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Abstract For any system, whether physical or non-physical, knowledge of the form and strength
of inter-individual interactions is a key-information. Inan approach based on statistical physics
one needs to know the interaction in order to write the Hamiltonian of the system:H = Hfree +
Hinteraction. For non-physical systems, based on qualitative argumentssimilar to those used in
physical chemistry, interaction strength gives useful clues about the macroscopic properties of the
system, e.g. for an institution the dropout rate is expectedto be smaller when inter-individual attrac-
tion is stronger.
Even though our ultimate objective is the understanding of social phenomena, we found that sys-
tems composed of insects (or other living organisms) are of great convenience for investigatinggroup
effects. In this paper we show how to design experiments that enable us to estimate the strength of in-
teraction in groups of insects. By repeating the same experiments with increasing numbers of insects,
ranging from less than 10 to several hundreds, one is able to explore key-properties of the interaction.
The data turn out to be consistent with a global interaction that is independent of distance (at least
within a range of a few centimeters). Estimates of the average cross-correlation will be given for
ants, beetles and fruit flies. The experimental results clearly exclude an Ising-like interaction, that is
to say one that would be restricted to nearest neighbors. In the case of fruit flies the average cross-
correlation appears to be negative which means that insteadof an inter-individual attraction there is a
(weak) repulsive effect.
In our conclusion we insist on the fact that such “physics-like experiments” on insect populations
provide a valuable complement or alternative to computer simulations. When testable group effects
are predicted by a model, the required experiments can be setup within a short time, thus permitting
to confirm or disprove the model. This marks a significant progress with respect to modeling of so-
cial systems where, all too often, the requested statistical data just do not exist, thus obstructing any
fruitful dialogue between theory and observation.
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In a first version of the paper the title made reference to “statistical physics” rather
than to “physical chemistry”. Although chemistry itself plays no role in our inves-
tigation, we think it is important to emphasize that at this point it relies rather on
the approach of “physical chemistry” than on the more formalapproach of statistical
mechanics. The reasons for that will be explained later on1.

Rationale and motivations
By using the theoretical framework of statistical mechanics one can derive the macro-
scopic properties of a system from the characteristics of its microscopic elements.
This is a major achievement and so it is hardly surprising that researchers from other
disciplines (e.g. biology, demography, sociology or economics) have been tempted
to adapt such a powerful tool to their own field. In light of thesuccessful record
of statistical mechanics in physics there is little doubt that such extensions appear
highly desirable. Yet, to our best knowledge, in spite of many attempts in this direc-
tion such attempts have not been highly successful so far2.

Obstacles

As a matter of fact this is hardly surprising for there are indeed many obstacles.
• Statistical physics is fundamentally a theory of systems inequilibrium. For

systems which are (strongly) out of equilibrium the very concept of temperature
becomes meaningless.
• Statistical physics relies on the connection between ensemble averages (which

are predicted theoretically) and time-averages (which aremeasured in experiments).
This so-called ergodic hypothesis may be valid for physicalsystems which move
from one state to another every picosecond so that there are trillions of transitions
during an observation time of a few seconds. Yet, it is not obvious that such an
assumption can still be accepted for socio-economic systems for which the transition
rates are much slower3.
• Last but not least, one should not forget that in order to use the theoretical

framework of statistical mechanics one needs to know the Hamiltonian H of the
system which indicates how energy is distributed. Generally H includes three parts:

H = H0 + Hinter+ Hexo
1A preliminary but extended version (some 120 pages) of the present paper is available on the following website:

http://www.lpthe.jussieu.fr/ roehner/effusion.pdf. Those readers who, on the contrary, wish to get a quick account can
read the vivid and clear review posted on the following website:
http://www.technologyreview.com/view/509486/first-physics-like-experiments-for-measuring-group-behaviour-of-living-creatures/

2Recently, some promising breakthroughs were made in this direction by a group of Japanese economists; see Aoki
and Yoshikawa (2007), Iyetomi et al. (2011), Iyetomi (2012).

3The highest transition rates are probably those in currencyexchange markets with hundreds of orders (worldwide)
every second. Recently so-called high speed trading, that is to say transaction orders passed by computers, has reduced
transition times to a few micro-seconds at least for a numberof actively traded securities.
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whereH0 stands for the free particles,Hinter for the interaction energy between
them andHexo for the energy of the particles when an exogenous field is involved.
For instanceH0 ∼

∑

p2
i /m for a system containing the molecules of a gas,Hinter ∼

∑ 1
(ri−rj)6

when one wants to take into account the van der Waals forces between the
molecules, andHexo ∼ ∑

SiH(i) for the energy of a set of spins in an external
magnetic field.

Whereas the third term can possibly be omitted when the experimental device can
be shielded from external fields, the interaction term mustalwaysbe taken into ac-
count4. Needless to say, there are almost no biological or social systems for which
one has a clear knowledge of their interactions. It is precisely the main purpose of
the present paper to explain how such interactions can be measured.

Reasons for optimism

The previous list of obstacles could appear discouraging especially if one realizes
that there are many other problems in non-physical systems just for defining key-
variables such as velocity or energy. However, there are also good reasons for opti-
mism as we will see now.

First, it can be observed that the theory of phase transitions has been used to describe
the transition between ordinary hadronic matter and quark-gluon plasma. As such
states are characterized by temperature of the order of1012K and life-times of the
order of10−20s, it means that this theory is applied well beyond the limitsof the
phenomena5 for which it was originally developed. Does the ergodic assumption
hold for such extremely short time intervals? Nobody knows and probably nobody
cares. The strategy of physicists is to use this framework without giving too much
concern to underlying assumptions. If sensible results emerge, this will provide so
to sayex postjustification.

Secondly, it can be observed that the title of this paper doesnot refer to statistical
physics but to physical chemistry. Why?
• Although the objective of physical chemistry is also to explain the properties of

macroscopic systems in terms of molecular interactions, there are two main differ-
ences with the approach of statistical mechanics. First, physical chemistry considers
a broad range of molecules rather than just the simplest onesas is done in physics.
Thus, because many cases are being considered, it becomes indispensable to adopt a
comparative perspective. Why is the melting point of argon lower than the melting
point of water? Why is the equilibrium vapor pressure higherfor ethanol than for
water? And so on and so forth.

4Even in order to use a mean field approximation one must know the form ofHinter.
5E.g. second order phase transitions such as the paramagnetic-ferromagnetic transition in iron.
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• Because it would be an almost impossible task to propose (andsolve) full-
fledged models for all these cases, physical chemistry will rather resort to qualitative
arguments. For instance, a standard argument is to observe that the stronger are
molecular interactions in a liquid, the fewer molecules will be able to escape which
in turn will lead to a low equilibrium vapor pressure above the liquid. Whereas this
argument relies on a specific mechanism describing how molecules leave the liquid,
it does not require any of the assumptions that we listed previously. Even equilibrium
is not strictly required. Indeed, if the container is left open, no equilibrium will take
place and no equilibrium vapor pressure can be defined, but the same argument can
nevertheless be used for explaining differences in the evaporation rate.

Such kind of argument can be used with success to explain manyphysical properties.
For instance, the boiling temperature of alkanes (CnH2n+2) is expected to increase
with n because the so-called London attraction forces (due to induced polarization
which create short-lived dipoles that attract one another)exist betweenall atoms
and therefore, in the absence of any other force, attractionwill be stronger for big
molecules than for small ones. Through a similar argument one would also expect the
heat of vaporization to increase withn. These predictions are indeed confirmed by
experimental data; two graphs displaying such data can be found in Roehner (2004,
p. 663).

In short, once one knows the strength of interaction in a system, one should be able
to derive several of its macroscopic properties. Thus, we are again confronted to the
same key-question:how can we measure interaction strengths?

The simplifications that we have already made consisted firstly in saying that we
do not need to care too much about the underlying hypotheses of statistical physics,
secondly that (at least in a first stage) there is no need to usethe mathematical frame-
work of statistical mechanics. Now, for the purpose of measuring coupling strength,
we introduce a third simplification which concerns the kind of systems on which the
experiments will be performed.

It is often said that for socio-economic systems one cannot make experiments6. How-
ever, this is only partially true. In fact, social sciences researchers are in the same
position as astrophysicists. While they cannot performany observation that they
would like to do, nevertheless they can make such observations as allowed by the
statistical data that exist7. Yet, one must recognize that in many investigations the

6In the discussion which follows we leave apart so-called class-room experiments that are performed with small groups
of students. Such experiments can be useful to study how people will react in specific circumstances such as in response
to auction rules. However, one does not see how collective behavior can truly be studied in such a way because the
experiment will only reflect genuine behavior if the people are not told that they are involved in an experiment. In the
1970s and 1980s the psycho-sociologist Stanley Milgram performed experiments of this kind. However, such an approach
raises major ethical problems and should rather be avoided.

7Researchers who have appropriate funding can even organizesurveys in order to collect data that would not be
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very data that one would need turn out to be unavailable. Thisis a serious obstacle.
The task of designing appropriate measurement methods is difficult enough in itself;
it would become altogether impossible if at each step progress is hindered by a lack
of data.

There is a simple solution. Instead of studying people we canstudy populations of
living organisms such as bacteria, insects or small fishes. For all these populations
there exists a broad range of species. Different species will have different inter-
individual interactions. Thus, one is very much in the same position as in physical
chemistry. In what follows we will limit ourselves to populations of insects.

Our goal is to study groups of insects not at all as an entomologist would do but from
the perspective of physical chemistry. In this respect living organisms have another
important advantage over social or economic systems. Energy is a key-notion in
physics. While it is not obvious how to define the “energy” of aset of stocks or a
sample of companies, it is easy to define the velocity and kinetic energy of a group
of ants. In other words, systems of living organisms are muchcloser to physical
systems than are socio-economic systems.

In the next section we explain how we designed and implemented our experiments.
In the following sections we propose some consistency testsof our results and we
discuss their significance.

Design of the experiments
The experiment will be described for ants but their design isfairly similar for other
insects such as fruit flies or beetles.

A numbern of ants are contained in a rectangular box (15cm long and 5cm wide,
4mm high) (see Fig. 1). In this box one defines two parts: an areaA and the partB
of the box which does not belong toA. For the sake of simplicity we can think ofA
as being the left-hand side of the box. However, one should keep in mind thatA can
also be much smaller than one half of the box. This allows to explore the behavior
of the ants at smaller scales.

The ants can choose the compartment in which they wish to go orto stay. We record
the numbernA(t) of ants which are in compartmentA at timet.

The idea of the experiment is the following.
• Suppose for a moment that the movements of the ants are completely correlated.

This means that if one ant goes fromA to B (or from B to A) all the others will
follow. Thus at each time stepnA(t) will experience huge jumps, either fromn to 0

available otherwise.
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or vice versa.
• Suppose now that there is a zero correlation between the movements of the ants.

This means that if one ant goes fromA to B it will not be imitated by others. Of
course, other ants may make the same move but they will do so independently from
one another. As a result their moves will follow a binomial process. A move of all
the ants together is not completely excluded but it will occur with a probability of
(1/2)n that decreases exponentially whenn increases.

297 ants

 80 ants

47 ants

Beginning of drift to the right

Quasi−equilibrium

detailed
view of
two
ants

Fig. 1 Experiments with ants in a two-compartment device.The picture shows two different initial condi-
tions. (i) The situation where all ants are on the same side isthe starting point of “evaporation” experiments.
(ii) The situation with similar numbers on each side is the starting point for the measurement of the average
cross-correlation.

This argument suggests that there is a connection between the standard deviation of
nA(t) and the average correlation between the movements of the ants8. Needless to
say, we wish to know the mathematical form of this relationship. Then, by recording
the fluctuations ofnA(t) we will be able to compute its variance and to derive the
average correlation between ants. This average correlation can be considered as a
measure of their interaction strength.

Formalization
8nA(t) records only thebalanceof the moves from 1 to 2 and 2 to 1. Would it not be better to record these moves

separately? After all if they happen to be identicalnA(t) will remain constant and fail to reflect those separate fluctuations.
However, if the moves are independent random variables, sayX12(t) andX21(t), identical changes on each side are
unlikely. As a matter of fact, under this assumption,σ2(nA(t)) = σ2(X12(t)) + σ2(X21(t)) = 2σ2(X12(t)). In other
words,nA(t) will reflect individual moves adequately.
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To each anti we associate a random variableXi which takes the value1 when i
is in compartmentA and0 otherwise. Thus, at any moment t, the number of ants
in compartmentA will be given by: Sn =

∑n
1 Xi. If nA(t) is a stationaryrandom

function, it is reasonable9 to assume that the variance computed from the time series
nA(t) coincides with the probabilistic (i.e. ensemble) varianceof the random variable
Sn.

Various assumptions can be made regarding inter-individual interaction. Each as-
sumption leads to different correlations between theXi. We will examine two spe-
cific cases: global correlation which means thatrij = r(Xi, Xj) is basically the same
for all pairs(i, j) and correlations which decrease exponentially when the difference
i − j increases:rij ∼ η|i−j|

Global correlation

In this case,σ2(Sn) = σ2(nA) is given by the following proposition.
Variance of a sum of correlated variables. We consider a sumSn of n iden-
tically distributed random variablesXi of varianceσ2. We assume that between
Xi, Xj, i 6= j there are cross-correlationsrij, the average of which is is denoted
by r = 1

[n(n−1)/2]

∑n
i<j rij. Then, the variance ofSn = X1 + . . . + Xn is given

by:
σ2(Sn)

nσ2
= (n − 1)r + 1 (1)

The proof is fairly straightforward and is given in AppendixA.

Four observations are of interest in relation with formula (1).
(1) The factornσ2 represents the variance ofSn when the variables are uncorre-

lated. Therefore the ratio on the left-hand side representsthe variance ofSn divided
by what it would be if the correlations are switched off. Subsequently, this ratio will
be denoted byg2.

(2) In the special case wherer = 1, formula (1) gives:σ2(Sn) = n2σ2. This
result can be confirmed by observing thatr = 1 means that all variablesXi are
identical that is to say take the same values (with probability 1). Thus,Sn = nX1 ⇒
σ2(Sn) = σ2(nX1) = n2σ2

(3) A negative average correlation reduces the variance instead of increasing it.
This would correspond to a repulsive force between the individuals. It is of interest
to observe thatr cannot become smaller than−1/(n − 1). In this case the variance
is reduced to zero. Intuitively, this corresponds to a situation where the moves of
any individual are countered by the moves of the others in a way which leavesSn

9While of course necessary, the stationarity condition is not sufficient to guaranty ergodicity of the standard deviation.
The specific mathematical condition thatnA(t) must satisfy is given in Papoulis (1965, p. 330).
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unchanged.
(4) Formula (1) applies to any random variablesXi. For the problem in which we

are interested, theXi have a special meaning from which results that:

σ2(Xi) = E(X2
i ) − E2(Xi) = P{Xi = 1}1 − (P{Xi = 1}1)2 = p(1 − p)

wherep is the fraction ofA with respect to the total area.

Ising-like correlations

When the interaction is restricted to nearest neighbors as in the one-dimensional
Ising model for spins, the correlation between theXi decreases exponentially when
the “distance” between the spins increases (Glauber 1963 p.300). In this case the
variance ofSn is given by the following proposition.

Variance of a sum of Ising-like correlated variables. We consider a sumSn

of n identically distributed random variablesXi of varianceσ2. We assume that
betweenXi, Xj, i 6= j there is a cross-correlationrij = η|j−i||, 0 < η < 1.
Then, the variance ofSn = X1 + . . . + Xn is given by:

σ2(Sn)

nσ2
=

1 + η

1 − η
− 2η

n(1 − η)2
(2)

The proof is fairly similar to the proof of the first proposition and it is outlined in
Appendix A. According to this result, the ratiog2(n) = σ2(Sn)/(nσ2) is slightly
increasing whenn increases (see Appendix A). However, whenn becomes large
the term involvingn becomes negligible with respect to the first term. Thus, it is
legitimate to say that for largen, g2(n) is almost constant.

Can one explain the difference between case 1 and 2 intuitively? We have already
observed that ifr is close to 1, almost all insects will cross from one side to the other
at the same time which will result in big fluctuations ofnA(t) between0 andn. In
the second model the parallel of such a high correlation would beη close to 1, e.g.
η = 0.9. Yet, even with such a value ofη the correlation betweeni and its neighbors
will fall off rapidly when the distance increases. This means that wheni will change
side, only a small number (f ) of neighbors will follow. Asf depends only uponη
(and not uponn) one sees thatg2(n) does not increase withn.

In short, for the models that we considered the ratiog2(n) can behave in three differ-
ent ways as a function ofn.

(1) It decreases linearly whenr < 0

(2) It is almost constant whenrij decreases exponentially with respect to|i − j|.
(3) It increases linearly whenr > 0.

We will see that only cases 1 and 3 occur in our observations.
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Experimental results

Procedure

The experimental procedure involves the following steps.
• First one must spreadn ants fairly uniformly in the whole container. Then

pictures will be taken everyδ seconds10.
• These pictures will allow us to record the numbersnA(t). Once the variance of

this time series has been computed one gets the ratiog2(n).
• By repeating this procedure for different number of ants onegets results which

can be represented as a set of points
(

n − 1, g2(n)
)

(see Fig. 2).
• A linear regression performed on this set of points gives an estimate of the slope

r.

Results

See the graphs in Fig. 2a,b,c.

An important observation is in order regarding the magnitude of the estimated av-
erage correlation. First, it must be emphasized thatr is very different from the cor-
relation estimated from a scatter-plot. In the latter case acorrelation as low as 0.01
would be non-significant (in the sense that the confidence interval would contain 0)
except if the scatter-plot contains several thousand data points. Here, however, the
correlation was obtained as the slope of a regression line and its estimate is quite
significant as can be seen from the size of the error bars.

In order to get an intuitive understanding ofr, one should compare the actual trajec-
tories of the insects to those shown in the simulation of Fig.5 a,b. Broadly speaking,
the comparison will reveal that at individual level the actual trajectories of the in-
sects are even more random than those in Fig. 5b. In spite of this high degree of
randomness there is an observable effect at the macro level.The situation is some-
what the same as for a gas or a liquid. In spite of the randomness of the movements
of individual molecules there are nevertheless well definedmacroscopic properties.

Experimental problems

Although the procedure may appear fairly straightforward,there are a number of
hurdles; while some are purely technical others are of more fundamental importance.
Let us begin with the latter.

Ideally, in order to remain in a stationary equilibrium situation one would likenA(t)

10An “appropriate” time interval is important for the accuracy of the measurement. Of course, it is useless to take
pictures when nothing happens that is to say whennA(t) does not change. On the other hand, simulations show that one
can greatly improve the accuracy of the measurement by increasing the number of pictures. In our experiments, depending
on the activity and number of insectsδ was between 10s and 120s.
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Fig. 2a,b,c Relation between the variance of the number of individuals in a compartment A and the size
of the group. We suppose that the whole domain which contains the ants has been divided into two parts and
we observe the fluctuationsnA(t) of the number of individuals in partA. The slope of the regression line
gives an estimate of the mean correlation between the moves of individual elements. The negative correlation
observed for drosophila can be interpreted as the result of repulsive forces between individuals. In the beetle
case, each experiment (for a specific group size) has been repeated 10 times.
The ability to form clusters can be seen as revealing the existence of attractive inter-individual forces. Thus,
this characteristics comes as a confirmation of the sign of the correlation.
The confidence intervals (at a probability level of 0.90) areas follows: ants:100r = 3.37 ± 0.9, drosophila:
100r = −1.29 ± 1.16, beetles:100r = 1.79 ± 0.75.
These experiments were performed between June and November2012 in three different places, first in Paris
(ants, drosophila), then in Beijing (drosophila, beetles)and finally in Kunming, Yunnan Province, China (bee-
tles).

to fluctuate around1/2. Actually, for ants as well as for beetles,nA(t) can become
very different from 1/2. This is due to the fact that in such cases the individuals tend
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to form a cluster in one part of the container. Thus, if the cluster is inA, the ratio
nA(t)/n will become close to 1, whereas it will decrease toward0 if the cluster is in
partB.

In a sense, this clustering behavior is good news because it is a direct proof of the
existence of an inter-individual attraction. On the other hand, however, it introduces
a bias in the measurement ofr. A correction procedure was introduced to take this
effect into account.

There is a problem which arises especially for drosophila, namely the fact that once
introduced in the observation device only a few of the insects will move. In the case
of drosophila this may take the following form: in a group of some 50 only about
5 to 10 will move at one moment and they will do so with great speed going from
one end of the container to the other without seemingly caring about the 45 others11.
Another circumstance which will prevent the insects from moving is when they form
a cluster. Although a correction can be introduced in the analysis to take into account
such “frozen” elements, it is clear that the analysis eventually becomes meaningless
when the proportion of frozen elements is too high.

The formation of clusters also leads to a more
practical difficulty namely the fact that once
ants are part of a cluster their spatial density be-
comes so high that it is difficult to count them.
As they form several layers, counting becomes
nearly impossible even on high resolution pic-
tures. Recently, we have tried an alternative
method which consists in weighing rather than
counting. This method is well suited for small
beetles whose unit weight is of the order of
15mg (see Fig 3). It is more difficult for ants
whose typical weight (e.g. workers of “Formica
japonica”) is about 3mg. It is altogether im-
possible for drosophila whose typical weight is
around 0.2mg.

Fig. 3: Container with weighing device on
one side.The compartmentsA andB are slightly
(0.5mm) disjoined along the blue and red lines re-
spectively so that the weight measured by the scale
corresponds only to the beetles contained in the left-
hand side part but that the beetles can nevertheless
cross fromA to B and vice-versa. Here most of the
beetles have formed a cluster in a corner. The weight
is 357 mg which, when divided by 15 mg, gives a to-
tal of 24 beetles.

Consistency tests

For a liquid, inter-molecular attraction can be estimated through various means and
variables: evaporation rate, equilibrium pressure of vapor, boiling temperature, heat
of vaporization. It is the fact that such estimates are (at least most often) consistent
with one another which gives us confidence in them. One would like to do the same
here.

11Whereas ants will tend to slow down or stop every time they come close to another ant.
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A simple qualitative consistency test is provided by the following “evaporation” ex-
periment. One takes a test tube containing some 50 drosophila and one makes them
all move to the bottom of the tube by hitting the tube on a table. Then, very quickly12

one puts the tube on the table in horizontal position. Let us assume that the bottom
of the tube is on the left. After a few seconds, some 5 flies willhave reached the
right-hand side, and may be 10 others will be in the middle of the tube. If one waits
5mn, the flies will be distributed fairly uniformly throughout the tube.

If one repeats the same experiment with “Tenebrio molitor” beetles it will be seen
that after 5mn almost all insects are still together on the left-hand side of the tube.

This experiment can be repeated in a more precise way by usingthe following pro-
cedure.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
Total number of beetles (N)

P
ro

po
rt

io
n 

of
 b

ee
tle

s 
w

hi
ch

 le
ft 

pa
rt

 1

From part 1 to open space, 10mn (evaporation)
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From part 1 to part 2, 30mn (equilibrium)

Not in any cluster, 30mn (equilibrium)

Fig. 4a: “Evaporation” experiment with beetles. In the evaporation version of the experiment (top) the
beetles move from the container into open space (i.e. the laboratory table) whereas in the equilibrium version
they move from part 1 of the container into part 2 of same size.In the first case almost no beetles come back
into the container just like the molecules in the evaporation of a liquid. The graph shows that the dropout rate
decreases when the size of the population increases pointing to greater attraction power of larger groups. In
physics similar effects can be observed. For instance the vapor pressure around droplets of liquid decreases
when the droplets increase in size (Kelvin equation) and themelting point of gold particles increases with the
diameter of the particles (Buffat and Borel 1976, p. 2294).
For each value ofn the experiment was repeated 10 times, which means that 80 experiments were performed
altogether. For the 10 repetitions the coefficient of variation σ/m was around 50%. The slopes of the regres-
sion lines (with the numbers of beetles expressed in thousands) are as follows (the error bars correspond to a
probability level of 0.90):
evaporation:−2.8± 0.5; 1 to 2, 10mn:−1.10± 0.7; 1 to 2, 30mn:−2.2± 1.8; not in cluster:−1.3± 0.8. The
average slope isa = −2.0. The experiments were done in November 2012 by Ms. Mengying Feng and Shuying
Lai from Beijing Normal University, Department of Systems Science.

12This movement must be fast because drosophila have a naturaltendency to go upward.
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Fig. 4b: “Not in cluster” experiment with bees. After formation of a bee cluster, the number of those outside
of the cluster were counted. The duration of each experimentwas comprised between one hour and one hour
and a half. The three different colors correspond to slightly different experimental conditions. For instance, for
the black data points there was a single cluster whereas for the red points two clusters formed. In the latter case
we divided all numbers by 2. The slope of the regression line (expressed per 1,000 bees) for the 7 experiments,
namelya = −0.55 ± 0.68, is 2.3 times smaller than the “not in cluster” slope in the beetles experiment.The
experiments were done in June and July 2012 by Mrs. J. Darley and B. Roehner in Val Fleury (western suburb
of Paris). The bees were Appis Mellifera mellifera.

The experiment starts after a numbern of beetles has been introduced into a con-
tainer that we will call part 1. In the “evaporation rate” version of the experiment,
the beetles can just walk out into open space. In the equilibrium version of the exper-
iment the opening of part 1 leads to a container of same size. In this case, most often,
the beetles formed a cluster both in part 1 and in part 2. However not all the beetles
were in the clusters. This leads to the definition of two different variables:n2(t), the
number of beetles in part 2 at timet, andn3(t), the number of beetles which are not
in a cluster. It is this latter variable which is the analog ofthe molecules in the vapor
phase over a liquid. The observations summarized in the figure show that whether in
the non-equilibrium case of evaporation or in the quasi-equilibrium case, the escape
rate decreases when the number of beetles increases. A natural interpretation is that
the combined attraction ofn beetles on one of them increases withn 13.

Significance of the experimental results
In this section we examine the significance of the results presented above from three

13More precisely, one can say that the experiment displays twocompeting forces: (i) attraction and (ii) increased
volatility. The increased volatility likely comes with thebeetles’ new environment. Indeed, when they are left alone for a
long time they cluster together instead of occupying the whole available area, a typical liquid-like behavior.
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perspectives: (i) How reliable are they? (ii) What is their physical significance? (iii)
What is their biological significance?

Reliability of the measurement method

In some experiments involving a limited number of big animals it is possible to
record the trajectories of all individual elements14.
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Fig. 5 a,b,c Testing the cross-correlation measurement method on simulated data.Simulated data were
generated with different correlation levels, from a high correlation of 0.98 to a medium correlation of 0.20
and to a low correlation of 0.05; the latter has same order of magnitude as the correlations observed in ant
experiments. The two graphs on the left-hand side show the simulated trajectories. The number of elements
was limited to 6 for the clarity of the picture. TheAi letters indicate the starting point while theBi letters
are the end points. For̄r = 0.2 the trajectories are already fairly chaotic. Yet, the graph(n − 1, g2) on the
right-hand side shows that the measurement method based onσ2(n) gives reliable results even for a correlation
as low as0.05. The length of the time series (namely 100) used in the simulation was similar to that which is
used in the experiments.

For our experiments this would require marking hundreds of ants with different col-
ors so as to be able to follow their movements on a video, a fairly impossible task.
By merely restricting ourselves to counting the number of ants on one side of the
container, the recording task becomes easier but at the sametime one looses much
information. The question is whether or not this limited amount of information is
sufficient to make reliable measurements.

The best way to answer this question is to generate simulateddata and to see if the
results produced by the measurement procedure are consistent with the input corre-
lations.
The simulated data were generated as follows. First,n auto-regressive processes
Zi(t) were generated through the equationZi(t) = aZi(t − 1) + B(t), whereB(t)

is a white noise term (Gaussian white noise with mean zero andstandard deviation
1) and where the parametera regulates the time-continuity of theZi(t). In our ap-
plication we tooka = 0.98 which implies a fairly high continuity similar to what
can be observed for individual ants. So far, theZi are uncorrelated. An average

14For instance in the paper by Gautrais et al. (2012) the movements of up to 30 fishes each about 25cm in size were
recorded every 1/12 of a second during 2mn-long observations.
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cross-correlation̄r is introduced by using the Cholesky procedure. In this procedure
a triangular matrix is created which defines new random variablesXi as linear com-
binations of theZi. Once theXi have been produced it can of course be checked that
they have indeed the right cross-correlations. This procedure must be repeated twice
in order to produce the 2 Cartesian coordinates of each ant.

The simulated data are then used in the same way as observed data. Fig. 5c shows
that the estimated correlations (namely the numbers withinparentheses) are indeed
consistent with the theoretical correlations. This graph also shows that smaller av-
erage cross-correlations require larger values ofn. This is of course not surprising;
whenr̄ is small the term̄r(n − 1) will remain lost in the background noise unlessn

becomes large “enough”. How largen must become of course depends on the level
of the background noise.

The purpose of this simulation was to check the feasibility of the methodology. In
addition, it gave useful indications about how to improve the accuracy of the mea-
surement.

So far, it was assumed thatr̄ is constant and in particular that it does not depend on
n. What would be changed if̄r depends onn? If r̄ increases withn the relationship
betweeng2 andn would no longer be linear but would have a parabolic (or even
faster) growth. Similarly, if̄r is supposed to decreases withn the functiong2(n) will
be replaced by a function which grows slower thann but which remains above 1.
This question will become important only once the accuracy of the measurement has
been improved. At the present stage, we can accept the simpleassumption that̄r is
constant. A more important point is whetherg2(n) remains above 1 or falls below 1,
for the second case indicates a negativer̄ that is to say a repulsion. These conclusions
are summarized in the following table.

Conclusions about the interaction derived fromg2(n)

g2(n) > 1 and increasing→ r > 0 : attraction







g2(n) increases faster thann → r increases withn
g2(n) increases linearly → r is constant
g2(n) increases slower thann → r decreases withn

g2(n) < 1 and decreasing→ r < 0 : repulsion







g2(n) decreases slower thann → |r| decreases withn
g2(n) decreases linearly → r is constant
g2(n) decreases faster thann → |r| increases withn

We now examine the physical and biological significance of the previous measure-
ments.

Physical significance

Roughly speaking there are two main classes of interactions, namely local pair-wise
interactions (thereafter called classL) and global interactions (thereafter classG) As
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an example of the first kind, one can mention the interaction of an atom in a solid
with its nearest neighbors; as one knows the Ising model provides a basic theoretical
description of this situation.
Interaction through pheromone emission/reception or through visual (or auditive)
contact (as in schooling fishes15) are examples of more global interactions.

In a random variable description there is a fundamental difference between the two
classes. As soon as the population is of a substantial size (say n > 30) most of the
elements of a class-L correlation matrix will be equal to zero (this point is explained
in more detail in Appendix B). Thus, the average correlationdecreases to zero when
n increases which in turn implies that the variance will decrease toward the variance
of the uncorrelated variables, i.e.g2 → 1. Clearly, this is not what was observed in
Fig. 2.
• Thus, for the case of ants one can conclude that within a rangeof a few cen-

timeters the interaction is of global type.
• For drosophila it is true thatg2 decreases but as it tends toward zero rather than

toward 1 this excludes an attractive Ising-like interaction. The fact that drosophila do
not display any clustering behavior is another argument forexcluding any attractive
interaction.

Biological significance

Although at this stage it is still too early to draw importantbiological implications16

one can nevertheless emphasize two points.
• Clearly, well organized colonies such as those of ants or bees necessitate a so-

phisticated interaction network for control and regulation purposes. In other words,
one can be certain that social insects do have many meaningful interactions. How-
ever, as the same argument cannot be used for non-social insects, does this mean that
they have little interactions? Our beetles experiments as well as common observa-
tion about clustering contradicts such a conclusion. When clustering occurs sponta-
neously and not in response to an external stimulus (such as light, lower temperature
or a supply of food) it reveals the existence of an inter-individual attraction. Obser-
vation of the free behavior of the beetles used in the experiment of Fig. 2c shows
that they form a single cluster within a time span comprised between half an hour
and several hours17. This comes as a confirmation of the positive cross-correlation
measured in Fig. 2c. In fact, the formation of large clustersof hundreds or even

15Let us recall the distinction between schooling which meansswimmingtogether in the same direction and shoaling
which meansstayingtogether in the same area.

16A similar situation prevailed in physical chemistry one century ago. It is only once a sufficient mass of observations
had been recorded that a clear picture began to emerge. For anillustration of this process in the case of the alkanes see
Roehner (2007, p. 10-11, Fig. 1.2).

17The process takes longer in a container without corners nor edges such as the lower half of a torus.
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thousands of individuals can be observed for many insects, either on a permanent
basis or just at specific times. Is there a relationship between the size of the clusters
and the strength of the attraction18? This question will be addressed in forthcoming
experiments.
• So far, entomologists have paid only scant attention to the issue of interaction

strength. One of the objectives of this paper is to convince them that the interaction
strength is a meaningfull parameter.

Conclusions
In this concluding section, we first summarize the main results, then we explain what
makes this study fairly new. Finally we list some of the questions left for further
investigation.

Reproducible experiments

Like other animals, insects are influenced by many exogenousfactors such as light,
humidity, temperature, vibrations, and so on. Because of this background noise it
was not obvious that measuring an interaction strength would be feasible. The good
news is that it is. In other words the most important result isprobably that the ex-
periments described in this paper arereproduciblewith a signal-to-noise ratio which
allows reasonable accuracy. It can be added that our experiments were done in distant
places, in summer as well as in fall and with experimental devices which were not
always the same. In spite of such changing conditions they lead to consistent results.
This robustness was certainly favored in an important way bythe large numbers of
insects involved.

The results were not only consistent with one another, they were also consistent with
what was expected from qualitative field observation. For the interaction strength
they led to the following ranking:

Ants (3.4), Beetles (1.8), Drosophila (−1.3)

Two different approaches

It must be realized that two fairly distinct approaches are possible. To explain this
important point it is best to illustrate it through an example from the study of molec-
ular interactions.

(1) One possible objective is to study thedetailedmechanism of hydrogen bond-
ing in water molecules. This is a demanding task which requires measurements at
atomic level and a solid competence in quantum mechanics. Inaddition, hydrogen
bonds are not the only interaction between water molecules;the so-called London

18In fact, the significant factor should be the balance betweenthe attraction and the level of background noise.
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interaction is another, albeit much weaker. In short, studying hydrogen bonds is a
difficult and in a sense, endless) task.

(2) A second possible approach relies on comparative analysis. It is made possible
by the fact that one does not need to know the precise mechanisms of the interac-
tions in order to measure theirglobal effect. This can be done by measuring the
amount of energy that is required to breakall links between water molecules. Such
measurements lead to coupling estimates expressed as interaction energies. Taken
alone, any single measurement of that kind is not of great significance but once such
interactions have been measured forvariouscompounds, then their connection with
macroscopic properties will become apparent, which in turnwill provide valuable
predictive power. In short, this approach fundamentally relies on comparative analy-
sis.

The two approaches are certainly useful and in a sense they complement one another.
Whereas the vast majority of studies (especially those doneby biologists) follow the
first approach, in this paper we tried the second one.

Connection with the approach pioneered by Prof. Deborah Gordon

Although Prof. Gordon’s investigations mostly concerned aspecific species, namely
harvester ants in Arizona, the way she conducted them actually has much to do with
the comparative approach outlined above.
Why?
The main reason is because she asked broad questions that make sense for any
species of ants and indeed for any colony of insects. As illustrations one can for
instance mention the following issues.
• What is the long-term growth pattern of ant colonies?
• How in a colony is food supply adjusted to needs?

In such investigations the emphasis is more on stable patterns than on minute details
that would be species specific. This orientation is also quite apparent from the titles
and subtitles of Gordon’s books (1999, 2010). The organizational issues addressed
by Deborah Gordon are not easy ones. We believe that interaction strengths are
basic parameters whose knowledge may shed some light on organizational problems.
Can we hope to explain superconductivity without a quantitative knowledge of the
interaction between electrons?

Experiments done by physicists

In past decades a number of interesting ant experiments weredone by physicists; they
were a source of inspiration for us. For instance one can mention the experiments
conducted by the teams of Ernesto Alstshuler (2005), Jean-Louis Deneubourg (e.g.
Theraulaz et al. (2003)) or Guy Theraulaz (Theraulaz et al. (2002), Gautrais et al.
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(2012).

However, almost all these studies are of the “one species - one model” kind. By
this expression we mean that after detailed observations have been recorded forone
species, a model is built (which by construction will of course be in agreement with
the experimental data) but little is attempted to determineby further experiments
what is the field of validity of this model. Although these studies were pioneering
in several respects and pointed out many interesting phenomena, one can regret that,
to our best knowledge, they did not cover a broad range of species in order to iden-
tify core mechanisms. This would be crucial in order to be able to offertestable
predictions19.

Testable predictions

It is well known that the ability to offer testable predictions is the hallmark of scien-
tific investigations. What testable prediction can be derived from the results given in
the present paper?

(1) It can be predicted that if a species has a negative cross-correlation (as in the
case of the drosophila), then it cannot at same time exhibit aclustering behavior

(2) It can be predicted that if the correlation and evaporation experiments are re-
peated for other species, then for any species characterized by a positive average
cross-correlation one should observe a negative slope in the the “evaporation” exper-
iment. Moreover, a higher cross-correlation should give a more negative slope.

At this point such predictions should rather be seen as conjectures. The important
point is that they can be tested. If they are disproved by observation one will be lead
to a re-examination of the present model. It is through such acontinual dialogue
between theory and observation that further progress can and will be achieved,

The route ahead

Collective phenomena are particularly difficult to explain. In physics the theory of
superconductivity came centuries after Galileo and decades after it was first discov-
ered. In other words, one should be prepared for a long-term investigation. This is a
field where there is much to explore.

Let us just mention one question not mentioned so far but thatis certainly important,
namely the role of temperature. Some preliminary observations convinced us that
in group effects temperature plays a role which is fairly similar to what can be seen
in chemistry and statistical physics. Which temperature dowe mean, the external

19A few centuries ago when physicists studied the phenomenon of “free” fall they did not confine themselves to falling
apples. Indeed, comparative observation was the only way todemonstrate that, at least in air, the law is fairly independent
of the shape and density of the falling object. This was a milestone in the development of classical mechanics. In water,
on the contrary, both shape and density play a role. Thus, in this case, the limits of validity of the law of free fall are well
defined.
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temperature or the endogenous temperature of the insects asdefined in the sense of
statistical physics? Observation suggests that the two areclosely connected (data can
be found in the long write-up version mentioned at the beginning). This provides a
means for controling the endogenous temperature and for studying its effect on many
phenomena (e.g. clustering, self-diffusion, evaporation).

In physics real progress occurs when there is a fruitful dialogue between theory and
observation. This is currently one of the problems faced by string theory. There is
a similar problem with computer simulations of social phenomena because of the
fact that they rarely lead to testable predictions and when they do, most often, the
requested statistical data turn out to be unavailable. For experiments on groups of
insects the situation is much more favorable.
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Appendix A: Variance of a sum of correlated variables
We proceed in several steps.

For the sake of simplicity we first consider the average of a sum of three correlated random variables
X1, X2, X3 of meanm and identical standard deviationσ. Our objective is to compute the variance
of S3 = X1 + X2 + X3.
By definition of the varianceσ2(S3) = E

[

(S3 − E(S3))
2
]

. One knows that the expectation of a
sum of random variables is always equal to the sum of the expectations, whether the variables are
correlated or not. Thus:E(S3) = E(X1) + E(X2) + E(X3).
Consequently:

σ2(S3) = E

[

(
3
∑

i=1

X̂i)
2

]

, where:X̂i = Xi − E(Xi)
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Thus,

σ2(S3) =
3
∑

i=1

E(X̂2

i ) + 2
[

E(X̂2X̂3) + E(X̂3X̂1) + E(X̂1X̂2)
]

We express the expectations of the products by introducing the coefficient of correlation of theXi:
rij = E(X̂iX̂j)/σ

2. Thus:σ2(S3) = 3σ2 + 2σ2(r23 + r31 + r12)

From that point on, we will consider two cases.

Global correlations
Introducing the mean of therij , r = (r23 + r31 + r12)/3, we obtain:

σ2(S3) = 3σ2[1 + 2r]

This formula has an obvious generalization to an arbitrary numbern of random variables:

σ2(Sn) = nσ2g2, g2 = (n − 1)r + 1

where:

r =
1

[n(n − 1)/2]

n
∑

i6=j

rij

Ising-like correlations
For a one dimensional Ising spin system the correlation between spinsi andj is: rij = η|i−j| where
η can be expressed (if one wish) as a function of the parameterswhich define the interaction between
the spins (see Glauber 1963 p. 299, formulas (56) and (57)).

Introducing this expression ofrij gives:σ2(S3) = σ2(3 + 4η + 2η2)
In extending this formula to anyn, one needs to express the finite sumf(η) =

∑n−2

i=0
ηi (as well as its

derivativef ′(η)). Instead of using the exact expressionf(η) = (1 − ηn−1)/(1 − η) we will consider
that the termηn−1 is negligible with respect to 1, which means that we approximate the finite sum by
the corresponding infinite series. This approximation is acceptable for our experiments because most
of the timen > 20. Of course the approximation is no longer valid whenη → 1 but η = 1 is a case
of uniform correlation already considered above.

Under this assumption one obtains finally:

σ2(Sn) = nσ2

[

1 +
2η

1 − η

(

1 − 1

n(1 − η)

)]

or:

g2(n) =
σ2(Sn)

nσ2
=

1 + η

1 − η
− 2η

n(1 − η)2

Due to the approximation made in the derivation, this formula is not valid whenn is close to 1. We
have seen above that forn = 2, 3 one gets:

g2(2) = 1 + η, g2(3) = 1 + (4/3)η + (2/3)η2

which shows that the functiong2(n) increases toward its asymptotic limit(1 + η)/(1 − η).

Remark Can the Ising case be seen as a special instance of the previous case? Formally, it may
seem so. However, the real picture emerges when we consider large values ofn. In the Ising case,
due to the exponential decrease, all elements in the correlation matrix are almost equal to zero except
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for a zone around the first diagonal whose width depends only upon η. Consequently, for such a
matrix the average correlation goes to zero whenn becomes larger.
This observation shows three things. (i) It would be irrelevant to treat the Ising case as a special
instance of the first case. (ii) The fact that in the Ising caser ≃ 0 helps to explain that the ratiog2(n)
remains basically constant instead of increasing. (iii) Itexplains why we used the expression “global
correlations” to designate the first case. The correlationsare global in the sense that whenn → ∞
the number of elements of the correlation matrix that are “substantially” different from zero must
remain sof the same order of magnitude asn. For a distance-dependent correlation, this means that
the decrease with distance must be slow enough.
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represents the number of elements in part 1 of the container.The (blue) dotted curve is the binomial distribution
corresponding to a zero correlation; the (red) broken line corresponds to a correlationr = 0.01, and the (green)
solid line tor = 0.5. A bifurcation process occurs at some point which in our experiments translates into a
clustering process. Then variables were generated through the Lunn and Davies algorithm which gives cor-
related exchangeable variables (“exchangeable” means that they have a symmetric joint distribution function).
We tookn = 40 and for each curve we generated 1,000 realisations ofS.

Simulations
So far we did not need to make the assumption that theXi are Bernoulli variables, that is to say
variables taking only the values0 and1 20. However, if one wishes to carry out a simulation there is
a convenient algorithm which works for Bernoulli variables(Lunn and Davies 1998). The relevant
formulas can be summarized as follows:

Simulation of global correlation betweenn Bernoulli variables Z andYi are Ber(p) ran-
dom variables while theUi are Ber(

√
r) random variables. Then, the variablesXi defined as:

Xi = (1 − Ui)Yi + UiZ, i = 1, . . . n

are correlated Bernoulli variables with the following properties:

E(Xi) = p, E(X2

i ) = p, Cor(Xi, Xj) = r, i 6= j

20WhenP{X = 1} = p such a variable will be noted as Ber(p).
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It can be noted that this algorithm works only for positive correlations between the variables.

Simulation of correlated Ising-like Bernoulli variables Yi are Ber(p) random variables
while theUi are Ber(η) random variables. Then, the variablesXi defined as:

X1 = Y1, Xi = (1 − Ui)Yi + UiXi−1, 2 ≤ i ≤ n

are correlated Bernoulli variables with the following properties:

E(Xi) = p, E(X2

i ) = p, Cor(Xi, Xj) = η|j−i|, i 6= j

Appendix B: Experimental “toolkit”
Just in order to convince readers that experiments with insects can be done fairly easily we give some
practical hints.
Basically, the needs can be summarized as follows.
First, one needs to get theliving organisms.
• Ants can be easily collected (at least in spring and summer) by putting appropriate food as a bait

on a Bristol board just a few centimeters away from the entrance of a colony. Within one hour and
depending on the species a few hundred ants may gather on the Bristol board.
• Drosophila can be obtained from biology laboratories.
• Flies and beetles can be bought in the form of larvae (worms) destined to fishermen or for

feeding big aquarium-fishes. The waiting time between the larvae stage and the emergence of the
adults ranges from less than one week to a few months depending on species, temperature and time
of year.

Secondly, in many cases, one needs a small bottle of carbon dioxide to make the insect sleep in order
to be able to handle them easily. Carbon dioxide has an almostinstantaneous anesthetic effect on all
these insects. According to a paper published in the “Journal of Experimental Biology” (Ribbands
1950) anesthesia through carbon dioxide does not infer a memory loss and changes only slightly the
behavior of bees. It is probably safe to assume that the effect on the other insects mentioned above is
similar.

Next one needs an appropriate container. A simple solution is to cut it into a piece of flexible plastic
(such as PVC) of adequate thickness (3mm to 5mm is usually enough). This is illustrated in Fig. 1.

Finally, one needs a counting device. Taking pictures and counting by hand is a simple solution but
not always satisfactory especially for counting the elements in a cluster. For this reason we have
developed a weighing method (illustrated in Fig. 3).

Clustering phenomena also occur among bacteria and micro-organisms that are present in so-called
biofilms which form at the surface of liquids. Because of the small size and high numbers of such
elements one is in a situation fairly similar to physical systems. For instance, it can be mentioned
that inter-molecular forces such as van der Waals forces play a significant role in the movements of
such micro-organisms. Studying thecollective behaviorof such populations from the perspective
of physics seems a promising field. However, in contrast to the study of insects, it requires special
laboratory devices and equipment.
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