...+ X, is given
by:
Uz(Sn)

no?

=n-1)r+1 (1)

The proof is fairly straightforward and is given in Appendix

Four observations are of interest in relation with formula (

(1) The factormo? represents the variance 6f when the variables are uncorre-
lated. Therefore the ratio on the left-hand side repredéetgariance of,, divided
by what it would be if the correlations are switched off. Sedpsently, this ratio will
be denoted by?.

(2) In the special case where= 1, formula (1) gives:o?(S,) = n?c?. This
result can be confirmed by observing tifat= 1 means that all variableX’; are
identical that is to say take the same values (with proldgi). Thus,S,, = nX; =
02(S,) = o*(nX;) = n’o?

(3) A negative average correlation reduces the variandeadsof increasing it.
This would correspond to a repulsive force between the iddals. It is of interest
to observe that cannot become smaller tharl /(n — 1). In this case the variance
Is reduced to zero. Intuitively, this corresponds to a situmawhere the moves of
any individual are countered by the moves of the others inyawlach leavess,

SWhile of course necessary, the stationarity condition tssafficient to guaranty ergodicity of the standard deviatio
The specific mathematical condition that (t) must satisfy is given in Papoulis (1965, p. 330).
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unchanged.
(4) Formula (1) applies to any random variables For the problem in which we
are interested, th&; have a special meaning from which results that:

o’ (Xi) = E(X}) — B*(X;) = P{X; = 1}1 — (P{X; = 1}1)* = p(1 — p)
wherep is the fraction ofA with respect to the total area.

Ising-like correlations

When the interaction is restricted to nearest neighbors1dbeda one-dimensional
Ising model for spins, the correlation between fedecreases exponentially when
the “distance” between the spins increases (Glauber 19&®@). In this case the
variance ofS,, is given by the following proposition.
Variance of a sum of Ising-like correlated variables. We consider a surfi,,
of n identically distributed random variablé§ of variances?. We assume that
betweenX;, X;,i # j there is a cross-correlation; = nli=l 0 < n < 1.
Then, the variance of,, = X; + ... + X, is given by:

o*(S,) 14+n  2n
no?  1—n n(l—n)?

(2)

The proof is fairly similar to the proof of the first propositi and it is outlined in
Appendix A. According to this result, the ratig(n) = ¢%(S,)/(no?) is slightly
increasing whem increases (see Appendix A). However, whertbecomes large
the term involvingn becomes negligible with respect to the first term. Thus, it is
legitimate to say that for large, g(n) is almost constant.

Can one explain the difference between case 1 and 2 intyizvé/e have already
observed that if is close to 1, almost all insects will cross from one side &dther
at the same time which will result in big fluctuationsrof(¢) betweerd andn. In
the second model the parallel of such a high correlation avbel, close to 1, e.g.
n = 0.9. Yet, even with such a value gfthe correlation betweeinand its neighbors
will fall off rapidly when the distance increases. This me#mat when will change
side, only a small numberf] of neighbors will follow. Asf depends only upon
(and not upom) one sees that*(n) does not increase with.

In short, for the models that we considered the ratim) can behave in three differ-
ent ways as a function of.
(1) It decreases linearly when< 0
(2) Itis alImost constant when; decreases exponentially with respectite- j|.
(3) Itincreases linearly when> 0.

We will see that only cases 1 and 3 occur in our observations.



Experimental results

Procedure

The experimental procedure involves the following steps.

e First one must spread ants fairly uniformly in the whole container. Then
pictures will be taken every seconds®.

e These pictures will allow us to record the numbergt). Once the variance of
this time series has been computed one gets theg4{ig.

e By repeating this procedure for different number of ants @ets results which
can be represented as a set of po[nts- 1, ¢*(n)) (see Fig. 2).

e Alinear regression performed on this set of points givesséimate of the slope
Tr.

Results
See the graphs in Fig. 2a,b,c.

An important observation is in order regarding the magmatotithe estimated av-
erage correlation. First, it must be emphasized thatvery different from the cor-
relation estimated from a scatter-plot. In the latter casereelation as low as 0.01
would be non-significant (in the sense that the confiden@asval would contain 0)
except if the scatter-plot contains several thousand daitdgp Here, however, the
correlation was obtained as the slope of a regression lidetarestimate is quite
significant as can be seen from the size of the error bars.

In order to get an intuitive understandingmfone should compare the actual trajec-
tories of the insects to those shown in the simulation of 5ig,b. Broadly speaking,
the comparison will reveal that at individual level the adttrajectories of the in-
sects are even more random than those in Fig. 5b. In spitesohidph degree of
randomness there is an observable effect at the macro [Ekelsituation is some-
what the same as for a gas or a liquid. In spite of the randoswieghe movements
of individual molecules there are nevertheless well defmadroscopic properties.

Experimental problems

Although the procedure may appear fairly straightforwdheére are a number of
hurdles; while some are purely technical others are of marddmental importance.
Let us begin with the latter.

Ideally, in order to remain in a stationary equilibrium sition one would liken 4(t)

10An “appropriate” time interval is important for the accuyaaf the measurement. Of course, it is useless to take
pictures when nothing happens that is to say whg(t) does not change. On the other hand, simulations show that one
can greatly improve the accuracy of the measurement bydsizrg the number of pictures. In our experiments, depending
on the activity and number of insecisvas between 10s and 120s.
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Fig.2a,b,c Relation between the variance of the number of gividuals in a compartment A and the size

of the group. We suppose that the whole domain which contains the antsdeasdivided into two parts and
we observe the fluctuations,(¢) of the number of individuals in pat. The slope of the regression line
gives an estimate of the mean correlation between the mdvedividual elements. The negative correlation
observed for drosophila can be interpreted as the resuéipofisive forces between individuals. In the beetle
case, each experiment (for a specific group size) has beeategp10 times.

The ability to form clusters can be seen as revealing théexds of attractive inter-individual forces. Thus,
this characteristics comes as a confirmation of the signeottinrelation.

The confidence intervals (at a probability level of 0.90) asdollows: ants:1007 = 3.37 + 0.9, drosophila:
1007 = —1.29 + 1.16, beetles:1007 = 1.79 + 0.75.

These experiments were performed between June and NovE0iizin three different places, first in Paris
(ants, drosophila), then in Beijing (drosophila, beetlasy finally in Kunming, Yunnan Province, China (bee-
tles).

to fluctuate around /2. Actually, for ants as well as for beetles,(¢) can become
very different from 1/2. This is due to the fact that in suckesathe individuals tend
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to form a cluster in one part of the container. Thus, if thestduis inA, the ratio
n4(t)/n will become close to 1, whereas it will decrease towaiithe cluster is in
partB.

In a sense, this clustering behavior is good news becausaitlirect proof of the
existence of an inter-individual attraction. On the othandh, however, it introduces
a bias in the measurementmaf A correction procedure was introduced to take this
effect into account.

There is a problem which arises especially for drosophdaely the fact that once
introduced in the observation device only a few of the ins@gli move. In the case
of drosophila this may take the following form: in a group oh®e 50 only about
5 to 10 will move at one moment and they will do so with greatespgoing from
one end of the container to the other without seemingly gaalvout the 45 othets
Another circumstance which will prevent the insects fronving is when they form
a cluster. Although a correction can be introduced in théyarsto take into account
such “frozen” elements, it is clear that the analysis eva&iytlbbecomes meaningless
when the proportion of frozen elements is too high.

The formation of clusters also leads to a more
practical difficulty namely the fact that once
ants are part of a cluster their spatial density be-
comes so high that it is difficult to count them.
As they form several layers, counting becomes :
nearly impossible even on high resolution pidsig. 3: Container with weighing device on
tures. Recently, we have tried an alternativane side.The compartments! and B are slightly
method which consists in weighing rather tha@®.5mm) disjoined along the blue and red lines re-
counting. This method is well suited for smalbpectively so that the weight measured by the scale
beetles whose unit weight is of the order aforresponds only to the beetles contained in the left-
15mg (see Fig 3). It is more difficult for antshand side part but that the beetles can nevertheless
whose typical weight (e.g. workers of “Formicaross fromA to B and vice-versa. Here most of the
japonica”) is about 3mg. It is altogether imbeetles have formed a cluster in a corner. The weight
possible for drosophila whose typical weight is 357 mg which, when divided by 15 mg, gives a to-
around 0.2mg. tal of 24 beetles.

Consistency tests

For a liquid, inter-molecular attraction can be estimatedugh various means and
variables: evaporation rate, equilibrium pressure of vapailing temperature, heat
of vaporization. It is the fact that such estimates are @itlenost often) consistent
with one another which gives us confidence in them. One wakedd do the same

here.

Whereas ants will tend to slow down or stop every time theyeactuse to another ant.
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A simple qualitative consistency test is provided by théokeing “evaporation” ex-
periment. One takes a test tube containing some 50 drosoquiil one makes them
all move to the bottom of the tube by hitting the tube on a tableen, very quickly?
one puts the tube on the table in horizontal position. Letsssiane that the bottom
of the tube is on the left. After a few seconds, some 5 flies malle reached the
right-hand side, and may be 10 others will be in the middldeftube. If one waits
5mn, the flies will be distributed fairly uniformly throughbthe tube.

If one repeats the same experiment with “Tenebrio molitaéties it will be seen
that after 5mn almost all insects are still together on thehland side of the tube.

This experiment can be repeated in a more precise way by tlsnigllowing pro-
cedure.

0.8

From part 1 to open space, 10mn (evaporation)

0.6

— From part 1 to part 2, 10mn _—
— Frompartltopart2,30mn  -==-- (equilibrium)
04 — Notin any cluster, 30mn (equilibrium)

Proportion of beetles which left part 1

02—

0\\\\\\\\\\\\\\\\\\\\\
0 20 40 60 80 100

Total number of beetles (N)
Fig. 4a: “Evaporation” experiment with beetles. In the evaporation version of the experiment (top) the
beetles move from the container into open space (i.e. tlodédry table) whereas in the equilibrium version
they move from part 1 of the container into part 2 of same dize¢he first case almost no beetles come back
into the container just like the molecules in the evaporatiba liquid. The graph shows that the dropout rate
decreases when the size of the population increases mpitatigreater attraction power of larger groups. In
physics similar effects can be observed. For instance thervaressure around droplets of liquid decreases
when the droplets increase in size (Kelvin equation) andribiing point of gold particles increases with the
diameter of the particles (Buffat and Borel 1976, p. 2294).
For each value of the experiment was repeated 10 times, which means that &iegnts were performed
altogether. For the 10 repetitions the coefficient of vatat/m was around 50%. The slopes of the regres-
sion lines (with the numbers of beetles expressed in thalsjaare as follows (the error bars correspond to a
probability level of 0.90):
evaporation—2.8 +0.5; 1to 2, 10mn:—1.10+0.7; 1 to 2, 30mn:—2.2 + 1.8; not in cluster:—1.3 +0.8. The
average slope is = —2.0. The experiments were done in November 2012 by Ms. Mengyimgare Shuying
Lai from Beijing Normal University, Department of SysterogSce.

12This movement must be fast because drosophila have a n&ndancy to go upward.
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0.8
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Proportion of bees not in cluster
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0 50 100 150 200 250 300 350 400

Total number of bees

Fig. 4b: “Not in cluster” experiment with bees. After formation of a bee cluster, the number of those outside
of the cluster were counted. The duration of each experimastcomprised between one hour and one hour
and a half. The three different colors correspond to skgdiifferent experimental conditions. For instance, for
the black data points there was a single cluster whereakdaet points two clusters formed. In the latter case
we divided all numbers by 2. The slope of the regression kxeressed per 1,000 bees) for the 7 experiments,
namelya = —0.55 + 0.68, is 2.3 times smaller than the “not in cluster” slope in thetles experimentThe
experiments were done in June and July 2012 by Mrs. J. DarldyBa Roehner in Val Fleury (western suburb
of Paris). The bees were Appis Mellifera mellifera.

The experiment starts after a numbeof beetles has been introduced into a con-
tainer that we will call part 1. In the “evaporation rate” sem of the experiment,
the beetles can just walk out into open space. In the equilibversion of the exper-
iment the opening of part 1 leads to a container of same sizéid case, most often,
the beetles formed a cluster both in part 1 and in part 2. Hewewt all the beetles
were in the clusters. This leads to the definition of two défe variablesn,(t), the
number of beetles in part 2 at timeandn;(t¢), the number of beetles which are not
in a cluster. Itis this latter variable which is the analodhe molecules in the vapor
phase over a liquid. The observations summarized in thedfiglwow that whether in
the non-equilibrium case of evaporation or in the quasHémium case, the escape
rate decreases when the number of beetles increases. Alnatarpretation is that
the combined attraction of beetles on one of them increases witf?.

Significance of the experimental results

In this section we examine the significance of the resultsgared above from three

BMore precisely, one can say that the experiment displayscovopeting forces: (i) attraction and (i) increased
volatility. The increased volatility likely comes with theeetles’ new environment. Indeed, when they are left alona f
long time they cluster together instead of occupying thele/awailable area, a typical liquid-like behavior.
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perspectives: (i) How reliable are they? (ii) What is thdiygical significance? (iii)
What is their biological significance?

Reliability of the measurement method

In some experiments involving a limited number of big ansnilis possible to
record the trajectories of all individual elemelits

50
=09

30
20

10 -

......................

Observed variance / variance of independent elements

i IR RN R
30 40 50 60

Number of elements minus 1
Fig.5 a,b,c Testing the cross-correlation measurement medd on simulated data. Simulated data were
generated with different correlation levels, from a highretation of 0.98 to a medium correlation of 0.20
and to a low correlation of 0.05; the latter has same order anitude as the correlations observed in ant
experiments. The two graphs on the left-hand side show thelaied trajectories. The number of elements
was limited to 6 for the clarity of the picture. Th&; letters indicate the starting point while tlg letters
are the end points. Far = 0.2 the trajectories are already fairly chaotic. Yet, the gréph- 1, g?) on the
right-hand side shows that the measurement method basedngives reliable results even for a correlation
as low a9).05. The length of the time series (namely 100) used in the sitionlavas similar to that which is
used in the experiments.

For our experiments this would require marking hundredsts with different col-

ors so as to be able to follow their movements on a video, b fampossible task.

By merely restricting ourselves to counting the number dfam one side of the
container, the recording task becomes easier but at the wa@®ne looses much
information. The question is whether or not this limited ambof information is

sufficient to make reliable measurements.

The best way to answer this question is to generate simutkttzdand to see if the
results produced by the measurement procedure are consistie the input corre-
lations.

The simulated data were generated as follows. Firsauto-regressive processes
Z;(t) were generated through the equatioft) = aZ;(t — 1) + B(t), whereB(t)

Is a white noise term (Gaussian white noise with mean zercstantlard deviation
1) and where the parameteregulates the time-continuity of th&(¢). In our ap-
plication we tooka = 0.98 which implies a fairly high continuity similar to what
can be observed for individual ants. So far, thieare uncorrelated. An average

YFor instance in the paper by Gautrais et al. (2012) the mongswe up to 30 fishes each about 25cm in size were
recorded every 1/12 of a second during 2mn-long obsenstion
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cross-correlationt is introduced by using the Cholesky procedure. In this ptace

a triangular matrix is created which defines new random blegaX; as linear com-
binations of theZ;. Once theX; have been produced it can of course be checked that
they have indeed the right cross-correlations. This proaethust be repeated twice

in order to produce the 2 Cartesian coordinates of each ant.

The simulated data are then used in the same way as obsemzed-¢a 5c shows
that the estimated correlations (namely the numbers wihnentheses) are indeed
consistent with the theoretical correlations. This gralsio ahows that smaller av-
erage cross-correlations require larger values.ofhis is of course not surprising;
whenr is small the ternr(n — 1) will remain lost in the background noise unless
becomes large “enough”. How largemust become of course depends on the level
of the background noise.

The purpose of this simulation was to check the feasibilitthe methodology. In
addition, it gave useful indications about how to improve #tcuracy of the mea-
surement.

So far, it was assumed thais constant and in particular that it does not depend on
n. What would be changed ifdepends om? If 7 increases with the relationship
betweeng® andn would no longer be linear but would have a parabolic (or even
faster) growth. Similarly, i is supposed to decreases witthe functiong?(n) will

be replaced by a function which grows slower thabut which remains above 1.
This question will become important only once the accurddfi@measurement has
been improved. At the present stage, we can accept the saaglamption that is
constant. A more important point is whethgfn) remains above 1 or falls below 1,
for the second case indicates a negaiitieat is to say a repulsion. These conclusions
are summarized in the following table.

Conclusions about the interaction derived frgfn)

g%(n) increases faster than r increases with
g*(n) > 1 and increasing— r > 0 : attraction{ ¢*(n) increases linearly r is constant
g*(n) increases slower than — r decreases with

g*(n) decreases slower than — |r| decreases with
g*(n) < 1 and decreasing— r < 0 : repulsion { ¢*(n) decreases linearly — ris constant
g*(n) decreases faster than — |r|increases witm

We now examine the physical and biological significance efghevious measure-
ments.
Physical significance

Roughly speaking there are two main classes of interagtiaraely local pair-wise
interactions (thereafter called claBsand global interactions (thereafter classAs
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an example of the first kind, one can mention the interactfomnoatom in a solid
with its nearest neighbors; as one knows the Ising modelges\a basic theoretical
description of this situation.

Interaction through pheromone emission/reception orutjnovisual (or auditive)
contact (as in schooling fishEsare examples of more global interactions.

In a random variable description there is a fundamentatigifice between the two
classes. As soon as the population is of a substantial sage:(s- 30) most of the
elements of a class-correlation matrix will be equal to zero (this point is expkd

in more detail in Appendix B). Thus, the average correlatienreases to zero when
n increases which in turn implies that the variance will daseetoward the variance
of the uncorrelated variables, i.¢*> — 1. Clearly, this is not what was observed in
Fig. 2.

e Thus, for the case of ants one can conclude that within a rahgdew cen-
timeters the interaction is of global type.

e For drosophila it is true that’ decreases but as it tends toward zero rather than
toward 1 this excludes an attractive Ising-like interactidhe fact that drosophila do
not display any clustering behavior is another argumenéxatuding any attractive
interaction.

Biological significance

Although at this stage it is still too early to draw importéilogical implication$®
one can nevertheless emphasize two points.

e Clearly, well organized colonies such as those of ants os heeessitate a so-
phisticated interaction network for control and regulatpurposes. In other words,
one can be certain that social insects do have many meahintdtactions. How-
ever, as the same argument cannot be used for non-societiindees this mean that
they have little interactions? Our beetles experimentselbag common observa-
tion about clustering contradicts such a conclusion. Whestering occurs sponta-
neously and not in response to an external stimulus (sueptaslbwer temperature
or a supply of food) it reveals the existence of an interviiial attraction. Obser-
vation of the free behavior of the beetles used in the exmerirof Fig. 2c shows
that they form a single cluster within a time span comprisettveen half an hour
and several hout& This comes as a confirmation of the positive cross-coicglat
measured in Fig. 2c. In fact, the formation of large clust@rbundreds or even

15 et us recall the distinction between schooling which meamisnmingtogether in the same direction and shoaling
which meanstayingtogether in the same area.

16A similar situation prevailed in physical chemistry one ey ago. It is only once a sufficient mass of observations
had been recorded that a clear picture began to emerge. Harsaration of this process in the case of the alkanes see
Roehner (2007, p. 10-11, Fig. 1.2).

"The process takes longer in a container without cornersagessuch as the lower half of a torus.
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thousands of individuals can be observed for many insettt&ereon a permanent
basis or just at specific times. Is there a relationship betvike size of the clusters
and the strength of the attractid® This question will be addressed in forthcoming
experiments.

e So far, entomologists have paid only scant attention toghed of interaction
strength. One of the objectives of this paper is to conviheetthat the interaction
strength is a meaningfull parameter.

Conclusions

In this concluding section, we first summarize the main testlien we explain what
makes this study fairly new. Finally we list some of the qiogest left for further
investigation.

Reproducible experiments

Like other animals, insects are influenced by many exogefamiisrs such as light,

humidity, temperature, vibrations, and so on. Becauseisflthickground noise it

was not obvious that measuring an interaction strengthavoelfeasible. The good
news is that it is. In other words the most important resufirbably that the ex-

periments described in this paper egproduciblewith a signal-to-noise ratio which
allows reasonable accuracy. It can be added that our expetsrwere done in distant
places, in summer as well as in fall and with experimentalasvwhich were not

always the same. In spite of such changing conditions treey/tie consistent results.
This robustness was certainly favored in an important wathkylarge numbers of
insects involved.

The results were not only consistent with one another, thegwalso consistent with
what was expected from qualitative field observation. Ferittieraction strength
they led to the following ranking:

Ants (3.4), Beetles (.8), Drosophila (1.3)

Two different approaches

It must be realized that two fairly distinct approaches arssible. To explain this
important point it is best to illustrate it through an examfsbm the study of molec-
ular interactions.

(1) One possible objective is to study ttietailedmechanism of hydrogen bond-
ing in water molecules. This is a demanding task which regumeasurements at
atomic level and a solid competence in quantum mechanicaddition, hydrogen
bonds are not the only interaction between water molectiesso-called London

8n fact, the significant factor should be the balance betwierttraction and the level of background noise.



18

interaction is another, albeit much weaker. In short, siugiyrzydrogen bonds is a
difficult and in a sense, endless) task.

(2) A second possible approach relies on comparative asalys made possible
by the fact that one does not need to know the precise mechambkthe interac-
tions in order to measure thegtobal effect. This can be done by measuring the
amount of energy that is required to brealklinks between water molecules. Such
measurements lead to coupling estimates expressed aactidarenergies. Taken
alone, any single measurement of that kind is not of greaifstgnce but once such
interactions have been measuredvariouscompounds, then their connection with
macroscopic properties will become apparent, which in tmthprovide valuable
predictive power. In short, this approach fundamentaligseon comparative analy-
sis.

The two approaches are certainly useful and in a sense theylement one another.
Whereas the vast majority of studies (especially those dgrmologists) follow the
first approach, in this paper we tried the second one.

Connection with the approach pioneered by Prof. Deborah Gadon

Although Prof. Gordon'’s investigations mostly concernegeacific species, namely
harvester ants in Arizona, the way she conducted them &cthead much to do with
the comparative approach outlined above.
Why?
The main reason is because she asked broad questions thatserde for any
species of ants and indeed for any colony of insects. Astidtisns one can for
instance mention the following issues.

e What is the long-term growth pattern of ant colonies?

e How in a colony is food supply adjusted to needs?

In such investigations the emphasis is more on stable pattean on minute details
that would be species specific. This orientation is alscecaparent from the titles
and subtitles of Gordon’s books (1999, 2010). The orgaioizat issues addressed
by Deborah Gordon are not easy ones. We believe that ini@mnastrengths are
basic parameters whose knowledge may shed some light onipagianal problems.
Can we hope to explain superconductivity without a quatntgeknowledge of the
interaction between electrons?

Experiments done by physicists

In past decades a number of interesting ant experimentsdeeesby physicists; they
were a source of inspiration for us. For instance one caniorettie experiments
conducted by the teams of Ernesto Alstshuler (2005), JeansLDeneubourg (e.g.
Theraulaz et al. (2003)) or Guy Theraulaz (Theraulaz et2002), Gautrais et al.
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(2012).

However, almost all these studies are of the “one specie® -noodel” kind. By
this expression we mean that after detailed observatioresheen recorded fane
species, a model is built (which by construction will of ceibe in agreement with
the experimental data) but little is attempted to deternfipdurther experiments
what is the field of validity of this model. Although these ditts were pioneering
in several respects and pointed out many interesting phenanone can regret that,
to our best knowledge, they did not cover a broad range ofiepatorder to iden-
tify core mechanismsThis would be crucial in order to be able to offistable
predictions®,

Testable predictions

It is well known that the ability to offer testable prediat®is the hallmark of scien-
tific investigations. What testable prediction can be dtifrom the results given in
the present paper?

(1) It can be predicted that if a species has a negative cmsstation (as in the
case of the drosophila), then it cannot at same time exhidustering behavior

(2) It can be predicted that if the correlation and evaporaéixperiments are re-
peated for other species, then for any species charaaldngze positive average
cross-correlation one should observe a negative slopeithth“evaporation” exper-
iment. Moreover, a higher cross-correlation should giveoaemegative slope.

At this point such predictions should rather be seen as cangs. The important
point is that they can be tested. If they are disproved byrvaien one will be lead
to a re-examination of the present model. It is through sucbrdinual dialogue
between theory and observation that further progress camwaibe achieved,

The route ahead

Collective phenomena are particularly difficult to explaln physics the theory of
superconductivity came centuries after Galileo and dexatter it was first discov-
ered. In other words, one should be prepared for a long-tevastigation. This is a
field where there is much to explore.

Let us just mention one question not mentioned so far buidtadrtainly important,

namely the role of temperature. Some preliminary obsermatconvinced us that
in group effects temperature plays a role which is fairlyikinto what can be seen
in chemistry and statistical physics. Which temperaturavdomean, the external

19A few centuries ago when physicists studied the phenomeftiree” fall they did not confine themselves to falling
apples. Indeed, comparative observation was the only wdgrmonstrate that, at least in air, the law is fairly indeparid
of the shape and density of the falling object. This was astolee in the development of classical mechanics. In water,
on the contrary, both shape and density play a role. Thuhjsrcase, the limits of validity of the law of free fall are el
defined.
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temperature or the endogenous temperature of the insedfiaed in the sense of
statistical physics? Observation suggests that the twol@asely connected (data can
be found in the long write-up version mentioned at the bagugn This provides a
means for controling the endogenous temperature and fdyisiyits effect on many
phenomena (e.g. clustering, self-diffusion, evaporation

In physics real progress occurs when there is a fruitfulbdjaé between theory and
observation. This is currently one of the problems facedthggtheory. There is

a similar problem with computer simulations of social phemena because of the
fact that they rarely lead to testable predictions and whely tlo, most often, the
requested statistical data turn out to be unavailable. ¥oergments on groups of
insects the situation is much more favorable.
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Appendix A: Variance of a sum of correlated variables

We proceed in several steps.

For the sake of simplicity we first consider the average ofra efithree correlated random variables
X1, X5, X3 of meanm and identical standard deviatien Our objective is to compute the variance
of S5 = X, + Xy + X;.

By definition of the variance?(S;) = E [(Sg — E(Sg))ﬂ. One knows that the expectation of a
sum of random variables is always equal to the sum of the éxpeacs, whether the variables are
correlated or not. Thus?(Ss) = E(X,) + E(Xs) + E(X3).

Consequently:

o*(S3) =E [(Z XZ)Q] ,  where:X, = X; — E(X:)

i=1
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Thus,
3
0*(S5) = 3 E(XD) + 2 [B(XoXs) + B(X3X)) + B(X1 X))

=1
We express the expectations of the products by introdutiagoefficient of correlation of th&;:
Tij; = Ew()(ZAXVJ)/O'2 ThUS:O’Q(Sg) = 30’2 + 202(7"23 “+ 131 + 7"12)
From that point on, we will consider two cases.

Global correlations
Introducing the mean of the;, 7 = (rq3 + 31 + 112)/3, we obtain:

0%(S3) = 30°[1 4 27]
This formula has an obvious generalization to an arbitramploern of random variables:
o*(S,) =no*g®*, gF=mn-1r+1
where:

r= ZTZ]
[n(n—1)/2] (n —1)/2] vy
Ising-like correlations

For a one dimensional Ising spin system the correlation &etvsping and; is: r;; = 1"/l where

n can be expressed (if one wish) as a function of the paramstech define the interaction between
the spins (see Glauber 1963 p. 299, formulas (56) and (57)).

Introducing this expression of; gives:o?(S3) = 0*(3 + 41 + 2n?)

In extending this formula to any, one needs to express the finite sgity) = > (as well as its
derivativef’(n)). Instead of using the exact expressitim) = (1 — n"~1)/(1 — n) we will consider
that the termy”~1! is negligible with respect to 1, which means that we appratéthe finite sum by
the corresponding infinite series. This approximation teatable for our experiments because most
of the timen > 20. Of course the approximation is no longer valid when- 1 butny = 1 is a case

of uniform correlation already considered above.

Under this assumption one obtains finally:

0*(Su) = no” [1 e (1 ) ﬁﬂ

o*(S,) _1+n 29

1= n(l-n)?

Due to the approximation made in the derivation, this formalnot valid whem is close to 1. We
have seen above that far= 2, 3 one gets:

g2)=1+n, ¢*3)=1+A/3)n+(2/3)n"

which shows that the functiog¥(n) increases toward its asymptotic linfit + 7) /(1 — 7).

or:

Remark Can the Ising case be seen as a special instance of the measa? Formally, it may
seem so. However, the real picture emerges when we conaidgr Values ofi. In the Ising case,
due to the exponential decrease, all elements in the coomlaatrix are almost equal to zero except
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for a zone around the first diagonal whose width depends gmiyy. Consequently, for such a
matrix the average correlation goes to zero whdaecomes larger.

This observation shows three things. (i) It would be irral@vto treat the Ising case as a special
instance of the first case. (ii) The fact that in the Ising gase0 helps to explain that the ratig(n)
remains basically constant instead of increasing. (i@xiplains why we used the expression “global
correlations” to designate the first case. The correlatavegglobal in the sense that when— oo

the number of elements of the correlation matrix that ardssantially” different from zero must
remain sof the same order of magnitudenag-or a distance-dependent correlation, this means that
the decrease with distance must be slow enough.

Probability of n,
o
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N

0.08

0.06

0.04

0.02

0

0 5 10 15 20 25 30 35 40
Number n, of elements in part 1

Fig. A1 Distribution of a sum S of n correlated Bernoulli variables X;. In our experiments = > | X;
represents the number of elements in part 1 of the contaliher(blue) dotted curve is the binomial distribution
corresponding to a zero correlation; the (red) broken loreasponds to a correlation= 0.01, and the (green)
solid line tor = 0.5. A bifurcation process occurs at some point which in our grpents translates into a
clustering process. The variables were generated through the Lunn and Davies #igonvhich gives cor-
related exchangeable variables (“exchangeable” meahthhahave a symmetric joint distribution function).
We tookn = 40 and for each curve we generated 1,000 realisatiorts of

Simulations

So far we did not need to make the assumption thatXhare Bernoulli variables, that is to say
variables taking only the valuésand1 2°. However, if one wishes to carry out a simulation there is
a convenient algorithm which works for Bernoulli variablgsinn and Davies 1998). The relevant
formulas can be summarized as follows:
Simulation of global correlation betweenn Bernoulli variables 7 andY; are Berp) ran-
dom variables while th&’; are Ber{/r) random variables. Then, the variablEsdefined as:

Xi=1-U)Y,+UZ, i=1,...n
are correlated Bernoulli variables with the following peoties:

20WhenP{X = 1} = p such a variable will be noted as Bgy(
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It can be noted that this algorithm works only for positiveretations between the variables.

Simulation of correlated Ising-like Bernoulli variables Y; are Berf) random variables
while theU; are Berf)) random variables. Then, the variablEsdefined as:

Xi=Y, X,=01-U)Y;+UX;-1, 2<i<n
are correlated Bernoulli variables with the following peoties:
E(X)=p, B(X])=p, CorX,X;)=n""" i#j

Appendix B: Experimental “toolkit”

Just in order to convince readers that experiments witrctaszan be done fairly easily we give some
practical hints.

Basically, the needs can be summarized as follows.

First, one needs to get thiging organisms

e Ants can be easily collected (at least in spring and sumnygoutting appropriate food as a bait
on a Bristol board just a few centimeters away from the ewtaf a colony. Within one hour and
depending on the species a few hundred ants may gather omisiiel Board.

e Drosophila can be obtained from biology laboratories.

e Flies and beetles can be bought in the form of larvae (worrasjimkd to fishermen or for
feeding big aquarium-fishes. The waiting time between theatastage and the emergence of the
adults ranges from less than one week to a few months degeodispecies, temperature and time
of year.

Secondly, in many cases, one needs a small bottle of carbaiddito make the insect sleep in order
to be able to handle them easily. Carbon dioxide has an alimstsintaneous anesthetic effect on all
these insects. According to a paper published in the “JowinBxperimental Biology” (Ribbands
1950) anesthesia through carbon dioxide does not infer aanelmss and changes only slightly the
behavior of bees. It is probably safe to assume that theteffethe other insects mentioned above is
similar.

Next one needs an appropriate container. A simple solusiom cut it into a piece of flexible plastic
(such as PVC) of adequate thickness (3mm to 5mm is usuallygmoThis is illustrated in Fig. 1.

Finally, one needs a counting device. Taking pictures anthtbog by hand is a simple solution but
not always satisfactory especially for counting the eletsiém a cluster. For this reason we have
developed a weighing method (illustrated in Fig. 3).

Clustering phenomena also occur among bacteria and miganisms that are present in so-called
biofilms which form at the surface of liquids. Because of theal size and high numbers of such
elements one is in a situation fairly similar to physicalteyss. For instance, it can be mentioned
that inter-molecular forces such as van der Waals forcgsgkgnificant role in the movements of
such micro-organisms. Studying tlkeellective behaviowof such populations from the perspective
of physics seems a promising field. However, in contrast ¢ostindy of insects, it requires special
laboratory devices and equipment.
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