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A bee collecting nectar from a flower or an ant carrying a pine needle toward its nest does not look
very different from a butterfly flying from one flower to another. At first sight there is nothing to tell us
that bees and ants have strong interactions with their nestmates whereas butterflies live alone. Yet, as
soon as foraging bees come back to their colony, they interact with worker bees waiting to take over
the pollen and move it toward storage places. This comparison suggests that in order to measure the
interactions between living organisms, one must choose situations and circumstances in which the
inter-attraction can and will manifest itself.

Over the past three years we have conducted a series of experiments with groups of insects and small
fishes. Our initial objective was to set up techniques which would allow to define and measure inter-
action strengths in systems of living organisms. This lead us to investigate several basic phenomena
of statistical physics, e.g. evaporation diffusion, effusion, phase transition (gas to liquid), and so on.
In the course of these investigations we came to realize thatin order to make sense of our results, we
should develop an alternative form of statistical mechanics.
In this report (i) we suggest some parallels between physical systems and systems of living organisms
that we hope to be useful. (ii) we present some preliminary experimental results and (iii) we propose
ideas for experiments to be done in the future.

Most of the experiments that we will describe have been done in 2010 and 2011 by students and

researchers at Beijing Normal University, the Chinese National Academy of Science in Beijing, the

South China Agricultural University in Guangzhou and the Eastern Bee Institute of Yunnan Agricul-

tural University in Kunming, Yunan. We would like to thank all participants including those who are

not explicitely named in this report.
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CHAPTER 1: CONCEPTS

Agent based modeling versus physics based modeling
Our objective is to present a set of models which will serve asyardsticks for eval-
uating various escape experiments performed on insect or animal populations. In
such experiments a fraction (or in some cases all) units movefrom a containerA to
a containerB in a given amount of timeT .

Such models can be set up in two different framewoks.
• One of them is what is currently called agent based modeling.It mean to build

a model based on our intuitive understanding of such experiments. For instance,
individual units would have a more or less random motion and would also be able to
detect the presence of their neighbors and rule their own behavior according to what
they perceive around them.
• A second way is to present differentphysicalmodels in which a gas or a liquid

flows from one container to another and to try to determine which one is best suited
to describe what is observed in our experiments on living units.

Which one of these approaches will be the most fruitful?
At first sight it seems that the first approach is the best because it leaves us complete
freedom in designing the model. On the contrary, in the second approach modeling
is conditioned and constrained by physical arguments whichone may find irrelevant
for living units. This sounds quite convincing. Nevertheless it is thesecond approach
that we will try here. Why?

Our choice is motivated by several reasons.
(1) Our objective is not to model our experimental results atall cost. Our objective

is to understand what they tell us about the interaction between individual units. If
in the first approach we introduce an inter-individual interaction in a plausible but
in fact fairly arbitrary way it will be of little usefulness for determining the values
of the parameter(s) which define this interaction because this will not provide any
usefulyardstick. Determining these parameters will just replace our observational
estimates of the interaction strength by more theoretical parameters which will not
necessarily be more transparent1.

1Without going into technicalities, it is fairly obvious that the two main facets of the model, namely the randomness
and the interaction will not be independent. If one selects arandom motion with a large standard deviation one will
need a stronger interaction in order to describe a given behavior. In fact, this kind of agent based modeling would become
satisfactory only if one would be able to pre-determineall parameters of the model from observations that are independent
from those that one wants to describe. This would transform the model into one without free parameter would make the
comparison with observation really significant.
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(2) Physics offer a set of cases corresponding to interactions covering a whole
range of strengths. From a gas with very little interaction such as helium to a liquid
or a solid, physical phenomena display a broad set of yardsticks.

(3) Physics also offers a number of concepts which characterize thecollective
behaviorof a set of molecules. The notions of temperature, pressure,viscosity are
not trivial. It took centuries to physicists to identify them and define them properly.
As a matter of fact, we do not yet know how these notions shouldbe transposed to
systems composed of living units. This goal sets a stimulating challenge.

(4) In the same line of thought, one should mention what is probably the most
important reason for using physical analogies. Phase transitions (from gas to liquid
or from liquid to solid) are non-trivial phenomena which arevery difficult to describe
through agent based models2. Phase transitions are likely to play an important role
for insect populations as shown by the very existence of the clustering effect for
social insects.

(5) If molecules and living units were to obey completely different rules it would
make little sense to take the properties of gases or liquids as a guide. Yet, several ob-
servations suggest that there are in fact deep similarities. This question was discussed
in an earlier paper (Roehner 2005). As an illustration one can mention an observa-
tion which will be discussed later on in this paper, namely the fact that non-social
insects seem to behave like a gas whereas the behavior of social insects is more that
of a liquid. If social insects are put in a container they cluster together without filing
the whole volume whereas non-social insects will spread over all available space.

In the next section we discuss the possibility of a common framework for physical
systems on the one hand and biological or socio-economic systems on the other hand.

Physical systems versus systems of living organisms

Role of environment

At first sight it may seem that systems of living organisms areso different from
physical systems that attempting to build a statistical mechanics of living organisms
is an hopeless objective.

One of the main obstacles is the fact that living organisms may have different types of
behavior. As an illustration consider bee workers in a beehive versus foraging bees
collecting nectar from the flowers around the beehive. In thebeehive the workers
are closely packed together and do not fly; on the contrary, foraging bees fly to
flowers hundreds of meters (or even one or two kilometers) away from the beehive

2Remember in this respect how tricky it is to describe phase transitions either analytically (e.g. through Onsager’s
model for a set of spins) or by computer simulations.



6

and they do so mostly alone. It would be difficult to imagine situations with a sharper
contrast.
Yet, there is a similar difference between molecules insidea liquid and molecules
of vapor which escaped from the liquid. In the liquid the molecules are closely
packed together3 whereas the vapor molecules can travel large distances. What
accounts for the difference between liquid and vapor? The molecules are the same,
their velocities are almost the same, what is different is the average inter-molecular
distanced. Basically,dvapor ∼ 1000dliquid .
This analogy does not completely solve the question however. It may be that work-
ers and foragers are different in some fundamental aspects.In order to determine
what are these differences (if any) one must compare their behavior in identical and
controlled conditions. This is one of the objectives of the experiments which will be
described later.

Energy in physical systems

The notion of energy plays a fundamental role in all fields of physics and especially
in statistical mechanics. Do we have something similar in systems of living organ-
isms? What would be the energy of a system of living organisms. The answer is
fairly simple.

In a system of particles there are basically two forms of energy:
• kinetic energyEc and
• potential energyEp.

Kinetic energy manifests itself through the movements of the molecules. This is an
easy notion. The notion of potential energy is less clear. The potential energy is due
to the interaction between the molecules. In order to make this notion more intuitive
imagine the interaction between two molecules as being materialized by a thin thread
of rubber. When the molecules are far apart their potential energy is (by convention)
equal to zeroEp(∞) = 0. Then, when one leaves the molecules to move toward one
another the force between them produces positive work (the work is positive because
the force is in the same direction as the velocity, it is the same process as when a
ball falls from a heighth1 to a heighth2) thus the energy of the system becomes
lower which means that it becomes more and more negative. A simple illustration is
provided by the system composed of the Earth (whose center wedenote byE) and a
massm. Whenm andE are far apart, the system has a high potential energy. When
the mass falls towardE the potential of the system will decrease. If, nonetheless,we
assume that by convention the “far apart” situation corresponds to an energy equal to

3Similarly, for a gas contained in a closed vessel the molecules collide with their neighbors every10−10 second
whereas molecules which escape into vacuum through a small hole in an effusion process can travel large distances.
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zero4, then, of course, all cases wherem is closer toE will correspond to a negative
energy.

The total energy of the system is the sum:E = Ec + Ep. Let us consider some
special cases.

For an ideal gas, such as argon,Ep ≃ 0 which means thatE ≃ Ec > 0. On
the contrary, for a solid at a temperature near 0 degree Kelvin the velocities of the
molecules are very small which means thatEc ≃ 0 and thereforeE ≃ Ep < 0.

Between these extreme cases, there is a whole range of intermediary situations. For
instance, for a solid at room temperature|Ep| > Ec which means thatE < 0.
For a gas (not necessarily an ideal gas) at a temperature of 1,000 degree Kelvin
the potential energy is negligible compared to the kinetic energy which means that
E ≃ Ec > 0.

An obvious consequence is that in order to transform a piece of metal at 0 K (E =

−E1 < 0) into a gas (E = E2 > 0) one must inject into the sytem a huge quantity of
energy (namelyE2 − (−E1) = E1 +E2); usually this is done by heating the system;
however, as demonstrated by microwave owens, this can also be done by giving more
kinetic energy to the molecules (which has of course the sameend result although
the device is different).

Energy of a system of living organisms

What parallel notions can be defined for a system of living organisms?

More specifically, let us consider a population of a few hundred bees contained in a
glass container.
They move around walking on the walls or occasionally flying.It is possible to
define (and to measure) the distribution of their velocitiesexactly in the same way as
for the velocities of the molecules of a gas. In other words, the kinetic energy of the
bees can be defined in the same way as for a physical system.

What about the potential energy? This notion seems less clear because (so far) we
have little knowledge regarding the force of attraction between bees. However, the
existence of such a force is clearly demonstrated by the factthat, left to themselves,
bees will attract one another eventually (after about half an hour at 20 degree Celsius)
forming a cluster. Although fairly compact with bees closely packed together, this
cluster is not completely steady like a solid. In other words, this cluster of bees is
something between a solid and a liquid, very much like foam orcream.
So, there is certainly a potential energy. As the bees are almost motionless in the

4Although simple, this assumption is not really “natural” because we are not used to the fact that something which is
large is equal to zero. In other words, we are not used to considering0 as a “big” number, which it is, nevertheless, if all
other numbers in the series are negative.
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cluster, one can even say that, the energy of the system is almost entirely in the form
of potential energy, i.e.:E ≃ Ep < 0.

On the contrary, if the bees are in a larger box and all flying aroundE ≃ Ec > 0

What about energy conservation?

The principle of energy conservation is a fondamental law ofphysics. Do we have
something similar for systems of living organisms?

A simple observation will convince us that for systems of living organisms energy is
notconserved, at least not in the same instantaneous sense as inphysics.
Consider a group of about one hundred fruit flies, e.g. drosophila, contained in a
test tube: many may rest on the layer of food at the bottom of the tube while others
may slowly climb on the walls of the tube. If one hits the glassof the tube with a
plastic ruler, suddenly all flies begin to move: some quicklywalk up to the top of
the tube, others fly to the top just to fall back as they hit the cap. Obviously, the
kinetic energy of the drosophila jumped instantaneously when the tube was hit with
the ruler. Somehow the drosophila switched to a kind of “panic mode” in which they
momentarily expense a great amount of energy. Then, in the following minutes the
system relaxes to its previous state.

In short, the difference between living organisms and molecules is that living organ-
isms can store energy which can then be released in bursts.

Another (and related) difference is that populations of living organisms need a per-
manent input of energy for remaining alive that is to say for keeping a substantial
amount of kinetic energy.

Although these two differences seem quite significant, it isimportant to realize that
they are not fundamental differences. Indeed the same phenomena also exist for
molecules albeit not on the same scale.
• A big molecule (e.g. a protein counting several thousands atoms) has many

modes of internal vibration. These modes can be excited by targeting the molecule
with a laser beam. The energy stored in these excited vibration modes is similar to
the energy stored in living organisms in the form of stored carbohydrates or lipids.
What is different, is the time scale of the relaxation process. The energy stored in
vibration modes is released through “vibrational energy relaxation” (or VER5 ) in
a matter of a few picoseconds (10−12 s). In contrast, the relaxation time of energy
stored in living organisms can range from a few hours to several weeks.
• We may think that, in contrast with living organisms, molecules contained in a

container can keep their kinetic energy for ever. However, this is only true as long as
the container remains at room temperature.

5See for instance Fujisaki and Straub (2005).
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For a physicist living near the South Pole during the months when the Sun is under
the horizon, any container left unattended outside of the living quarters would cool
down to average outdoor temperature (around -40 degree Celsius). As a matter of
fact, even the polar station itself would return to the same temperature in a matter of
a few days once its fuel reserve is exhausted.
This example helps us to understand that the kinetic energy of molecules ultimately
relies on a source of energy which is basically the solar energy received by the earth.
In the absence of this energy flow the temperature at the surface of the earth would
cool down to a few degree Kelvin. It is the natural radioactivity of the earth which
would keep the temperature a few degrees above zero.

Yet, from a practical perspective our observation that molecules and living organisms
are notfundamentallydifferent does not solve the problem. The fact remains that
systems of living organisms will have a much broader range ofregimes than systems
of molecules. As a result, experiments will be more difficultto repeat. In order
to reduce variability, one will have to control the state of living organisms at the
beginning of the experiment. A possible control-method is to record the distribution
of velocities of the organisms. Such a test will reveal whether the organisms are in a
excited, subdued or “normal” state. In this way, one does notneed to be concerned
with the actual reason of this situation, a question which would be difficult (if not
impossible) to settle anyway.

Toward a statistical mechanics of living organisms

Physical systems with weak interactions

Over the past three centuries physicists have studied many systems involving either
weak or strong interactions. The most well known systems with weak interactions
are gases such as helium of argon as well as (albeit with greater variability) most
other real gases. This case is particularly important from atheoretical point of view
because the theory which was developed for gases, namely thekinetic theory of
gases, has brought about several key-concepts of statistical mechanics e.g. tempera-
ture, energy, entropy, phase space.

Physical systems with strong interactions

Systems with strong interactions comprise the study of liquids or solids. Although
the theory of such systems is fairly difficult they are of moreimportance for our
purpose because they provide many examples of phase transitions. Why are phase
transitions important?

Defined in a fairly general way, a phase transition is a changein the internal struc-
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ture of a system. The transitions from gases to liquids and solids are well known but
in a sense they do not provide the best examples of phase transitions because they
result in sweeping changes which completely unravel the original structure. Gases
have no internal structure and therefore have no phase transitions. On the contrary,
solids have intricate internal structures and therefore undergo many phases transi-
tions. Most metals exist in different crystallographic structures For instance, tin
exists in two allotropic6 forms, namelyα-tin andβ-tin, more commonly known as
gray tin and white tin, respectively7. Two more allotropes,γ-tin andσ-tin exist at
temperatures above 161 degree celsius and pressures above 10,000 atmopheres.

The existence of many allotropic forms is not unique to metals but is also observed
for most non-metallic solids. It is well known that diamond and graphite are two
allotropic forms of carbon. Graphene and fullerenes are twoothers. As another
example one can mention sulfur which forms 30 solid allotropes (and also some gas
allotropes), more than any other element. Just to mention two of them,α-sulfur is
the (solid) form which exists at room-temperature. Above 95.6 degree celsius it is
replaced by theβ-sulfur form.

Notion of temperature for non-physical systems
First of all it is useful to introduce a distinction between systems for which there is a
clear spatial dimension and those for which it is not the case.

Spatial systems versus non-spatial systems

We observed earlier that for systems of living organisms such as populations of bees
or drosophila, the velocity and hence the kinetic energy canbe easily defined. For
such systems the standard estimate of temperature as being proportional to the aver-
age kinetic energy can be used.

In contrast many economic and social systems do not have a clearly defined notion
of spatial distance. As examples one can mention systems composed of companies,
commodity markets or stocks. For such systems one cannot just transpose the stan-
dard physical notions of energy and temperature; thus, in order to define meaningful
parallels one needs to understand the core concepts on whichthe notions of energy
and temperature rely. This is what we intend to do on this section.

6The meaning of the word “allotropic” is “to exist in different stable forms”. The Greek word “allotropia” means
“variability”.

7β-tin has a tetragonal structure ans is a malleable metal whereasα-tin has a diamond cubic crystal structure and has
the aspect of a grey powder. The transition from theβ to theα form occurs under 13.2 degree celsius. This, however,
requires ideal laboratory conditions in terms of purity andeven on such conditions the transition is very slow. The
transition temperature is much lowered in the presence of impurities. In the presence of traces of bismuth the transition
may not occur at all.
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Before coming to this, let us come back to systems of living organisms. Once, energy
and temperature have been defined it is of crucial importanceto perform consistency
checks in order to confirm the significance of such notions forsuch organisms.
One possible test is the following.

The equipartition theorem of statistical mechanics tells us that(1/2)m < v2 >= kT ,
wherem is the mass of the particle,v its velocity,k the Boltzman constant andT the
Kelvin temperature. Although this formula is only an approximation in the sense that
it assumes a continuous and unbounded distribution of energy levels, let us accept it
as a first step. An obvious consequence is that, for a given temperature,v should be
proportional to1/m. For the sake of brievity, this effect will be called the “bigger
means slower” effect.

Does such a prediction make sense for systems of living organisms?
At first sight the answer seems to be “no”. For instance, in a system of fishes of
the same species but of different sizes (e.g. young fishes mixed with adult fishes),
big fishes can swim faster than small fishes. This seems even more obvious for a
population which comprises fishes of two species, one which is of small size and the
other of a bigger size.
What answers can be given to these objections?
• First, it must be emphasized that although some scaling corrections may be

allowed, theremustbe a “bigger means slower” effect. Otherwise, there will be no
thermalization through mutual interaction, hence no global equilibrium. If there is
no global equilibrium statistical mechanics does not apply.
• Secondly, it must be emphasized that so far there are very fewdata about the

distribution of velocities in systems of living organisms.We need more experimental
results before trying to answer the previous question.
• In interpreting experimental results one should make a clear distinction between

“free velocity” and “diffusion velocity”. Free velocity isthe velocity observed in
effusion experiments that is to say in the absence of mutual interaction. Diffusion
velocity is the velocity observedwithin a system of elements in mutual interaction.
These velocities are ruled by different formulas. For free velocities, the rule isv =
√

2kT/m whereas for diffusion (in a liquid), the rule will be:

x̄2 = 2Dt⇒ vd ≃
√

2D/t ∼
√

1/t1/m1/6

(the Stokes-Eintein relation which is only valid in liquidswas used in the last step).

It can be seen that the expected dependence with respect tom is not the same.
• So far, we have considered systems in equilibrium. In order to check whether

thermalization occurs or not, an alternative method is to inject elements whose ve-
locity is widely in excess of prevailing thermal velocity. In physics this occurs for
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instance when fast neutrons which are emitted as a result of anuclear reaction are
slowed down through interaction with surrounding atoms. Inwater, in the course of
about 16 collisions with surrounding atoms, the velocity offast neutrons is reduced
by a factor of almost105 and this occurs within10−10 second (for more details see
the discussion in Roehner (2007, p. 63-65)).
Similarly, it would be interesting to observe what happens when a living organism
A0 moving with a high velocityV0 (for instance because of an external excitation) is
introduced into a system of slowly moving organismsAi. If there is an interaction
betweenA0 and theAi one would expect thermalization to occur. As a result one
should observe thatV0 decreases until it becomes equal to the average velocity of the
Ai. Needless to say, the decrease rate must be faster than the one observed in a group
of onlyA0s once the external excitation has been switched off8.
The relaxation time of such a process would provide an estimate of the coupling
strength betweenA0 and theAi. The longer the relaxation time the weaker the cou-
pling strength.

For such an observation the following experimental procedure can be suggested. For
the sake of illustration, we describe it for ants but it can ofcourse also be tried with
other living organisms.
First one must measure the distribution of velocities in a group of ants at different
temperatures, say 10, 15, 20 and 25 degrees Celsius. This is easily done by shooting
a film and analyzing it image by image on a computer. Knowing that the time interval
between two images is 1/20 s, the velocities can be obtained from the displacements
between successive images.
For the second step a group of ants is put at a temperature of 10degrees for about 20
minutes. Then, it is removed from the cooling box and left at room temperature (25
degree). Progressively, the velocity distribution will converge toward the distribution
at 25 degree. Let us denote byτ0 the corresponding time constant.
The third step is similar to the second step except that, after being taken out of the
cooling box, the ants are mixed with a group of ants which havebeen kept perma-
nently at room temperature. Before being put into the cooling box the ants had been
marked with a white dot so that they can be identified on the film. In the same way
as above, we measure the time constantτ1 which characterize the convergence of the
white dotted ants toward their velocity distribution at 25 degrees. If the difference
∆τ = τ0 − τ1 is positive,∆τ can be seen as a measure of the interaction between
ants9.

8Even in the absence of any water, the fast neutrons will also eventually be slowed down as a result of their collisions
with the wall of the container, but this process will take a longer time.

9This experiment relies on the belief that there is indeed a collective effect and that the warming up process is not just
the result of a physiological mechanism at individual level.
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An alternative form of the experiment would be to replace theants from the cooling
box by ants of a different species which has a slower velocitydistribution. If the
velocity is purely determined by species identity their distribution will be the same
when the species are mixed as when they are kept separate. On the contrary, if the
velocity distributions

• Finally, let us consider a case which is well known by beekeepers. In European
honey bees (Apis Mellifera) males are about twice as big as females and they are
known to fly or walk more slowly. In fact, males can be readily recognized not only
because their slower flight but also because their wings makemore noise.
Can this case be considered as illustrating the “bigger means slower” requirement?
We do not think so.
The flight velocity of the males is lower not as a result of their interaction with the
females but rather as a consequence of the fact that their wings are undersized with
respect to their higher weight which implies that although their wing frequency is
higher (hence the louder humming) they cannot match the velocity of the lighter
female bees. In short, this case has nothing to do with thermalization.

Temperature as seen as a manifestation of dispersion

When the order “March, forward” is given to an US Army squad all soldiers start
marching at the same moment, in the same direction and at the same pace. This can
be considered as the analog of what happens in physical systems at a temperature of
zero degree Kelvin.
For instance, if an external magnetic field is applied to a paramagnetic material,all
magnetic moments will immdediately align themselves in thesame direction. This
will happen no matter how small the external field. In our military illustration, one
would say, that the soldiers will all start to walk even undera slightly whispered
order.
On the contrary, at a non-zero temperature, only a specific proportion of the moments
will become parallel to the external field and this proportion increases when the
external field becomes stronger as illustrated in the graph.In the military analog this
would mean that even when the order is shouted fairly loudly not all soldiers will
start to march.

A social parallel: effects of the Fukushima accident

What parallel with social phenomena can one suggest? Consider the accident that
occurred in mid-March 2011 at the nuclear power plant of Fukushima in Japan. It
resulted in a permanently increased level of radioactivityin Fukushima prefecture.
In a limited area around the plantall people were evacuated. This was the analog of
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Fig.xx:Effect of non-zero temperature on the mean magneticmoment of a paramagnetic substance.
When an external magnetic field is applied to a paramagnetic substance at a temperature of zero degree Kelvin,
100% of the magnetic moments become parallel to the externalfield which results in a maximum mean mag-
netic moment per unit of volume. At a non-zero temperature only a fraction of the moments will become
parallel. As a result, for a given external field, the mean magnetic momentm̄(H) per unit volume will be
smaller. The formula is:̄m(H) = µ tanh(µH/kT ) (Reif 1965. p. 207)

the “Forward march” order10. On the contrary, outside of the evacuation zone in the
rest of Fukushima prefecture, some people moved to other prefectures while other
people remained in their homes. For instance, most pregnantwomen or families with
small chidren moved to other places. Needless to say, many other reasons may have
played a role in the decisions made by people. Outside of the evacuation zone, the
response to the accident can be described as a non-zero temperature effect. That is
why non-zero temperature can be seen as a manifestation of diversity.

Notion of diversity at atomic level

At atomic level, the fact that not all magnetic moments respond to the external field in
the same way is also, in a sense, due to diversity. How should the notion of diversity
be understood in this case?

Of course, all magnetic moments are identical but at a given moment, due to their
vibrations, they will be indifferent states. Therefore, their responses to an external
field will not be the same which will lead to the gradual effectobserved in systems
at non-zero temperature. For instance, from a classical mechanics perspective if at
a given moment the particles do not have the same velocity they will not experience
the same force. A particule with a high velocity will experience a stronger force than

10However, some people came back to work into the evacuation zone. For instance, large quantities of stones continued
to be extracted from quarries located in the area.
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a particle with a slow velocity. When the temperature increases the particles vibrate
more strongly which means that their velocity range will become broader.

In order to convince ourselves that this argument is indeed correct, one should study
a system of two magnetic moments in the framework of quantum mechanics. In that
framework the moments would be described by their wave functionsψ1(t), ψ2(t) and
these wave functions would be governed by two time-dependent Schr̈odinger equa-
tions. These equations would include a term representing the interaction between the
moments as well as terms describing the effect of the external field on each of them.
Once the equations have been solved their solutions will certainly show that the re-
sponses of the two moments to the external field arenot identical. Needless to say,
the role of temperature cannot be seen on such a two-moment system because the
notion of temperature only exists for a system that has many particles.

In short, provided the word is understood in a fairly broad sense, diversity is the
key-factor that causes dispersion. Let us illustrate this through a second example.

An economic parallel: wheat markets

In 19th century Europe there were weekly (or bi-weekly) wheat markets in in all
cities and twns of some importance. In France for instance, price records are avail-
able for hundreds of them from 1825 to 1913. On all these markets prices fluctuate
more or less randomly.

What would for such a set of markets be the analog of the zero Kelvin degree limit.
At this limit everything is “frozen” which means that the price fluctuations are re-
duced to zero. What are the economic conditions that will lead to such a situation?
First, suppose that wheat is harvested not once a year but everyday in the same way
as for the production of industrial goods. Next, suppose that the supply is flexible
enough to follow the fluctuations of the demand (including unexpected fluctuations
due for instance to an army spending some time in the area) on adaily basis. As
a result, wheat prices would become very stable. As stable indeed, as the prices of
cars are nowadays in most industrialized countries. In sucha situation, the volume
of sales would be just sufficient to satisfy the needs of everybuyer.

What would be in such a market the effect of a sudden increase in demand? For in-
stance, one can assume that troops are staying temporarily in the area which results
in demnd jump∆D. We said that supply side would respond with great flexibility,
but this flexibility would have a cost nevertheless. Indeed,in order to increase the
supply (whether for cars or for wheat) new production facilities must be called upon
and these facilities most likely will have a lower productivity than the facilities al-
ready in operation. If the production cost of the most productive facilities isp1 and if
p2 > p1 is the production cost of the new ones, the market pricep′ which will satisfy
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the higher demand will lie somewhere betweenp1 andp2. In such a flexible market
(from which all friction factors which exist in real marketshave been removed) the
arrival of the troops will make the price jump fromp to p′. As in in the graph with the
magnetic field at zero degree, the jump will occur overnight and only once. On the
contrary, in real markets there are all sorts of delays and frictions which will make
the change more gradual. Among such friction factors one canmention the time
required to grow wheat in new fields, the harvesting and transportation time and so
on.

In the conception delineated above, each producer will be characterized by a typical
production costPi reflecting its level of productivity. Thus, then producers can be
ranked from lowest to highest production cost. If the production capacities of the
producers areQi, then the production cost for a demandD will be given by:

P = (1/D)
∑

PiQi, where
∑

Qi = D (1)

PD is the analog of the total energy of a physical system andPD/n, the average
production value per producer, is the analog of the average energy per state.

What will be the temperature in this example? The graph tellsus that the higher the
temperature, the stronger must be the external shock in order to achieve a sizeable
response of the system. In other words, a market with high temperature would be a
market beset with much noise and many frictions and which does not well adapt to a
new situation.

Remark Equation (1) is a perfectly deterministic rule. The statistical analog of (1)
would be:

P = (1/D)
∑

(PiQi)qi, whereqi = exp[−β(PiQi)]/[
∑

exp[−β(PiQi)]]

Interpreting temperature as a manifestation of diversity is probably not the most com-
mon way to look at it. Most often it is with movement that temperature is identified.
That is what we explain in the next section

What is the significance of temperature in physical systems?

When thinking about temperature the first idea which comes tomind is the following
relation from the kinetic theory of gases:

(1/2)mv2 = (3/2)kT (I.1)

wherev is the velocity of a molecule,T the Kelvin temperature andk the Boltzmann
constant. This relation establishes a connection betweenT and the average of the
kinetic energy of a molecule.

Several important qualifications are in order.
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• It is important to realize that for the absolute temperatureof a system to be de-
fined, the system must be in thermodynamic equilibrium. For systems which are not
in equilbrium it may be possible to define local and more or less ad hoc temperatures
but one cannot define absolute temperatures in an unequivocal way. We will come
back to that point shortly.
Moreover, the system must also be ergodic in the sense that ensemble averages are
identical to time averages. While this condition is ensuredfor physical systems, it
may be more problematic for non-physical systems.
• The velocity defined by equation (I.1) cannot be measured inside a gas or a

liquid because of the many collisions between the molecules. In a sample of nitro-
gen in standard conditions of pressure and temperature the mean time between two
successive collisions isτ = 6 × 10−10 s and during this time, in spite of the fact
that its velocity (as measured outside of the system) isv = 500 m/s, the molecule
covers only a distance ofl = 0.3 µm. The velocityv is measured through effusion
experiments in which the molecules escape from the system through a small hole of
a diameter that is smaller thanl. Once outside, thanks to a quasi-vacuum, they can
travel in a straight line over a distance of several centimeters. Yet, this measure gives
only a rough estimate of the velocities inside the system (see Fig. xx)

F
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Fig.xx: Velocities inside and outside of a solid.Inside the solid atoms can move by jumping from one vacancy
to another. Atoms whose energy is high enough can escape fromthe solid. These atoms produce the cloud of
vapor that exists over solids. By direct measurement or indirectly by measuring the pressure of the vapor one
can determine the velocity of the atoms in the vapor. However, in order to be able to estimate the velocity of
the atomsinsidethe solid one should also know the energyEexit.

For the purpose of extending the notion of temperature to non-physical, relation (I.1)
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can be considered as thedefinitionof temperature11. However, if (I.1) is taken as the
very definition of temperature, then we need some criterion for ensuring that thisT is
not just a formal and meaningless parameter but has indeed the the basic properties
of a physical temperature. One possible criterion is to check that (I.1) holds for
different masses. Broadly speaking, this means that big things should move slover
than small things. We will come back to that point later on.

In short, (I.1) says thattemperature is motion and vice versa.
At this point it is important to realize that the movements ofmolecules are not limited
to their translational velocity but include also rotational or vibrational movement. For
instance in a solid the molecules oscillate around their average central positions.

Does equation (I.1) mean that everytime that there is a system with agitated individ-
ual units it is possible and useful to define a temperature that would characterize that
agitation? Such a definition is undoubtely possible. The main question is whether it
may be useful.

In order to see this point more clearly, we first discuss the significance of movement
in physical systems.

Significance of movement in physical systems

To make this point clearer let us for a moment try to imagine what systems without
movements (that is to say at 0 degree kelvin) would look like.First, we list several
features and then we explain them in more detail.
• In such systems any disequilibrium would remain for ever.
• The physical properties (e.g. the density) of any system would be different from

one point to another.
• All materials would have zero compressibility and therefore infinite hardness.

As a result no sound transmission would be possible.

In order to explain the first two points we consider a fluid at room temperature. Let
us assume that at timet1 one injects an additional quantity of the same fluid at a
specific locationM1. In the course of time, this excess fluid will diffuse to the neigh-
boring area and eventually to the whole volume of fluid. However, this diffusion
process occurs only because through their random movementsthe molecules which
are aroundM1 will be be able to explore the surrounding area where the density is
smaller12. Without these movements the excess fluid will remain for ever at point
M1.

The third point results from the fact that the elasticity of asolid comes from the vi-
11It is true that in statistical mechanics the definition of temperature is different, namely:T = 1/(∂S/∂E) whereS

andE are the energy and entropy of the system respectively. As, a priori, we do not know how to transpose these notions
to non-physical systems the present definition is fairly useless.

12The process of equalization is very similar to the process invloving two compartments that are considered below.
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bration of the molecules around their central position. A vertical impact through the
stroke of a hammer at a locationM1 will create a deformation. The vibration center
of the molecules aroundM1 will move downward and this will also temporarily push
downward their neighbors. As a result the deformation will be transmitted through
the whole solid. If frozen in their central position the molecules will not be able to
transmit any deformation13.

In short, it is the agitation of the molecules which smoothesout temporary fluctua-
tions and ensures spatial uniformization. Without this agitation all materials would
be fragmented into small cells each of which would have different properties. It
would be impossible to produce an homogeneous beam of steel14.

In our previous argument we considered the extreme case of a system at 0 degree.
That may sound unrealistic because, as is well known, it is not possible to reach
such a temperature. In fact the same argument would also apply to a system whose
temperature is close to zero, say around 0.01 degree. The only change that needs
to be made is that sentences such as “equilibrium will never be reached” should be
replaced by “equilibrium will be obtained only after a very long time”. In other
words, systems at 0.01 degree will have very long relaxationtimes which means that
if submitted to frequent shocks they will be out of equilibrium most of the time.

Our previous discussion has an important implication. Apart from temperature there
are many other intensive variables (e.g. pressure or concentration of a given species
of molecules), but temperature is the key-factor because itis associated to movement
and without movement no equlibrium would be possible for anyof the other vari-
ables. In the term movement one must include not only translational velocity, but all
forms of movement including vibrations, spin switching, orelectrons jumping from
one level to another.

Distinctive property of a heat-bath

Formula (I.1) has an important implication which can be considered as a distinctive
characteristic of a “real” temperature.
Consider a fluid which is a mixture of two particles of different massesm andM .
Let us assume thatM = 100m; for instance ifm represents the mass of a water
molecule, i.e. m = 18g, thenM = 1, 800g, M can possibly be the mass of a

13The fact that some metals become superconducting under a critical temperature does not contradict this argument for
in this case one applies an electical field which is experienced throughout the material and brings about the movement of
the electrons. In this case there is no need for a local deformation to be transmitted from one end of the system to the
other.

14In our previous discussion we considered a fluid not a solid. However, it also applies to steel because in most of the
production process steel is in fact liquid. It is mainly in this phase that the uniformisation takes place. However, it should
be observed that uniformisation by diffusion occurs even insolids. Indeed, when the temperature of a solid becomes close
to its melting point there are more and more vacancies that isto say sites which are not occupied by atoms. By jumping
from one vacancy to the next atoms can move and bring about uniformisation.
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Fig.xx: Heat capacities of gases.The figure shows that, except for helium and argon (two monoatomic noble
gases), the heat capacity curves are very different from what is expected from the equipartition theorem. This
theorem relies on classical mechanics, an approximation that in principle is better for high temperatures than
for low temperatures. But we can see that the approximation does not work well even for high temperatures.As
the temperature increases a larger number of vibration modes contribute a well as the excitation modes of the
electrons.Sources: CRC handbook of chemistry and physics (2009-2010)section 6-26; website of the National
Institute of Standards and Technology

Formula (I.1) tells us that the velocity of this molecule of massM will be 10 times
smaller than the velocity of the water molecules. If the later is around 500 m/s the
bigger molecule will have an average velocity of 50 m/s.
The equipartition theorem states that the mean value of eachindependent quadratic
term in the expression of the energy is equal to(1/2)kT (Reif 1965, p. 249).
The fact that this statement does not seem very plausible canbe seen readily. Let us
consider the rotational degrees of freedom. The equipartition theorem tells us that
the averages of kinetic energy of two rotations around different axesE1 = (1/2)I1θ̇

2
1

andE2 = (1/2)I2θ̇
2
2 are both equal to(1/2)kT even if I1 is arbitrarily larger than

I2, say for instanceI1 ∼ 106I2. Intuitively this does not seem reasonable because,
unlessθ̇2 becomes a million times larger thanθ̇1, the termE2 would be much smaller
thanE1.

A quantum mechanical argument indeed shows that the equipartition statement is
not true. The argument goes as follows. Apart from the form that we have already

15For instance the mass of a molecule of insulinhboxC257H383N65O77S6 is M = 5, 807.
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used the kinetic energy for a rotation can be also be written as a function of the
angular momentumL = Iω; this form, namelyE = L2/(2I) is best suited from a
quantum mechanics perpective because it isL which is the variable that is quantized:
L = l(l + 1), l = 0, 1, . . .. So, the lowest possible level isE0 = 1/(2I). As long
asE2 < E0 the rotationθ̇2 will not contribute at all. This rotation will only start to
contribute whenE2 ∼ E0; whenI2 is very small it impliesE0 is large and therefore
θ̇2 must be very large. Buṫθ2 will become large enough only when the temperature is
very high, sayT ≤ T2. In other words, underT2 this mode will not contribute at all,
and aboveT2 it will contribute not all at once (as stated by the equipartition theorem)
butprogressivelyby starting from zero, increasing and reaching a maximum16.

Real velocity versus diffusion velocity

Definitions

It is important to make a clear distinction between thereal velocityof a particle in a
fluid and itsdiffusion velocity.
• The real velocityv is the velocity of the particle between two successive colli-

sions (Fig. xx). For molecules the timeτ between two successive collisions is of the
order ofτ ∼ 10−10s. A bigger particle experiences more collisions per secondwhich
means thatτ is even smaller. It is impossible practically to measure such velocities
inside the fluid. The only possible measurement consists in allowing the particle to
leave the fluid and to let it move into a quasi-vacuum envrionment. This reduces
drastically the number of collisions and allows the velocity to be measured through
the distance covered in straight line.
• The diffusion velocityvd is defined as the average distance travelled by a (large

enough) sample of particles. As noted above the trajectories of these particles will
contain a lot of direction changes. Despite this great diversity in shape, it is possible
to define a meaningfull average. For instance, in the case considered in Fig xx, it was
sufficient to consider some 500 particles to get a fairly significant estimate for their
average velocity. One way to define a diffusion velocity is toconsider that int = 5
s the average distance travelled by the particles is the distance corresponding to one
half of the height of the histogram. It is known that for a gaussian frequency curve
y = exp

[

−x2/(2σ2)
]

thex−value at half maximum is1.18σ. So, if the histogram
of the displacementsx is well described by a gaussian curve, the diffusion velocity
will be vd = 1.18σ/t. For most practical applications the simpler approximation

16A theoretical calculation shows that the heat capacity of anassembly of rigid rotators has the shape that can be seen
on the graph for the case of hydrogen. For more details see seethe following website of the Gary Morris School of physics
in New South Wales:
ruelle.phys.unsw.edu.au/g̃ary/...files/SM35.pdf
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Fig.xx: Distribution of “energy” between different “activ ities”. In a physical system energy exists in several
forms: different kinds of kinetic energies and also potential energy due to the inter-attraction of the molecules.
As we have seen elsewhere this last aspect becomes importantin fluids or solids. These forms can be seen as
being diverse “activities” of the molecules. The figure draws a parallel with a facet of a social system, namely
the distribution of a given amountN of sentences spoken or written in a minority languageL. For instance,
L can be German in the eastern part of France or Spanish in Los Angeles. An increase∆N will result in its
distribution among the different types of activities for which a language is used. The analogs are as follows:
molecule - person, energy - quantity of sentences in language L, energy level - sentence multiplication factor
corresponding to the activity under consideration. All these activities are more or less inter-dependent. Low
levels activities will be “filled” first while high level acivities will have to wait until the temperature of the
system becomes higher.
Incidentally, it is by purpose that we did not replaceα by kT/m (for a one-dimensional system). Although this
would be correct at room temperature it will not be true at a sufficiently low temperature as shown by the curve
of the heat capacity of hydrogen.

vd = σ/t will be sufficient.

Connection between (real) velocity and diffusion velocity

At first sight it may seem that there is no way to establish a link betweenv andvd.
The shapes of the trajectories definingvd are so diverse and chaotic that it seems very
difficult to find a link between their straight-line parts andthe global curves.

Because within the system the trajectories are so erratic the position of a particle in
the course of time is a random fonction (which we write with capitals as is custom-
ary in probability calculus)X(t). ForX(t) one can define an ensemble average by
considering a sample of similar particles. We will denote byE(.) this kind of ex-
pectation. More precisely we will consider a sample of particles all starting from a
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Fig.xx: Self-diffusion and brownian motion. Because of the many collisions that any molecule experiences
there is a phenomenon of self-diffusion (Reif 1965 p. 483-488). This effect is basically the same as the diffusion
of a big particle which is referred to as brownian motion.

given pointO at timet = 0 and we want to know the distance covered on average
by these particles. As a measure of this distanceE[X(t)] will not work because this
expectation will be zero on account of the fact that the particles will go equally in all
directions (or equally to the left and to the right if one considers a one-dimensional
system as will be done later). A possible measure of this distance would beE(|X|).
In order to avoid the absolute value one prefers usually to use the standard deviation:
σ[X(t)] =

√

E [X2(t)]. It is σ[X(t)] which corresponds to the dotted circle in Fig.
xx. Once this quantity has been computed, the diffusion velocity can be obtained
just by dividing by the timet: vd = σ[X(t)]/t.

What information do we have in our hands in order to computeσ[X(t)]?
• The fact that the predictions of the kinetic theory of gases agree with observation

show that the particles in a gas follow the law of newtonian mechanics in spite of
their small size. This allows us fairly easily to write an equation of motion for the
particles.
• From the kinetic theory of gases we already know the moments of first and

second order of the velocityV (t) of the particles between successive collisions17 .
They are given by the following formulas:

m1 = E(V ) =

√

√

√

√

8

π

kT

m
m2 = E(V 2) =

kT

m

Incidentally, from these formulas one can compute the variance σ2 = E(V 2) −
[E(V )]2 and the coefficient of variationCV = σ/E(V ) of the module of the ve-
locity; one finds: CV=67%. Such a coefficient of variation corresponds to a vari-
able which is “moderately random”. In contrastX(t) is much “more erratic”. As
E[X(t)] = 0, one can say either that its coefficient of variation cannot be computed

17V (t) denotes the module of the velocity. In one dimension it wouldbe its absolute value.
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or that it should be very large because for a real sampleE[X(t)] is never strictly
equal to zero

From the above results is it possible to findvd as will be seen later on. Before giving
this derivation we wish to present the results. One gets:

σ2 [X(t)] =
2m2

α

wherem2 is the second-order moment of the velocity (defined above) and α denotes
the friction coefficient defined by the fact thatαV is the force experienced by the
particle in its movement. In this form the result is valid fora gas, liquid or solid. A
more detailed expression can be given under additional assumptions.
• If the equipartition theorm holdsm2 can be replaced bykT/m. This assumption

will be valid at room temperature.
• When there is no turbulence (that is to say when the Reynolds number is smaller

than 1) the friction force can be written in the form given by Stokes’ formula, namely:
α = 6πηa, wherea is the radius of the particle andη the dynamic viscosity (ex-
pressed in Pa.s). As the Reynolds number is proportional to the size of the particle,
this assumption is certainly fulfilled for particles of a size of the order of 1 microm-
eter or less.

Derivation of a formula for the variance of x

In what follows, for the sake of simplicity, we consider a one-dimensional system.
For a particle of massmp and velocityV it is reasonable to assume the following
equation of motion:

mpdV

dt
= −αV + F (t)

where
• F (t) is a random function which describes the interactions (whether in the form

of shocks or distant interactions) due to surrounding molecules.
• The velocityV (t) is also a random function. Although small, the time interval

between two successive shocks is a positive number which means that the derivative
of V is meaningful (actually it would be more appropriate to write a discrete time
equation rather than an equation in continuous time).
• The term−αV is a friction force which is due to the fact that when the particle

is moving to the right it will experience stronger shocks on its right-hand side than
on its left-hand side. If the average velocity of the molecules isvmol, the shocks on
the right-hand and left-hand side side will have an average velocity vmol + V and
vmol − V respectively. By difference this gives rise to a drag force which must be
a function ofV , of the vertical section of the particle, and of 3 variables giving the
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characteristics of the molecules: their velocityvmol, their density per unit arean,
and their massm 18.

As we wish to computeE(X2) we express the previous equation in term ofX and
in order to generate a termX2 we multiply both sides byX

mpX
d2X

dt2
+ αX

dX

dt
= X(t)F (t)

We take into account the following relations:

X
dX

dt
=

(

1

2

)

dX2

dt

d2X2

dt2
= 2

(

dX

dt

)2

+ 2X
d2X

dt2
⇒ X

d2X

dt2
=

1

2

d2X2

dt2
−
(

dX

dt

)2

=
1

2

d2X2

dt2
− V 2

which gives:
mp

2

d2X2

dt2
−mpV

2 +
α

2

dX2

dt
= X(t)F (T )

Now we integrate with respect to time over a time interval(0, te), wherete is the
smallest possible experimental observation time.

mp

2

∫ te

0
dt
d2X2

dt2
−mp

∫ te

0
dtV 2(t) +

α

2

∫ te

0
dt
dX2

dt
=
∫ te

0
dtX(t)F (t)

which leads to:
mp

2
[V (te) − V (0)]−mp

∫ te

0
dtV 2(t) +

α

2
[X2(te) −X2(0)] =

∫ te

0
dtX(t)F (t)

Apart from the equation of motion (which is rather a plausible assumption) the only
solid information that we have in this problem is the averagevelocity of the particle
as derived from the equipartition theorem:mpE(V 2) = kT . In order to use this
information we take the ensemble averageE(.) over a set of similar particles.

We will assume that one can exchange time averaging and ensemble averaging, i.e.

E
[∫

(.)
]

=
∫

E(.)

In principle at least, the validity of this assumption can bechecked experimentally
in the following way (the discussion refers to the variablex2 but the same argument
can be made as well for any other variable)

18The standard expression of the drag force in a gas, namelyfd = 6πηaV = 2πmvmolnalV (Reif 1965 p. 475)
contains indeed the expected variables.l is the mean free path (i.e. the distance travelled by a molecule between two
successive collisions); the factornal represents something related to the number of molecules which can hit the particle
during the unit of time (without shocks this number would be written navmol, but if the density is not too lowl is much
smaller than the distance travelled without shocks in the unit of time.
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(1) One selectsN = 100 particles and for each of them one measuresqi(t) = x2

at timet.
(2) One computes the averagea(t) = (1/N)

∑

qi(t).
(3) After following the 100 particles over a timete one computes the time average

a = (1/te)
∫ te
0 a(t)dt

(4) For each of the 100 trajectories one computes the time average:
bi = (1/te)

∫ te
0 qi(t)

(5) One computes the ensemble averageb = (1/N)
∑

bi
(6) If a = b it is proof that time averaging can be exchanged with ensemble

averaging.

Ergodicity (of the mean) for the random functionQ(t) as defined in probability the-
ory (see Papoulis 1965 p. 328) implies thata = b. Indeed,a(t) is the expectation of
Q(t) for a given timet, whereasbi is the time average ofQ(t) for a given realization
i.

Thus, we get:

mp

2
[E[V (te)] −E[V (0)]]−mp

∫ te

0
dtE

[

V (t)2
]

+
α

2

[

E[X2(te)] − E[X2(0)]
]

=
∫ te

0
dtE[X(t)F (t)]

This equation can be simplified on account of the following observations:
• As F (t) is not correlated with the position of the particle, one gets:

E[X(t)F (t)] = E[X(t)].E[(F (t)] = 0.
• E[V (te)] = E[V (0)]. Indeed, as far as the velocity is concerned the diffusion

process is stationary (albeit not stationary inx) which means that the ensemble av-
erage ofV (t) is independent of time. As a matter of fact, the ensemble average of
V (t) is zero because there is no reason it to be either positive or negative.
• According to the equipartition ruleE

[

mpV (t)2
]

= kT

Definingσ = E(X2), one gets:

−
∫ te

0
kTdt+

α

2
[q(te) − q(0)] = 0 ⇒ σ(te) = σ(0) +

2kT

α
te

If we translate all trajectories so that they start at the same origin point, one will have
X(0) = 0 which of course implies thatq(0) = 0. Thus:

σ(te) =
2kT

α
te

Extension to non-physical systems
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In economics there are many intensive variables, e.g. price, productivity, unemploy-
ment rate, interest rate. What is the factor which brings about equilibrium for such
variable? The answer is clear. It is exchange and interactiona of all kinds. This
includes:
• economic interactions such as trade or financial transactions,
• cultural interactions and in a general way all kinds of social interactions. For

instance, linguistic factors, or cultural attitude with respect to learning or working
may be important for productivity uniformization.

One should not think that the situation is necessarily much more complicated than
in physics. In a molecule of water, although there are also many possible modes of
excitations for specific applications one can focus on just one or two of them. In
economics, because we are part of the system, we know many modes of excitation.
To be able to draw some clear conclusions, one must focus on cases involving only
a small number of modes. In the following sub-sections we propose three examples.

Linguistic modes of excitation

It is quite by purpose that we start we a non-economic example.
Consider France and Germany. The languages spoken in these countries are French
and German and at first sight it may seem that in the course of several centuries there
has be no uniformisation whatsoever. This is not completelytrue however. There is
a diffusion process at work but it concerns only a small area of a width of about 50
km along the border. Indeed, in the French border city of Strasbourg many people
are able to speak German. Why? There are many reasons which all refer to some
form of interaction.
• As there many German tourists visit Strasbourg, store employees must be able

to speak German in order to serve them.
• This region was invaded and occupied by Germany two times during the past

150 years: from 1870 to 1918 and from 1940 to 1944. During these periods, the
language that was taught in schools was German
• In Strasbourg as well as in the surrounding area TV sets are equipped for re-

ceiving the programs of German TV channels. As a result a substantial number of
people watch German programs.
• In the countryside around Strasbourg the mother tongue of a majority of people

is Alsatian which is a German dialect almost identical to thelanguage spoken in the
German Rhineland.

Thus, one can conclude that there is indeed an ongoing diffusion process but it is
very slow. In a study of language diffusion in many areas where two languages are
in contact, it was concluded that the velocity of the diffusion front is of the order of
10 kilometer per century (Roehner and Rahilly 2002 p. 106-111).
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The parallel in physics would be diffusion between two solids. When two plates
made of different metals, for instance gold and lead, are tightly held together and
heated there is a diffusion of atoms of each kind into the other metal. Lavoisier
(1743-1994) had already observed that when gold is stronglyheated, fumes arise
which gild a piece of silver held in them.
The first experiment with metals in close contact was performed in 1896 by William
Roberts-Austen. A thin plate of gold was fused on to the end ofa rod of lead. At a
temperature of 250 degree Celsius (the melting point of leadis 327 degree celsius)
after a waiting time of 31 days the concentration of gold atoms at a depth of 3.5 cm
was 1/10 of the concentration at the separation point. Through adjustement to the
diffusion equation the diffusion constant was found to be (Mehrer et al. 2009 section
2.3)DAu(523) = 40×10−3 cm2day−1. At a temperature of only 200 degree celsius,
the diffusion constant was five times smaller.DAu(473) = 8 × 10−3 cm2day−1.
Other experiments performed subsequently showed that withfairly good accuracy
log[D(T )] ∼ −1/T , or in other words:D(T ) = K exp(−A/T ). Incidentally, the
fact that diffusion in solids obeys a law similar to the law ofArrhenius for the con-
stants of chemical reactions has been realized only in the 1920s19.

This experiment suggests a method for defining a temperaturefor the diffusion of
languages. We already suspect that in this case the temperature will be an index
which summarizes the interactions between the people either of the two languages.
So, if one can measure the diffusion constant under different circumstances, for in-
stance as a function of the number of people who cross the border annually, then one
will be able to establish a formula similar to the one writtenabove for atoms of gold.

Such an adjustement willnot prove that the number of people (or any similar vari-
able) has the universality property of the kinetic energy inphysics. We are still far
away from such a goal because we still do not know how to define akinetic energy
for the language problem.

19This law looks very different at first sight from the form of the diffusion constant given by Einstein’s law for a fluid,
namely:D = (RT/NA)(1/6πηr). However, both function are increasing withT .
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CHAPTER 2: PLANNED EXPERIMENTS

Effusion experiments and effusion modeling
In order to describe the movement of a gas from a containerA to a containerB, one
must rely on the formulas of hydrodynamics. Unfortunately,because of the inability
of physics to describe turbulence in a simple and yet reliable way, hydrodynamics
remains a fairly tricky theory. That is why we start with the process of effusion. In
this case, as explained below, molecules escape fromA toB independently and one
after another. As a result there is no turbulence and we are onfirm ground. As a
matter of fact, this process is fairly similar to a purely random process. This point
will become clearer in the following description of the physical process of effusion.
Our description is mostly based on Reif (1965).

What is effusion?

Observation shows that when the communication hole betweentwo containers is
smaller than the mean free pathl of the molecules, they will pass through the hole
independently from one another (Fig. 1). In standard room conditions,l ≃ 0.3µm.
Observation shows that molecules escape through a hole smaller than l with the
velocity that they have in the container. Incidentally, this property gives an experi-
mental method for measuring the distribution of the velocities in a gas.

Effect of a gap in temperature

From an experimental point of view one distinctive feature of effusion is the one
described in Fig. 2. When the containers are maintained at different temperature
there will be an equilibrium situation in which the pressures on the two sides arenot
the same. In contrast, a much larger communication hole willtend to equalize the
pressure (and also the temperatures). In the effusion case,the equilibrium is realized
when

p1/
√
T1 = p2/

√
T2 (1)

(for more details see below).p1, p2 are the pressures on each side, andT1, T2 are the
Kelvin temperatures.
Without any communication between the two containers the equilibrium condition
would bep1/T1 = p2/T2 as results from the equation of state of an ideal gas:pV =

NkT whereV denotes the volume andN the number of molecules contained in that
volume.

For instance, ifT1 = 373, T2 = 293, the pressure ratiop1/p2 will be
√

T1/T2 =
√

373/293 = 1.13 whereas with sealed containers it would beT1/T2 = 1.27. Such a
difference of 12% should be easy to observe.
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As one knows from statistical physics, the average velocityof molecules of a gas at
temperatureT is given by:

v̄ =

√

√

√

√

8kT

πm
(2)

whereT is the Kelvin temperature,m the mass of a molecule andk the Boltzman
constant. One can also recall thatṽ =

√

2kT/m, where ṽ is the most probable
speed that is to say the speed for which the distribution function is maximum. As
v̄/ṽ = 1.12 these expressions are fairly equivalent, so that instead ofv̄ we may also
use the simpler expressioñv. Moreover, for the sake of simplicity, in what follows,
we will notev instead of̄v or ṽ.

1

1

section sInitial number
of particles: N

length v

0

Density: n

Volume: V

length v1 2
∆ ∆t t

Fig. 1: Effusion experiment. The figure shows the main variables that are needed for describing an effusion
experiment. The two red rectangles shematize the volumes occupied by the molecules which will be able to
cross from one side to another. We suppose that the temperature is the same on both sides. As a result, the
velocity of the molecules will also be the same:v1 = v2.

When will equilibrium will be achieved?

We start from a situation where the density of the molecules per unit of volume is the
same on each side. In each time interval∆t the molecules which will cross from left
to right must have a velocity which is in the right direction (that is to say parallel to
the axis of the hole20) and must be contained in a cylinder of lengthv1∆t and section
s as represented in Fig. 1.

20Of course, this is an approximation. Molecules with a velocity not exactly parallel to the axis may also be able to
cross, but this effect becomes small when the length of the hole is long with respect tol, a condition that is satisfied in all
practical cases.
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This argument implies that initially the number of molecules which cross from left
to right will ben(v1∆t) whereas the number of those crossing from right to left will
be n(v1∆t). The fact thatT1 > T2 implies thatv1 > v2 which means that there
will be a flow from left to right. Equilibrium will be re-established once the density
of molecules on the left-hand side will be increased by an amount ∆n such that:
(n−∆n)v1 = (n+ ∆n)v2. Replacingv1 andv2 by their expressions we see that the
variation∆n will be related to the gap in temperature by the following relationship:

∆n =
n
(√
T1 −

√
T2

)

√
T1 +

√
T2

(3)

From the equation of statep = nkT results that the changes in numbers of molecules
lead to the following pressure changes:

p′1 = p1 − (kT1)∆n, p′2 = p2 + (kT2)∆n

T T T T

T T T T

1

1

1

1

2

2

2

2

nn >

n n

2

2=1

1

T= 2

warming device cooling device

Mass motion (w>>l)

Effusion (w<<l)T T1 2

T >

>

T1 2 T1

Fig. 2: Effusion versus mass motion.For both experiments the systems are initially out of equilibrium
because of a temperature gapT1 −T2. In the effusion experiment the hole in the partition wall between the two
containers has a diameterw that is smaller than the mean free pathl of the molecules. For nitrogen at room
temperature,l is about0.3µm. As a result the pressure on the hot side remains higher even when equilibrium
is reached:

p1/
√

T1 = p2/
√

T2 ⇔ n1

√

T1 = n2

√

T2

In the second experiment the hole is much larger thanl. As a result, there will be a hydrodynamic flow from
left to right that will result in a quasi-equilibrium characterized by an equalization of temperature and pressure.

Molecules with different masses

N molecules of massma are put in the container 1 on the left-hand side and similarly
N molecules of massmb on the other side. We assume thatma < mb. Initially,
the system will not be in equilibrium becauseva > vb implies that the flow ofma
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molecules from left to right will be higher than the flow ofmb molecules from right
to left.

In the present problem, there will be two separate equilibrium conditions, one for
each kind of molecules. We denote byna

i the density of moleculesa in container
i = 1, 2 and similarly bynb

i the densities of moleculesb. The equilibrium conditions
read:

na
1(va∆t) = na

2(va∆t) ⇒ na
1 = na

2, nb
1(vb∆t) = nb

2(vb∆t) ⇒ nb
1 = nb

2

Equilibrium will be reached when there will be the same numbers of molecules of
each kind on each side.

Equilibrium will be reached faster for light molecules thanfor heavy molecules. We
denote byτa and τb the time constants of the two processes. Ifma ≪ mb the a
equilibrium will be reached after a short timeτa during which the repartition of the
b molecules will change only slightly. Thus, between timeτa and timeτb there will
beN/2 moleculesa on side1 and almost nob molecule, whereas on side2 there
will be N/2 molecules of typea plusN molecules of typeb making a total of3N/2
molecules. Thus the pressure on side 2 will be 3 times higher than the pressure on
side 1. Subsequently, ast→ τ2 the differencep2 − p1 will tend to zero.

As an example, takea = helium (ma = 4 g/mol) andb = sulfur hexafluoride (mb =

146 g/mol). As will be seen below, the time constantsτa, τb are proportional to the
square-root of the masses. Thus, in this case,τb/τa =

√

146/4 = 6.

Effect of intermolecular attraction on molecular velocity

What is the molecular velocity distribution in water (or more generally in liquids)?
Does the equipartition theorem hold?

To answer this question the simplest way would be to find some clear experimen-
tal results. Surprisingly, however, an Internet search wasfairly unsuccesful. Many
pressure measurements of the vapor over liquids do of courseexist from which the
velocity of the molecules of vapor can be derived by using a based on the kinetic
theory of gases. The following points provide some further insight.

• In liquids (as well as in gases) some molecules have a speed that is higher than
the average speed. As a result they will be able to escape through the surface of the
liquid and form a layer of vapor on the top of the liquid. This has two implications
(i) As this process allows only the fastest molecules to escape, those which remain
will have on average a lower average speed; this is reflected in the the fact that the
non-equilibrium process of evaporation results in a cooling of the liquid. However,
once equilibrium is reached the cooling stops because the outflow is matched by an
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Fig. 3: Comparison of various forms of energy in different states of water. For the understanding of this
graph one must recall why the potential energy of inter-attractive forces is seen as a negative energy. Consider
two massesm1,m2 connected by a string of rubber of lengthL. Assume that the force due to the rubber
decreases to zero whenL → ∞. Then, it makes sense to consider the situation where the twomasses are far
apart as a free state and to give it (by convention) an energy equal to zero. Now, ifm1,m2 become closer due
to the attraction force of the rubber it is a process which canproduce some work (for instance it can be used to
rotate a wheel) in the same way as when water falling from a height h1 to a heighth2 < h1 is used to produce
electricity. In other words, when the masses are close to each other the system will have a lower potential
energyE2 than its energyE1 when they are far apart. As the later is zero, it means thatE2 < 0.
An obvious implication is that if one starts from the state whereL is small one must provide some energy to
stretch the rubber. It is this energy which is represented somewhat schematically by the blue bars. In fact, there
should be a different energyE(T ) for each temperature and this energy is related to the attraction forceF (r, T )

by the formulaE(T ) =
∫

∞

r0
F (r, T )dr.

It can be seen that the translational kinetic energy is almost the same in each state but represents a much smaller
proportion of the total energy in the solid state than in the state of a gas.
Incidentally, it would be more appropriate not to include the rotation energy into the blue bars because it is truly
a form of kinetic energy.
Source: http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/phase.html

inflow of same magnitude. (ii) The fact that molecules cross almost instantaneously
from liquid to vapor suggests that they must have almost the same velocity in the two
states.
• In a liquid molecules form temporary associations. This means that they so to

say coalesce into “collective molecules”. Applying to themthe Maxwell-Boltzman
law will result in reduced velocity.
• One way to identify changes in the interaction strength is tostudy the heat

capacityC = ∆E/∆T . In this equation∆E represents the energy that one provides
to the system and∆T the resulting change in temperature that is to say in kinetic
energy21. If a process takes place (e.g. the unfolding of a protein) which requires
substantial energy but does not affect the kinetic energy, then∆T will be small and
thereforeC will be large. In other words, the process will produce a narrow peak in

21In physics, a distinction is made betweenCp andCv, respectively the heat capacity under condition of constant
pressure or constant volume. As this distinction is irrelevant for the present argument we omit it here.
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the graph of the heat capacity as a function of temperature asin Fig. 4.

Fig. 4: Peaks in heat capacity resulting from an internal process that absorbs energy without resulting
in a higher temperature.
Fig 4a: Carbon steel: transformation fromα-iron (body-centered cubic) toγ-iron (face-centered cubic). The
transition between these allotropic forms of iron occurs at727 degree celsius (it is somewhat dependent upon
the proportion of carbon contained in the steel). In contrast to carbon steel which contains only iron and carbon,
stainless steel also contains a minimum 11% of chromium.
Fig. 4b: Peak in the heat capacity resulting from an unfolding process occurring in a protein.
In the two cases the internal process requires a substantialamount of energy but does not affect the kinetic
energy which means that the temperature remains almost constant; this leads to a high heat capacityC =

∆E/∆T .
Analysis of internal transformations by the observation ofthe peaks in heat capacity has led to a technique
knowns as “differential scanning calorimetry” (DSC). By observing the difference in heat flow between the
sample and reference, differential scanning calorimetersare able to measure the amount of heat absorbed or
released and thus can identify specific phase transitions.
Source:
http://www.mace.manchester.ac.uk/project/research/structures/strucfire/materialInFire/Steel/StainlessSteel/thermalProperties.htm

http://www.whatislife.com/reader2/biophysics/Thermodynamics.htm#Molecularinterpretation

• From a theoretical perspective, the equipartition theoremsays that each quadratic
term in the expression of the energy22 has an ensemble average of(1/2)kT . This ap-
plies not only to quadratic terms but also to higher powers. Aterm qn

i will lead
to a contribution of(1/n)kT . The equipartition theorem also applies to interaction
terms. The sum of all these contributions must be equal to theaverage energy of the
system which is usually defined by experimental conditions.So we see that a change
in interaction can have broad implications.

Effect of intermolecular attraction on pressure

According to the van der Waals equation, the pressure of a gasconsisting of inter-

22One must of course remember that the equipartition theorem is a result based on classical mechanics. If quantum
effects become important it does no longer apply.
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attractive molecules is smaller than the pressure of an ideal gas:

pattraction= pideal− a′, a′ =
a

V 2
m

()

whereVm denotes the volume of one mole (in the condition of pression and temper-
ature considered in the equation).a is a parameter which expresses the strength of
attraction; for instance for carbon dioxidea is 2.7 times larger than for argon23

The difference in pressure for carbon dioxide as compared with argon may be small
but here we are interested in the reasoning rather than in numerical values because
anyway we intend to apply this argument to living units not tomolecules. For small
fishes, the velocity is indeed a function of temperature (Shen et al 2011).

Is the velocity a function of interaction strength Tentatively, we can write the molecu-
lar velocity of a system of interacting molecules under the formv =

√

2kT/m−q(a′)
whereq(a′) is a (probably positive and increasing) function of the attraction param-
etera′. Based on what we said earlier one would expect the termq(a′) to be a fairly
small correction.

Experiment with intermolecular attraction 1. Case of weak interactions

We fill the container 1 withN molecules of an ideal gasa and the container 2 with
N inter-attractive moleculesb which, apart from this characteristic, are identical toa

in all other respects (e.g. mass or size).
Will the system be in equilibrium?

The presure on side 1 will be higher The situation is somewhatsimilar to the one
considered above in which there were heavier molecules in 2.The equilibrium con-
ditions will be the same as above and equilibrium will be reached when there are
equal numbers of molecules of each kind on each side.
Here, however, we are not interested in the evolution towardequilibrium which is
fairly trivial. Instead, with some modifications the experiment offers a way to esti-
mate the attraction strength of the moleculesb.

This time we put an equal number,N , of inter-attractive molecules on each side. In
addition, we assume that the containers are at two differenttemperaturesT1, T2. This
is the same situation as already considered above except forthe fact that the velocity

23Equation () assumes that the ideal and the non-ideal molecules are identical in all other aspects except attraction
strength. If one does not make this simplifying assumption the more general equations are as follows:

Ideal gas (e.g. argon):p =
NAkT

V
, Carbon dioxide:p =

NAkT

V − b
− a

V 2
, a = 364 kPa.dm6/mole2, b = 0.043dm3/mole

These equations are for one mole (NA is the Avogadro number). The parametera describes the attractivity between
molecules. If we assume that the two gases have the sameb which is indeed almost true for argon and carbon dioxide,
then we see that the largera, the smaller the pressure.
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of the molecules is given by:

v = α
√
T − q(a′), α =

√

2k/m

By using the same argument one gets the following formula:

∆n =
n
(√
T1 −

√
T2

)

√
T1 +

√
T2 − 2q(a′)/α

by solving this relation forq(a′) one gets:

q(a′) =
α

2

(√
T1 +

√
T2

)



1 − n

∆n

√
T1 −

√
T2√

T1 +
√
T2



 (5)

In the case of a gas all quantities on the right-hand side can be measured which, at
least in principle, would allow to determine the attractiontermq(a′).

Experiment with intermolecular attraction 2. Case of strong interactions

In the previous experiments with equal temperatures on eachside, equilibrium was
always reached for an equal number of molecules on each side.However, this re-
mains true only up to a given point. Beyond some critical interaction strength one
observes a completely different behavior. This can be illustrated by a few examples.
• PutN red fire ants in container 1 andN others in container 2 and wait. If

N = 100 you will observe that after some two hours all the ants will bein one of the
container (more details can be found in Wang et al 2011, p. 9-10). Such a clustering
behavior which eventually leads to symmetry breaking is clearly very different from
what we considered so far. However, this kind of aggregationphenomenon is by no
means special to living units. It can also be observed in various physical systems.
• Some of the clearest physical examples of aggregation occurwith colloids. This

is shematically illustrated in Fig. 3.

• As a simple example of aggregation one can consider a solution of oil and bal-
samic vinegar. As this vinegar has a smaller density than oil, it forms a brown layer
on top of the oil.
Now, if the bottle is shaken violently the balsamic vinegar forms dark-brown spheri-
cal dropplets of different sizes which begin to move toward the surface. As predicted
by Stokes’ law the smallest dropplets move slower than the big ones. When two
dropplets come in contact they merge into one bigger dropplet. This aggregation
process eventually leads back to the layer that existed at the beginning.

The only major difference between this case and the case of colloids is that, because
of their small size, the colloids are able to form stable suspensions. They are stable
in two different ways: they neither sink nor go up and they do not aggregate. Of
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Fig. 3: Aggregation of colloids.Most particles dispersed in water have a negative charge, sothey repel each
other, at least at short range. As a result they form stable dispersions. Particles with a diameter of less than
one micrometer will remain in equilibrium in midwater due tothe molecular shocks which are also responsable
of the phenomenon of brownian motion. However, once a positively charged coagulant has been added, the
particles become neutral and then can attract each other through (weak) van der Waals or London forces. The
big particles that they form are called flocs and because of their size they do not remain in equilibrium but,
depending on their density, they will drift to the surface orfall to the botton.

course, if for some reason they form aggregates, these bigger particles will move to
the surface or to the bottom depending on whether their density is smaller or larger
than the density of the liquid.

How can one measure attractions? First proposal

Now, we come to our main question: how can one measure this stronger interaction?

Can one hope to use the method sumarized in Fig. 4.
The question is whether or not the temperature gap will prevent the insects in con-
tainer 2 of coming to the left. One can propose two arguments.
• If the insects in container 1 quickly form a tight cluster none of them will leave

this part. In this case, the higher temperature becomes completely ineffective because
it will not bring about any flow from left to right.
• The same argument can be applied to the experiment No 1 of Fig.4. It leads to

the conclusion that in a first phase two different clusters will form on each side with-
out any substantial flow occuring in either direction. Then in the second phase the
cluster in container 2 willcollectivelymove toward the left24. If this representation
is correct the temperature gap will be ineffective because it influences only the more
or less random movements of individuals not the collective movement of a cluster.

How can one measure attractions? Second proposal

24There is of course nothing really mysterious about that. If the force of attraction between two ants isf the force of
attraction between two clusters ofN ants will be

• Nf if the bulk of the cluster contributes to the attraction
• or

√
Nf if the force is only due to the ants that are at the periphery ofeach cluster.

This argument suggests that the method of Fig. 4 may perhaps work for small numbers but may fail for large numbers.
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200 insects 100 insects
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end

(after 2−3h)

(after 2−3h)

Experiment no 1

For social insects one expects

Because of the higher temperature
on the left, more insects will cross
from left to right than in the
opposite direction. Therefore,
if the difference T1−T2 is adequate,
there will be an equilibrium.

Thus, T1−T2 should
give a measure of the
interaction strength.

Warming device Cooling device

on the same side, namely the
side with initial largest number.

that all insects will gather

1

1

2

2

Fig. 4: Proposal No 1 for measuring the attraction between insects.This method is similar to the one
explained in the text for the case of weak inter-attractionsexcept that one starts with unequal numbers on each
side.
In this experiment there aretwo forces which counter the flow from left to right: (i) The higher density in
container 1 (ii) The temperature gapT1 − T2 > 0. However, these properties have an effect only as long as the
insects have more or less random movements. Once clusters have formed they become fairly ineffective.
In other words, we do not yet know whether or not these effectswill be sufficient to overcome the attraction
exercised by the insects in container 1. The latter is particularly strong for social insects such as bees or ants.
Observation will provide an answer to this question.

For colloids, there is a method for measuring the interaction strength; it is called the
“Zeta potential” technique. In its principle, it is very simple.
As illustrated in Fig. 3 the attraction strength of colloidsis a function of the charges
which sit on their surface. If there are substantial charges(whether positive or nega-
tive) the colloids will repell each other. On the contrary, if they bear no charges the
colloids will attract each another. In short, the problem comes down to measuring
this superficial charge. One possible method is to introduceinto the liquid an elec-
trode whose sign is opposite to the sign of the charges on the colloids. Thus, the
colloids will be attracted toward the electrode. By using various optical or acoustic
techniques (e.g. Doppler effect) it is possible to measure the speed of this movement.
This speed will give an estimate of the charges carried by thecolloids which, as we
have seen, is directly related to the strength of attraction.

In the case of insects, the task is more difficult because we donot really know what
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Step 2

Step 3

Step 4

Step 1 200 insects 100 insects

The insects form clusters

Cluster 2 starts to move toward 1

Cluster 2 reaches 1

1 2

T

Attraction = T/L

L

Introduction of the insects

Alternatively, the insects can
move from one side to the other
individually.

Fig. 5: Proposal No 2 for measuring the attraction strength between social insects.In its principle, this
method is similar to the so-called Zeta potential method forcolloids. In both cases, one measures the velocity
of units under the attraction effect. The higher the velocicy, the higher the attraction.

is the factor which controls the attraction. On on the other hand, however, because
ants or bees are much larger than colloids they are easier to observe.

Lattice method for estimating interactions strength

In this section we consider an alternative method for estimating the strength of inter-
actions. which is illustrated in Fig. 6.

First the insects are made motionless by keeping them in carbon dioxide for a few
minutes. Then, they are positioned at the vertices of a lattice. When they wake up,
their movements are recorded by taking pictures at given time intervalsT . Because
one does not know the interaction range the data must be analyzed for different in
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Fig. 6: Lattice method for estimating interaction. After having been made motionless through carbon
dioxide,N insects are positioned at the vertices of a square lattice asshown on the left-hand side. In
this situation the average distance between them is equal tothe spacingL0 of the lattice. Once they
wake up, they may move toward the outside or toward the inside. We denote byLr(t) the average
distance between the insects in a neighboroughVr(i) of radiusr:

Lr,i(t) = (1/number of pairs)
∑

j∈Vr(i)

di,j(t)Lr(t) =
1

N

∑

i

Lr,i(t)

wheredi,j(t) is the distance between insectsi andj. In the first caseLr(t) will become larger than
L0, whereas in the second case it will become smaller.
For a given time intervalT , the ratioA(r) = [L0 − Lr(T )]/L0 will provide an estimate of the
interaction at ranger. For instance,L3(T ) = 1.5L0 givesA(3) = −0.5 and corresponds to a strong
repulsion within a range of 3 cm, whereasL3(T ) = L0/2 givesA(3) = 0.5 and corresponds to an
attraction.

At first sight one may think that when all the insects gather together and form a cluster,Lr(t) cannot
become smaller than a lower bound defined by the size of the insects. This is of course true to some
extent but one must keep in mind that when bees cluster together they form several layers. Depending
on the number of layersLr(t) can become fairly small.

CHAPTER 3: EXPERIMENTAL RESULTS

Flow rates in escape experiments: definitions
In the present section we continue our investigation of experiments done with the
two-container device but we will consider more closely the flow between the two
containers. In this respect it will help to draw a clear distinction between the follow-
ing notions.
• Total flowFT (t) versus net flowF (t). If F12 andF21 denote the flows from 1
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to 2 and 2 to 1 respectively, then the total and net flows will bedefined as:

Total flow: FT (t) = F12(t) + F21(t) Net flow: F (t) = F12(t) − F21(t)

If we think of the containers as representing two countries 1and 2 the total flow
represents the sum of exports and imports (of each of the countries), whereas the net
flow will represent the balance of trade.
• Instantaneous flowF (t) versus average flow̄F . The instantaneous flow is

the flow at a specific time whilēF is the flow averaged over the duration of the
experiment.

Duration of experiment:T F̄ =
∫ T

0

1

T
F (t)dt

We wrote the definition for the case of the net flow but a similardefinition can of
course be given for the total flow.
• FlowF versus flow ratef . If one wishes to compare various experiments per-

formed over different durations and with different numbersof particles one must use
flow rates. The passage from flows to flow rates is a normalization operation and this
normalization can be performed in various ways depending onthe objective of the in-
vestigation. In what follows we will mainly use normalization with respect to initial
number of particles, duration of the experiment and sectionof the communication
hole.

In what follows, we first present some experimental results.Then, we examine if
they can be described by means of an effusion process.

Escape rates for small fishes

Escape experiment with fishes, average flow rate (1)

This experiment was performed in the fall of 2010 at by two students of Beijing
Normal University Tian Kai Lan and Zhang Chen Han.

Container 1 and 2 had a total length of 30 cm and contained about 5 liters of water.
Container 1 and 2 communicated through a hole which had a diameter of 3 cm.
Initially, there were 200 small fishes in container 1. The fishes were so-called zebra
fishes (scientific name: Danio rerio) whose length is about 3 cm. In nature, they
often live in groups (also called shoals) of about 4 to 30 individuals. The experiment
consisted in observing how many would cross into container 2within a time interval
of 4 minutes. Once the 200 fishes were gathered in container 1 the door leading to 2
was opened. After 4 mn it was closed again and the fishes on eachside were counted.
The experiment was repeated 20 times and averages were computed. The length of
compartment 1 was increased successively by a factor 2 and 3 so that the experiment
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was performed with three different initial densities25.

Table 1: Escape experiment with 200 zebrafishes

80 per liter 120 per liter 240 per liter

Average flow rate (expressed in number of 0.55 ± 0.06 0.93 ± 0.03 1.37 ± 0.04
fishes per 100 of initial pop, per mn, per sq-cm)

Notes: The numbers in the first row show the initial densitiesexpressed in numbers of fishes per
liter. The numbers of fishes that left compartment 1 were recorded after a time interval of 4 mn. The
temperature of the water was approximately room temperature that is to say about 20 degree. Each
experiment was repeated 20 times. The error bars are confidence intervals for a probability level of
0.95.Source: Tian and Zhang (2010)

Escape experiment with fishes: average flow rate (2)

This experiment was done in November 2011 by two students of Beijing Normal
University, Cheng Dong and Shi Pei Teng. It was also conducted with zebra fishes.
Initially there were 40 fishes and each experiment was repeated 6 times. The experi-
ment was conducted at different temperaures. We will give the results for 10 degrees
and 25 degrees, the later one being a biologically optimal temperature for this kind
of fishes.
The average flow rate was as follows:

ḡ = 1.73 ± 0.7fishes per 100 initial number, per duration (in mn), per section of hole (in square cm)

Escape experiment with fishes: how cumulative flow rate changes in time

In the previous experiment, in addition to the end result thenumber of fishes present
in container 2 was also recorded every minute. This gave the cumulative net flow
rate. The results are given in Table 2.

Time constant in escape experiments

Physical idea behind escape experiments

In an escape experiment one or several units belonging to a group will leave this
group. This is a very common phenomenon. It happens in all human organiza-
tions:whether school, army or various associations. In thecase of schools, the escape
rate is called drop-out rate, in the military it is called desertion rate.

25Actually, the experiment was somewhat more complicated in the sense that compartment 1 was in fact in the middle
and compartment 2 on each side; this gave the opportunity to observe whwther the fishes went to the left or to the right.
Here, however, we will lump together the left and right numbers for we are only interested in the total number of fishes
who left compartment 1.
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Table 2: Escape experiment with 40 zebrafishes: cumulative escape rate in the course of time

Time (mn) 1 2 3 4 5 6

Cumulative net flow rate (expressed in number of2.2 2.0 2.3 1.7 1.4 1.2
fishes per 100 of initial pop, per mn and per square cm)

Notes: The cumulative net flow rate from container 1 into container 2 corresponds to the number of
fishes observed in container 2. As an illustration of the normalization, consider the 2 mn measure:
the average number of fishes present in container 2 after 2 mn was 16; this number was divided by
0.4 for the initial population expressed in 100s, by 2 for 2 mn, and by 10 for the 10 square cm section
of the communication hole; altogether, it was divided by 8 which gave 2.0.
Source: Chen and Shi (2011)

Obvious physical parallels are the phenomena of evaporation or sublimation. In
evaporation, the fatest molecules manage to leave the liquid in spite of the attraction
exerted by neighboring molecules. Sublimation is the same phenomenon for solids.
As sublimation is a much smaller effect than evaporation, wewill mostly discuss
evaporation.
When the liquid is contained in a closed container an equilibrium will be established
when the molecules leaving the liquid per unit of time are in same number as those
which move in the opposite direction.

The proportion of molecules which leave the liquid can be estimated though the so-
called equilibrium vapor pressurepe. An approximate model for this pressure is
given by the Clausius-Clapeyron formula (Wikipedia article entitled “Equilibrium
vapor presure”, French version):

pe = p0 exp

[

−(ML/R)(
1

T
− 1

T0

]

where:
• T0: Boiling temperature at pressurep0.
• M : Molar mass of the substance expressed in kg/mole
• L: Heat of vaporization expressed in J/kg
• R: Gas constant,R = 8.31 J/(K.mol)
• The standard atmospheric pressure isp0 = 1013 mbar.

As an example we apply this formula to water at a temperature of 40 degree Celsius.

M = 0.018 kg/mole, L = 2.26 106 J/kg, p0 = 1013 mbar, T0 = 373 K ⇒ P = 81.8 mbar

The pressure observed experimentally is 73.8 mbar which means that the error mar-
gin of the Clausius-Clapeyron formula is of the order of 10% (its accuracy becomes
better at temperatures closer to the boiling point because the ideal gas assumption
which is made in the derivation becomes more valid).
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As at given temperature the pressure is proportional to the number of molecules, one
sees that the proportion of “escaped molecules” is81.8/1013 = 8.1%. At room
temperature of 20 degree Celsius the proportion is about2%. In short, far from the
boiling point only a small proportion of the molecules are inthe form of vapor. What
is the fundamental reason of this disymmetry? It is due to thedifference in strength
of interaction between the liquid phase and the vapor phase together with the action
of temperature. What are the respective roles of these factors?
• It is reasonable to estimate the strength of inter-molecular attraction through the

heat of vaporization because it represents the energy that one must inject to break the
bonds between water molecules. It is possible to measure theheat of vaporization
at different temperatures just by changing the pressure. Such experiments show that
the heat of vaporization decreases when the temperature is increased. However, the
decrease is fairly small: only about 10% from 20 to 100 degrees.
• The second effect consists in the fact that at higher temperature the water

molecules have a higher kinetic energy which allows more of them to escape. This
effect is much stronger than the previous one. Between 20 and100 degree the aver-
age kinetic energy will be multiplied byT2/T1 = 373/293 = 1.27.

Working together, these effects bring about a multiplication of the proportion of
escaped molecules by a factor 50.
Escape experiments are conducted with a container which hastwo compartmentsA
on the left-hand side andB on the right-hand side. Initially, allN animals are in only
one of the two compartments, for instance compartmentA. One observes the rate at
which they move from this compartment to the other. We denotebyX(t) the number
of animals in the part (namelyB) that was initially empty.X(t) is a random function
whose averageE[X(t)] over a number of similar experiments will be denoted by
m(t). From the initial conditionX(0) = 0 it follows thatm(0) = E[X(0)] = 0.

Discussion of the equilibrium situation

If one assumes a perfect symmetry between the two compartments, it may be tempt-
ing to conclude that this symmetry will be reflected in the equilibrium situation,
which would mean that:m(∞) = me = N/2. However, a simple physical argument
tells us that this may not necessarily be true.

Suppose that the device is vertical, that compartmentA contains water (at 20 degree
Celsius) and thatB contains air at standard atmospheric pressure. Then, a fraction
of water molecules (those whose speed is high enough) will beable to escape from
A to B. In B they will form a cloud of vapor. We know that the number of water
molecules inB will increase until the pressure of this cloud of vapor becomes equal
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to the so-called “equilibrium vapor pressure”26 . In equilibrium the number of water
molecules moving fromA to B in a time interval∆t is equal to the number of
molecules going in the opposite direction. In this case one doesnothaveme = N/2

but ratherme ≪ N/2. Why is this so? The reason is that the interaction between
water molecules in the vapor phase in which they are inB is much weaker than their
interaction in the liquid phase ofA. In other words, the geometrical symmetry of
the system is broken by the difference in interaction strength in A andB and this
difference is brought about merely by a difference in the numbers (and therefore the
density) of molecules in each compartment.

In the previous case the argument was fairly easy and convincing because there is a
clear difference between water molecules in vapor or liquidform. For animals we
do not know how the interaction strength depends upon the density of the animals.
For instance we know that if their number is large enough antsand bees can form
clusters. One would expect in such clusters the interactionto be stronger than in a
state in which the insects are randomly dispersed over a broad area. Bees can form
a cluster whenever their number is higher than one hundred. Once a cluster has
formed inA only few bees will move toB. This would be a situation similar to the
liquid water versus vapor case. What we do not yet know is whether for ants or bees
there can be intermediate situations. For instance, if there are 80 bees (not forming
a cluster) inA and 50 bees inB, will the interaction be the same inA andB? If
it is the same, then there will be no symmetry breaking andme = N/2. On the
contrary, if the interaction is stonger inA, then there will be a symmetry breaking
andme < N/2

During the time interval∆t following the initial time a number∆m of animals will
move fromA toB. It is natural to assume that∆m is proportional tom. Thus, the
simplest equation that one can write form(t) will be:

dm

dt
= −pm+ q (1)

In the equilibrium situation,dm/dt = 0 which implies that−pme + q = 0 ⇒ q =

pme

In (1) p is a function of several physical variables among which one can mention:
• the total number of animalsN
• the densityρ of the animals per square centimeter
• the average velocityv of the animals %
• the sections of the communication tube betweenA andB
• a parameter which defines the interaction between the animals.

26The equilibrium vapor pressure is given (approximately) bythe Clausius-Clapeyron equation.
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The inverseτ of p represents the time constant of the system. Therefore, by measur-
ing p one can estimate the relevant interaction parameters (provided all other param-
eters are unchanged). In other words, the time constant of the system gives insight
into the system’s interaction strength.

Equation (1) describes a population that fluctuates around its equilibrium. The restor-
ing force is−pm1 and its time constant isτ = 1/p. For the determination of the time
constant it is hepful to define a new functionm̂ = m−me. The equation which gov-
ernsm̂(t) is:

dm̂

dt
= −pm̂⇒ p = − 1

m̂

dm̂

dt
⇒ p = −d log |m̂|

dt
(2)

It can be noted that the second expression of (2) tells us thatin this model, the time
constantτ = 1/p is equal to the inverse of the relative flow rate

Time constant=
1

Relative flow rate
(2’)

From the last expression in (2) one can conclude that if the actual process follows
this equation, the ratio

∆ log m̂

∆t
=

log(|m̂(t2)|) − log(|m̂(t1)|)
t2 − t1

=
log

∣

∣

∣

∣

m̂(t2)
m̂(t1)

∣

∣

∣

∣

t2 − t1
(3)

should remain contant in the course of time and equal to−p.
If one takest1 = 0, t2 = t relation (3) becomes:

p = −
log

∣

∣

∣

∣

m̂(t)
m̂(0)

∣

∣

∣

∣

t
(4)

Whenm(0) = 0 ⇒ m̂(0) = −me expression (4) leads to:

p = −(1/t) log
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∣

∣

∣

∣

∣

m(t) −me

me
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∣

∣

∣



 (5)

Whenm(t) ≪ me the last expression can be approximated as:

p ≃ (1/t)
m(t)

me
(6)

The main advantage of the last expression is the fact that oneno longer has to care
about taking the absolute value when, as a result of random fluctuations,m(t) be-
comes larger thanme.

From (6) one sees that a regression(t,m(t)/me) will lead to an estimate ofp and
therefore ofτ = 1/p.
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This procedure has been carried out in two cases:
(1) The escape experiment for fishes done by Chen and Shi.
(1) The escape experiment for fruit flies done by Wang.

In experiment (1)m(t) is given fort = 0, 1, . . . , 6 minutes; therefore it is possible
to check whether the relation(t,m/me) is indeed linear. As the average correlation
turns out to be as high as 0.95, one can conclude that the relation is indeed fairly
linear. Therefore it becomes possible to estimate the time constants in a meaningfull
way. For the Red Cross fishes one gets the following results.

Temp= 15, 20, 25 deg → time const (mn):τ = 4.8± 0.7, 2.5± 0.8, 2.6± 0.5

In experiment (2), we do not have several measurements in thecourse of time. The
only available measurementa are the timesTi required to reach a state where the num-
ber of flies in the compartment that was initially empty reaches0.9me = 0.9(N/2).
Therefore we cannot check if the relation(t,m/me) is indeed linear but never-
theless, assuming that it is, we can estimate the time constant. For total num-
bers of fruit flies equal toNi = 20, 40, 80, 160 one observes the following times
Ti = 14, 56, 127, 220.
From these results one gets the following estimates for the time constants:

N = 20, 40, 80, 160 → time constant (mn):τ = 6.1, 24, 55, 96

Becausee−2 = 0.14 ande−3 = 0.05, equilibrium is approximately reached after
a time interval of the order of2τ or 3τ ; therefore one is not surprised to observe
that the estimated time constants are about 2 or 3 times smaller than the total time
required to reach an approximate equilibrium state.

Incidentally, it can be observed that the time constant increases linearly with the total
number of fruit flies:τ [mn] = 0.63N − 1.7.

The same kind of technique can be used to estimate the time constants of the clus-
tering processes described in the next section. In the experiments done by Wang,
the timesTi required to reach an approximate state of equilibrium (in practice equi-
librium minus 10%) were as follows for different total numbers of ants (initially in
equal number on each side).

Ni = 200, 400, 600, 1000, 1500, 2000 → Ti[mn] = 136, 127, 305, 168, 354, 406

One finds again that the time constants are a linear function of the total number of
ants: τ [mn] = 0.064N + 50. The slope is about 10 times smaller than previously.
This means that for a given number, ants reach equilibrium 10times faster than fruit
flies. One cannot draw any clear conclusion from such a resultbecause too many
factors are different in the two experiments. For instance one can mention the size
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of the insects, their velocity, the section of the communication tube between the two
compartments. All these factors affect the time constant.

Clustering
Some insects (and especially social insects) show a clustering behavior. By this
expression, we mean that ants or bees dispersed over a given surface will tend to
come together and form one or two clusters in which they toucheach other. In the
case of bees there will even be clustering in the vertical dimension with successive
layers of bees packed on top of each other.

The clustering process is illustrated in the figure.

14:30 14:35 14:40 14:45 14:50

14:55 15:00 15:05 15:10 15:15

15:20 15:25 15:30 14:35 14:40

Fig. xx: Clustering process for bees (Apis mellifera mellifera). Altogether there were about 300 bees.
Initially they were put to sleep through 5 minutes in carbon dioxide. Source: The data are from an experiment
done in July 2012 by B. Roehner and J. Darley.

More details about this process can be found in the paper by Wang et al. (2011).

Flow rates in ant clustering

This experiment is very different from the previous one because instead of spreading
over a bigger range, the ants cluster on an area that is smaller than initially.

The results shown on the graph indicate that the flow rate remains roughly constant
when the initial number of ants is increased.
Indeed, when the initial number is multiplied by 10 the flow rate changes from about
1 to 0.4 which represents a ratio of 2. In these experiments the distances that the
ants must cover in order to move from one side to another does not change when the
initial populations are increased. What would one observe in a similar experiment in
which the density is kept constant which means that the size of the containers on each
side must be increased along with the initial numbers. In this experiment, the ants
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Fig. xx: Flow rates for clustering red fire ants. In contrast to the experiments with fishes, this is not an escape
experiment. On the contrary, the ants move from an initial state where they are on separate sides to a state where
almost all of them are on the same side. The experiment was done in August 2011 at room temperature that
is to say at about 25 degree celsius. It can be seen that the netflow rate doesnot increase when the density
becomes higher.
Just to give an order of magnitude of actual traffic in the communication tube, it can be observed that for an
initial population of 1,000 the actual flow of ants per minuteis 0.4 × 10 × 0.78 = 3. This shows that the
section of the communication tube is not in itself a limitingfactor. Incidentally, the upward error bars are fairly
high because the fluctuations in time occur at the denominator of the flow rate.Source: The data are from an
experiment done by Dr. Lei Wang.

will have to cover longer distances in order to gather on the same side. Therefore one
expects that the clustering will take a longer time. In fact,there may be a threshold
above which clustering will no longer occur.

Another question raised by this experiment is the following. The diameter of the
communication tube is not, at least in itself, a limiting factor for the movements of
the ants. Indeed, even with 1,000 ants initially present on each side, only 3 ants per
minute cross on average from one side to another.
However, the small size of the communication tube may hinderthe clustering in
another way. As all the ants are from the same colony pheronomes should play
no role, therefore one would expect that the propensity to cluster depends upon the
surface of contact between the two sides. This conjecture can be tested by repeating
the experiment with communication tubes of different sizes.

Finally, it can be observed that if one tries the same experiment (that is to say same
device, same initial numbers) with drosophila there is no clustering whatsoever. The
population on each side remains basically the same except for temporary fluctua-
tions.
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Fig.xx: Flow rate during the process of ant clustering.As in other experiments (e.g. those with fishes)
the flow rate is fairly independent of the total number of antsinvolved. This observation is consistent with
the assumption of an individual transition probability which is independendent of the population size. Indeed,
under that assumption the number of ants moving from one sideto the other in a given time interval would be
proportional to the size of the population.Source: The experiment was performed by Lei Wang in August 2011.

Distribution of the velocities of small fishes
As one knows the modulesV of the velocities of the molecules of a gas have a
Maxwell-Boltzmann density function. of the formf(v) = Av2 exp(−mv2/2kT )
(whereA is a normalization constant). The average velocity isE(V ) =

√

(8/π)(kT/m)

and the second moment isE(V 2) = 3kT/m (Reif p. 268-269). From these results,
it is easy to derive the varianceσ2 and the coefficient of variationCV = σ/E(V ).
One gets:

σ2 = E(V 2) − E2(V ) =

(

3 − 8

pi

)

kT

m
≃ 0.45

kT

m
⇒ CV =

0.67/
√

8/π
= 42%

Histogram of the velocities of small fishes

Now consider a collection of small fishes. They do not all swimwith the same
velocity. Will the coefficient of variation of their velocities be smaller or larger than
the 42% just obtained for the molecules of a gas? The experiment was done at
Beijing Normal University for a group of 30 female guppies (Li et al 2011). The
velocities were measured by comparing successive images ofa video. Note that the
density of the fishes was fairly low so that the distances covered by the fishes during
the time interval between two images was smaller than the average distance between
the fishes. Therefore, the velocities which were measured were real velocities and
not diffusion velocities which would have been the case if there had been several
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“collision” between successive images.

The results obtained (at a temperature of 22 degree celsius)from a set of 145 velocity
measurements were as follows:E(V ) = 2.95 cm/s27, σ = 1.63 cm/s. Thus, the
coefficient of variation wasCV = 55%.
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Fig. xx: Histogram of the velocities of small fishes.The fishes are 30 female guppies; the histogram is
based on 145 measurements at a temperature of 22 degree Celsius. The blue curve is a Maxwell-Boltzmann
distribution of expression:f(v) = Qv2 exp

(

mv2/(2kT )
)

whereQ is a normalization factor. The adjustment
lead to the following values:Q = 12, m = 2, 2kT = 16. Source: Li et al. (2011); many thanks to the group
leader, Mr. Li, for sending me detailed experimental data.

In this specific case, it was of the same order of magnitude as for the molecules of
a gas. However, this is perhaps no more than a coincidence forthe movements of
living organisms is temperature dependent

Effect of a change in temperature on the velocity of microorganisms

It is well known that a change in temperature has a marked effect on the speed of the
forward movements of micro-organisms. In an article by Schneider
However, the behavior of the fishes depends upon the conditions. For instance at a
lower temperature the average velocity of the fishes will be smaller. What about the
coeficient of variation? At a temperature of 16 degree one gets the following results:

E(V ) = 1.0 cm/s,σ = 1.45 cm/s ⇒ CV = 72%

27The confidence interval for a probability level of 95% is:
E(V ) = 2.95 ± 1.96 × 1.63/

√
145 = 2.95 ± 0.27
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Fig. xx: Effect of temperature on the speed of bacteria.Once the different curves have been normalized so
that they all start from 10 micrometer by second, their slopes are close to one.Source: Schneider and Doetsch
(1977, p. ).

On the contrary, a higher temperature seems to reduce the coefficient of variation.
At 26 degree, one getsCV = 36%. Intuitively, this is related to the observation that
at low temperature many fishes move very little whereas at a higher temperature the
proportion of those which do not move is notably reduced.

Histogram of the velocities of ants

Mortality of ant colonies as a function of age
New colonies of ants are started after female ants have been mated in flight. Not
surprisingly, only a fairly small percentage of the mated females succeed in starting
a viable colony. Based on a comparison between the numbers ofreproductives and
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Distribution of the velocities of fire ants
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Fig. xx: Histogram of the velocities of red fire ants.The present data are for red fire ants,Solenopsis invicta.
All parts of the trajectories that involve encounters between ants have been left out to make sure that what we
consider are the free velocities and not the self-diffusionvelocities. Similar observations performed on other
species show that the shape of the distribution is a fairly robust characteristic. The coefficient of variationσ/m

is in the interval(0.40 − 0.55). The order of magnitude of the velocities appears fairly high for such small
ants as the red fire ants (about 2mm in length). May be there wasa mistake in the initial document either in
the distance scale or in the figure for the time interval between successive positions.Source: The data were
derived from Fig. 3.1 of Gordon (2010).

the numbers of new 1-year old colonies found to be in existence the following year,
Gordon (2010, p. 79) estimates this proportion to be of the order of 10%.

An annual census of colonies in a given perimeter provides estimates of the survival
rate of newly founded colonies. Such results can be summarized by a curve giving
the proportion of survivors as a function of age. At this point, one should remem-
ber that it is customary to distinguish three types of survivorship curves. This is a
fairly empirical classification. There is no real understanding of why humans and
drosophila should be in the same group.

Taken in itself, the fact that ant colonies and high-tech corporations both belong to
type 2 does not give us a better understanding. However, the fact that there is a fairly
robust pattern gives a yardstick. If the colonies of anotherspecies are found to belong
to another type, one would have good reasons to think that a different mechanism is
at work.

It can be observed that for type 2 organisms the mortality rate is basically indepen-
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Fig. xx: Survivorship curves. The graph on the left-hand side shows three types of survivorship curves.
Humans and drosophila belong to type 1. Both cases are characterized by the fact that after sexual maturity the
mortality rate (which is the logarithmic derivative of the survivorship function) grows exponentially with age.
Ant colonies and high-tech corporations are of type 2; for this class the mortality rate is basically constant if
one forgets the high “infant mortality” of the first and second year.Source: The ant data were derived from
Fig. 4a of Gordon (2013). They refer to about 265 colonies of harvester ants (Pogonomyrmex barbatus) in New
Mexico. The data for high-tech corporation mortality were derived from Chart 6 of Luo and Mann (2011, p.
9); they cover the period 1998-2009 in the United States.

dent of age (except perhaps for one or two years after birth).This can be seen from
the fact that the mortality rate isr = [s(i) − s(i + 1)]/s(i) wheres(i) denotes the
proportion of survivors at agei. The ratior is nothing else than the logarithmic
derivativer = s′/s = d ln s/di.
As ln s = αi+ β one gets:r = α.

For the two other cases one does not know precisely the mathematical shape of the
decrease function which means that one cannot state clear results for the behavior of
the mortality rate.
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CHAPTER 4: THEORETICAL YARDSTICKS

Effusion model

Theoretical rates

In this section we model the movements of the fishes as an effusion effect. Our
objective is to see whether or not the previous observationsare compatible with such
a model.

(1) The main characteristic of an effusion model is that the velocity of the particles
depends only upon the temperature:v =

√

2kT/m. As the temperature in the two
containers is the same it means that the speed of the particles on each side is also the
same.

(2) We assume that initially there areN0 particles all contained in the left-hand
side of the tank. The volume of this part is notedV1 while the volume of the part
on the right-hand side isV2. The hole connecting the two parts has a sections. Our
objective is to describe what happens when the particles cross from 1 to 2. At a given
momentt, there will beN1(t) particles in part 1 andN2(t) in part 2. We denote by
small letters the corresponding densities:n1(t) = N1(t)/V1, n2(t) = N2(t)/V2.

(2) The particles which will cross from 1 to 2 in the time interval ∆t are those
which are contained in a cylinder of sections and of lengthv∆t and which in ad-
dition have a velocity which is in the appropriate direction. We denote byq the
fraction of all the particles whose velocity is appropriate. For the moment we do not
need to knowq more precisely. Thus, the number of particles crossing from1 to 2
will be: q(sv∆t)n1. Similarly, the number of particles crossing from 2 to 1 willbe:
q(sv∆t)n1.
Consequently, the net flow∆F from 1 to 2 over the time interval∆t will be:

∆F = (qvs)(n1 − n2)∆t

(3) The evolution equation forN1(t) will be: dN1 = −dF . The− sign is due to
the fact thatN1 decreases whendF is positive. Dividing byV1 we get:

dn1

dt
= −α(n1 − n2) where: α =

qvs

V1

(4) Of course,n1 andn2 are not independent. Because the number of particles is
conserved,N1(t) + N2(t) = N , which leads to the following relationship between
the densities:

n1(t)V1 + n2(t)V2 = n0V1 ⇒ n2(t) = k[n0 − n1(t)] where:k =
V1

V2
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This leads to the following evolution equation forn1(t):

dn1

n1(1 + k) − n0
= −αdt

(5) Solving this differential equation leads to:

log[n1(1+k)−n0k] = α(1+k)t+C1 ⇒ n1(1+k)−n0k = C2 exp[−α(1+k)t]

In this equationC1, C2 are two constants.C2 can be determined from the initial
conditionn1(0) = n0. This leads toC2 = n0. Thus:

n1(t) =
n0

1 + k
[k + exp(−βt)] whereβ = α(1 + k)

(6) Now we want to compute the average flow rate from 1 to 2, namely: ∆f =
(1/n0)(∆F/V1) = (1/n0)α(n1 − n2)dt. Replacing with the expressions obtained
above we get:

df =
∆F

n0V1
=

1

n0
α[n1(1 + k)− n0k]dt = α [k + exp(−βt) − k] dt = α exp(−βt)dt

The average flow rate over a time intervalT will be:

f̄ =
1

T

∫ T

0
df =

α

T

∫ T

0
exp(−βt)dt

Computing the integral one gets:

f̄ =
α

β

1 − exp(−βT )

T
=

1

1 + k

1 − exp(−βT )

T

In order to make contact with the flow rate defined in the experiments the previous
flow rate must in addition be normalized with respect to the section s. For the sake
of simplicity we keep the same notation.

f̄ =
α

s(1 + k)

1 − exp(−βT )

βT

How f̄ changes with respect to initial density, time, section of communication
and velocity

WhenT → ∞ the average flow goes to zero as would be expected. In order to get
a clearer idea of how̄f depends on the different parameters we develop it to second
order:

1 − exp(−βT )

βT
∼ 1 − βT

2
⇒ f̄ =

qv

V k

[

1 − βT

2

]
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If βT ≪ 1 the second term of the development can be neglected. Thus, wesee that:
• f̄ is constant with respect to the initial densityno.
• f̄ is constant with respect to the section of the communicationtunel.
• f̄ increases linearly with the velocityv of the particles.

Now, taking into account the second term of the development we see that̄f decreases
whenT increases.

Is long-range pheromone interaction due to diffusion?
It has been shown that in some cases insects have a very broad interaction range.
This has been demonstrated in 1891 by Jean-Henri Fabre (1823-1915) for the case
of a species of moth (Great Peacock Moth). Males were able to identify the odor of
females or even the odor that a female had left in a cage that she occupied temporar-
ily. Fabre’s account (Fabre 1900) of his investigation is a good illustration of how
the experimental methodology derived from physics can be applied to other fields.
At the end of the 19th century this method was widely used in biology (see the work
of Claude Bernard) or in the social sciences (see the work of Emile Durkheim).

Formula

One of the most spectacular examples of the long range of pheromone transmission
is provided by the Bombyx butterfly. It is said that males can detect the pheromone
emitted by the female over a distance of about one kilometer.If one assumes that
the pheromone is dispersed by diffusion28 the process is described by the diffusion
equation whose solution reads (Reignier and Law 1968 p. 549):

C(r, t) =
Q

2Dπr
erfc

[

r

2
√
Dt

]

where:
• C(r, t): concentration at a distancer from the release point and at a timet after

the beginning of the release.
• r: distance from the origin where the pheromone is released tothe point where

it is detected.
• t: time
• Q: emission rate of pheromone by the female expressed in molecules per sec-

ond.
• D: diffusion constant.
28This assumption is indeed consistent with observations already made by Fabre. He noticed that as the males which

manage to reach the female cannot fly against the wind, they must detect the pheromone diffusing toward them in a
directionoppositeto the wind. But is it really true that they cannot fly against the wind? Probably they can provided that
the wind is not too strong.
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For spherical particles this constant is given by the Stokes-Einstein formula:

D = kT/(6πηa)

where:
k = Boltzman constant,k = 1.4 × 10−23m2 kg s−2 K−1

T = Kelvin temperature
η = viscosity, more precisely dynamic viscosity expressed in Pa.s (for air at 15 de-
gree Celsius.
η = 1.8 × 105 Pa.sa = radius of the particles; pheromone molecules usually are
more elongated than spherical; for instance the length of a molecule of C11H24 is
about 2.5 nm, while its width is of the order of 0.1 nm; nevertheless as we will focus
only on orders of magnitude, we will consider that pheromonemolecules can be de-
scribed as spheres with a radius arounda = 0.25 nm.

• erfc is the complementary error function; for values of the variable larger than 3
(which is the range in which we will work here), this functionis well approximated
by the following asymptotic formula:

Forx > 3 : erfc(x) ≃ exp(−x2)/
√
πx

Uniform repartition of 
molecules of pheromone a diffusion process

Repartition resulting from 

1 km 1 km

mass concentration at the
periphery = 6 10**(−8) microg/cm3

mass concentration at the
periphery = 6 10**(−200000) mol/cm3

Fig. 5: Pheromone distribution. The female (e.g. a Bombyx mori) is located at the centre of thecircular
area while the male is supposed to be at the periphery. In our calculation we assumed that the female has been
releasing her pheromone during 24 hours before the male tries to detect it.
The figure shows two different assumptions (i) The (apparently) unrealistic but simple assumption of a uniform
repartition. In this case the pheromone has a concentrationwhich can indeed be detected by the male (the
smallest detectable concentration is about10−12µg/cm3). (ii) The hypothesis of a repartition resulting from a
diffusion process. In this case the concentration in completely undetectable. There is a third possible assump-
tion, namely a repartition by convection due to the wind. It should be a breeze rather than a strong wind for
otherwise the average butterfly would not be able to fly against it. Slow flying butterflies can fly at a speed of 8
km/h; the fastest have a velocity of 40 km/h which corresponds to a fairly strong wind.
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Uniform repartition

Before using the previous formula, we start with the simple assumption that the
repartition of the pheromone is uniform. We assume that the female has been releas-
ing her pheromone during a timeT = 24 hours before the male tries to detect it.
We suppose that the male is at a distance of 1 km of the female. The emission rate
is conditioned by the evaporation rate of the pheromone. An experiment described
in Traniello (1980, p. 183) gives an emission rate ofQ = 2.7 × 1015 molecules
per second. The total quantity of pheromone released duringthe timet is therefore
N = Qt.

To get the volumeV of the pheromone layer, one must estimate its thicknessh in
the vertical direction. We assume thath is of the order of the diffusion lengthLd =
2
√
Dt. Which is of the order of one meter because (as will be seen below) beyond a

few times the diffusion length the concentration is reducedto almost nothing because
the decrease is exponential.
From the volumeV and the numberN one gets the concentrationc = N/v. The
calculation gives:c = 75 × 106 molecules/cm3.

The molecular weight of bombykol, the pheromone used by Bombyx more, is 475
g/mole (Regnier and Law 1968 p. 543). Thus, with the previousmolecular con-
centration one gets a mass concentration ofcm = 6 × 10−8µg/cm3. Observations
have shown that detectable levels of sex attractant pheromones are of the order of
10−12µg/cm3. Thus, detection can occur.

At first sight the present calculation may seem completely unrealistic. However, if
there the air is not still but presents movements and turbulence (which is particularly
important at ground level due to the many obstacles) this maywell result in a fairly
uniform repartition at least in the direction in which the air is moving. This will work
even if the air is moving very slowly, say with speeds of the order of 1 km/h.

Diffusion

If the air iscompletelystill the pheromone will only propagate by diffusion but the
calculation shows that diffusion does not lead to a detectable concentration beyond a
distance of a few times the diffusion lengthLd

29. The diffusion lengthLd = 2
√
Dt

can be computed from the diffusion constant . The diffusion constant can be com-
puted through the Stokes-Einstein formula or can be estimated from experiments
(Traniello 1980, p. 183). The two methods lead to results which differ (only) by a

29This results immediately from the asymptotic formula givenabove:

erfc(x/Ld) ∼ exp[−(x/Ld)
2]

which means that beyond a few timesLd the concentration almost vanishes.
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factor of 100.

Dth = 5 × 10−8m2/s, Dexp = 6 × 10−6m2/s

Due to the square root which occurs in its expression, the twodiffusion lengths will
differ only by a factor of 10. One getsLd = 0.1 m andLd = 1.4 m, respectively.

These values show that beyond a radius of 10 meters the concentration will be almost
zero. A distance of 10 times the diffusion length leads to a factor exp(−102) ∼
10−44.
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CHAPTER 5 : ROADMAP

Basic preliminary experiments
In the second part of this report we delineated a number of possible experiments
aimed at measuring inter-attractivity strength. However,before doing such experi-
ments it is appropriate to perform a number of preliminary tests in order to determine
the main characteristics and parameters of the living organisms under investigation.

The distribution of velocities is obviously an important characteristic of the species
under consideration; as it can be measured fairly easily (see the figure) it is a good
idea to be start with that. If the time interval∆t = t2 − t1 is small enough (for
instance the image by image time intervals of a video are of the order of1/20 of a
second) it is the real velocity which will be measured. For a longer time interval (of
the order of one minute or more) it is the diffusion velocity which will be measured.

Fig. xx: Measuring the velocities of living organisms.The figure shows the superposition of two pictures
taken at successive timest1, t2. If one denotes bydi the distances represented by the blue broken lines, the
distribution of the velocities will be given by the histogram of the numbersvi = di/(t2 − t1).

Once the diffusion velocity has been determined, it may be useful to perform a con-
sistency check by doing the diffusion experiment shown in the figure.

An escape experiment will already give a crude idea of the inter-attractivity. Thus,
there is a clear difference between the behavior of social organisms which tend to
cluster in the same side of the container and non-social organisms for which the
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behavior is more similar to that of a gas.

Fruit flies Ants, bees

Escape
experiment

m(t)

Clustering
test

n(t) m(t)

n(t)
n(t) n(t)

n(t)−m(t) n(t)−m(t)

time

time

timeInitial state

Initial state

time

Fig. xx: Two basic tests.
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CHAPTER 6: MODELS PROVIDING INTERACTION STRENGTH ESTIMATE S

Introduction

How can one formalize the question?

We want to solve the following problem.

One suspects that the elements (which in practice will be ants, bees, fishes, and so
on) belonging to a group (of sizen) are interdependent and one wants to characterize
this inter-dependence quantitatively. To do that one must first formalize the interde-
pendence through a specific criterion which will associate anumber to each level of
interdependence. Several formalizations can be proposed.One method which seems
fairly natural is to describe each elementi by a random variableXi; then our question
conists in measuring the degree of interdependence betweenthen variablesXi.

Two classes of models

One simple way to espress such an interdependence is first to compute the inter-
correlationsρij between all the pairs(Xi, Xj); then the global interdependence can
be defined as the average:

r̄ =
1

n(n− 1)/2

∑

i<j

rij

In this perspective, one must find a procedure which allows usto computēr.

Another possible approach is to set up a full-fledged model inwhich the interactions
between theXi are described by a specific mechanism (e.g. interaction between
nearest neighbors, global interaction and so on). This is a more risky approach for
if the model’s assumptions are incorrect the estimated parameters will turn out to be
wrong.

Let us emphasize that the the models that will be built are notan end in themselves.
They are merely tools. As a matter of fact, it would be possible to construct many
models that would be appropriate enough to be adjusted to observed data in a “mean-
ingful” way. The main purpose of the proposed models is to allow us to estimate
interaction strength. Typically, parameters describing the strength of the interactions
will be defined in the models and by adjusting them to experimental data we will be
able to get estimates which will give an idea not only of the interaction strength but
also of the characteristics of the interaction such as rangeand time constant.

Nedless to say, the quality of the estimates that we will get is as much (or even more)
dependent on the experiments as on the model. The less noise in the experimental



64

data, the cleaner our estimates.

In the first section we propose a fairly broad model which doesnot make specific as-
sumptions about the form of the interaction. In this model the interaction is described
as a global average correlation. The more positive the correlation, the stronger the
attraction between the living organisms.

The second section describes a model that is more detailed intwo ways.
• It is a time dependent model which will allow us to estimate time constants.
• The interactions are described in a more detailed way than inthe previous

model. In particular, this model allows separate estimatesof the various factors
which contribute to the observed behavior, such as the noisecomponent (that is to
say the analog of temperature), the attraction, the response to external shocks and so
on.

Both models are analytical models.

Before describing these models we give some basic background information regard-
ing the question of interaction strength measurements.

Background information about interaction strength

Physics methodology cannot be used for systems of living organisms

In physics it is possible to estimate interaction strength by measuring the input energy
required to break up the links between molecules and atoms. Unfortunately, for
living organisms this kind of method does not seem practicable. Why?
When one puts more energy into a liquid it will eventually become a gas. The gas
has the interesting property of still being composed of the same molecules but with
almost no interaction between them. If we raise the temperature of the liquid even
more there will be a point where the molecules begin to break up into individual
atoms. For water vapor for instance, whereas at room temperature only about one
molecule in1014 is decomposed into hydrogen and oxygen, the proportion becomes
3% at 2,200 degree Celsius and 50% at 3,000 degree. In other words, if one wants
to estimate intermolecular interaction in liquid water onemust measure the amount
of energy necessary to transform the water into vapor at a temperature between 100
and (say) 2,200 degree. Above this temperature the molecules will be replaced by
atoms in ever increasing proportion.

Is there a similar phenomenon for living organisms? First itcan be observed that
the greater molecular agitation at higher temperature alsooccurs in populations of
living organisms. Indeed, as described in a previous section, the average velocity
of fishes increases with the temperature of the water. However, this effect is limited
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to a narrow temperature interval, basically between 10 and 25 degrees. Outside this
interval the physiology of the fishes is affected. When the temperature becomes
too high they will die thus releasing the separate moleculeswhich compose them in
a phenomenon which is similar to the decomposition of the molecules into atoms
discussed above.

Ultimately, what makes the method very effective in physicsis the existence of two
different states, liquid with fairly strong interaction and vapor with almost no inter-
action. Is there something similar in systems of living organisms?
As an analog of a liquid one can think of a cluster of bees or ants. So, the methology
used in physics leads us to ask what happens when the temperature of such a cluster
is increased? Is there a specific temperature (below the threshold above which the
physiology of the individuals is affected) at which clusters break up into separate
individuals? Answering this question is made more difficultby the fact that even at
a fairly low temperature of 25 degrees, a cluster of bees has alimited duration. So,
the question is less clearly defined than for water and vapor.

Apart from the breaking up methodology another possible method is to derive in-
teraction strength estimates just by observing the behavior of a system in certain
conditions. Naturally, in order to achieve a good (or at leata reasonable) accuracy
we will try to choose these conditions so as to minimize the background noise. The
main challenge will be the following.
Once we behavior of the system has been documented trough a set of observations,
we want to know what part of this behavior is due to interaction forces. In other
words, we need to know what would be the behavior of a similar system whose ele-
ments would be independent. Such a system will serve as a means of comparison in
the same way as vapor is used in physical systems.
Most often such an hypothetical system of independent elements will be defined and
analyzed through theoretical arguments. That is why it is important to set up fairly
simple experiments. In what follows we will mainly rely on experiments in which
the elements can be in onlytwo states.

More specifically, these two states will be two spatial locations. The domain contain-
ing the elements will be divided into 2 parts of same area,1 and2. Thus, an element
i of the system will be in state 1 when it is located in part1 and in state 2 when it
is in part 2. With this definition the behavior of the system will be summarized in
the numberx(t) of elements contained in part 1. For a specific experiment, any such
function x(t) will be a realization of a arandom functionX(t) and our task is to
derive information about the interaction strength from theproperties of this function.

As one knows, the main characteristics of a random function are the following:
• Its mean:m(t) = E[X(t)]
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• Its variance:σ2(t) = E
[

(X −m(t))2
]

which represents the magnitude of the
fluctuations ofX(t) around its mean.
• Its autocorrelation function:

ρ(t, r) =
E [(X(t+ r) −m(t+ r)) (X(t) −m(t))]

σ2(t)

The autocorrelation characterizes the more or less erraticbehavior ofX(t) in the
course of time. IfX(t) is very erratic in the sense that the valuesX(t1), X(t2) that
it takes at two successive timest1, t2 are almost uncorrelated, thenρ(t2 − t1) will be
small. On the contrary, if these values are strongly correlated,ρ(t2− t1) will be close
to 1.

When the mean is constant in the course of time, that ism(t) ≡ m, the functionX(t)

is said to be stationary with respect to the mean.
Similarly, one can also define stationarity with respect to the two other characteris-
tics.
• When the standard deviation is constant in the course of time, σ(t) ≡ σ, the

functionX(t) will be said to be stationary with respect to the variance andstandard
deviation.
• Whenρ(t, r) depends only upon the lagr and not upont, that is to sayρ(t, r) ≡

ρ(r), the functionX(t) will be said to be stationary with respect to the autocorrela-
tion.

In what follows, our interest will more particularly be focused on two aspects:
(1) The standard deviationσ
(2) The time constantτ .

We need to define more precisely what is the time constant of a system.

Definition of the time constant of a system?

Anytime that the properties of a system in the course of time are defined by an
exponential function, it is possible to define the tome constant of the system. For
instance, when the sizey(t) of a population is ruled byy(t) = y0 exp(t/τ), one will
say thatτ is the time constant of the system. This definition becomes quite natural if
we consider the differential equation of whichy(t) is the solution.

dy

dt
= αx⇒ dy

d(αt)
= x⇒ τ = 1/α, t′ = αt = t/τ,

dy

dt′
= x

In the last expression,α (and τ ) have been absorbed into a rescaling of the time
variable.

This can be seen as a fairly trivial definition and one may wonder why it is important.
After all, the differential equationdy/dt = αx is too simple to adequately describe
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297 ants

 80 ants

47 ants

Beginning of drift to the right

Quasi−equilibrium

detailed
view of
two
ants

Fig. xx: Experiments with ants in a two-compartment deviceIn the first picture, one starts with an out
of-equilibrium situation. It is similar to water in a cup with no vapor molecules over it. In the course of time,
some of the ants will move from left to right. Recording this process in the course of time gives a way to
estimate the time constant of the system.
In the second picture there are almost as many ants on each side. However, this is not necessarily a stable
equilibrium. On the right-hand side one can notice a small cluster. Such clusters appear frequently. Sometimes
they grow, sometimes they do not.

any real system. Nevertheless, the importance of the notionof time constant is un-
derlined by the two following observations.
• The notion of time constant is closely related to the notion of eigenvalue of

a system. IfL(d/dx) denotes a differential operator, a functionysi
which satisfies

L(d/dx)ysi
= siy will be called an eigenfunction30 of L(d/dx) associated with the

eigenvaluesi. In the context of time dependent systems, the importance ofthis notion
comes from the fact that the solutions of the partial differential equationL(d/dx)y =

∂y/∂t are of the form
y(x, t) =

∑

i

ciyi(x) exp(sit)

where the constantsci will be determined from some initial conditiony(x, 0) =

y0(x).
30The terms eigenvalue and eigenfunction are built with the prefix “eigen”, a German word which means “its own” or

“characteristic of”.



68

The expression ofy(x, t) shows that it has a whole set of time constantsτi = 1/si.
However, the behavior of the system is largely controled by only a few of theτi. In
order to preventy(x, t) from going to infinity fort → ∞, thesi must be negative or
zero:si = −s′i, s′i ≥ 0.
The term withs0 = 0 gives the limit ofy(x, t) for larget. Clearly, due to the factor
exp(−s′it), the terms containing larges′i will decay very quickly whent increases .
Thus, only the smallest values ofs′i (which correspond to the longest time constants)
will have a significant contribution.
In short, the behavior of the system will be mostly controlled by the longest time
constant; shorter ones can be treated as corrections.
• Even if a system does not exactly follow the previous equation, it may neverthe-

less be characterized by a time constant that can be obtainedthrough the following
procedure.
First, we extractτ from the expression ofy(t).

y(t) = y0 exp(t/τ) ⇒ t/τ = log(y(t)/y0)

Thus, the graph(t, log(y(t)/y0)) should be a straight line whose slope is1/τ .
Now, suppose one has made several observations of the systemat timestk, and that
the points(tk, log(yk/y0)) are more or less aligned along a straight line, then the
coefficient of the regression line through these points willdescribe the time constant
of the system. This procedure may work even for systems whichare stochastic rather
than deterministic. It is important to realize that it provides both a test of whether or
not the system has a time constant and (if the test is positive) an estimate of this time
constant.
• The functiony(t) = y0 exp(t/τ) is a monotonic function. However, it is possi-

ble to define a time constant even for functions which are far from being monotonic.
For instance, the number of elements in compartment 1 that weconsidered above
may fluctuate around an equilibrium valueye. In spite of the fact that such a function
will have many ups and downs it is possible to compute its timeconstant.

One procedure that one can think of is to collect all monotonic parts, to apply the
previous procedure to all of them and to take the average of the resulting estimates
of τ . However, this procedure does not work because wheny(t) is close toye the
restoring force due to the equation is small and therefore one cannot neglect the effect
of the noise. Unfortunately, in practice the noise is unknown.

There is an alternative procedure which relies on the fact that the time constant of
the autocorelation function (usually) is the same as the time constant of the process
X(t) itself. Intuitively, this makes sense as can be seen by considering two opposed
situations.



69

• White noise on the one hand. In this case all successive fluctuations are uncor-
related which means that the curve ofy(t) has a great number of short fluctuations.
In other words, everytime the system is displaced away from equilibrium it returns to
it very quickly, a behavior which characterizes a system with short time constant. As
one knows, for white noise the autocorrelation functionρ(r) is equal to 1 forr = 0,
then falls off to zero very quickly because even a small time lag shift will result in a
vanishing correlation.
• On the contrary a case wherey(t) shows wide hills and troughs corresponds to a

system with a long time constant. The autocorrelation function will decrease slowly
because for the correlation betweeny(t) andy(t+ r) to become small the time lagr
must be larger than the average duration of the hills and troughs that is to say larger
than the time constantτ .

This procedure will involve the following steps.
(1) One must select a time interval during which the series isapproximately sta-

tionary for otherwise the values taken by the autocorrelation will be much affected
by the trend ofy(t).

(2) One computes the autocorrelation for different time lags ri.
(3) If the present model applies then the graph of(r, log (ρ(r))) should be (more

or less) a straight line. The inverse of the absolute value ofthe slope of this line is
the time constantτ of the system.

Effect of interaction strength on σ and τ

As the standard deviationσ and the time constantτ are two basic characteristics of
any process, it would be useful to have an idea about how they are affected by the
interaction strength. This is not an easy question. Intuition tells us very little about
that. It would be desirable to rely on experimental evidence; for that purpose one
would need a system whose interaction strength can be changed at will and whose
standard deviation and time constant can be measured. So far, we were not able to
find an appropriate case. This leaves the possibility of examining the question on
models but even at this level there are few cases of analytically solvable systems
with interaction. One of them, which has been studied extensively by physicists is
the so-called Ising model31

In the Ising model, one considersn random variablesσi which are called spins and
can take only two values−1 and1. For our purpose, we will interpret these values
in the following way:

31The model is named after the German-American physicist Ernst Ising (1900-1998). Under the direction of Wilhelm
Lenz he studied chains of coupled magnetic moments. Becauseof his Jewish origin, he lost his position in 1933. Surpris-
ingly, however, he spent the whole war in Germany and emigrated to the United States only in 1947. Until his retirement
in 1976 he was a physics professor at Bradley University in Illinois. In this position, he devoted himself mostly to teaching
and did not write any new research paper.
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Fig. xx: Time constant of ants. In all experiments with more than 20 ants, one part of the device was initially
empty. In the course of time, during a first phase ants moved into this compartment until it contained about one
half of the number, then in a second phase the numbers on each side fluctuated in a fairly stationary way. The
blue points are estimates based on the regression oflog(1 − y(t)/ye) against time over the first phase. The red
squares are estimates based on the autocorrelation function computed from the (more or less) stationary regime
of the second phase.
Sometimes, especially for large populations the stationary process of phase 2 lasted only shortly and was
followed by the formation of a cluster in one of the compartments. The time constants of this clustering process
are given in the next graph.

The domain available ton living organisms is divided into two parts1 and2.
σi = 1 means that elementi is in part 1, whereasσi = −1 means that it is in
part 2.

If one denotes byn1 the number of theσi which are equal to 1, the sumS(n) =

σ1 + . . .+σn will be equal ton1 − (n−n1) = 2n1 −n. Thus, the sum of the spins is
closely related to the number of elements in part 1; the latercan be easily measured
in our experiments
The transition probability of elementi during the time interval∆t is assumed to be
given by (Glauber 1963 p. 296)

wi∆t, wherewi =
α

2

[

1 − γσi

2
(σi−1 + σi+1

]

Thus, whensigmai−1 = σi+1 = 1 (which means that both elements are in part 1) the
probability for elementi to move to the other part is:
• α

2 (1 − γ) if σi = 1

• α
2
(1 + γ) if σi = −1

We see that ifγ > 0, i has a low probability to leave part 1 if it is already in part 1
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Fig. xx: Time constant as a function of the population sizen for a clustering process.Initially, there
were equal numbers of ants (red fire ants) in the two compartments. In the course of time a clustering process
took place through which they gathered into one compartmentleaving the other one almost empty (in practice
compartment with a population of less than 10% of initial size).
Each data point is an average over 5 repetitions.
Comparison with the previous graph shows that time constants for dispersion are longer than time constants
for dispersion. However, before drawing any conclusion oneshould make sure that all other conditions were
similar, particularly the section of the communication channel between part 1 and 2.Source: The measurements
were made by Wang Lei in August 2011.

but a high probability to move to part1 if it is in part 2. it is in this sense thatγ can
be considered as representing the attraction strength.
The factorα controls the frequency rate of the transitions. The higherα the more
transitions in a given time interval.

The formulas giving the standard deviation and the time constant as a function ofγ
are as follows (Glauber 1963 p. 299-301).

g2 =
σ2 (S(n))

σ2
(

Sind(n)
) =

1 + η

1 − η
, η =

1 −
√

1 − γ2

γ

h =
τ

τhboxind
=

1

1 − γ

Sind(n) represents the expression ofS(n) for independent elements, that is to say
for γ = 0. Similarly, τhboxind represents the expression ofτ whenγ = 0.

As can be seen on the graph, bothg andh increase with the attraction strength and
tend toward∞ whenγ → 1.

Can one understand intuitively why the time constant of the system increases along
with the interaction strength?
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Fig. xx: Effect of changing interaction strength in the Ising model. In the Ising model the elements are
supposed to form a linear chain. The parameterγ represents the interaction strength between elementi and
its two neighborsi − 1 and i + 1. For γ > 0 elementi has a propensity to imitate its two neighbors. In
physics, such a disposition is referred to as ferromagnetism. The graph shows the standard deviation of the sum
S(n) = σ1 . . . σn relative to its value whenγ = 0. The inverse of the time constant is the coefficient of time in
the exponential decrease ofS(n). It can be seen that both the standard deviation and the time constant increase
with the interaction strength.
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Fig. xx: Relation between the time constant and standard deviation in an Ising model. It is interesting to
observe that one has a very similar relationship between thetime constant and standard deviation of a first-order
auto-regressive process (that is to say a discrete finite difference equation with a noise term in the right-hand
side) in spite of the fact that this equation has a completelydifferent origin and meaning. In other words, this
relationship seems to have a fairly broad range of validity.

At least one can easily understand why for independent elements the time constant
of the system will be independed of its size. Consider the sumS(t) = X1(t) +
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. . . + Xn(t) and suppose that initially all elements are in part 1. This means that
initially all ants are on the same side number 1.S(0) = n. How long will it take
for the system to return to its quasi-equilibrium stateSe ≃ n/2? If the ants move
independently from one another and independently of their initial position, during
the first time interval∆t each ant will select completely randomly the compartment
in which it will be at the end of time∆t. As one knows, the sumS(1) will follow
the binomial distribution which means that at the end of the first step with a high
probability we will haveS(1) ≃ n/2. The largern the closerS(1) will be to n/2
in relative terms. In short, the time constant will be just one step and this result will
hold independently of the value ofn.

As will be seen below, the fact that there is a cross-correlation between theXi does
not change the result of the previous argument.

Cross-correlation model
We will introduce this models by steps. First we explain the idea of the model, then
we discuss how it should be used for the purpose of estimatingthe average cross-
correlation.

General idea of the model

Consider a container which containsn ants. In this container we define a subsetA

and we count in the course of time the numbernA(t) of ants that are found inA . For
instance, we can record these numbers every 15 seconds over aperiod of one hour
which will give 60 × 4 = 240 numbers. From these numbers we can compute their
averagem and their standard deviationσ 32.

The question is: can we learn something about the interaction between the ants from
the values ofm andσ?
Intuitively one would expect that if then elements are highly correlated the standard
deviation will be higher than when they are not correlated atall. Why?

If the elements are completely correlated they will move alltogether intoA or out of
A. Thus,nA(t) will make big jumps as seen in the graph below. On the contrary, if
the elements are not correlated at all,nA(t) will change by small steps of0, 1, 2, . . .
as shown in the picture. A jump of 9 can happen but it will be an exceptional event.
Indeed, it will have the same likelihood as obtaining 9 headsby throwing 9 coins.
In other words, one expects that the correlation between theelements will be more
or less proportional to the standard deviation. The higher the standard deviation,

32The average and the standard deviation will be fairly independent of the time interval between successive observations
because changing this interval amounts to changing the sampling time of the functionnA(t). If nA(t) is fairly stationary,
m andσ will also be fairly independent of the total length of the record.
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the higher the correlation. In other words, by measuring thestandard deviation of
nA(t) we can estimate the correlation which is itself a measure of the inter-attraction
between the ants.

*

* *

*

*

*
*

*

(X1=1)

(X2=1)

(X3=1)

(X4=0)

(X5=0)

* (X6=0)

(X7=0)

(X8=0) (X9=0)

S=X1+X2+X3+X4+X5+X6+X7+X8+X9=3

* (X3=1)
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* (X1=1)

* (X2=1)

* (X9=0)* (X7=0)

S=X1+X2+X3+X4+X5+X6+X7+X8+X9=2

Fluctuations of the number of elements in a given cell

Fig. xx: Fluctuation of the number of elements in a subset A (magenta colored) of the whole domain.
Each star represents an element. To each of them one can associate a random variable which will be equal to
1 when the element belongs to A and to 0 otherwise. With this definition the sumS will count the number of
elements inA and the fluctuations of the random variableS will represent the fluctuations of the number of
elements counted inA in the course of time.
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Fig. xx: Fluctuations of the number nA(t) of elements in a subset A of the whole domain in two special
cases.When the movements of the elements are completely correlated all 9 will move toA or out ofA at the
same time which will result in big fluctuations. On the contrary, when the elements are completely independent
from one another, the fluctuations ofnA(t) will be fairly small.

Main formula

More precisely, the method relies on the following proposition.
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Proposition 1: Standard deviation of a sum of cross-correlated variables.
We consider a sumSn of n identically distributed random variablesXi of mean
m and standard deviationσ. We assume that betweenXi, Xj, i 6= j there is a
cross-correlationrij. The average of all cross-correlations is denoted byr:

r =
1

[n(n− 1)/2]

n
∑

i 6=j

rij

Then, the variance ofSn = X1 + . . .+Xn is given by:

σ2(Sn) = nσ2[1 + (n− 1)r]

Proof
We proceed in several steps.

For the sake of simplicity we first consider the average of a sum of three correlated random variables
X1, X2, X3 of meanm and identical standard deviationσ. Our objective is to compute the standard
deviation of:

S3 S3 = X1 +X2 +X3

By definition of the variance one gets: one gets:

σ2(S3) = E
[

(S3 −E(S3))
2
]

One knows that the expectation of a sum of random variables isalways equal to the sum of the
expectations, whether the variables are correlated or not.Thus:E(S3) = E(X1) + E(X2) + E(X3).
Consequently:

σ2(S3) = E

[

(
3
∑

i=1

X̂i)
2

]

, where:X̂i = Xi −E(Xi)

The mean of the variablêXi is equal to zero and it has the same standard deviationσ asXi. Thus,

σ2(S3) =
3
∑

i=1

E(X̂2
i ) + 2

[

E(X̂2X̂3) + E(X̂3X̂1) + E(X̂1X̂2)
]

We express the expectations of the products by introducing the coefficient of correlation of theXi:

r12 =
E [(X1 −E(X1)) (X2 −E(X2))]

σ(X1)σ(X2)
=
E(X̂1X̂2)

σ2

Thus:
σ2(S3) = 3σ2 + 2σ2(r23 + r31 + r12)

Introducing the mean of therij , r = (r23 + r31 + r12)/3
we obtain:

σ2(S3) = 3σ2[1 + 2r]
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This formula has an obvious generalization to an arbitrary numbern of random vari-
ables:

σ2(Sn) = nσ2g2 g =
√

1 + (n− 1)r (3.1b)

where:

r =
1

[n(n− 1)/2]

n
∑

i 6=j

rij

Interpretation of the coefficient g

What is the significance of the coefficientg?
Under the assumption that theXi are independent (which means that they are also
uncorrelated) the variance ofSn would ben times the variance ofXi that is to say
σ2

i (Sn) = nσ2. In other words,g is the ratio of the standard deviation of correlated
variables to the standard deviation of uncorrelated variables:

g =
σ(Sn)

σi(Sn)

It can be noted that ifr < 0, the standard deviation of the correlated variables will be
smallerthan the standard deviation of the independent variables. To what practical
situation would this correspond?

To get a better insight let us assume that there are only two living organisms (n = 2)
that the total area has been divided into only two parts (p = 1/2) and thatr = r12 =
−1. The fact that the correlation is−1 means that when the variablesX1 andX2 will
always take “opposite” values33. In other words, when1 is in A, 2 will be outside
A and when1 leavesA element2 will enterA. Such a behavior corresponds to a
situation in which the two elements do not wish to be together. One can think of a
prey-predator situation in which the prey tries to avoid thepredator.

As our main objective is to estimate attraction forces whichcorrespond tor > 0, we
will not be concerned with the caser < 0.

Special cases

It is enlightening to apply the previous formula to a number of special cases.
(1) When therij are all equal to zerog = 1 and we getσ2(Sn) = nσ2 which is

the standard result for independent variables. Indeed, as is well known, in the case
of independent variables the variance of a sum is the sum of the variances.

(2) On the other hand,r = 1 implies thatall therij are equal to 1. In this case the
three variables are identical (with probability 1) and one gets:σ(S3) = 3σ(X1) = 3σ
in agreement with the above result.

33The values assumed byX1, X2 are0 and1 which means that they are not really opposite in the arithmetical sense. If
we defineX ′

i = Xi−1/2, thenX ′

i will take on the opposite values−1/2 and1/2. However, in this caseS = X ′

1+ . . .X ′

n

will no longer count the number of living organisms which arein A but will be proportional to the difference of those in
A and those not inA.
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(3) The previous formula apply in a general way to any random variablesXi. For
the analysis of experiments with living organisms, the variablesXi have a specific
meaning which gives them the following characteristics:

E(Xi) = P{i ∈ A}1 + P{i /∈ A}0 = p

σ = E(X2
i )−E2(Xi) = P{i ∈ A}12+P{i /∈ A}02−p2 = p−p2 == pq, whereq = 1−p

Thus, the expression ofσ2(Sn) leads to:

σ2(Sn) = npq[(n− 1)r + 1]

As an illustration let us apply this formula to the case corresponding to the top graph
in the previous figure. Withr = 1 one gets:

σ2(Sn) = n2pq ⇒ σ(Sn) = n
√
pq

The result is reasonable because whenr = 1 all the variablesXi are identical (with
probability 1) andSn = nX1 from which results thatσ(Sn) = nσ(X1) = n

√

(pq).
With n = 9 andp = 1/4 one gets:σ(S9) = (9/4)

√
3 ≃ 3.9

Alternativelyσ2(Sn) can also be written:

σ2(Sn)

npq
= (n− 1)r + 1

This expression leads to a methodology for estimating the average cross-corelation
which is described in the following proposition.

Experimental methodology

Proposition 2: How to estimate the average cross-correlation The average
cross-correlationr can be estimated by taking the following steps:
1) One defines an areaA which is a fractionp of the whole domain occupied by
n living organisms.
2) One counts in the course of time the numbersnA(t) of living organisms
which are inA and one computes the experimental values of the meanme and
varianceσ2

e of nA(t).
3) Under the assumptions of the cross-correlation model thenumbersnA(t) are
represented by the random variableSn.; thus,σ2

e will be represented byσ2(Sn).
4) Consequently, if one repeats these measurements for various numbersnk of
living organisms, the variance ofnA(t) should follow the following expression:

σ2(Snk
)

nkpq
= (nk − 1)r + 1
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which means thatr will be the slope of the regressionn− 1, σ2
e)/npq).

5) Similarly, for givenn one repeats these measurements for areas of various
sizes for which the fractionp takes the valuespk the variance ofnA(t) should
follow the following expression:

r =
σ2(Sn)

n(n− 1)pkqk − 1
n−1

which means thatr will be the average of the quantity on the right-hand side.

Implication of asymmetric observations?

It can be noticed that so far we did not make use of the meanme of the observations
nA(t). The reason is very simple. According to the present model the mean should
always be given by:me = E(Sn) = nE(X1) = n/p. For instance, ifn = 200
and if the whole domain occupied by the living organisms has been divided in only
2 parts so thatp = 1/2, one should haveme = 100. Needless to say,me will never
be exactly equal to 50 because of inevitable statistical fluctuations. However, such
fluctuations should remain compatible with the order of magnitude ofσe. This is not
always the case.

As an illustration, let us mention the following observation recorded with ants:n =
195, me = 58, σe = 12. In this example,n/2 − me = 195/2 − 58 = 39 =

3.3σe. For variables which have a gaussian distribution (as is implied by our model),
a fluctuation of3.3σ has a probablity as low as10−3. Here, however, it is not a
fluctuation which reaches this value but the mean itself. Clearly, such an observation
is not compatible with the assumptions of our model. Unfortunately, this kind of
observation is the rule rather than the exception. How can this be understood?

Before discussing this point in greater detail, it is important to emphasize that this
asymmetry seriously affects the determination ofr. Why?

The standard deviation of a random variable depends on the frequency and amplitude
of the fluctuations but the most basic factor is its very orderof magnitude. What
we mean is that, except in exceptional circumstances, the standard deviation of a
variable which flutuates around 100 is usually higher than the one of a variable which
fluctuates around 1. In other words, an abnormally low mean will artificially reduce
the standard deviationσe which will result in underestimatingg and thusr. On the
contrary, an abnormally high mean will lead to an overestimated r. So, this issue
regarding the mean is quite an essential point.

Simulation

In order to illustrate how the present model is supposed to work we present results
provided by a simulation. This simulation involved the following steps.
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(1) First we need to built a set of interdependent random variables. To this end
we start with a set of independent random variablesZi and we define new variables
Xi as linear combinations of theZi. We have been using the Choleski procedure to
produce variables whose cross-correlations are all equal.In this caserij = r for all
pairs. As an illustration we give the matrix form of these linear combinations for
n = 2 andn = 3.











X1

X2

X3











=











1 0 0

r
√

1 − r2 0

r r
√

1−r
1+r

√

1 − 2r2

1+r





















Z1

Z2

Z3











For the purpose of the simulation the random variables whichappear in these expres-
sions will be replaced by m-dimensional vectors. As a result, this step gives a set of
n correlated vectors each of dimensionm:

Xi(t), i = 1, . . . , n, t = 1, . . . , m, i 6= j : cor(Xi, Xj) = r

(2) The second step consists in checking if the random variables Xi have the
properties that one expects. This is done in the following graphs. The first set of
graphs shows the trajectories of each element. One can see that whenr is close to
one the trajectories are fairly parallel. On the contrary, whenr is close to zero they
are almost independent. In practice, the trajectories of individual elements cannot be
observed for that would require a different marker on each and every element. The
second set of graphs shows what can actually be observed, namely a set of successive
pictures of the whole population.

(3) Now we come to the methodology for measuringr. As explained earlier,
the methodology that we suggest is to measure the fluctuations of the number of
elements in a subsetA of the whole container.
The following table shows the estimates obtained in this way. It can be seen that the
ratiog2 defined previously increases with the number of elements.
It is true that in the present case the estimates are fairly imprecise but one must keep
in mind that these estimates were obtained through a regression on only 4 points.
Two interesting conclusions can be drawn. (i) It is important that the time-series
defining the variablesXi are as long as possible. Here we have takenm = 500;
for smaller values ofm the imprecision would be even higher. (ii) the weaker the
correlation the more difficult it is to to measurer because in such cases the effects of
the cross-correlation are buried in the noise-background.

(4) A more direct procedure would be to compute the correlations between all
pairs of trajectories. As already said, in practice it is in fact not possible to observe
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n=6, rm=0.98, jm=20, a=0.95, sig=1, D=0
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A3

B3
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A5

B5

A6

B6

Fig. xx: Simulation of a process with high cross-correlation. The cross-correlation between the trajecto-
ries of the 6 elements is 0.98. TheAi, i = 1, . . . 6 designate the starting points of the trajectories while the
Bi, i = 1, . . . 6 are the end points.
For this graph as well as for the following graphs the trajectory of each of the 8 elements follows an autoregres-
sive processX(t) = aX(t − 1) + B(t) whereB(t) is a random variable which represents the noise;a = 0.95

which implies that the process has a fairly large time constant (that is to say a long memory).

n=6, rm=0.9, jm=20, a=0.95, sig=1, D=0
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Fig. xx: Simulation of a process with medium cross-correlation. The cross-correlation between the trajec-
tories of the 6 elements is 0.90.

these trajectories. However, in the simulation the individual trajectories are well
defined which makes it possible to test this procedure. Naturally, as this method uses
a much greater amount of information one expects a better accuracy. One gets the
following estimates:

r = 0.90 : x variablesrx-est= 0.91y variablesry-est= 0.88, rxy-est= 0.89



81

n=6, rm=0.2, jm=20, a=0.95, sig=1, D=0
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Fig. xx: Simulation of a process with low cross-correlation. The cross-correlation between the trajectories
of the 6 elements is 0.20.

n=6, rm=0.98, jm=20, a=0.95, sig=1, D=0

Fig. xx: Simulation of a process with high cross-correlation. The cross-correlation between the trajectories
of the 6 elements is 0.98.

r = 0.60 : x variablesrx-est= 0.64y variablesry-est= 0.63, rxy-est= 0.63

r = 0.20 : x variablesrx-est= 0.33y variablesry-est= 0.17, rxy-est= 0.25

It can be seen that the accuracy is indeed much better.
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n=6, rm=0.9, jm=20, a=0.95, sig=1, D=0

Fig. xx: Simulation of a process with medium cross-correlation. The cross-correlation between the 6 ele-
ments is 0.90. This figure (as well as the following ones) picture their positions on 20 successive time steps.

n=6, rm=0.2, jm=20, a=0.95, sig=1, D=0

Fig. xx: Simulation of a process with low cross-correlation. The cross-correlation between the 6 elements
is 0.2.

How to deal with asymmetric observations: first method

The description given by our model implies that if the total area is divided into two
partsA1, A2. none is favored. This means that the probablity to be inA1 should be
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Table Estimates of the cross-correlation based on simulated data

Cross-correlation n g2 g2 Slopes of
method 1 method 2 regression lines

rexact rest

0.90 3 2.48 2.90
4 2.91 4.52
5 4.16 5.32
6 4.45 4.53

0.72 ± 0.25, 0.57 ± 0.75

0.60 3 1.75 1.89
4 2.24 2.46
5 2.91 3.30
6 3.71 4.39

0.65 ± 0.10, 0.83 ± 0.16

0.20 3 1.24 1.69
4 1.75 2.18
5 1.62 1.79
6 1.47 1.90

0.056 ± 0.2, 0.02 ± 0.2

Notes:n is the number of elements in the population.g2 is the ratio of the observed variance to the variance for uncor-
related variables. Method 1 refers to the method in which it is the probabilityp which is adjusted beforeg2 is computed,
whereas in method 2 it is the number of active elements which is adjusted prior to computingg2. The column “Slopes
of regression line” refers to the regression(n − 1, g2); the first and second numbers are the slopes for method 1 and 2
respectively.

the same as the probability to be inA2. If it is not the case, there must be some kind
of asymmetry. One can think of (at least) two possible causesof asymmetry.

(1) If the number counted inA1 is much larger thann/2, it may be because for
some reason(s) (usually unknown to us) the ants prefer to be in A1. For instance, if
there is a dead ant inA2 this part may be avoided34. If this is the case, it means that
if A represents a fractionp of the total area, the probability to be inA should not be
taken as equal top but rather as equal top′ = me/n. For instance, in the previous
example wheren = 195 andp = 0.5, one getsp′n = me = 58 ⇒ p′ = 58/195 =

0.30.

In short, in this methodology the theoretical variablep will be replaced in all the
formulas of Proposition 2 by the adjusted parameterp′ = me/n.

(2) A second possible cause is the fact that some individualsjust do not move.
One can say that they are “frozen”. It is to this case that we turn now.

How to deal with asymmetric observations: second method (frozen elements)

34It should be noted that at this point this remains a fairly hypothetical reason. We did not try to test it by putting several
dead ants on one side. In fact, we did not wish to engage in sucha direction because it seems a hopeless task to try to find
out what are the parameters which rule the behavior of the ants. Moreover, the “frozen ant” mechanism that we discuss
later on seems simpler and more satisfactory anyway.
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On using the previous method one does not have to care about the cause of the asym-
metry. However, observations show that a fairly common cause is simply the fact
that some of the living organisms remain motionless. If theywere in subsetA ini-
tially, they will remain there during the whole duration of the observation. Similarly,
if they were not inA initially, they will remain outside ofA all along. As they never
change side, these elements can be said to be “frozen”. On thecontrary, the elements
which move in and out ofA will be called active elements.

If one assumes that there aren′ active elements, the sumS can be written as follows:

Sn = Sn′ + fA, where:S ′
n = X1 + . . .X ′

n, fA = Xn′+1 + . . .Xn

WhereasS ′ is a random variable,fA is a deterministic constant which is equal to the
number of frozen elements located inA. Thus, the variance ofSn becomes:

σ2(Sn) = E
[

(Sn − E(Sn))
2
]

= E
[

(Sn′ + fA − E(Sn′) − fA)2
]

= σ2(S ′
n)

which shows that our previous calculation applies here as well providedn is replaced
by n′.

σ2(Sn) = n′σg2, g =
√

1 + (n′ − 1)r

So, the only question which remains is how to determinen′. In fact, there are 3
unknown numbers:n′, the number of frozen elements inA that we have denoted by
fA, and the number of frozen elements that are not inA which will be denoted by
fĀ. Although we only needn′, this number can only be found together with the two
other unknown numbers.
At first one might think that there can be a way to determine these numbers from
evidence based on the means inA andĀ. This is not the case, however, for a reason
which is explained below.

As the question cannot be solved in a general way we will be content with exam-
ining two special cases which are of special practical significance. For the sake of
simplicity, in the following discussion it will be assumed thatp = 1/2.

(1) One major cause of frozen elements occurs when ants or bees cluster together.
If the cluster is formed inA this will result in a bigfA. As Sn = Sn′ + fA we see
that this will result in the fact thatme (which is the observed value ofE(Sn)) will be
fairly large and in particlar larger thann/2, the expected value in the absence of any
frozen element. Consequently, we will consider the fact that me > n/2 as indicating
that a cluster has formed inA and none outsideA. In such a case almost all the
frozen elements are inA which means thatfA ≃ n− n′. Thus one gets:

E(Sn) = E(S ′
n)+fA ≃ E(S ′

n)+(n−n′)1 ⇒ me = n′/2+n−n′ ⇒ n′ = 2(n−me)

In the general case, the last result would take on the form:n′ = (n −me)/(1 − p)

and this case will be signaled by the fact thatme is substantially larger thannp.
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(2) On the contrary, if the cluster is formed outside ofA then almost none of the
n− n′ frozen elements will be inA which means that

Sn == E(S ′
n) + fA ≃ Sn′ + (n− n′)0 ⇒ me = n′/2 ⇒ n′ = 2me

In the general case, the last result would take on the form:n′ = pme and this case
will be characterized by the fact thatme is substantially smaller thannp

(3) Finally, one must consider the intermediate case in which the number of frozen
elements is approximately the same inA and outside ofA. This may happen when
there are two clusters, oneA and the other inA. It can also happen in the absence of
any cluster when the individuals which are frozen (or at least somewhat “sleepy”) are
distributed uniformly in the whole population. Under that fairly natural assumption:
it makes sense to assume that the sleepy elements are neraly in equal number in the
two parts. In such a situation:

Sn = Sn′ +
n− n′

2
1 ⇒ me = n′/2 +

n− n′

2
= n/2

We see thatme, the average population inA, will be the same as without frozen
individuals35. This result could of course have been expected in advance. Indeed, if
the frozen elements are distributed in the same way as the rest of the population the
mean will not be affected. For instance, if forn = 200 there are 198 frozen elements
and just 2 non-frozen elements and if the 198 elements are distributed uniformly
betweenA andA, one will haveme = (0 or 1) + 99 ≃ n/2. In other words, the
mean is the same as without any frozen elements In contrast, the variances will be
very different:
• With 198 frozen elements:σ2(S200) = σ2.
• Without any frozen elements:σ2(S200 = 200σ2.

Conclusions The previous discussion shows that:
(1) A problem due to frozen elements can be detected (and corrected) ifme the

time-averaged population inA is substantially different fromnp.
(2) If me ≃ np but there are nevertheless frozen elements, this problem can nei-

ther be detected nor corrected and it will lead tounder-estimatingthe variance and
therefore also the average cross-correlationr.

Remark Frozen elements can of course be detected by individual visual inspection
of the living organisms. However, when their number reachesseveral hundreds this
becomes an almost impossible task.

Example of application of the previous methodology

35The same argument holds in the general case when the areaA is a fractionp of the total area.
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We consider the following case which corresponds to a real observation performed
on ants

n = 520, p = 1/2 me = 212, σe = 47

and we apply successively the two previous methods.

Method 1 (asymmetrical preference for some unknown reason)
The adjusted probability is

p′ = me/n = 0.41 ⇒ q′ = 1−p′ = 0.59 ⇒ σ2(S1) = pq = 0.24 ⇒ σ2
i (Sn) = npq = 126

As a result:

g2 =
σ2

e

σ2
i (Sn)

=
472

126
= 17 ⇒ r =

g2 − 1

n− 1
= 0.032

Method 2 (frozen elements)
Here we are in the case whereme = 212 is substantially lower thannp = 520/2 =

260. Hence we get the adjusted number of active elementsn′ through the formula:

n′ =
me

p
= 2 × 212 = 424

Then we determiner by using the standard formula withn replaced byn′.

= n′pqg2 =
σ2

e

n′pq
=

472

424 × (1/4)
= 21 ⇒ r =

g2 − 1

n′ − 1
=

21 − 1

423
= 0.047

As can be seen the two methods lead to average cross-correlations of the same order
of magnitude (they differ by 32%). Here, just for the sake of ilustration, we have
computedr from a single experimental result. One should observe that the right
method for determiningr is not to compute it from individual results but to get it as
the slope of the regression line determined by several results (in fact, as many results
as possible).

For a givenσe, the average correlationr is completely determined byg2. However,
in computing the regression line it is not onlyg2 which matters but also the value
of n′ because thex-variable of the regression is the number ofactiveelements. For
instance,p = 1/2 andme = n/20 implies n′ = n/10. The fact thatn′ is much
smaller thann makes a big difference in the regression. This is illustrated in the
following graph which summarizes 11 experiments carried out with various number
of ants.
At first sight it may seem surprising that the estimated cross-correlation is as low as
0.04. In the next section we explain why this is so.

Why is the estimated cross-correlation so small?
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Fig. xx: Comparison of two estimation methods of the averagecross-correlation of a population of
ants. The cross-correlation is a way of expressing the average interaction strength between the ants. The
correlation of the set of 11 points (not to be confused with the estimated cross-correlation which is the slope
of the regression line) is0.84 for the first method and0.95 for the second. In the second method the frozen
elements are left out and do not contribute. The present results suggest that at least in this case the second
method does a better job. The error bars ofr represent a confidence interval for a confidence level of0.95.

First of all, it is necessary to make an important distinction. Suppose that by comput-
ing the correlation of a set of data(xi, yi) 1 ≤ i ≤ n one gets a correlation as low
as 0.04. Such a low correlation would almost always mean thatthe correlation is not
significant in the sense that the confidence interval contains the correlation zero36

Here, however, the correlationr is obtained in a completely different way, namely as
the slope of a regression line. From the errors bars given in the caption of the figure
it can be seen that this estimate is quite significan in the sense that the confidence
interval ofr doesnot include 0.

However important, this distinction does not explain why weget such a low correla-
tion. This is what we wish to understand now.
The formulaσ2

e = npq [1 + (n− 1)r] shows that ifr ≃ 1, the observed standard
deviation is proportional to the total number of elements:σe ≃ n

√
pq. What does

that mean in practice?

Can the cross-correlation model explain the increase of thetime constant with
population size?

The time constant of a population of ants, bees or flies can be measured through their
relaxation time from an out-of-equilibrium condition toward equilibrium or quasi

36The only exception to this rule may occur when the numbern of pairs is very large (say several thousands) so that
the confidence interval becomes smaller than 0.04.
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Fig. xx: Relation between the fluctuations ofn1(t) and the values ofr. We suppose that the whole domain
which contains the ants has been divided into two parts and weobserve the fluctuationsn1(t) of the number
of ants in part 1. The black curve corresponds to an hypothetical curve while the red curve is the one that
was actually observed. The numbers given under the graph arethe standard deviation and the (corresponding)
correlation for the black curves. For thered curve these numbers are 47 and about 0.04 respectively.
The first graph corresponds to the greatest possible standard deviation in the sense that each time step all the
ants move from part 1 to part 2 or vice versa; in this case the average cross-correlation is almost equal to 1.
In the second case the same move occurs in two time steps, while in the third it occurs in 4 time steps. As in
the actual experiment one time step was 5 mn, in this last caseall ants would change side within 20 minutes.
Finally, the last graph corresponds to a case in which the variance of the simulated curve is similar to the
variance of the observed curve.

equilibrium. Some results of this kind are summarized in thegraphs below.
In the next sections we will see that adding together random functions that have the
same time constant results in a sum that has also the same timeconstant. This result
could be expected in so far as the addition of variablestaken at the same momentis
not likely to affect the time structure. This result will be shown first for uncorrelated
random functions and then for correlated random functions.

Time constant of a sum of uncorrelated random functions

For the sake of simplicity we will consider the sum of only tworandom functions.
The same argument can be easily extended to a sum ofn random functions.

We consider two stationary random functionsX1(t), X2(t) which have the same dis-
tribution (their expectation is supposed to be equal to zerofor the sake of simplicity)
and the same autocorrelation functionρX(r) and we want to compute the autocorre-
lation functionρS(r) of the sumS(t) = X1(t) +X2(t).
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Fig. xx: Time constant as a function of the population sizen. Initially, all ants were in one compartment, say
1. In the course of time a process of dispersion took place through which they occupied the two compartments
in approximately equal numbers. This process comprised twophases. In the first phase the number of ants in
compartment 2,n2(t) increased quickly, then after a quasi-equilibrium has beenreached there was a stationary
process during whichn2(t) fluctuated aroundn/2.
The data corresponding to the blue dots were measured duringthe first phase whereas those for the red squares
were measured during the second phase through the autocorrelation method. Sometimes, especially for large
populations the stationary process of phase 2 lasted only shortly and was followed by the formation of a cluster
in one of the compartments. The time constants of this clustering process are given in the next graph.

The calculation is straightforward.

ρS(r) =
E [S(t)S(t− r)]

σ2
S

E [S(t)S(t− r)] = E [(X1(t) +X2(t)) (X1(t− r) +X2(t− r))]

E [S(t)S(t− r)] = 2ρX(r)σ2
X +E [X1(t)X2(t− r)] + E [X2(t)X1(t− r)]

BecauseX1(t) andX2(t) are supposed uncorrelated,

E [X1(t)X2(t− r)] = E [X1(t)]E [X2(t− r)] = 0

Thus:
E [S(t)S(t− r)] = 2ρX(r)σ2

X

As the varianceσ2
S of S is equal to twice the variance of theXi(t), one gets:

ρS(r) =
2ρX(r)σ2

X

2σ2
X

= ρX(r)
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.
Thus, the sumS(t) will have the same time constant as each of theXi.
Next, we examine what must be changed in this calculation when theXi(t) are cor-
related.

Time constant of a sum of correlated random functions

The assumption are the same as in the previous sub-section except that theXi(t) are
correlated. Such a correlation,ρ, can be introduced explicitely by defining theXi(t)

in the following way:

X1(t) = Z1(t), X2(t) = ρZ1(t) +
√

1 − ρ2Z2(t)

where theZi(t) are two uncorrelated random functions which have same autocorre-
lation functionρZ(r) With these definitions,

σ2
X1

= σ2
Z, σ

2
X2

= (ρ2 + 1 − ρ2)σ2
Z = σ2

Z

It can also be seen that the autocorrelation function ofX2 is ρZ(r). The calculation
is the same as previously except for the two factorsρ and

√
1 − ρ2. One gets:

E [X2(t)X2(t− r)] = (ρ2 + 1 − ρ2)ρ(r)σ2
Z

Taking into account that the variance of theXi is equal to the variance of theZi, it
follows thatρX(r) = ρZ(r).

The sumS(t) of theXi(t) becomes:

S(t) = aZ1(t) + bZ2(t), a = 1 + ρ, b =
√

1 − ρ2

Thus:

E [S(t)S(t− r)] = (a2+b2)σ2
ZρZ(r)+abE [Z1(t)Z2(t− r)]+abE [Z2(t)Z1(t− r)]

As theZi(t) are uncorrelated, the termsE [Z1(t)Z1(t− r)] andE [Z1(t)Z2(t− r)]
are equal to zero. The left-hand side can be written:ρS(r)σ2

S and the variance ofS
will be expressed in terms of the variance of theXi in the way seen earlier:σ2

S =
2σ2

X(1 + ρ). Thus one gets:

ρS(r)2σ2
X(1 + ρ) = (a2 + b2)σ2

ZρZ(r)

Taking into account thata2 + b2 = 2(1 + ρ), thatσ2
Z = σ2

X and thatρZ(r) = ρX(r)
one gets:

ρS(r) = ρX(r)

In conclusion, one sees that with this model it is impossibleto describe changes in
the time constant. That is hardly surprising for a model suchas the present one which
is basically time independent.



91

MEASURING INTERACTION STRENGTH

BETWEEN LIVING ORGANISMS

Bertrand Roehner
Institute for Theoretical and High Energy Physics
University of Paris.

Lecture given at Tokyo University on 28 November 2012, 4:40 pm, Department of
Economics (3rd seminar room, 12th floor of the Economics Research Building)

Abstract
In economics as in other fields one would like to derive the properties of macro-systems from the characteristics
of individual elements. In physics, this problem was solvedby statistical mechanics at least in principle and
provided the system is in equilibrium. So a natural questionis how to adapt the concepts and methods of
statistical mechanics to non-physical systems.
A first question that we will address (albeit only briefly) is how to make sure that physical concepts, e.g. the
notion of temperature, can be used in non-physical systems in aconsistentandfruitful way.
In statistical physics a system is described by the knowledge of its energy functionH(also called Hamiltonian).
It takes the following form:

H = Hfree particles+ Hinteractions+ Hexternal factors
The termHinteractionsdescribes inter-individual interactions. Unless we can assume that the system is com-
posed only of free particles which is a fairly trivial case, in order to use statistical mechanics we need to know
(quantitatively) the interactions within the system. Mostof the methods that physicists use for measuring in-
teractions cannot be used in non-physical systems, for instance because they lead to the dislocation of the
system (as for instance in melting, boiling or evaporation). Thus, if we want to extend statistical mechanics to
non-physical systems it is important to define methods through which one can measure interaction strength in
non-physical systems.
As a first step, we attempt such measurements for systems of living organisms such as groups of insects. Such
systems are closer to physical systems than are social systems because the notions of distance, velocity or en-
ergy can be defined in the very much the same way as in physics. It is our hope that such methods will also
prove useful for social systems.
In one of the methods that we propose, one divides the available space into two partsA andB and one records
in the course of time the numbersnA(t) of individuals located in partA.

297 ants

 80 ants

47 ants

Beginning of drift to the right

Quasi−equilibrium

detailed
view of
two
ants

Experiments with ants in a two-compartment device

n=6, rm=0.2, jm=20, a=0.95, sig=1, D=0
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Simulation with crosscorrelation equal to 0.2.

We then use a probabilistic model that allows us to derive the(average) cross-correlation between individual

organisms from the standard deviation of the functionnA(t).
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Role of interaction in physical and social systems

In statistical physics

In statistical physics the properties of macroscopic systems are derived from the char-
acteristics of molecules (or atoms or electrons). One crucial characteristic specifies
how these molecules interact.
As an illustration for a real gas (as opposed to an ideal gas for which interactions are
supposed to be negligible), the energy function may take thefollowing form:

H = Hfree particles+Hinteractions, Hfree particles=
∑

i

mv2
i

2
, Hinteractions=

∑

i>j

k

(ri − rj)6

This expression focuses on one specific form of interaction,but in fact several forms
of interaction are at work simulateously.

In trying to apply a similar approach to economics, the molecules will be replaced by
economic units which can be traders in financial markets, companies, economic sec-
tors or the economies of different countries. Needless to say, all these economic units
interact in one way or another. In order to apply the methods of statistical physics to
economic systems we need to know the ways and strength of these interactions.

However, even if we do not intent to use the formalism of statistical mechanics,
estimates of interaction may turn out to give useful insightinto the economic systems
under consideration. Let me explain why.

In physical chemistry

Although the objective of physical chemistry is also to explain the properties of
macroscopic systems in terms of molecular interactions, there are two main differ-
ences with the approach of statistical mechanics.
• First, physical chemistry considers a broad range of molecules rather than just

the simplest ones as is done in physics. Thus, because many cases are being consid-
ered it becomes a necessity to adopt a comparative perspective: why is the melting
point of argon lower than the melting point of water? Why is the equilibrium vapor
pressure higher for ethanol than for water? Why is the boiling temperature higher
for decane than for methane? And so on and so forth.
• Because to propose full-fledged models for all these cases would be an almost

impossible task, physical chemistry will rather resort to qualitative arguments.

Implications of interactions for macroscopic properties

Physical properties
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Most of the properties of physical systems are closely connected to the interaction
strength.
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One can mention:
• State of matter: solid, liquid or gas (see below)
• Equation of state of gases connecting density, pressure, temperature (ideal gas

versus van der Wall gas)
• Boiling temperature (illustrated in graph)
• Heat of vaporization
• Surface tension (energy to take a molecule to the surface)
• Equilibrium vapor pressure
• Rate of evaporation (escape experiment)
• Viscosity
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• Velocity of sound (ex: diamond)

States of matter

Among the properties that can be (more or less) predicted when one knows the
strength of interaction between molecules there is one basic property which is of
particular importance, namely the system’s state of matter.

Physics distinguishes 3 states of matter: gas, liquid and solid37.

Solid-like systems versus gas-like systems

An obvious question is whether the previous distinction hasa parallel in non-physical
systems. For the sake of simplicity, we consider only the twoextreme cases of solid-
like versus gas-like systems.

One distinctive property of gases is that when put together two gas systems will form
a new system identical to the former ones except for its volume. On the contrary, two
solid systems put together will remain separate.
In physical terms this property will be expressed by the factthat for gases the dif-
fusion constantD is much larger than for solids. For hydrogen (at zero degree)
D = 6 104 m2/s, whereas for copper at 600 degreeD = 3 10−8 m2/s.
(the source is http://web.mit.edu/3.091/www/WittNotes/Notes9.pdf)

What about non-physical systems? If we put together two living organisms, they will
not form a new living organism but will remain separate. Thus, wecan say that living
organisms are solid-like systems, in other words they have strong interactions.
On the contrary, when put together two groups of people who speak the same lan-
guage will form a new group. Thus, we can say that they are gas-like systems in
which interaction is fairly low.

At this point it is important to realize that the ability for two systemsA andB to
form a new system does not only depend on the strength of interaction within theA
andB components but also upon the interaction that the elements of A can have with
the elements ofB. This can be illustrated by our previous example.
• If all people in groupA speak the same languageLA that is different from the

languageLB spoken in groupB, then it will be difficult for the reunion ofA and
B to form a stable group because the groupA ∪ B will tend to split into its initial
components.
This is the situation for two groups of immigrants freshly arrived in a country. As a
result, these groups will form separate clusters in the cityin which they arrive. This
is what can be seen in New York with the areas of “Little Italy”or “Chinatown”. In

37A 4th state would be plasma which is a high-tempertaure gas inwhich the atoms have lost their electrons. Although
plasma has specific properties, for the issue we are considering here it does not differ significantly from gases. That is
why we will limit ourselves to the three other states of matter.
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short, immediately after their arrival such groups of immigrants are solid-like.
• If, apart from their own languages, the people in the two groups are able to speak

(even if imperfectly) a common languageLC, then their ability to form a reunion
A ∪B will be increased.
This is what happened when the immigrants in “Little Italy” and “Chinatown” little
by little learned to speak English. From solid-like such groups will become gas-like.

As another illustration, one can mention the following cases. Two neighboring
colonies of thesame speciesoften fight one another. On the contrary, a colony of
ants may contain ants of adifferentspecies with which it lives in symbiosis. To ex-
plain such cases in terms of interactions will require a detailed study. However, there
are similar cases in physics. Why does hydrogen (and only hydrogen) diffuse very
quickly in palladium (and only in palladium)? This shows that we should not expect
any universal rules but satisfy ourselves with broad, qualitative rules (even if these
rules are plagged with a few exceptions).

Parallel of surface tension in social systems: separatism

Forces on bulk versus surface molecules. Equilibrium vapor pressure.

Relation between the equilibrium vapor pressure and temperature. It can be noted that the vapor pressure
for the solid follows almost the same law as for the liquid.
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When two states of matter are in contact, they share a surfacecalled an interface.
Whereas bulk molecules have neighbors in all directions, atan interface, molecules
have neighbors of same kind only on one side. Thus, surface molecules are different
from those in the bulk.

It takes energy to create a new surface of a solid or liquid because one must move a
molecule from the bulk to a site at the surface and this takes energy. The amount of
energy it takes to create one unit of area of new surface is called the surface tension.
It is expressed in Joule/square meter. The surface tension reflects fairly well the
strength of interaction in a system. For instance, at 20 degree the surface tension at a
water-air interface is 73 mJ/(square meter) whereas the surface tension at a mercury-
air interface is 472 mJ/(square meter).

If one reviews separatist movements one quickly finds that almost all of them are
located near border or coast lines. This characteristic is agravated whenever such
places are separated from the rest of the country by mountainranges with poor means
of transportation.
Many illustrative examples are described in “Separatism and Integration” (Roehner
and Rahilly 2002)

Parallels of equilibrium vapor pressure in non-physical systems: dropout and
escape rates

Among the molecules which are near the interface those whichhave the highest
velocity are the most likely to be able to escape. For a given average velocity (that
is to say for a given temperature) the number of molecules which will escape is
conditioned by the interaction strength in the liquid. Thus, one is not surprised that
there is a close connection between the number of escaped molecules (that can be
measured by the equilibrium vapor pressure) and the interaction strength. In other
words, the equilibrium vapor pressure is a good indicator ofthe interaction strength.

How can this be applied to non-physical systems?
For any organization such as school, army, church, political party or club the number
of people who leave the organization in a given time intervalrefects the attraction
force of the organization. In most of these cases the personswho drop out are ab-
sorbed by the society in which the organization is established and few will come
back. In other words, we are not in a situation where the volume above the liquid is
closed but rather in a situation in which the liquid is in openair. In this case it is the
rate of evaporation which replaces the vapor pressure as interaction indicator.

Some 4 years ago,
I tried to collect dropout data for various clubs such as musical associations, card-
player clubs, sport clubs and so on, in the hope that they may give estimates of the
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interaction strength inside these organizations. At first,this could appear as a promis-
ing approach for indeed in all developed countries there arethousands of clubs and
associations of all kinds. There were many obstacles, however.
• It was difficult to make a clear distinction between real participants and those

who registered but did not really participate. This problemwas particularly serious
which clubs which charged no or minimal entrance fee.
• The dropout (as well as the registrations) do not only reflectthe attraction of

the club but also the influence of various other possible occupations between which
a person may share its free time.
• One obvious bias comes from the persons whose dropout is due to their death.

This bias becomes all the more serious in clubs in which many members are retired
persons.

For all these reasons, this approach was eventually droppedand instead we started to
do experiments with insects. Here are some pictures which illustrate some practical
aspects of this approach. Their main objective is to show that such experiments can
be done with fairly modest equipment.

Phase transitions
As an example let us consider water. The three states will be ice, liquid water and
vapor water. Whether in the solid, liquid or gas state, the interaction mechanisms of
water molecules are basically the same but the coupling strength will be stronger in
ice, than in liquid (and stronger in liquid than in gas) because the average distance
between the molecules is smaller in a solid than in a liquid (and smaller in a liquid
than in a gas). As most of the interactions are decreasing with increasing distance
(as are the power laws in the formula given above), larger average inter-molecular
distance means weaker interaction. In other words, in orderto move from gas to
liquid or from liquid to solid one has to reduce inter-molecular distance. This can be
done in two ways.

(1) One can reduce the volume of the container containing thesystem. This will
bring the elements closer together.

(2) Reducing the translational momentum of the elements will allow the inter-
attraction bring them closer together. Ideally, if the molecules were completely
steady, even a small inter-attraction would bring them together.

Presentation of methods and experimental devices

Methods
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14:30 14:35 14:40 14:45 14:50

14:55 15:00 15:05 15:10 15:15

15:20 15:25 15:30 14:35 14:40

Clustering process for bees (Apis mellifera mellifera).Altogether there were about 300 bees. Initially they
were put to sleep through 5 minutes in carbon dioxide.Source: The data are from an experiment done in July
2012 by J. Darley and B. Roehner.

Which method to use?
1) Is there clustering?
Yes→ How fast? Proportion of outliers not in
cluster?
No→ UseCross-correlation method, or Expan-
sion rate method.
2) Cross-correlation method
In order to know if this method will give reliable
results, one must answer the following ques-
tions.
• What is the proportion of elements moving

from left to right versus from right to left?
• What is the number of “frozen elements” i.e.

those elements that do not move?
3) Expansion method(remains to be tested)

Presentation of some useful experimental devices
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To be eventually successful this approach needs to be explored byseveralresearch
groups. This is the way physics has been working in the past three centuries. All
experiments were tried, retried and checked by many physicists. It is through the
comparison of their results that a better understanding of the experimental conditions
necessary for the experiment to succeed could eventually begained.
Such a collective exploration process is even more important here because, due to
the very nature of these experiments, the fluctuations are fairly large.

Ants and drosophilesOn the left: collecting ants. The white Bristol board was left a few centimeters from the
exit hole of a colony for about half an hour. The brown productis chesnut cream with a few drops of water.
On the right: a tube containing drosophila as prepared by a research laboratory in population genetics.

Carbon dioxide gas cylinder. As compressed carbon dioxide is necessary in many activities, small cylinders
similar to the one shown on the picture can be bought fairly easily and at low cost. The one represented here is
used for the production of sparkling water, it weighs only one kilogramme and costs about 20 euros (10 euros
for the empty bottle and 8 euros for a refill).
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297 ants

 80 ants

47 ants

Beginning of drift to the right

Quasi−equilibrium

detailed
view of
two
ants

Container with weighing device on one side (2).Here most of the beetles have formed a cluster in one of the
corners. The weight is 375 mg which, when divided by 19 mg, gives a total of 20 beetles.

In showing some of the experimental devices my purpose is to convince the audi-
ence that it is possible to do this kind of experiments with fairly little sophisticated
equipment.
Basically, the needs can be summarized as follows:
• First one needs to get theliving organisms: ants can be easily collected (see pic-

ture), drosophila can be obtained from biology laboratories, fruit flies can be bought
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in the form for worms (larvae) destined for fishermen or for big aquarium fishes,
small fishes are sold as preys and foodstuff for bigger fishes,bettles can also be
bought in the form of worms.
• Secondly, in many cases, one needs a small bottle of carbon dioxide to make

them sleep in order to be able to handle them easily. Carbon dioxide has an almost
instantaneous anesthesic effect on all these insects. According to a paper published
in the Journal of Experimental biology (Ribbands 1950) anaesthesia through carbon
dioxide does not infer a memory loss and changes only slightly the behavior of bees.
It is probably safe to assume that the effect on the other insects mentioned above is
similar.
• Next one needs an appropriate container. A simple solution is to cut it into a

piece of flexible plastic (such as PVC) of adequate thickness(3 to 5mm is usually
enough). This is illustrated in one of the pictures.
• Finally, one needs a counting device. Taking pictures and counting by hand is a

simple solution but not always satisfactory especially forcounting the elements in a
cluster. For this reason we have developed a weighing method(illustrated in one of
the pictures).

Next we describe one of the methods that we have developed forcomputing the
average correlation between interdependent elements of a system.

Cross-correlation method
The main advantages of this method are the following.

(1) Contrary to the dropout model, the cross-correlation model can be used whether
or not there is a clustering process.

(2) The (usually) few non-clustering elements considered in the dropout model
present high fluctuations. On the contrary, the cross-correlation model relies on data
for the relatively large number of elements which cross fromone side to the other.
As a result, one expects a smaller dispersion of the results.

(3) As cross-correlation measurements take only about halfan hour this method
can be used to follow the interaction of a system in the courseof time. This is not
possible with the dropout model because one must wait until the clustering process
is completed.
We will introduce this models by steps. First we explain the idea of the model, then
we discuss how it should be used for the purpose of estimatingthe average cross-
correlation.

General idea of the model

Consider a container which containsn ants. In this container we define a subsetA
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and we count in the course of time the numbernA(t) of ants that are found inA . For
instance, we can record these numbers every 15 seconds over aperiod of one hour
which will give 60 × 4 = 240 numbers. From these numbers we can compute their
averagem and their standard deviationσ 38.

The question is: can we learn something about the interaction between the ants from
the values ofm andσ?
Intuitively one would expect that if then elements are highly correlated the standard
deviation will be higher than when they are not correlated atall. Why?

If the elements are completely correlated they will move alltogether intoA or out of
A. Thus,nA(t) will make big jumps as seen in the graph below. On the contrary, if
the elements are not correlated at all,nA(t) will change by small steps of0, 1, 2, . . .
as shown in the picture. A jump of 9 can happen but it will be an exceptional event.
Indeed, it will have the same likelihood as obtaining 9 headsby throwing 9 coins.
In other words, one expects that the correlation between theelements will be more
or less proportional to the standard deviation. The higher the standard deviation,
the higher the correlation. In other words, by measuring thestandard deviation of
nA(t) we can estimate the correlation which is itself a measure of the inter-attraction
between the ants.

*

* *

*

*

*
*

*

(X1=1)

(X2=1)

(X3=1)

(X4=0)

(X5=0)

* (X6=0)

(X7=0)

(X8=0) (X9=0)

S=X1+X2+X3+X4+X5+X6+X7+X8+X9=3

* (X3=1)

* (X8=0)

* (X4=0)

(X5=0)*
* (X6=0)

* (X1=1)

* (X2=1)

* (X9=0)* (X7=0)

S=X1+X2+X3+X4+X5+X6+X7+X8+X9=2

Fluctuations of the number of elements in a given cell

Fluctuation of the number of elements in a subset A (magenta colored) of the whole domain.Each star
represents an element. To each of them one can associate a random variable which will be equal to 1 when the
element belongs to A and to 0 otherwise. With this definition the sumS will count the number of elements inA
and the fluctuations of the random variableS will represent the fluctuations of the number of elements counted
in A in the course of time.

Main formula

The method relies on the following proposition.
38The average and the standard deviation will be fairly independent of the time interval between successive observations

because changing this interval amounts to changing the sampling time of the functionnA(t). If nA(t) is fairly stationary,
m andσ will also be fairly independent of the total length of the record.
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Fluctuations of the number nA(t) of elements in a subset A of the whole domain in two special cases.
When the movements of the elements are completely correlated all 9 will move toA or out ofA at the same
time which will result in big fluctuations. On the contrary, when the elements are completely independent from
one another, the fluctuations ofnA(t) will be fairly small.

Proposition: Standard deviation of a sum of cross-correlated variables.
We consider a sumSn of n identically distributed random variablesXi of mean
m and standard deviationσ. We assume that betweenXi, Xj, i 6= j there is
a cross-correlationrij. The average of all cross-correlations is denoted byr:
r = 1

[n(n−1)/2]

∑n
i 6=j rij. Then, the variance ofSn = X1 + . . .+Xn is given by:

σ2(Sn) = nσ2 [(n− 1)r + 1] ⇒ g2 ≡ σ2(Sn)

nσ2
= (n− 1)r + 1

nσ2 is the variance of the sumSn when theXi are uncorrelated.

Proof
We proceed in several steps.

For the sake of simplicity we first consider the average of a sum of three correlated random variables
X1, X2, X3 of meanm and identical standard deviationσ. Our objective is to compute the standard
deviation of:

S3 S3 = X1 +X2 +X3

By definition of the variance one gets: one gets:

σ2(S3) = E
[

(S3 −E(S3))
2
]

One knows that the expectation of a sum of random variables isalways equal to the sum of the
expectations, whether the variables are correlated or not.Thus:E(S3) = E(X1) + E(X2) + E(X3).
Consequently:

σ2(S3) = E

[

(
3
∑

i=1

X̂i)
2

]

, where:X̂i = Xi −E(Xi)
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The mean of the variablêXi is equal to zero and it has the same standard deviationσ asXi. Thus,

σ2(S3) =
3
∑

i=1

E(X̂2
i ) + 2

[

E(X̂2X̂3) + E(X̂3X̂1) + E(X̂1X̂2)
]

We express the expectations of the products by introducing the coefficient of correlation of theXi:

r12 =
E [(X1 −E(X1)) (X2 −E(X2))]

σ(X1)σ(X2)
=
E(X̂1X̂2)

σ2

Thus:
σ2(S3) = 3σ2 + 2σ2(r23 + r31 + r12)

Introducing the mean of therij , r = (r23 + r31 + r12)/3
we obtain:

σ2(S3) = 3σ2[1 + 2r]

This formula has an obvious generalization to an arbitrary numbern of random vari-
ables:

σ2(Sn) = nσ2g2 g =
√

1 + (n− 1)r (3.1b)

where:

r =
1

[n(n− 1)/2]

n
∑

i 6=j

rij

Interpretation of the coefficient g

What is the significance of the coefficientg?
Under the assumption that theXi are independent (which means that they are also
uncorrelated) the variance ofSn would ben times the variance ofXi that is to say
σ2

i (Sn) = nσ2. In other words,g is the ratio of the standard deviation of correlated
variables to the standard deviation of uncorrelated variables:

g =
σ(Sn)

σi(Sn)

It can be noted that ifr < 0, the standard deviation of the correlated variables will be
smallerthan the standard deviation of the independent variables. To what practical
situation would this correspond?

To get a better insight let us assume that there are only two living organisms (n = 2)
that the total area has been divided into only two parts (p = 1/2) and thatr = r12 =

−1. The fact that the correlation is−1 means that when the variablesX1 andX2 will
always take “opposite” values39. In other words, when1 is in A, 2 will be outside

39The values assumed byX1, X2 are0 and1 which means that they are not really opposite in the arithmetical sense. If
we defineX ′

i = Xi−1/2, thenX ′

i will take on the opposite values−1/2 and1/2. However, in this caseS = X ′

1+ . . .X ′

n

will no longer count the number of living organisms which arein A but will be proportional to the difference of those in
A and those not inA.
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A and when1 leavesA element2 will enterA. Such a behavior corresponds to a
situation in which the two elements do not wish to be together. One can think of a
prey-predator situation in which the prey tries to avoid thepredator.

As our main objective is to estimate attraction forces whichcorrespond tor > 0, we
will not be concerned with the caser < 0.

Special cases

It is enlightening to apply the previous formula to a number of special cases.
(1) When therij are all equal to zerog = 1 and we getσ2(Sn) = nσ2 which is

the standard result for independent variables. Indeed, as is well known, in the case
of independent variables the variance of a sum is the sum of the variances.

(2) On the other hand,r = 1 implies thatall therij are equal to 1. In this case the
three variables are identical (with probability 1) and one gets:σ(S3) = 3σ(X1) = 3σ
in agreement with the above result.

(3) The previous formula apply in a general way to any random variablesXi. For
the analysis of experiments with living organisms, the variablesXi have a specific
meaning which gives them the following characteristics:

E(Xi) = P{i ∈ A}1 + P{i /∈ A}0 = p

σ = E(X2
i )−E2(Xi) = P{i ∈ A}12+P{i /∈ A}02−p2 = p−p2 == pq, whereq = 1−p

Thus, the expression ofσ2(Sn) leads to:

σ2(Sn) = npq[(n− 1)r + 1]

As an illustration let us apply this formula to the case corresponding to the top graph
in the previous figure. Withr = 1 one gets:

σ2(Sn) = n2pq ⇒ σ(Sn) = n
√
pq

The result is reasonable because whenr = 1 all the variablesXi are identical (with
probability 1) andSn = nX1 from which results thatσ(Sn) = nσ(X1) = n

√

(pq).
With n = 9 andp = 1/4 one gets:σ(S9) = (9/4)

√
3 ≃ 3.9

Alternativelyσ2(Sn) can also be written:

σ2(Sn)

npq
= (n− 1)r + 1

This expression leads to a methodology for estimating the average cross-corelation
which is described in the following proposition.

Experimental methodology
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Proposition 2: How to estimate the average cross-correlation The average
cross-correlationr can be estimated by taking the following steps:
1) One defines an areaA which is a fractionp of the whole domain occupied by
n living organisms.
2) One counts in the course of time the numbersnA(t) of living organisms
which are inA and one computes the experimental values of the meanme and
varianceσ2

e of nA(t).
3) Under the assumptions of the cross-correlation model thenumbersnA(t) are
represented by the random variableSn.; thus,σ2

e will be represented byσ2(Sn).
4) Consequently, if one repeats these measurements for various numbersnk of
living organisms, the variance ofnA(t) should follow the following expression:

σ2(Snk
)

nkpq
= (nk − 1)r + 1

which means thatr will be the slope of the regression(n− 1, σ2
e/npq).

5) Similarly, if for givenn one repeats these measurements for areas of various
sizes for which the fractionp takes the valuespk, then the variance ofnA(t)

should follow the following expression:

r =
σ2(Sn)

n(n− 1)pkqk − 1
n−1

which means thatr will be the average of the quantity on the right-hand side.

Dealing with asymmetric observations

It can be noticed that so far we did not make use of the meanme of the observations
nA(t). The reason is very simple. According to the present model the mean should
always be given by:me = E(Sn) = nE(X1) = n/p. For instance, ifn = 200
and if the whole domain occupied by the living organisms has been divided in only
2 parts so thatp = 1/2, one should haveme = 100. Needless to say,me will never
be exactly equal to 50 because of inevitable statistical fluctuations. However, such
fluctuations should remain compatible with the order of magnitude ofσe. This is not
always the case.

As an illustration, let us mention the following observation recorded with ants:n =

195, me = 58, σe = 12. In this example,n/2 − me = 195/2 − 58 = 39 =
3.3σe. For variables which have a gaussian distribution (as is implied by our model),
a fluctuation of3.3σ has a probablity as low as10−3. Here, however, it is not a
fluctuation which reaches this value but the mean itself. Clearly, such an observation
is not compatible with the assumptions of our model. Unfortunately, this kind of
observation is the rule rather than the exception. How can this be understood?
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Before discussing this point in greater detail, it is important to emphasize that this
asymmetry seriously affects the determination ofr. Why?

The standard deviation of a random variable depends on the frequency and amplitude
of the fluctuations but the most basic factor is its very orderof magnitude. What
we mean is that, except in exceptional circumstances, the standard deviation of a
variable which flutuates around 100 is usually higher than the one of a variable which
fluctuates around 1. In other words, an abnormally low or highmean will result in
an abnormally low or high standard deviationσe which in turn will affectg and the
estimate ofr. So, the issue regarding the mean is quite an essential point.

Simulation

In order to illustrate how the present model is supposed to work we present results
provided by a simulation. This simulation involved the following steps.

(1) First we need to built a set of interdependent random variables. To this end
we start with a set of independent random variablesZi and we define new variables
Xi as linear combinations of theZi. We have been using the Choleski procedure to
produce variables whose cross-correlations are all equal.In this caserij = r for all
pairs. As an illustration we give the matrix form of these linear combinations for
n = 2 andn = 3.











X1

X2

X3











=











1 0 0

r
√

1 − r2 0

r r
√

1−r
1+r

√

1 − 2r2

1+r





















Z1

Z2

Z3











For the purpose of the simulation the random variables whichappear in these expres-
sions will be replaced by m-dimensional vectors. As a result, this step gives a set of
n correlated vectors each of dimensionm:

Xi(t), i = 1, . . . , n, t = 1, . . . , m, i 6= j : cor(Xi, Xj) = r

(2) The second step consists in checking if the random variables Xi have the
properties that one expects. This is done in the following graphs. The first set of
graphs shows the trajectories of each element. One can see that whenr is close to
one the trajectories are fairly parallel. On the contrary, whenr is close to zero they
are almost independent. In practice, the trajectories of individual elements cannot be
observed for that would require a different marker on each and every element. The
second set of graphs shows what can actually be observed, namely a set of successive
pictures of the whole population.

(3) Now we come to the methodology for measuringr. As explained earlier,
the methodology that we suggest is to measure the fluctuations of the number of
elements in a subsetA of the whole container.



109

n=6, rm=0.98, jm=20, a=0.95, sig=1, D=0

A1

B1

A2

B2

A3

B3

A4

B4

A5

B5

A6

B6

Simulation of a process with high cross-correlation.The cross-correlation between the trajectories of the 6
elements is 0.98. TheAi, i = 1, . . . 6 designate the starting points of the trajectories while theBi, i = 1, . . . 6

are the end points.
For this graph as well as for the following graphs the trajectory of each of the 8 elements follows an autoregres-
sive processX(t) = aX(t − 1) + B(t) whereB(t) is a random variable which represents the noise;a = 0.95

which implies that the process has a fairly large time constant (that is to say a long memory).

n=6, rm=0.9, jm=20, a=0.95, sig=1, D=0

A1

B1

A2

B2

A3

B3

A4

B4

A5

B5

A6

B6

Simulation of a process with medium cross-correlation.The cross-correlation between the trajectories of
the 6 elements is 0.90.

The following table shows the estimates obtained in this way. It can be seen that the
ratiog2 defined previously increases with the number of elements.
It is true that in the present case the estimates are fairly imprecise but one must keep
in mind that these estimates were obtained through a regression on only 4 points.
Two interesting conclusions can be drawn. (i) It is important that the time-series
defining the variablesXi are as long as possible. Here we have takenm = 500;
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n=6, rm=0.2, jm=20, a=0.95, sig=1, D=0

A1

B1

A2

B2

A3

B3A4

B4

A5

B5

A6

B6

Simulation of a process with low cross-correlation.The cross-correlation between the trajectories of the 6
elements is 0.20.

n=6, rm=0.98, jm=20, a=0.95, sig=1, D=0

Simulation of a process with high cross-correlation.The cross-correlation between the trajectories of the 6
elements is 0.98.

for smaller values ofm the imprecision would be even higher. (ii) the weaker the
correlation the more difficult it is to to measurer because in such cases the effects of
the cross-correlation are buried in the noise-background.

(4) A more direct procedure would be to compute the correlations between all
pairs of trajectories. As already said, in practice it is in fact not possible to observe
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n=6, rm=0.9, jm=20, a=0.95, sig=1, D=0

Simulation of a process with medium cross-correlation.The cross-correlation between the 6 elements is
0.90. This figure (as well as the following ones) picture their positions on 20 successive time steps.

n=6, rm=0.2, jm=20, a=0.95, sig=1, D=0

Simulation of a process with low cross-correlation.The cross-correlation between the 6 elements is 0.2.

these trajectories. However, in the simulation the individual trajectories are well
defined which makes it possible to test this procedure. Naturally, as this method uses
a much greater amount of information one expects a better accuracy. One gets the
following estimates:
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Estimates of the cross-correlation based on simulated data

Cross-correlation n g2 g2 Slopes of
method 1 method 2 regression lines

rexact rest

0.90 3 2.48 2.90
4 2.91 4.52
5 4.16 5.32
6 4.45 4.53

0.72 ± 0.25, 0.57 ± 0.75

0.60 3 1.75 1.89
4 2.24 2.46
5 2.91 3.30
6 3.71 4.39

0.65 ± 0.10, 0.83 ± 0.16

0.20 3 1.24 1.69
4 1.75 2.18
5 1.62 1.79
6 1.47 1.90

0.056 ± 0.2, 0.02 ± 0.2

Notes:n is the number of elements in the population.g2 is the ratio of the observed variance to the variance for uncor-
related variables. Method 1 refers to the method in which it is the probabilityp which is adjusted beforeg2 is computed,
whereas in method 2 it is the number of active elements which is adjusted prior to computingg2. The column “Slopes
of regression line” refers to the regression(n − 1, g2); the first and second numbers are the slopes for method 1 and 2
respectively.

Regression on every position of the ants

r = 0.90 : x variables→ rx-est= 0.91 y variables→ ry-est= 0.88, rxy-est= 0.89

r = 0.60 : x variables→ rx-est= 0.64 y variables→ ry-est= 0.63, rxy-est= 0.63

r = 0.20 : x variables→ rx-est= 0.33 y variables→ ry-est= 0.17, rxy-est= 0.25

It can be seen that the accuracy is indeed better than for the results given in the table
especially for lowr.

How to deal with asymmetric observations: first method

The description given by our model implies that if the total area is divided into two
partsA1, A2. none is favored. This means that the probablity to be inA1 should be
the same as the probability to be inA2. If it is not the case, there must be some kind
of asymmetry. One can think of (at least) two possible causesof asymmetry.

(1) If the number counted inA1 is much larger thann/2, it may be because for
some reason(s) (usually unknown to us) the ants prefer to be in A1. For instance, if
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there is a dead ant inA2 this part may be avoided40. If this is the case, it means that
if A represents a fractionp of the total area, the probability to be inA should not be
taken as equal top but rather as equal top′ = me/n. For instance, in the previous
example wheren = 195 andp = 0.5, one getsp′n = me = 58 ⇒ p′ = 58/195 =
0.30.

In short, in this methodology the theoretical variablep will be replaced in all the
formulas of Proposition 2 by the adjusted parameterp′ = me/n.

(2) A second possible cause is the fact that some individualsjust do not move.
One can say that they are “frozen”. It is to this case that we turn now.

How to deal with asymmetric observations: second method (frozen elements)

On using the previous method one does not have to care about the cause of the asym-
metry. However, observations show that a fairly common cause is simply the fact
that some of the living organisms remain motionless. If theywere in subsetA ini-
tially, they will remain there during the whole duration of the observation. Similarly,
if they were not inA initially, they will remain outside ofA all along. As they never
change side, these elements can be said to be “frozen”. On thecontrary, the elements
which move in and out ofA will be called active elements.

If one assumes that there aren′ active elements, the sumS can be written as follows:

Sn = Sn′ + fA, where:S ′
n = X1 + . . .X ′

n, fA = Xn′+1 + . . .Xn

WhereasS ′ is a random variable,fA is a deterministic constant which is equal to the
number of frozen elements located inA. Thus, the variance ofSn becomes:

σ2(Sn) = E
[

(Sn − E(Sn))
2
]

= E
[

(Sn′ + fA − E(Sn′) − fA)2
]

= σ2(S ′
n)

which shows that our previous calculation applies here as well providedn is replaced
by n′.

σ2(Sn) = n′σg2, g =
√

1 + (n′ − 1)r

So, the only question which remains is how to determinen′. In fact, there are 3
unknown numbers:n′, the number of frozen elements inA that we have denoted by
fA, and the number of frozen elements that are not inA which will be denoted by
fĀ. Although we only needn′, this number can only be found together with the two
other unknown numbers.
At first one might think that there can be a way to determine these numbers from

40It should be noted that at this point this remains a fairly hypothetical reason. We did not try to test it by putting several
dead ants on one side. In fact, we did not wish to engage in sucha direction because it seems a hopeless task to try to find
out what are the parameters which rule the behavior of the ants. Moreover, the “frozen ant” mechanism that we discuss
later on seems simpler and more satisfactory anyway.
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evidence based on the means inA andĀ. This is not the case, however, for a reason
which is explained below.

As the question cannot be solved in a general way we will be content with exam-
ining two special cases which are of special practical significance. For the sake of
simplicity, in the following discussion it will be assumed thatp = 1/2.

(1) One major cause of frozen elements occurs when ants or bees cluster together.
If the cluster is formed inA this will result in a bigfA. As Sn = Sn′ + fA we see
that this will result in the fact thatme (which is the observed value ofE(Sn)) will be
fairly large and in particlar larger thann/2, the expected value in the absence of any
frozen element. Consequently, we will consider the fact that me > n/2 as indicating
that a cluster has formed inA and none outsideA. In such a case almost all the
frozen elements are inA which means thatfA ≃ n− n′. Thus one gets:

E(Sn) = E(S ′
n)+fA ≃ E(S ′

n)+(n−n′)1 ⇒ me = n′/2+n−n′ ⇒ n′ = 2(n−me)

In the general case, the last result would take on the form:n′ = (n −me)/(1 − p)

and this case will be signaled by the fact thatme is substantially larger thannp.
(2) On the contrary, if the cluster is formed outside ofA then almost none of the

n− n′ frozen elements will be inA which means that

Sn == E(S ′
n) + fA ≃ Sn′ + (n− n′)0 ⇒ me = n′/2 ⇒ n′ = 2me

In the general case, the last result would take on the form:n′ = pme and this case
will be characterized by the fact thatme is substantially smaller thannp

(3) Finally, one must consider the intermediate case in which the number of frozen
elements is approximately the same inA and outside ofA. This may happen when
there are two clusters, oneA and the other inA. It can also happen in the absence of
any cluster when the individuals which are frozen (or at least somewhat “sleepy”) are
distributed uniformly in the whole population. Under that fairly natural assumption:
it makes sense to assume that the sleepy elements are neraly in equal number in the
two parts. In such a situation:

Sn = Sn′ +
n− n′

2
1 ⇒ me = n′/2 +

n− n′

2
= n/2

We see thatme, the average population inA, will be the same as without frozen
individuals41. This result could of course have been expected in advance. Indeed, if
the frozen elements are distributed in the same way as the rest of the population the
mean will not be affected. For instance, if forn = 200 there are 198 frozen elements
and just 2 non-frozen elements and if the 198 elements are distributed uniformly

41The same argument holds in the general case when the areaA is a fractionp of the total area.
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betweenA andA, one will haveme = (0 or 1) + 99 ≃ n/2. In other words, the
mean is the same as without any frozen elements.
In contrast, the variances will be very different:
• With 198 frozen elements:σ2(S200) = σ2.
• Without any frozen element:σ2(S200) = 200σ2.

Conclusions The previous discussion shows that:
(1) A problem due to frozen elements can be detected (and corrected) ifme, the

time-averaged population inA, is substantially different fromnp.
(2) If me ≃ np but there are nevertheless frozen elements, this problem can nei-

ther be detected nor corrected and it will lead tounder-estimatingthe variance and
to a biased estimate for the average cross-correlationr.

Remark Frozen elements can of course be detected by individual visual inspection
of the living organisms. However, when their number reachesseveral hundreds this
becomes fairly difficult.

Example of application of the previous methodology

We consider the following case which corresponds to a real observation performed
on ants

n = 520, p = 1/2 me = 212, σe = 47

and we apply successively the two previous methods.

Method 1 (asymmetrical preference for some unknown reason)
The adjusted probability is

p′ = me/n = 0.41 ⇒ q′ = 1−p′ = 0.59 ⇒ σ2(S1) = pq = 0.24 ⇒ σ2
i (Sn) = npq = 126

As a result:

g2 =
σ2

e

σ2
i (Sn)

=
472

126
= 17 ⇒ r =

g2 − 1

n− 1
= 0.032

Method 2 (frozen elements)
Here we are in the case whereme = 212 is substantially lower thannp = 520/2 =
260. Hence we get the adjusted number of active elementsn′ through the formula:

n′ =
me

p
= 2 × 212 = 424

Then we determiner by using the standard formula withn replaced byn′.

= n′pqg2 =
σ2

e

n′pq
=

472

424 × (1/4)
= 21 ⇒ r =

g2 − 1

n′ − 1
=

21 − 1

423
= 0.047

As can be seen the two methods lead to average cross-correlations of the same order
of magnitude (they differ by 32%). Here, just for the sake of ilustration, we have
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computedr from a single experimental result. One should observe that the right
method for determiningr is not to compute it from individual results but to get it as
the slope of the regression line determined by several results (in fact, as many results
as possible).

For a givenσe, the average correlationr is completely determined byg2. However,
in computing the regression line it is not onlyg2 which matters but also the value
of n′ because thex-variable of the regression is the number ofactiveelements. For
instance,p = 1/2 andme = n/20 implies n′ = n/10. The fact thatn′ is much
smaller thann makes a big difference in the regression. This is illustrated in the
following graph which summarizes 11 experiments carried out with various number
of ants.
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Method 1 (adjusting p), r=0.025+-0.01
Method 2 (adjusting n), r=0.043+-0.01

Comparison of two estimation methods of the average cross-correlation of a population of ants. The
cross-correlation is a way of expressing the average interaction strength between the ants. The correlation of
the set of 11 points (not to be confused with the estimated cross-correlation which is the slope of the regression
line) is0.84 for the first method and0.95 for the second. In the second method the frozen elements are left out
and do not contribute. The present results suggest that at least in this case the second method does a better job.
The error bars ofr represent a confidence interval for a confidence level of0.95.

At first sight it may seem surprising that the estimated cross-correlation is as low as
0.04. In the next section we explain why this is so.
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Why is the estimated cross-correlation so small?

First of all, it is necessary to make an important distinction. Suppose that by comput-
ing the correlation of a set of data(xi, yi) 1 ≤ i ≤ n one gets a correlation as low
as 0.04. Such a low correlation would almost always mean thatthe correlation is not
significant in the sense that the confidence interval contains the correlation zero42.

Here, however, the correlationr is obtained in a different way, namely as the slope
of a regression line. From the errors bars given in the caption of the figure it can be
seen that this estimate is quite significan in the sense that the confidence interval of
r doesnot include 0.
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Relation between the fluctuations ofn1(t) and the values ofr. We suppose that the whole domain which
contains the ants has been divided into two parts and we observe the fluctuationsn1(t) of the number of ants in
part 1. The black curves correspond to different hypothetical curves while the red curve is what was actually
observed in the experiment with ants considered above. The numbers given under the graph are the standard
deviation and the (corresponding) correlation for the black curves. For the red curve these numbers are 47 and
about 0.04 respectively.
The first graph corresponds to the greatest possible standard deviation in the sense that at each time step all the
ants move from part 1 to part 2 or vice versa; in this case the average cross-correlation is almost equal to 1.
In the second case the same move occurs in two time steps, while in the third it occurs in 4 time steps. In the
actual experiment one time step was 5 mn which means that in this last case all ants would change side within
20 minutes. Finally, the last graph corresponds to a case in which the variance of the simulated curve is similar
to the variance of the observed curve.

Conclusion: the route ahead
42The only exception to this rule may occur when the numbern of pairs is very large (say several thousands) so that

the confidence interval becomes smaller than 0.04.
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The experiments carried out over the past months were tentative and provisional in
many ways. The research involved the following steps.
• New measurement methods had to be designed
• Appropriate devices had to be bought and pieced together
• The consistency of the results obtained by different methods must be checked.

Whereas the first two steps have been largely completed, for the last one more work
is still needed.

Once the methodology will be found to work two important questions will have to
be addressed.
• How does the strength of interaction change with the averagedistance between

the elements?
• How can one estimate the level of noise?

Why are these questions important?
In our discussion of phase transitions in physics, we have found that they are mainly
determined by two facteurs: (i) the average inter-molecular distance (ii) the velocity
of the molecules which is directly related to the temperature of the suystem. A
change of state can be achieved through either (or both) of these parameters.

So far we did not consider the question of the temperature in non-physical systems
because we were not really in a position to do so.
Indeed, a given level of fluctuations can be due
• To a strong interaction combined with a low level of noise, or
• To a weak interaction combined with a substantial amount of noise.

These two possibilities are well illustrated by the formulafor a sum of coupled ran-
dom variables that we have written earlier.

σ2(Sn) = nσ2 [(n− 1)r + 1]

In this formulaS(n) is the number of molecules contained in a subset of the system.
For a givenn the sameσ2(Sn) can be obtained with a highr combined with a small
σ or with ar close to zero and a largeσ. The first case would correspond to a solid
at a low temperatureT1 whereas the second would correspond to a gas at a high
temperatureT2 (T1 ≪ T2).

We leave this question open for further discussion.
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Appendix A: Practical hints for doing experiments
In recent decades experiments in molecular biology, biochemistry or biogenetics
have become more and more sophisticated. It seems that costly technical devices
had become a must. Yet, the history of physics tells a fairly diferrent story. For
instance, the experiments done par Galileo (1564-1642), Torricelli (1608-1647) or
Pascal (1623-1662) which opened the road of modern experimental physics relied
on fairly simple devices. Similiarly, the experiments doneby Gregor Mendel re-
quired great care and patience but fairly little in terms of equipment. It is likely
that for developing the statistical mechanics of living organisms that is envisioned in
this report it is more essential to find appropriate experimental ideas than to rely on
high-technology measurement devices. Once the bases have been laid and the need
emerges for more accuracy in the measurements then, but onlythen, will be the right
time for resorting to high-tech equipment.

Fig A1: Ants and drosophiles On the left: collecting ants. The white Bristol board was left a few centimeters
from the exit hole of a colony for about half an hour. The brownproduct is chesnut cream with a few drops of
water.
On the right: a tube containing drosophila as prepared by a research laboratory in population genetics.

To do experiments on populations of ants, fruit flies or smallfishes is somewhat
similar to running simulations on a computer in the sense that the experimenter asked
questions and the experiment provides the answer. As will beseen, the techniques
which are necessary for such experiments are fairly simple to implement.
We will successively describe how to get the populations, how to keep and control
them and how to do the experiments

How to get the fishes or insects?

Small fishes The organisms which are probably the simplest to buy and handle are
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Fig. xx: Carbon dioxide gas cylinder. As compressed carbon dioxide is necessary in many activities, small
cylinders similar to the one shown on the picture can be bought fairly easily and at low cost. The one represented
here is used for the production of sparkling water, it weighsonly one kilogramme and costs about 20 euros (10
euros for the empty bottle and 8 euros for a refill).

small fishes. Whysmallfishes. The answer is obvious for in order to reduce statis-
tical fluctuations it is often necessary to use populations of one or several hundred
fishes. Thus, to minimize cost and size of containers one mustfocus on fishes of less
than 2 or 3 cm in length. Fresh-water fishes of such a small sizeare usually sold to
serve as preys for bigger fishes and for that reason are fairlyinexpensive.
Such small fishes are not only easy to buy, they are also easy tohandle in the sense
that, unlike ants or fruit flies, they remain in their container.
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