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A bee collecting nectar from a flower or an ant carrying a pireedle toward its nest does not look
very different from a butterfly flying from one flower to anatii¢ first sight there is nothing to tell us
that bees and ants have strong interactions with their natgswhereas butterflies live alone. Yet, as
soon as foraging bees come back to their colony, they inteval worker bees waiting to take over
the pollen and move it toward storage places. This comparssmgests that in order to measure the
interactions between living organisms, one must choosatsins and circumstances in which the
inter-attraction can and will manifest itself.

Over the past three years we have conducted a series of exg@s with groups of insects and small
fishes. Our initial objective was to set up techniques whichld/allow to define and measure inter-
action strengths in systems of living organisms. This leatbunvestigate several basic phenomena
of statistical physics, e.g. evaporation diffusion, effnsphase transition (gas to liquid), and so on.
In the course of these investigations we came to realizeinh@tler to make sense of our results, we
should develop an alternative form of statistical mechanic

In this report (i) we suggest some parallels between physistems and systems of living organisms
that we hope to be useful. (ii) we present some prelimingogemental results and (iii) we propose
ideas for experiments to be done in the future.

Most of the experiments that we will describe have been dor#910 and 2011 by students and
researchers at Beijing Normal University, the Chinese dlal Academy of Science in Beijing, the
South China Agricultural University in Guangzhou and thestean Bee Institute of Yunnan Agricul-
tural University in Kunming, Yunan. We would like to thankparticipants including those who are

not explicitely named in this report.



CHAPTER 1: CONCEPTS

Agent based modeling versus physics based modeling

Our objective is to present a set of models which will servgasisticks for eval-
uating various escape experiments performed on insectiorahpopulations. In
such experiments a fraction (or in some cases all) units rfrove a containetA to
a containerB in a given amount of timé".

Such models can be set up in two different framewoks.

e One of them is what is currently called agent based modelingean to build
a model based on our intuitive understanding of such exmarisn For instance,
individual units would have a more or less random motion andld/also be able to
detect the presence of their neighbors and rule their owawehaccording to what
they perceive around them.

e A second way is to present differgpoitysicalmodels in which a gas or a liquid
flows from one container to another and to try to determinectvione is best suited
to describe what is observed in our experiments on livingsuni

Which one of these approaches will be the most fruitful?

At first sight it seems that the first approach is the best mdleaves us complete
freedom in designing the model. On the contrary, in the se@mproach modeling

Is conditioned and constrained by physical arguments wiimehmay find irrelevant

for living units. This sounds quite convincing. Nevertheless it isgwnd approach
that we will try here. Why?

Our choice is motivated by several reasons.

(1) Our objective is not to model our experimental resultdlatost. Our objective
Is to understand what they tell us about the interaction eetwndividual units. If
in the first approach we introduce an inter-individual iatgion in a plausible but
in fact fairly arbitrary way it will be of little usefulnesf determining the values
of the parameter(s) which define this interaction becausewtiti not provide any
usefulyardstick Determining these parameters will just replace our oladEmal
estimates of the interaction strength by more theoretiaedpeters which will not
necessarily be more transparent

twithout going into technicalities, it is fairly obvious thée two main facets of the model, namely the randomness
and the interaction will not be independent. If one selectaralom motion with a large standard deviation one will
need a stronger interaction in order to describe a givenwehan fact, this kind of agent based modeling would become
satisfactory only if one would be able to pre-deternafigparameters of the model from observations that are indegrend
from those that one wants to describe. This would transfoiemtodel into one without free parameter would make the
comparison with observation really significant.
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(2) Physics offer a set of cases corresponding to interesttmvering a whole
range of strengths. From a gas with very little interactioahsas helium to a liquid
or a solid, physical phenomena display a broad set of yafdsti

(3) Physics also offers a number of concepts which chaiaeténe collective
behaviorof a set of molecules. The notions of temperature, pressigeysity are
not trivial. It took centuries to physicists to identify theand define them properly.
As a matter of fact, we do not yet know how these notions shbalttansposed to
systems composed of living units. This goal sets a stimgdathallenge.

(4) In the same line of thought, one should mention what i9abby the most
important reason for using physical analogies. Phaseiti@ms (from gas to liquid
or from liquid to solid) are non-trivial phenomena which aegy difficult to describe
through agent based model$hase transitions are likely to play an important role
for insect populations as shown by the very existence of thstering effect for
social insects.

(5) If molecules and living units were to obey completelyffeliént rules it would
make little sense to take the properties of gases or liqudsguide. Yet, several ob-
servations suggest that there are in fact deep similarifieis question was discussed
in an earlier paper (Roehner 2005). As an illustration omernantion an observa-
tion which will be discussed later on in this paper, nameby féct that non-social
insects seem to behave like a gas whereas the behavior af smacts is more that
of a liquid. If social insects are put in a container they tusogether without filing
the whole volume whereas non-social insects will spread aVavailable space.

In the next section we discuss the possibility of a commoméaork for physical
systems on the one hand and biological or socio-economiersgon the other hand.

Physical systems versus systems of living organisms

Role of environment

At first sight it may seem that systems of living organisms swedifferent from
physical systems that attempting to build a statisticallmeas of living organisms
Is an hopeless objective.

One of the main obstacles is the fact that living organismg maae different types of
behavior. As an illustration consider bee workers in a beehersus foraging bees
collecting nectar from the flowers around the beehive. Inkbibehive the workers
are closely packed together and do not fly; on the contramaging bees fly to
flowers hundreds of meters (or even one or two kilometersydwen the beehive

2Remember in this respect how tricky it is to describe phasesitions either analytically (e.g. through Onsager’s
model for a set of spins) or by computer simulations.
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and they do so mostly alone. It would be difficult to imagirteations with a sharper
contrast.

Yet, there is a similar difference between molecules insidiguid and molecules
of vapor which escaped from the liquid. In the liquid the nuolles are closely
packed togethef whereas the vapor molecules can travel large distances.t Wha
accounts for the difference between liquid and vapor? Thiecotes are the same,
their velocities are almost the same, what is different ésaterage inter-molecular
distanced. Basically,dvapor ~ 1000d)iguid -

This analogy does not completely solve the question howdivaray be that work-
ers and foragers are different in some fundamental aspéttstder to determine
what are these differences (if any) one must compare thbmber in identical and
controlled conditions. This is one of the objectives of thpaximents which will be
described later.

Energy in physical systems

The notion of energy plays a fundamental role in all fieldslofgics and especially
in statistical mechanics. Do we have something similar steays of living organ-
isms? What would be the energy of a system of living organisiiee answer is
fairly simple.

In a system of particles there are basically two forms of gyer
e Kkinetic energyF,. and
e potential energyy,.

Kinetic energy manifests itself through the movements efrttolecules. This is an
easy notion. The notion of potential energy is less cleae gdtential energy is due

to the interaction between the molecules. In order to malkenthition more intuitive
imagine the interaction between two molecules as beingmaired by a thin thread

of rubber. When the molecules are far apart their potentiafgy is (by convention)
equal to zerd¥,(co) = 0. Then, when one leaves the molecules to move toward one
another the force between them produces positive work (trk is positive because
the force is in the same direction as the velocity, it is themegrocess as when a
ball falls from a heighth; to a heighth,) thus the energy of the system becomes
lower which means that it becomes more and more negativanplsiillustration is
provided by the system composed of the Earth (whose centdenate byF) and a
massn. Whenm and E are far apart, the system has a high potential energy. When
the mass falls toward the potential of the system will decrease. If, nonetheless,
assume that by convention the “far apart” situation comwesig to an energy equal to

3Similarly, for a gas contained in a closed vessel the motecabllide with their neighbors every)~'° second
whereas molecules which escape into vacuum through a solallrhan effusion process can travel large distances.
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zerd, then, of course, all cases whereis closer toE will correspond to a negative
energy.

The total energy of the system is the sufi:= E. + E,. Let us consider some
special cases.

For an ideal gas, such as argadt,, ~ 0 which means thatl ~ £, > 0. On
the contrary, for a solid at a temperature near O degree IKéha velocities of the
molecules are very small which means that~ 0 and therefordy ~ £, < 0.

Between these extreme cases, there is a whole range of edenm situations. For
instance, for a solid at room temperatufe,| > E,. which means thaty < 0.
For a gas (not necessarily an ideal gas) at a temperaturedd0® Hegree Kelvin
the potential energy is negligible compared to the kinetiergy which means that
E~FE.>0.

An obvious consequence is that in order to transform a pieosetal at 0 K (£ =
—F; < 0)intoagas £ = E; > 0) one must inject into the sytem a huge quantity of
energy (namel\F, — (—E;) = E; + E»); usually this is done by heating the system;
however, as demonstrated by microwave owens, this can aldorie by giving more
kinetic energy to the molecules (which has of course the samderesult although
the device is different).

Energy of a system of living organisms
What parallel notions can be defined for a system of livingaargms?

More specifically, let us consider a population of a few heddoees contained in a
glass container.

They move around walking on the walls or occasionally flyingis possible to
define (and to measure) the distribution of their velockieactly in the same way as
for the velocities of the molecules of a gas. In other worke Kinetic energy of the
bees can be defined in the same way as for a physical system.

What about the potential energy? This notion seems less lobEmuse (so far) we
have little knowledge regarding the force of attractionwmsin bees. However, the
existence of such a force is clearly demonstrated by thetiattleft to themselves,

bees will attract one another eventually (after about hal@ur at 20 degree Celsius)
forming a cluster. Although fairly compact with bees clgspacked together, this
cluster is not completely steady like a solid. In other wottigs cluster of bees is

something between a solid and a liquid, very much like foamream.

So, there is certainly a potential energy. As the bees aresdlmotionless in the

4Although simple, this assumption is not really “naturalthase we are not used to the fact that something which is
large is equal to zero. In other words, we are not used to derisg0 as a “big” number, which it is, nevertheless, if all
other numbers in the series are negative.
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cluster, one can even say that, the energy of the system asaéntirely in the form
of potential energy, i.e.l ~ £, < 0.

On the contrary, if the bees are in a larger box and all flyimyadE ~ E,. > 0

What about energy conservation?

The principle of energy conservation is a fondamental lawlofsics. Do we have
something similar for systems of living organisms?

A simple observation will convince us that for systems aflgyorganisms energy is
notconserved, at least not in the same instantaneous sensplasios.

Consider a group of about one hundred fruit flies, e.g. droeg@mpcontained in a
test tube: many may rest on the layer of food at the bottomefube while others
may slowly climb on the walls of the tube. If one hits the glagshe tube with a

plastic ruler, suddenly all flies begin to move: some quickblk up to the top of

the tube, others fly to the top just to fall back as they hit tap.cObviously, the

kinetic energy of the drosophila jumped instantaneouslgmie tube was hit with
the ruler. Somehow the drosophila switched to a kind of “pambde” in which they

momentarily expense a great amount of energy. Then, in fleviag minutes the

system relaxes to its previous state.

In short, the difference between living organisms and mdéscis that living organ-
Isms can store energy which can then be released in bursts.

Another (and related) difference is that populations ahbivorganisms need a per-
manent input of energy for remaining alive that is to say feefing a substantial
amount of kinetic energy.

Although these two differences seem quite significant, imigortant to realize that
they are not fundamental differences. Indeed the same pham also exist for
molecules albeit not on the same scale.

e A big molecule (e.g. a protein counting several thousandsg} has many
modes of internal vibration. These modes can be excitedrggtiag the molecule
with a laser beam. The energy stored in these excited wioratiodes is similar to
the energy stored in living organisms in the form of storedbohydrates or lipids.
What is different, is the time scale of the relaxation preceEhe energy stored in
vibration modes is released through “vibrational enerdgixation” (or VER ) in
a matter of a few picoseconds0(*? s). In contrast, the relaxation time of energy
stored in living organisms can range from a few hours to stwveeeks.

e We may think that, in contrast with living organisms, moliesucontained in a
container can keep their kinetic energy for ever. Howevs, it only true as long as
the container remains at room temperature.

5See for instance Fujisaki and Straub (2005).
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For a physicist living near the South Pole during the monthemthe Sun is under
the horizon, any container left unattended outside of thadiquarters would cool
down to average outdoor temperature (around -40 degre@a€gels\s a matter of
fact, even the polar station itself would return to the saemepterature in a matter of
a few days once its fuel reserve is exhausted.

This example helps us to understand that the kinetic endrpotecules ultimately
relies on a source of energy which is basically the solarggnerceived by the earth.
In the absence of this energy flow the temperature at thecudithe earth would
cool down to a few degree Kelvin. It is the natural radioattiof the earth which
would keep the temperature a few degrees above zero.

Yet, from a practical perspective our observation that ks and living organisms
are notfundamentallydifferent does not solve the problem. The fact remains that
systems of living organisms will have a much broader rangegimes than systems
of molecules. As a result, experiments will be more diffidoltrepeat. In order

to reduce variability, one will have to control the state wfrlg organisms at the
beginning of the experiment. A possible control-methoaisetcord the distribution

of velocities of the organisms. Such a test will reveal wkethe organisms are in a
excited, subdued or “normal” state. In this way, one doesheed to be concerned
with the actual reason of this situation, a question whiclulide difficult (if not
Impossible) to settle anyway.

Toward a statistical mechanics of living organisms

Physical systems with weak interactions

Over the past three centuries physicists have studied mestgrss involving either
weak or strong interactions. The most well known systemhb wikak interactions
are gases such as helium of argon as well as (albeit withegreatiability) most
other real gases. This case is particularly important frairearetical point of view
because the theory which was developed for gases, namekirtegc theory of
gases, has brought about several key-concepts of staltistechanics e.g. tempera-
ture, energy, entropy, phase space.

Physical systems with strong interactions

Systems with strong interactions comprise the study ofdisjor solids. Although
the theory of such systems is fairly difficult they are of margortance for our
purpose because they provide many examples of phase iwassitVhy are phase
transitions important?

Defined in a fairly general way, a phase transition is a chamgee internal struc-
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ture of a system. The transitions from gases to liquids ahdssare well known but
In a sense they do not provide the best examples of phaséitaadecause they
result in sweeping changes which completely unravel thgirmal structure. Gases
have no internal structure and therefore have no phasatiomss On the contrary,
solids have intricate internal structures and therefordetgo many phases transi-
tions. Most metals exist in different crystallographicustures For instance, tin
exists in two allotropi® forms, namelyn-tin and 3-tin, more commonly known as
gray tin and white tin, respectiveély Two more allotropesy-tin ando-tin exist at
temperatures above 161 degree celsius and pressures &)006 atmopheres.

The existence of many allotropic forms is not unique to nselait is also observed
for most non-metallic solids. It is well known that diamonaldagraphite are two
allotropic forms of carbon. Graphene and fullerenes are dit@rs. As another
example one can mention sulfur which forms 30 solid allatoand also some gas
allotropes), more than any other element. Just to mentionofwthem,a-sulfur is
the (solid) form which exists at room-temperature. Aboves3tegree celsius it is
replaced by the-sulfur form.

Notion of temperature for non-physical systems

First of all it is useful to introduce a distinction betwesgstems for which there is a
clear spatial dimension and those for which it is not the case

Spatial systems versus non-spatial systems

We observed earlier that for systems of living organism$ siscpopulations of bees
or drosophila, the velocity and hence the kinetic energylmaeasily defined. For
such systems the standard estimate of temperature as bepayfonal to the aver-

age kinetic energy can be used.

In contrast many economic and social systems do not haveadyctefined notion
of spatial distance. As examples one can mention systempased of companies,
commodity markets or stocks. For such systems one canridtgnspose the stan-
dard physical notions of energy and temperature; thus,dardo define meaningful
parallels one needs to understand the core concepts on tegtotions of energy
and temperature rely. This is what we intend to do on this@®ect

6The meaning of the word “allotropic” is “to exist in differeatable forms”. The Greek word “allotropia” means
“variability”.

-tin has a tetragonal structure ans is a malleable metalemisartin has a diamond cubic crystal structure and has
the aspect of a grey powder. The transition from ghi® the o form occurs under 13.2 degree celsius. This, however,
requires ideal laboratory conditions in terms of purity @wtn on such conditions the transition is very slow. The
transition temperature is much lowered in the presence piiities. In the presence of traces of bismuth the tramsitio
may not occur at all.
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Before coming to this, let us come back to systems of livilgaarsms. Once, energy
and temperature have been defined it is of crucial importemperform consistency
checks in order to confirm the significance of such notionsémwh organisms.

One possible test is the following.

The equipartition theorem of statistical mechanics tedlthat(1/2)m < v >= kT,
wherem is the mass of the particle,its velocity, & the Boltzman constant aridthe
Kelvin temperature. Although this formula is only an appnoation in the sense that
it assumes a continuous and unbounded distribution of grevgls, let us accept it
as a first step. An obvious consequence is that, for a givepaeaturep should be
proportional tol /m. For the sake of brievity, this effect will be called the “bay
means slower” effect.

Does such a prediction make sense for systems of living egex?

At first sight the answer seems to be “no”. For instance, insesy of fishes of
the same species but of different sizes (e.g. young fishesdwuith adult fishes),
big fishes can swim faster than small fishes. This seems evea obvious for a
population which comprises fishes of two species, one wisicii small size and the
other of a bigger size.

What answers can be given to these objections?

e First, it must be emphasized that although some scalingections may be
allowed, theremustbe a “bigger means slower” effect. Otherwise, there will be n
thermalization through mutual interaction, hence no dl@ogilibrium. If there is
no global equilibrium statistical mechanics does not apply

e Secondly, it must be emphasized that so far there are veryl&taabout the
distribution of velocities in systems of living organisnv§e need more experimental
results before trying to answer the previous question.

¢ Ininterpreting experimental results one should make a dissinction between
“free velocity” and “diffusion velocity”. Free velocity ishe velocity observed in
effusion experiments that is to say in the absence of mutwataction. Diffusion
velocity is the velocity observedithin a system of elements in mutual interaction.
These velocities are ruled by different formulas. For frelugities, the rule i =
V2kT /m whereas for diffusion (in a liquid), the rule will be:

T2 = 2Dt = vy ~ 2D/t ~ \J1/t1/m!/

(the Stokes-Eintein relation which is only valid in liquidss used in the last step).

It can be seen that the expected dependence with respeadttaot the same.

e So far, we have considered systems in equilibrium. In ordehieck whether
thermalization occurs or not, an alternative method is gecinelements whose ve-
locity is widely in excess of prevailing thermal velocityn physics this occurs for
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instance when fast neutrons which are emitted as a resulhatiear reaction are
slowed down through interaction with surrounding atomswéter, in the course of
about 16 collisions with surrounding atoms, the velocityasit neutrons is reduced
by a factor of almost0° and this occurs within0~1° second (for more details see
the discussion in Roehner (2007, p. 63-65)).

Similarly, it would be interesting to observe what happem&mwa living organism
Ay moving with a high velocity; (for instance because of an external excitation) is
introduced into a system of slowly moving organisms If there is an interaction
betweenA, and theA; one would expect thermalization to occur. As a result one
should observe thafy decreases until it becomes equal to the average velociheof t
A;. Needless to say, the decrease rate must be faster thanetiobserved in a group
of only Ays once the external excitation has been switchel off

The relaxation time of such a process would provide an egtimhthe coupling
strength betweenr, and theA;. The longer the relaxation time the weaker the cou-
pling strength.

For such an observation the following experimental procedan be suggested. For
the sake of illustration, we describe it for ants but it cacadirse also be tried with
other living organisms.

First one must measure the distribution of velocities in @ugrof ants at different
temperatures, say 10, 15, 20 and 25 degrees Celsius. Tlaisiig @one by shooting

a film and analyzing itimage by image on a computer. Knowiradg tihe time interval
between two images is 1/20 s, the velocities can be obtamedthe displacements
between successive images.

For the second step a group of ants is put at a temperatured#gi@es for about 20
minutes. Then, it is removed from the cooling box and lefioatn temperature (25
degree). Progressively, the velocity distribution wilheerge toward the distribution
at 25 degree. Let us denote hythe corresponding time constant.

The third step is similar to the second step except thaty béeng taken out of the
cooling box, the ants are mixed with a group of ants which Hsaen kept perma-
nently at room temperature. Before being put into the cgdhiox the ants had been
marked with a white dot so that they can be identified on the filmthe same way
as above, we measure the time constamthich characterize the convergence of the
white dotted ants toward their velocity distribution at 28gcees. If the difference
AT = 19 — 71 IS positive, A7 can be seen as a measure of the interaction between
antg.

8Even in the absence of any water, the fast neutrons will aleateally be slowed down as a result of their collisions
with the wall of the container, but this process will take ader time.

9This experiment relies on the belief that there is indeedladive effect and that the warming up process is not just
the result of a physiological mechanism at individual level
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An alternative form of the experiment would be to replaceahts from the cooling
box by ants of a different species which has a slower veldatdigyribution. If the
velocity is purely determined by species identity theitrlsition will be the same
when the species are mixed as when they are kept separatée@aritrary, if the
velocity distributions

e Finally, let us consider a case which is well known by beekeepn European
honey bees (Apis Mellifera) males are about twice as big amles and they are
known to fly or walk more slowly. In fact, males can be readdgagnized not only
because their slower flight but also because their wings mmuke noise.

Can this case be considered as illustrating the “bigger mskmver”’ requirement?
We do not think so.

The flight velocity of the males is lower not as a result of theieraction with the
females but rather as a consequence of the fact that thegsveire undersized with
respect to their higher weight which implies that althoulgéit wing frequency is
higher (hence the louder humming) they cannot match thecirglof the lighter
female bees. In short, this case has nothing to do with tHexaian.

Temperature as seen as a manifestation of dispersion

When the order “March, forward” is given to an US Army squaldsaldiers start
marching at the same moment, in the same direction and aathe pace. This can
be considered as the analog of what happens in physicahsystiea temperature of
zero degree Kelvin.

For instance, if an external magnetic field is applied to apagnetic materiahll
magnetic moments will imnmdediately align themselves ingame direction. This
will happen no matter how small the external field. In our tarly illustration, one
would say, that the soldiers will all start to walk even undeslightly whispered
order.

On the contrary, at a non-zero temperature, only a specgjgstion of the moments
will become parallel to the external field and this propartiacreases when the
external field becomes stronger as illustrated in the graptne military analog this
would mean that even when the order is shouted fairly loudlyall soldiers will
start to march.

A social parallel: effects of the Fukushima accident

What parallel with social phenomena can one suggest? Gamisid accident that
occurred in mid-March 2011 at the nuclear power plant of Bhkma in Japan. It
resulted in a permanently increased level of radioactivitifukushima prefecture.
In a limited area around the plaall people were evacuated. This was the analog of
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Fig.xx:Effect of non-zero temperature on the mean magnetianoment of a paramagnetic substance.
When an external magnetic field is applied to a paramagneiistance at a temperature of zero degree Kelvin,
100% of the magnetic moments become parallel to the extéetdiwhich results in a maximum mean mag-
netic moment per unit of volume. At a non-zero temperatury anfraction of the moments will become
parallel. As a result, for a given external field, the mean metig momentn(H ) per unit volume will be
smaller. The formula ism(H) = ptanh(pH/kT) (Reif 1965. p. 207)

the “Forward march” ordéf. On the contrary, outside of the evacuation zone in the
rest of Fukushima prefecture, some people moved to othéegitees while other
people remained in their homes. For instance, most pregvanen or families with
small chidren moved to other places. Needless to say, méwey cdasons may have
played a role in the decisions made by people. Outside ofwaeuation zone, the
response to the accident can be described as a non-zerorédunpesffect. That is
why non-zero temperature can be seen as a manifestationeo$tty.

Notion of diversity at atomic level

At atomic level, the fact that not all magnetic moments resjio the external field in
the same way is also, in a sense, due to diversity. How shbalddtion of diversity
be understood in this case?

Of course, all magnetic moments are identical but at a givement, due to their
vibrations, they will be irdifferent states Therefore, their responses to an external
field will not be the same which will lead to the gradual effebserved in systems
at non-zero temperature. For instance, from a classicahamcs perspective if at
a given moment the particles do not have the same velociptiienot experience
the same force. A particule with a high velocity will experoe a stronger force than

PHowever, some people came back to work into the evacuatioe. Zéor instance, large quantities of stones continued
to be extracted from quarries located in the area.
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a particle with a slow velocity. When the temperature insesathe particles vibrate
more strongly which means that their velocity range willco@e broader.

In order to convince ourselves that this argument is indeeckct, one should study
a system of two magnetic moments in the framework of quant@thanics. In that
framework the moments would be described by their wave fanst); (¢), 1»(t) and
these wave functions would be governed by two time-depdriSigmbdinger equa-
tions. These equations would include a term representaonthraction between the
moments as well as terms describing the effect of the eXtBetchon each of them.
Once the equations have been solved their solutions withicdy show that the re-
sponses of the two moments to the external fieldnetedentical. Needless to say,
the role of temperature cannot be seen on such a two-momsteinsyecause the
notion of temperature only exists for a system that has manyces.

In short, provided the word is understood in a fairly broadsse diversity is the
key-factor that causes dispersion. Let us illustrate timisigh a second example.

An economic parallel: wheat markets

In 19th century Europe there were weekly (or bi-weekly) whaarkets in in all
cities and twns of some importance. In France for instangee pecords are avail-
able for hundreds of them from 1825 to 1913. On all these nisufixéces fluctuate
more or less randomly.

What would for such a set of markets be the analog of the zeharkKdegree limit.
At this limit everything is “frozen” which means that the geifluctuations are re-
duced to zero. What are the economic conditions that wid lessuch a situation?
First, suppose that wheat is harvested not once a year lnyydeyein the same way
as for the production of industrial goods. Next, suppose tta supply is flexible
enough to follow the fluctuations of the demand (includingxpected fluctuations
due for instance to an army spending some time in the area)danyabasis. As
a result, wheat prices would become very stable. As stalkeeith, as the prices of
cars are nowadays in most industrialized countries. In susituation, the volume
of sales would be just sufficient to satisfy the needs of elbeager.

What would be in such a market the effect of a sudden increedemand? For in-
stance, one can assume that troops are staying temporatilg area which results
in demnd jumpAD. We said that supply side would respond with great flexipilit
but this flexibility would have a cost nevertheless. Indeedyrder to increase the
supply (whether for cars or for wheat) new production fdesi must be called upon
and these facilities most likely will have a lower produdivhan the facilities al-
ready in operation. If the production cost of the most pragadacilities isp; and if
p2 > p1 IS the production cost of the new ones, the market prieghich will satisfy
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the higher demand will lie somewhere betweggrandp,. In such a flexible market
(from which all friction factors which exist in real markdtave been removed) the
arrival of the troops will make the price jump froprto p’. As in in the graph with the
magnetic field at zero degree, the jump will occur overnigitt anly once. On the
contrary, in real markets there are all sorts of delays aictidns which will make
the change more gradual. Among such friction factors onencantion the time
required to grow wheat in new fields, the harvesting and frartation time and so
on.

In the conception delineated above, each producer will beaciterized by a typical
production cost; reflecting its level of productivity. Thus, the producers can be
ranked from lowest to highest production cost. If the prduriuinccapacities of the
producers aré);, then the production cost for a demabdwill be given by:

P=(1/D)> PQ;, where> Q;, =D (1)

PD is the analog of the total energy of a physical system Ahy)n, the average
production value per producer, is the analog of the averagegg per state.

What will be the temperature in this example? The graph tellthat the higher the
temperature, the stronger must be the external shock i twdechieve a sizeable
response of the system. In other words, a market with higipéeature would be a
market beset with much noise and many frictions and whicls do¢well adapt to a
new situation.

Remark Equation (1) is a perfectly deterministic rule. The statadtanalog of (1)
would be:

P = (1/D) > (PiQi)qi, Whereg; = exp[—[(FPiQ;)]/[>_ exp[—B(P,Q:)]]

Interpreting temperature as a manifestation of diversiprobably not the most com-
mon way to look at it. Most often it is with movement that temrgdare is identified.
That is what we explain in the next section

What is the significance of temperature in physical systems?

When thinking about temperature the first idea which comesinal is the following
relation from the kinetic theory of gases:

(1/2)ymv? = (3/2)kT (1.1)

wherev is the velocity of a moleculd] the Kelvin temperature andthe Boltzmann
constant. This relation establishes a connection betWeand the average of the
kinetic energy of a molecule.

Several important qualifications are in order.
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e Itis important to realize that for the absolute temperataira system to be de-
fined, the system must be in thermodynamic equilibrium. ketesns which are not
in equilbrium it may be possible to define local and more s BEshoc temperatures
but one cannot define absolute temperatures in an unequivaga We will come
back to that point shortly.

Moreover, the system must also be ergodic in the sense thatrérle averages are
identical to time averages. While this condition is ensumdohysical systems, it
may be more problematic for non-physical systems.

e The velocity defined by equation (I.1) cannot be measureidena gas or a
liquid because of the many collisions between the moleculea sample of nitro-
gen in standard conditions of pressure and temperature ¢la@ time between two
successive collisions is = 6 x 1071 s and during this time, in spite of the fact
that its velocity (as measured outside of the system) 4s 500 m/s, the molecule
covers only a distance éf= 0.3 um. The velocityv is measured through effusion
experiments in which the molecules escape from the systeough a small hole of
a diameter that is smaller théanOnce outside, thanks to a quasi-vacuum, they can
travel in a straight line over a distance of several centngetYet, this measure gives
only a rough estimate of the velocities inside the system Fsg. xx)

Solid Vacuum

O \O ®
. . E_.Eexit

® .X\OE /

o ¢ o

Potential

Fig.xx: Velocities inside and outside of a solidInside the solid atoms can move by jumping from one vacancy
to another. Atoms whose energy is high enough can escapetlisolid. These atoms produce the cloud of
vapor that exists over solids. By direct measurement oréctly by measuring the pressure of the vapor one
can determine the velocity of the atoms in the vapor. Howewmesrder to be able to estimate the velocity of
the atomsnsidethe solid one should also know the eneliiggxit.

For the purpose of extending the notion of temperature teptysical, relation (1.1)
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can be considered as tHefinitionof temperature. However, if (1.1) is taken as the
very definition of temperature, then we need some criteworhsuring that thig’ is
not just a formal and meaningless parameter but has indedti¢hbasic properties
of a physical temperature. One possible criterion is to khbat (I.1) holds for
different massesBroadly speaking, this means that big things should mowees|
than small things. We will come back to that point later on.

In short, (1.1) says thaemperature is motion and vice versa.

Atthis pointitis important to realize that the movementswfiecules are not limited
to their translational velocity but include also rotatiboavibrational movement. For
instance in a solid the molecules oscillate around theiramecentral positions.

Does equation (I.1) mean that everytime that there is asysi¢h agitated individ-
ual units it is possible and useful to define a temperatuitentbald characterize that
agitation? Such a definition is undoubtely possible. Thenmgaestion is whether it
may be useful.

In order to see this point more clearly, we first discuss tgaiicance of movement
in physical systems.

Significance of movement in physical systems

To make this point clearer let us for a moment try to imaginatgystems without
movements (that is to say at 0 degree kelvin) would look lfkest, we list several
features and then we explain them in more detail.

¢ In such systems any disequilibrium would remain for ever.

e The physical properties (e.g. the density) of any systenmavoe different from
one point to another.

e All materials would have zero compressibility and therefmfinite hardness.
As a result no sound transmission would be possible.

In order to explain the first two points we consider a fluid atmatemperature. Let
us assume that at timg one injects an additional quantity of the same fluid at a
specific locationV/;. In the course of time, this excess fluid will diffuse to théghe
boring area and eventually to the whole volume of fluid. Hosvethis diffusion
process occurs only because through their random movertenisolecules which
are around\/; will be be able to explore the surrounding area where theitjeiss
smallet?. Without these movements the excess fluid will remain for eteoint
M.

The third point results from the fact that the elasticity ;fadid comes from the vi-

it is true that in statistical mechanics the definition of parature is different, namelyf’ = 1/(0S/0FE) whereS
andF are the energy and entropy of the system respectively. Asod,pve do not know how to transpose these notions
to non-physical systems the present definition is fairlyesse

12The process of equalization is very similar to the procegsiing two compartments that are considered below.
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bration of the molecules around their central position. Aigal impact through the
stroke of a hammer at a locatidd; will create a deformation. The vibration center
of the molecules arounti/; will move downward and this will also temporarily push
downward their neighbors. As a result the deformation welltkansmitted through
the whole solid. If frozen in their central position the nmiées will not be able to
transmit any deformatids.

In short, it is the agitation of the molecules which smootbestemporary fluctua-
tions and ensures spatial uniformization. Without thigatgin all materials would
be fragmented into small cells each of which would have dbffié properties. It
would be impossible to produce an homogeneous beam of%teel

In our previous argument we considered the extreme caseystans at O degree.
That may sound unrealistic because, as is well known, it tsppgsible to reach
such a temperature. In fact the same argument would alsy &pplsystem whose
temperature is close to zero, say around 0.01 degree. Tlecbhahge that needs
to be made is that sentences such as “equilibrium will negaelached” should be
replaced by “equilibrium will be obtained only after a vegnf time”. In other
words, systems at 0.01 degree will have very long relaxatmes which means that
if submitted to frequent shocks they will be out of equilibri most of the time.

Our previous discussion has an important implication. Afram temperature there
are many other intensive variables (e.g. pressure or ctratiem of a given species
of molecules), but temperature is the key-factor becauseag#sociated to movement
and without movement no equlibrium would be possible for ahthe other vari-
ables. In the term movement one must include not only tréoska velocity, but all
forms of movement including vibrations, spin switchinget&ctrons jumping from
one level to another.

Distinctive property of a heat-bath

Formula (1.1) has an important implication which can be cd&®d as a distinctive
characteristic of a “real” temperature.

Consider a fluid which is a mixture of two particles of diffetenassesn and M.
Let us assume tha/ = 100m; for instance ifm represents the mass of a water
molecule, i.e. m = 18¢, thenM = 1,800¢g, M can possibly be the mass of a

13The fact that some metals become superconducting unddicakieémperature does not contradict this argument for
in this case one applies an electical field which is expegdricroughout the material and brings about the movement of
the electrons. In this case there is no need for a local deftiomto be transmitted from one end of the system to the
other.

In our previous discussion we considered a fluid not a solawéber, it also applies to steel because in most of the
production process steel is in fact liquid. It is mainly imstbhase that the uniformisation takes place. Howevergitikh
be observed that uniformisation by diffusion occurs evesoiids. Indeed, when the temperature of a solid becomes clos
to its melting point there are more and more vacancies thatsay sites which are not occupied by atoms. By jumping
from one vacancy to the next atoms can move and bring abofgromgation.
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Fig.xx: Heat capacities of gasesThe figure shows that, except for helium and argon (two mamt noble
gases), the heat capacity curves are very different front istexpected from the equipartition theorem. This
theorem relies on classical mechanics, an approximatiahithprinciple is better for high temperatures than
for low temperatures. But we can see that the approximai@s dot work well even for high temperatures.As
the temperature increases a larger number of vibration shodiatribute a well as the excitation modes of the
electrons.Sources: CRC handbook of chemistry and physics (2009-2@tfipn 6-26; website of the National
Institute of Standards and Technology

Formula (1.1) tells us that the velocity of this molecule chss)/ will be 10 times
smaller than the velocity of the water molecules. If therdaearound 500 m/s the
bigger molecule will have an average velocity of 50 m/s.

The equipartition theorem states that the mean value of iedeipendent quadratic
term in the expression of the energy is equalit®) k7" (Reif 1965, p. 249).

The fact that this statement does not seem very plausibleeaeen readily. Let us
consider the rotational degrees of freedom. The equifmartiheorem tells us that
the averages of kinetic energy of two rotations around diffeaxes?; = (1/2)1,6?
and £, = (1/2)1,03 are both equal t¢1/2)kT even if I, is arbitrarily larger than
I, say for instancd; ~ 10°[,. Intuitively this does not seem reasonable because,
unless), becomes a million times larger thén the termE, would be much smaller
thanFE;.

A quantum mechanical argument indeed shows that the edtipaistatement is
not true. The argument goes as follows. Apart from the forat e have already

I5For instance the mass of a molecule of instlbazCas7Hs33Ng5 077 S is M = 5, 807.
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used the kinetic energy for a rotation can be also be writeea &unction of the
angular momentuni, = Iwj; this form, namelyE = L?/(21) is best suited from a
guantum mechanics perpective becauselitughich is the variable that is quantized:
L=Il(l+1), 1=0,1,.... So,thelowestpossiblelevelis = 1/(21). Aslong
as E, < FE, the rotationd, will not contribute at all. This rotation will only start to
contribute whernt; ~ FEj; whenls is very small it impliesE) is large and therefore

6, must be very large. Buk, will become large enough only when the temperature is
very high, sayl’ < T5. In other words, under;, this mode will not contribute at all,
and abovd; it will contribute not all at once (as stated by the equipmitheorem)

but progressivelypy starting from zero, increasing and reaching a maxiffum

Real velocity versus diffusion velocity

Definitions

It is important to make a clear distinction between iibal velocityof a particle in a
fluid and itsdiffusion velocity

e The real velocityv is the velocity of the particle between two successive colli
sions (Fig. xx). For molecules the timéetween two successive collisions is of the
order ofr ~ 1071%s. A bigger particle experiences more collisions per seedridh
means that is even smaller. It is impossible practically to measurenstadocities
inside the fluid. The only possible measurement consist8awiag the particle to
leave the fluid and to let it move into a quasi-vacuum envrientn This reduces
drastically the number of collisions and allows the velpttt be measured through
the distance covered in straight line.

e The diffusion velocityy, is defined as the average distance travelled by a (large
enough) sample of particles. As noted above the trajestafiehese particles will
contain a lot of direction changes. Despite this great gitxem shape, it is possible
to define a meaningfull average. For instance, in the cassdened in Fig xx, it was
sufficient to consider some 500 particles to get a fairly ificgnt estimate for their
average velocity. One way to define a diffusion velocity istasider that it = 5
s the average distance travelled by the particles is thardistcorresponding to one
half of the height of the histogram. It is known that for a gaas frequency curve
y = exp |—2?/(207)] the z—value at half maximum is.18. So, if the histogram
of the displacements is well described by a gaussian curve, the diffusion vejyocit
will be v; = 1.180/t. For most practical applications the simpler approxinratio

16A theoretical calculation shows that the heat capacity acissembly of rigid rotators has the shape that can be seen
on the graph for the case of hydrogen. For more details sabaéalowing website of the Gary Morris School of physics
in New South Wales:
ruelle.phys.unsw.edu.au/gary/...files/SBLRdf
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DISTRIBUTION OF ENERGY AMONG DIFFERENT ACTIVITIES

A) Physical system Vibration Y. KT

Rotation B kT E

Translation o. KT E

NErgY Ay i

Potential Kinetic energy

B) Social communication system )
Media {
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A L . number of sentences
« spoken or written in
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A E Z Interaction potential
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Fig.xx: Distribution of “energy” between different “activ ities”. In a physical system energy exists in several
forms: different kinds of kinetic energies and also potrgnergy due to the inter-attraction of the molecules.
As we have seen elsewhere this last aspect becomes impiortantls or solids. These forms can be seen as
being diverse “activities” of the molecules. The figure dsaavparallel with a facet of a social system, namely
the distribution of a given amour¥ of sentences spoken or written in a minority langudge-or instance,

L can be German in the eastern part of France or Spanish in Lgslésy An increas@& N will result in its
distribution among the different types of activities forialn a language is used. The analogs are as follows:
molecule - person, energy - quantity of sentences in largliagnergy level - sentence multiplication factor
corresponding to the activity under consideration. Allsin@ctivities are more or less inter-dependent. Low
levels activities will be “filled” first while high level acities will have to wait until the temperature of the
system becomes higher.

Incidentally, it is by purpose that we did not replae®y k7'/m (for a one-dimensional system). Although this
would be correct at room temperature it will not be true atfageantly low temperature as shown by the curve
of the heat capacity of hydrogen.

vq = o/t will be sufficient.

Connection between (real) velocity and diffusion velocity

At first sight it may seem that there is no way to establish la liatweenv andvy,.
The shapes of the trajectories definingre so diverse and chaotic that it seems very
difficult to find a link between their straight-line parts ahe global curves.

Because within the system the trajectories are so erraipaiition of a particle in
the course of time is a random fonction (which we write witlpitas as is custom-
ary in probability calculus)X(¢). For X (¢) one can define an ensemble average by
considering a sample of similar particles. We will denoteHyy) this kind of ex-
pectation. More precisely we will consider a sample of pbes all starting from a
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Definition of a diffusion velocity for the movements within a fluid

Self-diffusion| @ e o . (]
of molecules:
a collisior
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of diameter
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Fig.xx: Self-diffusion and brownian motion. Because of the many collisions that any molecule expergence
there is a phenomenon of self-diffusion (Reif 1965 p. 488)4&his effect is basically the same as the diffusion
of a big particle which is referred to as brownian motion.

given pointO at timet = 0 and we want to know the distance covered on average
by these particles. As a measure of this distaliC¥ (¢)] will not work because this
expectation will be zero on account of the fact that the plagiwill go equally in all
directions (or equally to the left and to the right if one coess a one-dimensional
system as will be done later). A possible measure of thisudcst would be~(| X ).

In order to avoid the absolute value one prefers usuallyédhues standard deviation:
o[X(t)] = VE[X?(t)]. Itis o[X(t)] which corresponds to the dotted circle in Fig.
xX. Once this quantity has been computed, the diffusionoiglia@can be obtained
just by dividing by the time: v, = o[ X (¢)]/t.

What information do we have in our hands in order to comp(ité(¢)]?

e The fact that the predictions of the kinetic theory of gagge@with observation
show that the particles in a gas follow the law of newtoniarcinaaics in spite of
their small size. This allows us fairly easily to write an agan of motion for the
particles.

e From the kinetic theory of gases we already know the momeintssb and
second order of the velocity/ (¢) of the particles between successive collisidns
They are given by the following formulas:

8 kT kT
my=E(V)=\=— my=EV?) =—
m™m m

Incidentally, from these formulas one can compute the waga’> = FE(V?) —

[E(V)]? and the coefficient of variatiof®'V' = ¢/E(V) of the module of the ve-
locity; one finds: CV=67%. Such a coefficient of variationresponds to a vari-
able which is “moderately random”. In contrakt¢) is much “more erratic”. As
E[X(t)] = 0, one can say either that its coefficient of variation canmotdmputed

17y (t) denotes the module of the velocity. In one dimension it wdidldts absolute value.
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or that it should be very large because for a real samiplE(¢)] is never strictly
equal to zero

From the above results is it possible to findas will be seen later on. Before giving
this derivation we wish to present the results. One gets:
2 2m2

o’ (X (1) = =2
wherem; is the second-order moment of the velocity (defined above hastenotes
the friction coefficient defined by the fact that” is the force experienced by the
particle in its movement. In this form the result is valid #ogas, liquid or solid. A
more detailed expression can be given under additionahgssons.

¢ If the equipartition theorm holds., can be replaced by’ /m. This assumption
will be valid at room temperature.

e When there is no turbulence (that is to say when the Reynaidger is smaller
than 1) the friction force can be written in the form given ligk&s’ formula, namely:
a = 6mna, wherea is the radius of the particle angthe dynamic viscosity (ex-
pressed in Pa.s). As the Reynolds number is proportion&letasize of the particle,
this assumption is certainly fulfilled for particles of aesiaf the order of 1 microm-
eter or less.

Derivation of a formula for the variance of z

In what follows, for the sake of simplicity, we consider a afisnensional system.
For a particle of mass:, and velocityV’ it is reasonable to assume the following
equation of motion:
m,dV
dt

= —aV + F(t)

where

e F(t)is arandom function which describes the interactions (idvein the form
of shocks or distant interactions) due to surrounding maoésc

e The velocityV () is also a random function. Although small, the time interval
between two successive shocks is a positive number whichsriaat the derivative
of V' is meaningful (actually it would be more appropriate to widt discrete time
equation rather than an equation in continuous time).

e The term—aV is a friction force which is due to the fact that when the deti
IS moving to the right it will experience stronger shocks tnright-hand side than
on its left-hand side. If the average velocity of the molesubv g, the shocks on
the right-hand and left-hand side side will have an averagecity vy,o + V' and
vmol — V respectively. By difference this gives rise to a drag ford¢eclv must be
a function ofV/, of the vertical section of the particle, and of 3 variablesng the
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characteristics of the molecules: their velocity,g, their density per unit area,
and their mass: 8,

As we wish to compute’(X?) we express the previous equation in termofind
in order to generate a terixi? we multiply both sides by

d2X dX
We take into account the following relations:
dX 1\ dX?
X—=|=|—
i~ 3)
d>X? dX\? d>X X 1d°X? (dX\* 1d°X?
= 2 —_— 2X X— — _ _ _ . V2
dt? <dt> * dt? > 2 dt? <dt> 2 dt?
which gives:
m,, d>X* s adX?
— —m,V '+ ———— =X )F(T
2 a2 ™ T (WF(T)

Now we integrate with respect to time over a time interilt.), wheret, is the
smallest possible experimental observation time.

2 v 2
my dt&
2 Jo dt?
which leads to:

TV = VIO = my [ AV + SIX(L) - X20)] = [ dex () F()

—mp/ dtV2(t) 2/ dt /th )F(t)

Apart from the equation of motion (which is rather a plausiaésumption) the only
solid information that we have in this problem is the averagjecity of the particle

as derived from the equipartition theoremi, (V%) = kT. In order to use this
information we take the ensemble averdge) over a set of similar particles.

We will assume that one can exchange time averaging and élesareraging, i.e.

B[[0] =] B0

In principle at least, the validity of this assumption canchecked experimentally
in the following way (the discussion refers to the variabldut the same argument
can be made as well for any other variable)

18The standard expression of the drag force in a gas, nafjely 6mnal = 2mmumenalV (Reif 1965 p. 475)
contains indeed the expected variabléss the mean free path (i.e. the distance travelled by a m@ddmiween two
successive collisions); the factanl represents something related to the number of moleculeshvdain hit the particle
during the unit of time (without shocks this number would béten navy,q), but if the density is not too lowis much
smaller than the distance travelled without shocks in theaitime.
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(1) One selectV = 100 particles and for each of them one measuéy = 22
at timet.
(2) One computes the averag@) = (1/N) > ¢;(t).
(3) After following the 100 particles over a tinieone computes the time average
a = (1/t.) i a(t)dt
(4) For each of the 100 trajectories one computes the timagee
bi = (1/te) I ai(t)
(5) One computes the ensemble average(1/N) > b;
(6) If a = b itis proof that time averaging can be exchanged with ensembl
averaging.
Ergodicity (of the mean) for the random functigi{t) as defined in probability the-
ory (see Papoulis 1965 p. 328) implies that b. Indeeda(t) is the expectation of
Q)(t) for a given timef, whereas; is the time average @j(t) for a given realization
1.
Thus, we get:
my te 9 « 9 9
S BV () = BV O]l = m, [" dtE [V(1)°] + 5 [ELX(t)] — EIX*(0)]

= [ dtEX(1)F (1)

This equation can be simplified on account of the followingervations:

e As F'(t) is not correlated with the position of the particle, one gets
EIX(H)F(t)] = EIX (1)].E|(F(t)] = 0.

e E[V(t))] = E[V(0)]. Indeed, as far as the velocity is concerned the diffusion
process is stationary (albeit not stationary:inwhich means that the ensemble av-
erage ofV/(¢) is independent of time. As a matter of fact, the ensembleageecof
V (t) is zero because there is no reason it to be either positivegative.

e According to the equipartition rul& [m,V (t)?| = kT

Definingo = F(X?), one gets:
« 2T
E[Q(te) - Q(O)] =0= U(te) - U(O) + Tte

If we translate all trajectories so that they start at theesarngin point, one will have
X (0) = 0 which of course implies that(0) = 0. Thus:

2kT
=
(0

—/Ote KTdt +

o(te)

€

Extension to non-physical systems
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In economics there are many intensive variables, e.g. ,rogluctivity, unemploy-
ment rate, interest rate. What is the factor which bringuabquilibrium for such
variable? The answer is clear. It is exchange and intersected all kinds. This
includes:

e economic interactions such as trade or financial trangatio

e cultural interactions and in a general way all kinds of sbiciteractions. For
instance, linguistic factors, or cultural attitude wittspect to learning or working
may be important for productivity uniformization.

One should not think that the situation is necessarily muohencomplicated than
in physics. In a molecule of water, although there are alsoynp@ssible modes of
excitations for specific applications one can focus on ju& or two of them. In
economics, because we are part of the system, we know mangshobexcitation.
To be able to draw some clear conclusions, one must focuss@s @gavolving only
a small number of modes. In the following sub-sections w@pse three examples.

Linguistic modes of excitation

It is quite by purpose that we start we a non-economic example

Consider France and Germany. The languages spoken in thesties are French
and German and at first sight it may seem that in the coursevefalecenturies there
has be no uniformisation whatsoever. This is not compldtely however. There is
a diffusion process at work but it concerns only a small afemwidth of about 50

km along the border. Indeed, in the French border city ofsbwarg many people
are able to speak German. Why? There are many reasons whrelfiealto some

form of interaction.

e As there many German tourists visit Strasbourg, store eygp®must be able
to speak German in order to serve them.

e This region was invaded and occupied by Germany two timemglahe past
150 years: from 1870 to 1918 and from 1940 to 1944. Duringdhpsiods, the
language that was taught in schools was German

e In Strasbourg as well as in the surrounding area TV sets arp@ed for re-
ceiving the programs of German TV channels. As a result ataobal number of
people watch German programs.

¢ Inthe countryside around Strasbourg the mother tongue @jarity of people
is Alsatian which is a German dialect almost identical toldmguage spoken in the
German Rhineland.

Thus, one can conclude that there is indeed an ongoing iffyuzrocess but it is
very slow. In a study of language diffusion in many areas whet0 languages are
In contact, it was concluded that the velocity of the difarsfront is of the order of
10 kilometer per century (Roehner and Rahilly 2002 p. 106)11
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The parallel in physics would be diffusion between two salidVhen two plates
made of different metals, for instance gold and lead, af&lyigheld together and
heated there is a diffusion of atoms of each kind into therothetal. Lavoisier
(1743-1994) had already observed that when gold is strongited, fumes arise
which gild a piece of silver held in them.

The first experiment with metals in close contact was peréaim 1896 by William
Roberts-Austen. A thin plate of gold was fused on to the eral mafd of lead. At a
temperature of 250 degree Celsius (the melting point of is@27 degree celsius)
after a waiting time of 31 days the concentration of gold a&@ma depth of 3.5 cm
was 1/10 of the concentration at the separation point. Tdir@adjustement to the
diffusion equation the diffusion constant was found to bekkér et al. 2009 section
2.3)Dpy(523) = 40 x 103 c?day . At a temperature of only 200 degree celsius,
the diffusion constant was five times smalldbp,(473) = 8 x 1073 cn’day .
Other experiments performed subsequently showed thatfairlly good accuracy
log[D(T)] ~ —1/T, or in other words:D(T') = K exp(—A/T). Incidentally, the
fact that diffusion in solids obeys a law similar to the lawAsfhenius for the con-
stants of chemical reactions has been realized only in tB649

This experiment suggests a method for defining a temperé&turbe diffusion of

languages. We already suspect that in this case the temperail be an index
which summarizes the interactions between the peoplerefitbe two languages.
So, if one can measure the diffusion constant under difterecumstances, for in-
stance as a function of the number of people who cross theebarchually, then one
will be able to establish a formula similar to the one writedove for atoms of gold.

Such an adjustement witiot prove that the number of people (or any similar vari-
able) has the universality property of the kinetic energphysics. We are still far
away from such a goal because we still do not know how to defkiredic energy
for the language problem.

19This law looks very different at first sight from the form oftdiffusion constant given by Einstein’s law for a fluid,
namely:D = (RT/N)(1/67nr). However, both function are increasing with
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CHAPTER 2: PLANNED EXPERIMENTS

Effusion experiments and effusion modeling

In order to describe the movement of a gas from a contadrtera containei3, one
must rely on the formulas of hydrodynamics. Unfortunategcause of the inability
of physics to describe turbulence in a simple and yet rediaidy, hydrodynamics
remains a fairly tricky theory. That is why we start with th@pess of effusion. In
this case, as explained below, molecules escape ftamB independently and one
after another. As a result there is no turbulence and we aferarground. As a
matter of fact, this process is fairly similar to a purely dam process. This point
will become clearer in the following description of the plogd process of effusion.
Our description is mostly based on Reif (1965).

What is effusion?

Observation shows that when the communication hole betwercontainers is
smaller than the mean free pdtbf the molecules, they will pass through the hole
independently from one another (Fig. 1). In standard roonditmns,/ ~ 0.3um.
Observation shows that molecules escape through a holdesrttedn/ with the
velocity that they have in the container. Incidentallysthroperty gives an experi-
mental method for measuring the distribution of the velesiin a gas.

Effect of a gap in temperature

From an experimental point of view one distinctive featufeetbusion is the one
described in Fig. 2. When the containers are maintainedffereint temperature
there will be an equilibrium situation in which the pressuoa the two sides amot
the same. In contrast, a much larger communication holeteanl to equalize the
pressure (and also the temperatures). In the effusion ttesequilibrium is realized
when

p/VTi = p2/VTh (1)

(for more details see below);, p, are the pressures on each side, and; are the
Kelvin temperatures.

Without any communication between the two containers thalieggum condition
would bep, /T = py/T5 as results from the equation of state of an ideal g&s=
NET whereV denotes the volume and the number of molecules contained in that
volume.

For instance, ifl} = 373, T, = 293, the pressure ratip; /p, will be /T1/T, =

/373/293 = 1.13 whereas with sealed containers it wouldh¢7, = 1.27. Such a
difference of 12% should be easy to observe.
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As one knows from statistical physics, the average velamfityolecules of a gas at
temperaturd’ is given by:

il @
whereT is the Kelvin temperaturen the mass of a molecule artdthe Boltzman
constant. One can also recall that= /2k7T/m, whered is the most probable
speed that is to say the speed for which the distributiontfonds maximum. As
v/v = 1.12 these expressions are fairly equivalent, so that insteadie& may also
use the simpler expressian Moreover, for the sake of simplicity, in what follows,
we will notewv instead ofv or .

v =

length v; At length \éAt

o O iCe T e e
() LY °o® ° i

°® o

o o i ) [ ]
Initial r_1umber section s
of particles: N
Volume:
Density: n

Fig. 1: Effusion experiment. The figure shows the main variables that are needed for desg@an effusion
experiment. The two red rectangles shematize the volumasgpad by the molecules which will be able to
cross from one side to another. We suppose that the tempeiiatthe same on both sides. As a result, the
velocity of the molecules will also be the samg:= vs.

When will equilibrium will be achieved?

We start from a situation where the density of the molecuégsipit of volume is the

same on each side. In each time intexalthe molecules which will cross from left
to right must have a velocity which is in the right directidhdt is to say parallel to
the axis of the hof) and must be contained in a cylinder of lengti\¢ and section

s as represented in Fig. 1.

200f course, this is an approximation. Molecules with a veionbt exactly parallel to the axis may also be able to
cross, but this effect becomes small when the length of theeiedong with respect té, a condition that is satisfied in alll
practical cases.



31

This argument implies that initially the number of moleaulghich cross from left
to right will be n(v; At) whereas the number of those crossing from right to left will
ben(v;At). The fact thatl; > T, implies thatv; > v, which means that there
will be a flow from left to right. Equilibrium will be re-estdished once the density
of molecules on the left-hand side will be increased by anwrhdn such that:

(n — An)v; = (n+ An)vy. Replacingy; andv, by their expressions we see that the
variationAn will be related to the gap in temperature by the followingteinship:

(/T
An = NN 3)

From the equation of state= nkT results that the changes in numbers of molecules
lead to the following pressure changes:

ph=p1 — (KTV)An, ph=ps+ (KTy)An

Tl >T, Effusion (w<<I) n >N,
T e T T, @ T
1 2 2
[ ] ! ® [ ]
[ ] [ ¢
P -
e > |
° ° ® o
° ° o
I S I
warming device cooling device
T>To Mass motion (w>>I) T=T, n,=n,
T, I T, T I T
1 2 1 2
® e o o ® o ©
o o > _ ﬁ ° °
[ ] 0' *—— [} o o [}
N [ ] [ ] °
-] N

Fig. 2: Effusion versus mass motionFor both experiments the systems are initially out of efuiim
because of a temperature gép— Ts. In the effusion experiment the hole in the partition walivbeen the two
containers has a diameterthat is smaller than the mean free pathf the molecules. For nitrogen at room
temperature] is about0.3um. As a result the pressure on the hot side remains higher elien equilibrium

is reached:
p1/VT = p2/VTa < niVT1 = nov 1o

In the second experiment the hole is much larger thaks a result, there will be a hydrodynamic flow from
left to right that will result in a quasi-equilibrium chatadzed by an equalization of temperature and pressure.

Molecules with different masses

N molecules of mass, are putin the container 1 on the left-hand side and similarly
N molecules of mass;, on the other side. We assume that < my. Initially,
the system will not be in equilibrium becausg > v, implies that the flow ofn,
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molecules from left to right will be higher than the flow@f, molecules from right
to left.

In the present problem, there will be two separate equilibrconditions, one for
each kind of molecules. We denote by the density of molecules in container
i = 1,2 and similarly byn? the densities of moleculés The equilibrium conditions
read:

n{(v,At) = ng(v,At) = nf = nj, nl{(vbAt) = ng(vbAt) = nZ{ = ng

Equilibrium will be reached when there will be the same nuralzé molecules of
each kind on each side.

Equilibrium will be reached faster for light molecules tHan heavy molecules. We
denote byr, and 7, the time constants of the two processesmlf < my thea
equilibrium will be reached after a short timg during which the repartition of the
b molecules will change only slightly. Thus, between timend timer;, there will
be N/2 moleculesa on sidel and almost nd molecule, whereas on sidethere
will be N/2 molecules of type plus N molecules of typé making a total o8N /2
molecules. Thus the pressure on side 2 will be 3 times hidtear the pressure on
side 1. Subsequently, as— 7 the differencep, — p; will tend to zero.

As an example, take = helium (n, = 4 g/mol) andb = sulfur hexafluorider, =
146 g/mol). As will be seen below, the time constanfs 7, are proportional to the
square-root of the masses. Thus, in this cage, = /146/4 = 6.

Effect of intermolecular attraction on molecular velocity

What is the molecular velocity distribution in water (or raagenerally in liquids)?
Does the equipartition theorem hold?

To answer this question the simplest way would be to find s experimen-
tal results. Surprisingly, however, an Internet search fasy unsuccesful. Many
pressure measurements of the vapor over liquids do of cexisefrom which the
velocity of the molecules of vapor can be derived by using setlaon the kinetic
theory of gases. The following points provide some furthsrght.

¢ Inliquids (as well as in gases) some molecules have a spaesthigher than
the average speed. As a result they will be able to escapeghibe surface of the
liquid and form a layer of vapor on the top of the liquid. Theshtwo implications
(i) As this process allows only the fastest molecules to gscthose which remain
will have on average a lower average speed; this is reflentéukei the fact that the
non-equilibrium process of evaporation results in a cagpbhthe liquid. However,
once equilibrium is reached the cooling stops because ttilewus matched by an
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100 calories added
0°C 100°C
16.7 cal KE added >

The energy added in heating water
increases the kinetic energy of the
molecules, but the larger part of the
enargy goes into weakening the
bonding between molecules.

calories/gm

83.3 cal PE added .

Translational kinetic
energy

Potential energy plus
rotational and vibrational
kinetic energy.

D Translational kinetic . Potential energy plus
energy rotational and vibrational
kinetic energy.

Fig. 3: Comparison of various forms of energy in different sates of water. For the understanding of this
graph one must recall why the potential energy of interaative forces is seen as a negative energy. Consider
two massesni, mo connected by a string of rubber of length Assume that the force due to the rubber
decreases to zero whdn— oo. Then, it makes sense to consider the situation where thenssses are far
apart as a free state and to give it (by convention) an enapgsl¢o zero. Now, ifn, ms become closer due

to the attraction force of the rubber it is a process whichpraluce some work (for instance it can be used to
rotate a wheel) in the same way as when water falling from ghttéi; to a heighth, < hq is used to produce
electricity. In other words, when the masses are close th etteer the system will have a lower potential
energyF» than its energy®; when they are far apart. As the later is zero, it meanshhat 0.

An obvious implication is that if one starts from the stateewehl. is small one must provide some energy to
stretch the rubber. It is this energy which is representetesdhat schematically by the blue bars. In fact, there
should be a different energy(T") for each temperature and this energy is related to the titinforce F'(r, T')

by the formulalZ(T') = [ F(r, T)dr.

It can be seen that the translational kinetic energy is althessame in each state but represents a much smaller
proportion of the total energy in the solid state than in tiagesof a gas.

Incidentally, it would be more appropriate not to include thtation energy into the blue bars because itis truly
a form of kinetic energy.

Source: http://hyperphysics.phy-astr.gsu.edu/hbasatio/phase.html

inflow of same magnitude. (ii) The fact that molecules crdswat instantaneously
from liquid to vapor suggests that they must have almostdheesvelocity in the two
states.

¢ In a liquid molecules form temporary associations. This msghat they so to
say coalesce into “collective molecules”. Applying to théme Maxwell-Boltzman
law will result in reduced velocity.

e One way to identify changes in the interaction strength isttaly the heat
capacityC' = AE/AT. In this equatiom\ E represents the energy that one provides
to the system and\7T" the resulting change in temperature that is to say in kinetic
energy!. If a process takes place (e.g. the unfolding of a proteingivhequires
substantial energy but does not affect the kinetic enengy AT will be small and
thereforeC will be large. In other words, the process will produce a oarpeak in

2ln physics, a distinction is made betweél and C,, respectively the heat capacity under condition of cortstan
pressure or constant volume. As this distinction is irrafe\for the present argument we omit it here.
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the graph of the heat capacity as a function of temperaturelag. 4.

Specific heat [J/kg K]

5000 I I
1| ——rtarbon steel
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3000 Heat capacity
2000 Ce
1000 N
0 . . . . . . ==
a 200 400 o0 200 1000 1200 b 30 50 70 90
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Fig. 4: Peaks in heat capacity resulting from an internal pracess that absorbs energy without resulting

in a higher temperature.

Fig 4a: Carbon steel: transformation framiron (body-centered cubic) tg-iron (face-centered cubic). The
transition between these allotropic forms of iron occurgzat degree celsius (it is somewhat dependent upon
the proportion of carbon contained in the steel). In cohtasarbon steel which contains only iron and carbon,
stainless steel also contains a minimum 11% of chromium.

Fig. 4b: Peak in the heat capacity resulting from an unfglgirocess occurring in a protein.

In the two cases the internal process requires a substamtialint of energy but does not affect the kinetic
energy which means that the temperature remains almostacnshis leads to a high heat capacity =
AFE/AT.

Analysis of internal transformations by the observatiortha peaks in heat capacity has led to a technique
knowns as “differential scanning calorimetry” (DSC). Byselbving the difference in heat flow between the
sample and reference, differential scanning calorimeiezsable to measure the amount of heat absorbed or
released and thus can identify specific phase transitions.

Source:

http://www.mace.manchester.ac.uk/project/reseatakgtires/strucfire/materialinFire/Steel/StainlessSithermalProperties.htm

http://www.whatislife.com/reader2/biophysics/Thedyrmamics.htm#Molecularinterpretation

e From atheoretical perspective, the equipartition theways that each quadratic
term in the expression of the enefgias an ensemble averagg vf2)kT". This ap-
plies not only to quadratic terms but also to higher powerstern ¢ will lead
to a contribution of(1/n)kT. The equipartition theorem also applies to interaction
terms. The sum of all these contributions must be equal taxbeage energy of the
system which is usually defined by experimental conditi@swe see that a change
In interaction can have broad implications.

Effect of intermolecular attraction on pressure
According to the van der Waals equation, the pressure of Zgassting of inter-

220ne must of course remember that the equipartition theosemrésult based on classical mechanics. If quantum
effects become important it does no longer apply.
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attractive molecules is smaller than the pressure of ar géea

a
/ /
Pattraction™ Pideal — @» @ = 75 0
m

whereV,,, denotes the volume of one mole (in the condition of pressi@htamper-
ature considered in the equation)is a parameter which expresses the strength of
attraction; for instance for carbon dioxides 2.7 times larger than for argéh

The difference in pressure for carbon dioxide as comparéddavgon may be small
but here we are interested in the reasoning rather than irencah values because
anyway we intend to apply this argument to living units nottolecules. For small
fishes, the velocity is indeed a function of temperature (SHel 2011).

Is the velocity a function of interaction strength Tentalyy we can write the molecu-
lar velocity of a system of interacting molecules under tvefv = /2kT /m—q(a’)
whereg(a') is a (probably positive and increasing) function of thezation param-
etera’. Based on what we said earlier one would expect the tgrm to be a fairly
small correction.

Experiment with intermolecular attraction 1. Case of weak nteractions

We fill the container 1 withV molecules of an ideal gasand the container 2 with
N inter-attractive moleculeswhich, apart from this characteristic, are identicakto
in all other respects (e.g. mass or size).

Will the system be in equilibrium?

The presure on side 1 will be higher The situation is somewimailar to the one
considered above in which there were heavier molecules Ti&.equilibrium con-
ditions will be the same as above and equilibrium will be hestwhen there are
equal numbers of molecules of each kind on each side.

Here, however, we are not interested in the evolution toveaudlibrium which is
fairly trivial. Instead, with some modifications the expeent offers a way to esti-
mate the attraction strength of the molecules

This time we put an equal numbéy,, of inter-attractive molecules on each side. In
addition, we assume that the containers are at two difféeemperature$’, 7. This
Is the same situation as already considered above excdpeftact that the velocity

28Equation () assumes that the ideal and the non-ideal m@saurk identical in all other aspects except attraction
strength. If one does not make this simplifying assumpti@hore general equations are as follows:

i NAkT . NAkT a
Ideal gas (e.g. argony. = v Carbon dioxidep = V1 V2

a = 364 kPa.dni/mole’, b = 0.043dn?*/mole

These equations are for one mol¥{ is the Avogadro number). The parametedescribes the attractivity between
molecules. If we assume that the two gases have the savhéh is indeed almost true for argon and carbon dioxide,
then we see that the largerthe smaller the pressure.
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of the molecules is given by:

v=aVT —q(d), a=2k/m

By using the same argument one gets the following formula:

_ a(VIi-VE)
VT + VT = 2%(d) a

by solving this relation for(a') one gets:

An

/ « n Tl— T2
() = 5 (VT +VE) 1 - LYV ©)

In the case of a gas all quantities on the right-hand side eamdasured which, at
least in principle, would allow to determine the attractiermq(da’).

Experiment with intermolecular attraction 2. Case of strong interactions

In the previous experiments with equal temperatures on sigeh equilibrium was
always reached for an equal number of molecules on each Bide&ever, this re-
mains true only up to a given point. Beyond some criticalrat&on strength one
observes a completely different behavior. This can betrted by a few examples.

e Put N red fire ants in container 1 andl others in container 2 and wait. If
N = 100 you will observe that after some two hours all the ants wilirbene of the
container (more details can be found in Wang et al 2011, @)98uch a clustering
behavior which eventually leads to symmetry breaking iartyevery different from
what we considered so far. However, this kind of aggreggtimenomenon is by no
means special to living units. It can also be observed irouarphysical systems.

e Some of the clearest physical examples of aggregation eatucolloids. This
Is shematically illustrated in Fig. 3.

e As a simple example of aggregation one can consider a solatioil and bal-
samic vinegar. As this vinegar has a smaller density thart édrms a brown layer
on top of the oil.

Now, if the bottle is shaken violently the balsamic vineganis dark-brown spheri-
cal dropplets of different sizes which begin to move towaelsurface. As predicted
by Stokes’ law the smallest dropplets move slower than tigeobes. When two

dropplets come in contact they merge into one bigger dropplbis aggregation

process eventually leads back to the layer that existecdigginning.

The only major difference between this case and the casdlofdwis that, because
of their small size, the colloids are able to form stable sasppns. They are stable
in two different ways: they neither sink nor go up and they d¢ aggregate. Of
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Stable solution of Addition of Neutral colloids attract Aggregation of the
negatively charged positively charged one another through colloids into a floc
colloids coagulants van der Waals forces which goes to top or bottom

% =

Fig. 3: Aggregation of colloids. Most particles dispersed in water have a negative chargiesaepel each
other, at least at short range. As a result they form stalsigedsions. Particles with a diameter of less than
one micrometer will remain in equilibrium in midwater duetih@ molecular shocks which are also responsable
of the phenomenon of brownian motion. However, once a pesjticharged coagulant has been added, the
particles become neutral and then can attract each ottwrghr(weak) van der Waals or London forces. The
big particles that they form are called flocs and becauseeif fize they do not remain in equilibrium but,
depending on their density, they will drift to the surfacdailto the botton.

course, if for some reason they form aggregates, thesenypggecles will move to
the surface or to the bottom depending on whether their teisssmaller or larger
than the density of the liquid.

How can one measure attractions? First proposal
Now, we come to our main question: how can one measure toisgsr interaction?

Can one hope to use the method sumarized in Fig. 4.
The question is whether or not the temperature gap will priethes insects in con-
tainer 2 of coming to the left. One can propose two arguments.

e If the insects in container 1 quickly form a tight cluster rasf them will leave
this part. Inthis case, the higher temperature becomesletehpineffective because
it will not bring about any flow from left to right.

e The same argument can be applied to the experiment No 1 ofiFlgleads to
the conclusion that in a first phase two different clustetsfaim on each side with-
out any substantial flow occuring in either direction. Thernhe second phase the
cluster in container 2 wiltollectivelymove toward the leff. If this representation
Is correct the temperature gap will be ineffective becausdliiences only the more
or less random movements of individuals not the collectiew@ment of a cluster.

How can one measure attractions? Second proposal

2There is of course nothing really mysterious about thathéfforce of attraction between two antsfishe force of
attraction between two clusters &f ants will be
e N fif the bulk of the cluster contributes to the attraction
e or+/Nf if the force is only due to the ants that are at the periphegagh cluster.
This argument suggests that the method of Fig. 4 may perhagsfar small numbers but may fail for large numbers.



38

Experiment no 1

beginning

For social insects one expects
that all insects will gather

on the same side, namely the
side with initial largest number.

end (after 2-3h)

200 insects

100 insect;

1

Temperature T

" Temperature T

2

300 insects

! noinsect

Temperature T

’,.v“‘.Temperature T

Experiment no 2 / 200 insects

Because of the higher temperature

on the left, more insects will cross beginning
from left to right than in the

opposite direction. Therefore,

if the difference T1-T2 is adequate,

there will be an equilibrium.

Thus, T1-T2 should
give a measure of the
interaction strength.

end (after 2-3h)

100 insect;

1

Temperature T1>T2 ff .~

“"Temperature T2

2

Warming device

200 insects

100 insect;

Temperature T1>T2

’,.v“‘.Temperature T2

Fig. 4. Proposal No 1 for measuring the attraction between isects.This method is similar to the one
explained in the text for the case of weak inter-attractiexsept that one starts with unequal numbers on each
side.

In this experiment there arsvo forces which counter the flow from left to right: (i) The highgensity in
container 1 (ii) The temperature gdp — 7> > 0. However, these properties have an effect only as long as the
insects have more or less random movements. Once clustergdimed they become fairly ineffective.

In other words, we do not yet know whether or not these effetltde sufficient to overcome the attraction
exercised by the insects in container 1. The latter is pdatity strong for social insects such as bees or ants.
Observation will provide an answer to this question.

For colloids, there is a method for measuring the interacstoength; it is called the
“Zeta potential” technique. In its principle, it is very que.

As illustrated in Fig. 3 the attraction strength of colloids function of the charges
which sit on their surface. If there are substantial chafgé®ther positive or nega-
tive) the colloids will repell each other. On the contrafythey bear no charges the
colloids will attract each another. In short, the problermes down to measuring
this superficial charge. One possible method is to introdikeethe liquid an elec-
trode whose sign is opposite to the sign of the charges ondl&ds. Thus, the
colloids will be attracted toward the electrode. By usingaas optical or acoustic
techniques (e.g. Doppler effect) itis possible to measwepeed of this movement.
This speed will give an estimate of the charges carried bydfieids which, as we
have seen, is directly related to the strength of attraction

In the case of insects, the task is more difficult because weotloeally know what
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1 L 2
Step 1 200 insects I 100 insects,
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Introduction of the insects ® ..o . : © oy :
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Step 2 I I ®
The insects form clusters . I I
Alternatively, the insects can
move from one side to the other I I
individually.
Step 3 I S
Cluster 2 starts to move toward 1 . .
Step 4 P
Cluster 2 reaches 1 . .
Attraction = T/L I I

Fig. 5: Proposal No 2 for measuring the attraction strength letween social insectsln its principle, this
method is similar to the so-called Zeta potential methoct@ioids. In both cases, one measures the velocity
of units under the attraction effect. The higher the velgdite higher the attraction.

is the factor which controls the attraction. On on the otherd) however, because
ants or bees are much larger than colloids they are easibstrve.

Lattice method for estimating interactions strength

In this section we consider an alternative method for edtimgdhe strength of inter-
actions. which is illustrated in Fig. 6.

First the insects are made motionless by keeping them ironatttoxide for a few

minutes. Then, they are positioned at the vertices of a&atWhen they wake up,
their movements are recorded by taking pictures at givea intervals!’. Because

one does not know the interaction range the data must bezaubatgr different in
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Fig. 6: Lattice method for estimating interaction. After having been made motionless through carbon
dioxide, N insects are positioned at the vertices of a square lattisea@sn on the left-hand side. In
this situation the average distance between them is equlaétspacing., of the lattice. Once they
wake up, they may move toward the outside or toward the insfde denote by, (¢) the average
distance between the insects in a neighboradgh of radiusr:

L,;(t) = (1/number of pairs > d;;(t)L,(t) = %ZLM@)

JEV-(?)

whered; ;(t) is the distance between insec¢tand;. In the first casée., (¢) will become larger than
Ly, whereas in the second case it will become smaller.

For a given time interval’, the ratio A(r) = [Ly — L.(T)]/Lo will provide an estimate of the
interaction at range. For instance/.;(T") = 1.5L, givesA(3) = —0.5 and corresponds to a strong
repulsion within a range of 3 cm, whereag(T') = L/2 givesA(3) = 0.5 and corresponds to an
attraction.

At first sight one may think that when all the insects gathgetber and form a clustef,.(¢) cannot
become smaller than a lower bound defined by the size of tleetsisThis is of course true to some
extent but one must keep in mind that when bees cluster tegetéy form several layers. Depending
on the number of layerg,(t) can become fairly small.

CHAPTER 3: EXPERIMENTAL RESULTS

Flow rates in escape experiments: definitions

In the present section we continue our investigation of erpents done with the
two-container device but we will consider more closely tlwvfbetween the two
containers. In this respect it will help to draw a clear distion between the follow-
ing notions.

e Total flow Fr(t) versus net flow'(t). If Fi, and Fy; denote the flows from 1
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to 2 and 2 to 1 respectively, then the total and net flows willilbined as:
Total flow: FT(t) = Flg(t) + Fgl(t) Net flow: F(t) = Flz(t) — Fgl(t)

If we think of the containers as representing two countriesd 2 the total flow
represents the sum of exports and imports (of each of thetges)) whereas the net
flow will represent the balance of trade.

e Instantaneous flow:'(¢) versus average flow'. The instantaneous flow is
the flow at a specific time whilé" is the flow averaged over the duration of the
experiment.

: : _ T 1
Duration of experiment?’ F:/O ?F(t)dt

We wrote the definition for the case of the net flow but a sindeafinition can of
course be given for the total flow.

e Flow I versus flow rategf. If one wishes to compare various experiments per-
formed over different durations and with different numbafrparticles one must use
flow rates. The passage from flows to flow rates is a normatizaiperation and this
normalization can be performed in various ways dependirtg®objective of the in-
vestigation. In what follows we will mainly use normalizati with respect to initial
number of particles, duration of the experiment and seatiotihe communication
hole.

In what follows, we first present some experimental resulisen, we examine if
they can be described by means of an effusion process.

Escape rates for small fishes

Escape experiment with fishes, average flow rate (1)

This experiment was performed in the fall of 2010 at by twadsiits of Beijing
Normal University Tian Kai Lan and Zhang Chen Han.

Container 1 and 2 had a total length of 30 cm and containedt&bliters of water.
Container 1 and 2 communicated through a hole which had aed@anof 3 cm.
Initially, there were 200 small fishes in container 1. Thedsivere so-called zebra
fishes (scientific name: Danio rerio) whose length is abouin3 tn nature, they
often live in groups (also called shoals) of about 4 to 30vildials. The experiment
consisted in observing how many would cross into containeittdn a time interval
of 4 minutes. Once the 200 fishes were gathered in contairer ddor leading to 2
was opened. After 4 mn it was closed again and the fishes orsabetvere counted.
The experiment was repeated 20 times and averages were tamfine length of
compartment 1 was increased successively by a factor 2 amthatsthe experiment
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was performed with three different initial densifies

Table 1: Escape experiment with 200 zebrafishes

80 per liter 120 per liter 240 per liter

Average flow rate (expressed in number of  0.55+0.06 0.93+0.03 1.37+0.04
fishes per 100 of initial pop, per mn, per sg-cm)

Notes: The numbers in the first row show the initial densiggpressed in numbers of fishes per
liter. The numbers of fishes that left compartment 1 werercgEmbafter a time interval of 4 mn. The
temperature of the water was approximately room tempegdhat is to say about 20 degree. Each
experiment was repeated 20 times. The error bars are cooéidetervals for a probability level of
0.95.Source: Tian and Zhang (2010)

Escape experiment with fishes: average flow rate (2)

This experiment was done in November 2011 by two studentseging Normal
University, Cheng Dong and Shi Pei Teng. It was also condith zebra fishes.
Initially there were 40 fishes and each experiment was repe@atimes. The experi-
ment was conducted at different temperaures. We will giegéisults for 10 degrees
and 25 degrees, the later one being a biologically optinrmperature for this kind
of fishes.

The average flow rate was as follows:

g = 1.73 £ 0.Tfishes per 100 initial number, per duration (in mn), per sectif hole (in square cm)

Escape experiment with fishes: how cumulative flow rate chares in time

In the previous experiment, in addition to the end resulnimmber of fishes present
In container 2 was also recorded every minute. This gave uhsutative net flow
rate. The results are given in Table 2.

Time constant in escape experiments

Physical idea behind escape experiments

In an escape experiment one or several units belonging towpgwill leave this
group. This is a very common phenomenon. It happens in alldmiorganiza-
tions:whether school, army or various associations. lct#se of schools, the escape
rate is called drop-out rate, in the military it is called egm®n rate.

25Actually, the experiment was somewhat more complicatetiénsense that compartment 1 was in fact in the middle
and compartment 2 on each side; this gave the opportunitggeree whwther the fishes went to the left or to the right.
Here, however, we will lump together the left and right nunstfer we are only interested in the total number of fishes
who left compartment 1.
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Table 2: Escape experiment with 40 zebrafishes: cumulativeseape rate in the course of time

Time (mn) 1 2 3 4 5 6

Cumulative net flow rate (expressed in numberof.2 2.0 23 1.7 14 12
fishes per 100 of initial pop, per mn and per square cm)

Notes: The cumulative net flow rate from container 1 into aordr 2 corresponds to the number of
fishes observed in container 2. As an illustration of the radization, consider the 2 mn measure:
the average number of fishes present in container 2 after 2 asnl®; this number was divided by
0.4 for the initial population expressed in 100s, by 2 for 2 amd by 10 for the 10 square cm section
of the communication hole; altogether, it was divided by 8cklgave 2.0.

Source: Chen and Shi (2011)

Obvious physical parallels are the phenomena of evaporaticsublimation. In
evaporation, the fatest molecules manage to leave thelligupite of the attraction
exerted by neighboring molecules. Sublimation is the sanempmenon for solids.
As sublimation is a much smaller effect than evaporationwiNkemostly discuss
evaporation.

When the liquid is contained in a closed container an equilib will be established
when the molecules leaving the liquid per unit of time areame number as those
which move in the opposite direction.

The proportion of molecules which leave the liquid can bevesed though the so-
called equilibrium vapor pressure.. An approximate model for this pressure is
given by the Clausius-Clapeyron formula (Wikipedia adientitled “Equilibrium
vapor presure”, French version):

1 1

De = Po €XP _(ML/R)(T — To

where:
e Ty: Boiling temperature at pressupg
e M: Molar mass of the substance expressed in kg/mole
e [: Heat of vaporization expressed in J/kg
e R: Gas constant? = 8.31 J/(K.mol)
e The standard atmospheric pressurgyis- 1013 mbar.

As an example we apply this formula to water at a temperati#@ degree Celsius.
M = 0.018 kg/mole L = 2.26 10° J/kg, po = 1013 mbar, T, = 373K = P = 81.8 mbar

The pressure observed experimentally is 73.8 mbar whicmabat the error mar-
gin of the Clausius-Clapeyron formula is of the order of 108 dccuracy becomes
better at temperatures closer to the boiling point becausedieal gas assumption
which is made in the derivation becomes more valid).



44

As at given temperature the pressure is proportional totingoer of molecules, one
sees that the proportion of “escaped molecules31i$/1013 = 8.1%. At room
temperature of 20 degree Celsius the proportion is ab@utin short, far from the
boiling point only a small proportion of the molecules ar¢ha form of vapor. What
Is the fundamental reason of this disymmetry? It is due talifference in strength
of interaction between the liquid phase and the vapor pluagsther with the action
of temperature. What are the respective roles of theser&itto

e ltisreasonable to estimate the strength of inter-mole@iteaction through the
heat of vaporization because it represents the energyleanast inject to break the
bonds between water molecules. It is possible to measureethieof vaporization
at different temperatures just by changing the pressureh 8xperiments show that
the heat of vaporization decreases when the temperaturersaised. However, the
decrease is fairly small: only about 10% from 20 to 100 degjree

e The second effect consists in the fact that at higher tenmyrerahe water
molecules have a higher kinetic energy which allows mordiefrt to escape. This
effect is much stronger than the previous one. Between 20@0dlegree the aver-
age kinetic energy will be multiplied b¥;, /77 = 373/293 = 1.27.

Working together, these effects bring about a multiplmatof the proportion of
escaped molecules by a factor 50.

Escape experiments are conducted with a container whictwmasompartments!

on the left-hand side andl on the right-hand side. Initially, alv animals are in only
one of the two compartments, for instance compartmer®ne observes the rate at
which they move from this compartment to the other. We debpt& (¢) the number

of animals in the part (namelf) that was initially empty.X (¢) is a random function
whose averagé’[ X (¢)] over a number of similar experiments will be denoted by
m(t). From the initial conditionX (0) = 0 it follows thatm(0) = E[X(0)] = 0.

Discussion of the equilibrium situation

If one assumes a perfect symmetry between the two compagmiemay be tempt-
ing to conclude that this symmetry will be reflected in the ikopium situation,
which would mean thatn(co) = m¢ = N/2. However, a simple physical argument
tells us that this may not necessarily be true.

Suppose that the device is vertical, that compartmecdntains water (at 20 degree
Celsius) and thaB contains air at standard atmospheric pressure. Then, ofrac
of water molecules (those whose speed is high enough) walteto escape from

A to B. In B they will form a cloud of vapor. We know that the number of wate
molecules inB will increase until the pressure of this cloud of vapor beesraqual
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to the so-called “equilibrium vapor pressuré”. In equilibrium the number of water
molecules moving fromA to B in a time intervalAt is equal to the number of
molecules going in the opposite direction. In this case aresdot havem® = N/2

but ratherm® < N/2. Why is this so? The reason is that the interaction between
water molecules in the vapor phase in which they arB is much weaker than their
interaction in the liquid phase of. In other words, the geometrical symmetry of
the system is broken by the difference in interaction stitemg A and B and this
difference is brought about merely by a difference in the bera (and therefore the
density) of molecules in each compartment.

In the previous case the argument was fairly easy and cangmecause there is a
clear difference between water molecules in vapor or lidardh. For animals we
do not know how the interaction strength depends upon thsityeof the animals.
For instance we know that if their number is large enough antsbees can form
clusters. One would expect in such clusters the intera¢tidse stronger than in a
state in which the insects are randomly dispersed over allamsa. Bees can form
a cluster whenever their number is higher than one hundreace @ cluster has
formed in A only few bees will move td3. This would be a situation similar to the
liquid water versus vapor case. What we do not yet know is ndrdor ants or bees
there can be intermediate situations. For instance, iethez 80 bees (not forming
a cluster) inA and 50 bees irB, will the interaction be the same id and B? If

it is the same, then there will be no symmetry breaking arid= N/2. On the
contrary, if the interaction is stonger i, then there will be a symmetry breaking
andm® < N/2

During the time intervalAt following the initial time a numbeAm of animals will
move fromA to B. It is natural to assume thatm is proportional ton. Thus, the
simplest equation that one can write fo(t) will be:

CZ—T = —pm+q (1)
In the equilibrium situationdm /dt = 0 which implies that-pm® + ¢ =0 = ¢ =
pm*
In (1) p is a function of several physical variables among which areraention:
the total number of animaly’
the densityp of the animals per square centimeter
the average velocity of the animals %
the sectiors of the communication tube betweehand B
a parameter which defines the interaction between the asimal

26The equilibrium vapor pressure is given (approximatelyjis/Clausius-Clapeyron equation.
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The inverser of p represents the time constant of the system. Therefore, hgune
iIng p one can estimate the relevant interaction parametersi@wwall other param-
eters are unchanged). In other words, the time constaneddytestem gives insight
into the system’s interaction strength.

Equation (1) describes a population that fluctuates ardsmdjuilibrium. The restor-
ing force is—pm; and its time constantis = 1/p. For the determination of the time
constant it is hepful to define a new function= m — m¢°. The equation which gov-
ernsm(t) is:

dm 1 dm dlog |m)|

dm _ __lam  _ 2
R A g dt (2)

It can be noted that the second expression of (2) tells usrtliais model, the time
constant- = 1/p is equal to the inverse of the relative flow rate

) 1
Time constant= - 2’
Relative flow rate (2)

From the last expression in (2) one can conclude that if theahprocess follows
this equation, the ratio

. . . m(tz)
Alogm  log(|m(ts)]) — log(Jm(t1)]) log‘fn(tl)
At ty —t oty —t 3)
2 — U 2 — Ul
should remain contant in the course of time and equaljo
If one takes; = 0, t, = t relation (3) becomes:
log ;n”—(t)
p=— t (0)‘ (4)
Whenm(0) = 0 = m(0) = —m* expression (4) leads to:
m(t) — m° m(t
p= —(/01og| ™= _ (1) 10g (\1 - nﬁ)) ©)
Whenm(t) < m* the last expression can be approximated as:
m(t)
~ (1/t 6
p=(1/t)= 2 (6)

The main advantage of the last expression is the fact thahorenger has to care
about taking the absolute value when, as a result of randartuéitions,m(t) be-
comes larger tham®.

From (6) one sees that a regressionn(t)/m*) will lead to an estimate of and
therefore ofr = 1/p.
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This procedure has been carried out in two cases:
(1) The escape experiment for fishes done by Chen and Shi.
(1) The escape experiment for fruit flies done by Wang.

In experiment (1)n(t) is given fort = 0, 1,...,6 minutes; therefore it is possible
to check whether the relatigi, m/m¢) is indeed linear. As the average correlation
turns out to be as high as 0.95, one can conclude that théorelatindeed fairly
linear. Therefore it becomes possible to estimate the tonstants in a meaningfull
way. For the Red Cross fishes one gets the following results.

Temp= 15,20,25deg — time const(mn)r =4.8+0.7, 254+0.8, 2.6+0.5

In experiment (2), we do not have several measurements icollnese of time. The
only available measurementa are the timg®quired to reach a state where the num-
ber of flies in the compartment that was initially empty ressh9m® = 0.9(N/2).
Therefore we cannot check if the relatigh m/m*) is indeed linear but never-
theless, assuming that it is, we can estimate the time aunstBor total num-
bers of fruit flies equal tQV; = 20, 40, 80, 160 one observes the following times
T, = 14,56, 127, 220.

From these results one gets the following estimates foriie ¢onstants:

N = 20,40,80,160 — time constant (mn)r = 6.1, 24, 55, 96

Because="? = 0.14 ande® = 0.05, equilibrium is approximately reached after
a time interval of the order o+ or 37; therefore one is not surprised to observe
that the estimated time constants are about 2 or 3 timeseamntla#in the total time
required to reach an approximate equilibrium state.

Incidentally, it can be observed that the time constaneiases linearly with the total
number of fruit flies:7[mn] = 0.63N — 1.7.

The same kind of technique can be used to estimate the tinstasua of the clus-
tering processes described in the next section. In the impets done by Wang,
the timesT; required to reach an approximate state of equilibrium (acpce equi-
librium minus 10%) were as follows for different total numb@f ants (initially in

equal number on each side).

N; = 200,400, 600, 1000, 1500, 2000 — T;[mn] = 136, 127, 305, 168, 354, 406

One finds again that the time constants are a linear funcfidimeatotal number of
ants: 7[mn] = 0.064N + 50. The slope is about 10 times smaller than previously.
This means that for a given number, ants reach equilibriunni€s faster than fruit
flies. One cannot draw any clear conclusion from such a résdause too many
factors are different in the two experiments. For instanoe can mention the size
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of the insects, their velocity, the section of the commutncetube between the two
compartments. All these factors affect the time constant.

Clustering

Some insects (and especially social insects) show a dlugtbehavior. By this
expression, we mean that ants or bees dispersed over a gikfaceswill tend to
come together and form one or two clusters in which they taath other. In the
case of bees there will even be clustering in the verticakdsion with successive
layers of bees packed on top of each other.

The clustering process is illustrated in the figure.
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Fig. xx: Clustering process for bees (Apis mellifera melliéra). Altogether there were about 300 bees.
Initially they were put to sleep through 5 minutes in carb@xidle. Source: The data are from an experiment
done in July 2012 by B. Roehner and J. Darley.

More details about this process can be found in the paper mg\Whaal. (2011).

Flow rates in ant clustering

This experiment is very different from the previous one hseanstead of spreading
over a bigger range, the ants cluster on an area that is sritaleinitially.

The results shown on the graph indicate that the flow rate iremmaughly constant
when the initial number of ants is increased.

Indeed, when the initial number is multiplied by 10 the flowerahanges from about
1 to 0.4 which represents a ratio of 2. In these experimemtslistances that the
ants must cover in order to move from one side to another daotashange when the
initial populations are increased. What would one obsanasimilar experiment in
which the density is kept constant which means that the $itee@ontainers on each
side must be increased along with the initial numbers. s éxperiment, the ants



49

*
*
2 * 4

b F Y "l ¥ e T
§§f%*§* %}iﬁxv i
L Es * I W
. 4(3; A@ﬁ “

s e ﬁg&;g‘*
¥ ¥ e iy

Fig. xx: Flow rates for clustering red fire ants. In contrast to the experiments with fishes, this is not anpesca
experiment. On the contrary, the ants move from an initetesivhere they are on separate sides to a state where
almost all of them are on the same side. The experiment was idoAugust 2011 at room temperature that

is to say at about 25 degree celsius. It can be seen that tHweatate doesot increase when the density
becomes higher.

Just to give an order of magnitude of actual traffic in the camication tube, it can be observed that for an
initial population of 1,000 the actual flow of ants per minigé.4 x 10 x 0.78 = 3. This shows that the
section of the communication tube is not in itself a limitflagtor. Incidentally, the upward error bars are fairly
high because the fluctuations in time occur at the denonrimdtive flow rate.Source: The data are from an
experiment done by Dr. Lei Wang.

will have to cover longer distances in order to gather on éimesside. Therefore one
expects that the clustering will take a longer time. In foére may be a threshold
above which clustering will no longer occur.

Another question raised by this experiment is the followifthe diameter of the
communication tube is not, at least in itself, a limitingttacfor the movements of
the ants. Indeed, even with 1,000 ants initially presentamheside, only 3 ants per
minute cross on average from one side to another.

However, the small size of the communication tube may hirtderclustering in
another way. As all the ants are from the same colony phereashould play
no role, therefore one would expect that the propensityustel depends upon the
surface of contact between the two sides. This conjecturdedested by repeating
the experiment with communication tubes of different sizes

Finally, it can be observed that if one tries the same expanir(that is to say same
device, same initial numbers) with drosophila there is nstering whatsoever. The
population on each side remains basically the same exceperfgoorary fluctua-
tions.
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Fig.xx: Flow rate during the process of ant clustering.As in other experiments (e.g. those with fishes)

the flow rate is fairly independent of the total number of @nt®lved. This observation is consistent with

the assumption of an individual transition probability wiis independendent of the population size. Indeed,

under that assumption the number of ants moving from onetsittee other in a given time interval would be

proportional to the size of the populatioBource: The experiment was performed by Lei Wang in Augddt 20
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Distribution of the velocities of small fishes

As one knows the moduleB of the velocities of the molecules of a gas have a
Maxwell-Boltzmann density function. of the formi(v) = Av? exp(—mv?/2kT)
(whereA is a normalization constant). The average velocity(%) = /(8/7) (kT /m)
and the second momenti&(V?) = 3kT /m (Reif p. 268-269). From these results,
it is easy to derive the varianeg and the coefficient of variatio6'V = o/E(V).
One gets:

T T .
ol = E(V?) - EXV) = (3 - §> M 0as?L o oy 2 957 42%
pi) m m V8/m

Histogram of the velocities of small fishes

Now consider a collection of small fishes. They do not all swuith the same
velocity. Will the coefficient of variation of their veloa#s be smaller or larger than
the 42% just obtained for the molecules of a gas? The expatimas done at
Beijing Normal University for a group of 30 female guppies €t al 2011). The
velocities were measured by comparing successive imagesideo. Note that the
density of the fishes was fairly low so that the distances@u/by the fishes during
the time interval between two images was smaller than theagealistance between
the fishes. Therefore, the velocities which were measured real velocities and
not diffusion velocities which would have been the case @r¢hhad been several
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“collision” between successive images.

The results obtained (at a temperature of 22 degree cetsons p set of 145 velocity
measurements were as followsi(V) = 2.95 cm/s?’, ¢ = 1.63 cm/s. Thus, the
coefficient of variation wags'V = 55%.
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Velocity: top scale (expressed in cm/s)

Fig. xx: Histogram of the velocities of small fishesThe fishes are 30 female guppies; the histogram is
based on 145 measurements at a temperature of 22 degreesCdlbe blue curve is a Maxwell-Boltzmann
distribution of expressionf (v) = Qu? exp (mv?/(2kT)) where is a normalization factor. The adjustment
lead to the following values?) = 12, m = 2, 2kT = 16. Source: Li et al. (2011); many thanks to the group
leader, Mr. Li, for sending me detailed experimental data.

In this specific case, it was of the same order of magnituderathé molecules of
a gas. However, this is perhaps no more than a coincidendbdanovements of
living organisms is temperature dependent

Effect of a change in temperature on the velocity of microorgnisms

It is well known that a change in temperature has a markedtadfethe speed of the
forward movements of micro-organisms. In an article by Sather

However, the behavior of the fishes depends upon the conslitibor instance at a
lower temperature the average velocity of the fishes willrhalker. What about the
coeficient of variation? At a temperature of 16 degree ongthetfollowing results:

E(V)=1.0cmls,c =145cm/s = CV =72%

2"The confidence interval for a probability level of 95% is:
E(V)=295+1.96 x 1.63//145 = 2.95 + 0.27
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VoL. 34,1977 TEMPERATURE EFFECTS ON BACTERIAL MOVEMENT 697

dard glass microscope slide was placed. Since

there is a considerable amount of material

through which the heat must be conducted, a

pal longer lag time occurs before arriving at the

A desired temperature, and this cannot be changed

£ v more rapidly than 0.15°C/s, whereas the capil-

el lary tube slide chamber has relatively little con-

i 74 / ductive mass and the temperature can be

L Ly changed throughout its entire range in less than

H S 1s.
i el iy

o rs // o

0
FiG. 4. Effect of temperature on the velocity of P.

mirabilis. The cultures were originally incubated at

41.0°C (+), 35.2°C (0), 27.3°C (8), and 21.3°C @).

rorons selestty (om ssee )
3 5 3 8 8 § &

o]
cw e
] P
5
y Rmecarn e
F1G. 6. Effect of temperature on the velocity of S.
g/ serpens. The cultures were originally incubated at
s g+ 41.0°C (+), 35.2°C (O), 30.0°C (1), and 17.4°C (D).
o wt
= PAK
Temperaturs 10C) .
FIG. 5. Effect of temperature on the velocity of S. -~ | e/

typhimurium. The cultures were originally incubated ~ *

at 43.0°C (+), 35.2°C (O), 27.3°C (A), and 234°C < v
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jumps are summarized. A temperature drop in-  *,, /f) °
duced tumbling or reciprocating direction 8o

h A step up produced a itory accel- 3 n6//‘y 4
eration and suppression of normal tumbling or | {/; . +
reciprocation. -

S. marcescens did not exhibit any of the re- I T N U

sponses to temperature jumps. S. serpens ex-
hibited atypical behavior. A temperature jump
to over 43°C induced a rapid reciprocation hav-
ing a very short mean free path length. This
effect is similar to that produced by P. fluores-
cens when exposed to low concentrations of ali-
phatic alcohols (1).

Fic. 7. Effect of temperature on the velocity of P.
fluorescens. The cultures were originally incubated
at 37.0°C (+), 21.3°C (O), 174°C (A), and 4.0°C ©).

TABLE 1. Mode of direction change by bacteria
subjected to temperature jump

Method of direc-  Flagella arrange-

1s8nb Aq 210z ‘21 aunp uo /Bio°wse wee//:dyy Wolj pepeojumoq

DISCUSSION Organism tion change memt

Thermistor lag time was approxi ly 065, P aerugi Reversal Polar
similar to that estimated to be characteristic of s, typhimurium Tumbling Peritrichous
the capillary tube and culture liquid, and, hence,  B. coagulans Tumbling Peritrichous
behavioral responses of the bacteria being ob-  B. polymyxa Tumbling Pgritrichous
served could be precisely assayed. S. serpens Reversal Bipolar

A wat led chamber has been d ibed P fluorescens Revexsfal Polar |
(5), but in this case the water regulated the S marcescens T‘:‘:’:g;’“ Peritrichous

temperature of a copper plate on which a stan-

Fig. xx: Effect of temperature on the speed of bacteriaOnce the different curves have been normalized so
that they all start from 10 micrometer by second, their stogre close to oneSource: Schneider and Doetsch
(1977, p. ).

On the contrary, a higher temperature seems to reduce tliiecod of variation.
At 26 degree, one getsV = 36%. Intuitively, this is related to the observation that
at low temperature many fishes move very little whereas aglaghitemperature the
proportion of those which do not move is notably reduced.

Histogram of the velocities of ants

Mortality of ant colonies as a function of age

New colonies of ants are started after female ants have basésdnm flight. Not
surprisingly, only a fairly small percentage of the matemdées succeed in starting
a viable colony. Based on a comparison between the numbeepafductives and
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Distribution of the velocities of fire ants
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Fig. xx: Histogram of the velocities of red fire ants. The present data are for red fire ars)enopsis invicta

All parts of the trajectories that involve encounters b&wants have been left out to make sure that what we
consider are the free velocities and not the self-diffusielocities. Similar observations performed on other
species show that the shape of the distribution is a faittyisbcharacteristic. The coefficient of variatiopim

is in the interval(0.40 — 0.55). The order of magnitude of the velocities appears fairlyhHigr such small
ants as the red fire ants (about 2mm in length). May be thereawaistake in the initial document either in
the distance scale or in the figure for the time interval betwsuccessive positionSource: The data were
derived from Fig. 3.1 of Gordon (2010).

the numbers of new 1-year old colonies found to be in exigt¢he following year,
Gordon (2010, p. 79) estimates this proportion to be of tleoof 10%.

An annual census of colonies in a given perimeter providisates of the survival
rate of newly founded colonies. Such results can be sumathby a curve giving
the proportion of survivors as a function of age. At this poone should remem-
ber that it is customary to distinguish three types of sumghip curves. This is a
fairly empirical classification. There is no real understiag of why humans and
drosophila should be in the same group.

Taken in itself, the fact that ant colonies and high-teclpoaations both belong to

type 2 does not give us a better understanding. Howeverathéfat there is a fairly

robust pattern gives a yardstick. If the colonies of anasipexcies are found to belong
to another type, one would have good reasons to think thdteaeht mechanism is

at work.

It can be observed that for type 2 organisms the mortaligy iabasically indepen-
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Proportion of survivors

Percentage of survivors (log scale)

"o 50 10 S TR NI
Percentage of maximum life span ’ : * - °

Age tyemn
Fig. xx: Survivorship curves. The graph on the left-hand side shows three types of sushyprcurves.
Humans and drosophila belong to type 1. Both cases are ¢tbarad by the fact that after sexual maturity the
mortality rate (which is the logarithmic derivative of thergivorship function) grows exponentially with age.
Ant colonies and high-tech corporations are of type 2; fig thass the mortality rate is basically constant if
one forgets the high “infant mortality” of the first and sedoyear. Source: The ant data were derived from
Fig. 4a of Gordon (2013). They refer to about 265 coloniesasf’aster ants (Pogonomyrmex barbatus) in New
Mexico. The data for high-tech corporation mortality weeriged from Chart 6 of Luo and Mann (2011, p.
9); they cover the period 1998-2009 in the United States.

dent of age (except perhaps for one or two years after bifihis can be seen from
the fact that the mortality rate is= [s(i) — s(i + 1)]/s(i) wheres(i) denotes the
proportion of survivors at agé The ratior is nothing else than the logarithmic
derivativer = s'/s = d1n s/di.

Aslns = ai + [ one getsr = a.

For the two other cases one does not know precisely the matleainshape of the

decrease function which means that one cannot state ckdtsér the behavior of
the mortality rate.
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CHAPTER 4: THEORETICAL YARDSTICKS

Effusion model

Theoretical rates

In this section we model the movements of the fishes as ani@ffeffect. Our
objective is to see whether or not the previous observatomsompatible with such
a model.

(1) The main characteristic of an effusion model is that #lecity of the particles
depends only upon the temperature= ,/2kT /m. As the temperature in the two
containers is the same it means that the speed of the panticleach side is also the
same.

(2) We assume that initially there ang, particles all contained in the left-hand
side of the tank. The volume of this part is notédwhile the volume of the part
on the right-hand side i&,. The hole connecting the two parts has a sectio@ur
objective is to describe what happens when the particlessérom 1 to 2. At a given
momentt, there will be N, (¢) particles in part 1 andV,(¢) in part 2. We denote by
small letters the corresponding densities(t) = N1(t)/Vi, na(t) = No(t)/Va.

(2) The particles which will cross from 1 to 2 in the time intak At are those
which are contained in a cylinder of sectierand of lengthvAt and which in ad-
dition have a velocity which is in the appropriate directiowe denote by, the
fraction of all the particles whose velocity is appropridter the moment we do not
need to know; more precisely. Thus, the number of particles crossing ftaim 2
will be: g(svAt)n;. Similarly, the number of particles crossing from 2 to 1 vod:
q(svAt)n.

Consequently, the net flokk /' from 1 to 2 over the time intervakt will be:
AF = (qus)(n; — ng)At

(3) The evolution equation fa,(¢) will be: dN; = —dF'. The— sign is due to
the fact thatV; decreases whef¥' is positive. Dividing byV; we get:
qus

d
% = —a(n; —ny) where: a = i

(4) Of coursen, andn, are not independent. Because the number of particles is
conserved/N,(t) + No(t) = N, which leads to the following relationship between
the densities:

y
m®%+m@%:m%$m@:ﬂm—mw]WM@%:%

2
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This leads to the following evolution equation fof(t):

dm

= —adt
n1(1+/<:)—n0 «

(5) Solving this differential equation leads to:
log[ni(1+k) —nok] = a(1+k)t+C1 = ni(1+k)—nok = Cyexp[—a(l +k)t]
In this equationC', C5 are two constants(C, can be determined from the initial
conditionny(0) = ny. This leads tad’y = n,. Thus:
no

ni(t) = 7 [k + exp(—pt)]  whereg = a(1 + k)

(6) Now we want to compute the average flow rate from 1 to 2, mam&f =
(1/ng)(AF/V1) = (1/ng)a(ny — no)dt. Replacing with the expressions obtained
above we get:

AF 1
df = —— = —a[m (1 + k) —nok|dt = a [k + exp(—Ft) — k] dt = avexp(—pFt)dt
noVi  ng

The average flow rate over a time inter{aivill be:

F= ) ar =5 [ exp(~pt)
Computing the integral one gets:
o al - exp(—=8T) 1 1—exp(—pT)
g T 1+ k T
In order to make contact with the flow rate defined in the expenits the previous

flow rate must in addition be normalized with respect to thatise s. For the sake
of simplicity we keep the same notation.

a 1 —exp(—p0T)
s(1+k) BT

f=

How f changes with respect to initial density, time, section of acamunication
and velocity

WhenT — oo the average flow goes to zero as would be expected. In ord&tto g
a clearer idea of howy depends on the different parameters we develop it to second

— eXp — 01 B i qu 31
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If 6T <« 1the second term of the development can be neglected. Thiseevhat:
e fis constant with respect to the initial density.
e fis constant with respect to the section of the communicadtiogl.
e fincreases linearly with the velocityof the particles.
Now, taking into account the second term of the developmerdee thaf decreases
whenT increases.

Is long-range pheromone interaction due to diffusion?

It has been shown that in some cases insects have a very Ioteaalction range.
This has been demonstrated in 1891 by Jean-Henri Fabre I8 for the case
of a species of moth (Great Peacock Moth). Males were abletatify the odor of

females or even the odor that a female had left in a cage teadctupied temporar-
ily. Fabre’s account (Fabre 1900) of his investigation isoadyillustration of how

the experimental methodology derived from physics can Ipdiepto other fields.

At the end of the 19th century this method was widely usedatolgly (see the work
of Claude Bernard) or in the social sciences (see the workrofeDurkheim).

Formula

One of the most spectacular examples of the long range obpimre transmission
Is provided by the Bombyx butterfly. It is said that males catedt the pheromone
emitted by the female over a distance of about one kiloméftemne assumes that
the pheromone is dispersed by diffusidthe process is described by the diffusion
equation whose solution reads (Reignier and Law 1968 p.:549)

ol

C(r,t) = ool

2D7mr

where:

e ('(r,t): concentration at a distanedrom the release point and at a timafter
the beginning of the release.

e 1. distance from the origin where the pheromone is releas#uktpoint where
it is detected.

e t:time

e (): emission rate of pheromone by the female expressed in mekper sec-
ond.

e D: diffusion constant.

28This assumption is indeed consistent with observatiorsel made by Fabre. He noticed that as the males which
manage to reach the female cannot fly against the wind, thest deiect the pheromone diffusing toward them in a
directionoppositeto the wind. But is it really true that they cannot fly agair wind? Probably they can provided that
the wind is not too strong.
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For spherical particles this constant is given by the Stdkiastein formula:
D = kT/(6mna)

where:

k = Boltzman constant = 1.4 x 107*m?> kg s 2 K™

T = Kelvin temperature

1 = viscosity, more precisely dynamic viscosity expressedars ffor air at 15 de-
gree Celsius.

n = 1.8 x 10° Pa.sa = radius of the particles; pheromone molecules usually are
more elongated than spherical; for instance the length obkecnle of G,H,, is
about 2.5 nm, while its width is of the order of 0.1 nm; nevel#iss as we will focus
only on orders of magnitude, we will consider that pherommoaéecules can be de-
scribed as spheres with a radius around 0.25 nm.

e erfcis the complementary error function; for values of tagable larger than 3
(which is the range in which we will work here), this functimwell approximated
by the following asymptotic formula:

Forz >3: erfc(z) ~ exp(—2?) /7

Uniform repartition of
molecules of pheromone

Repartition resulting from
a diffusion process

-_— _—=
| 1km | 1km

mass concentration at the mass concentration at the
periphery = 6 10**(-8) microg/cm3 periphery = 6 10**(-200000) mol/cm3

Fig. 5: Pheromone distribution. The female (e.g. a Bombyx mori) is located at the centre ofcitmilar
area while the male is supposed to be at the periphery. Inadculation we assumed that the female has been
releasing her pheromone during 24 hours before the matettridetect it.

The figure shows two different assumptions (i) The (app&reanrealistic but simple assumption of a uniform
repartition. In this case the pheromone has a concentratiooh can indeed be detected by the male (the
smallest detectable concentration is abidut'?,g/cm?). (i) The hypothesis of a repartition resulting from a
diffusion process. In this case the concentration in cotaplaindetectable. There is a third possible assump-
tion, namely a repartition by convection due to the wind.hibwld be a breeze rather than a strong wind for
otherwise the average butterfly would not be able to fly ag&inSlow flying butterflies can fly at a speed of 8
km/h; the fastest have a velocity of 40 km/h which corresgaieda fairly strong wind.
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Uniform repartition

Before using the previous formula, we start with the simgsumption that the
repartition of the pheromone is uniform. We assume thateh®afe has been releas-
ing her pheromone during a tinié = 24 hours before the male tries to detect it.
We suppose that the male is at a distance of 1 km of the female.emission rate
Is conditioned by the evaporation rate of the pheromone. ¥eement described
in Traniello (1980, p. 183) gives an emission rate(bf= 2.7 x 10 molecules
per second. The total quantity of pheromone released dtlimgmet is therefore
N = Q1.

To get the volumé’ of the pheromone layer, one must estimate its thickneiss
the vertical direction. We assume thats of the order of the diffusion length; =
2+/Dt. Which is of the order of one meter because (as will be seawhdleyond a
few times the diffusion length the concentration is reducesimost nothing because
the decrease is exponential.

From the volumé/ and the numbeN one gets the concentratien= N/v. The
calculation givest = 75 x 10° molecules/ci

The molecular weight of bombykol, the pheromone used by Bonmbore, is 475

g/mole (Regnier and Law 1968 p. 543). Thus, with the previmasecular con-

centration one gets a mass concentration,0f= 6 x 10~%ug/cm’. Observations
have shown that detectable levels of sex attractant pharesnare of the order of
10~12ug/cm?. Thus, detection can occur.

At first sight the present calculation may seem completehealistic. However, if
there the air is not still but presents movements and tunoeléwhich is particularly
important at ground level due to the many obstacles) this welresult in a fairly

uniform repartition at least in the direction in which theiaimoving. This will work

even if the air is moving very slowly, say with speeds of theéesrof 1 km/h.

Diffusion

If the air iscompletelystill the pheromone will only propagate by diffusion but the
calculation shows that diffusion does not lead to a detéet@incentration beyond a
distance of a few times the diffusion lengih?®. The diffusion length.; = 2v/ Dt
can be computed from the diffusion constant . The diffusionstant can be com-
puted through the Stokes-Einstein formula or can be estdnftom experiments
(Traniello 1980, p. 183). The two methods lead to resultcividiiffer (only) by a

29This results immediately from the asymptotic formula giedove:
erfo(x/La) ~ exp[—(2/La)’]

which means that beyond a few timgg the concentration almost vanishes.
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factor of 100.
Diny =5 x 107°m?/s, Dexp=6 x 10-°m’/s
Due to the square root which occurs in its expression, thediffwsion lengths will

differ only by a factor of 10. One gefs; = 0.1 m andL; = 1.4 m, respectively.

These values show that beyond a radius of 10 meters the doatoemwill be almost
zero. A distance of 10 times the diffusion length leads tocofeexp(—10%) ~
10744,
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CHAPTER 5 : ROADMAP

Basic preliminary experiments

In the second part of this report we delineated a number dfiblesexperiments
aimed at measuring inter-attractivity strength. Howeberfore doing such experi-
ments it is appropriate to perform a number of preliminasgdén order to determine
the main characteristics and parameters of the living asgasiunder investigation.

The distribution of velocities is obviously an importantachcteristic of the species
under consideration; as it can be measured fairly easiby tfse figure) it is a good
idea to be start with that. If the time intervalt = t, — ¢, is small enough (for
instance the image by image time intervals of a video are@btider ofl /20 of a
second) it is the real velocity which will be measured. Faorgger time interval (of
the order of one minute or more) it is the diffusion velocitiiiah will be measured.

43 *
\* 2
% i +
3
e,
v a i
sy 2 .
T,
] & 4%
5 £ 1 3

Fig. xx: Measuring the velocities of living organisms.The figure shows the superposition of two pictures
taken at successive times t5. If one denotes byi; the distances represented by the blue broken lines, the
distribution of the velocities will be given by the histograf the numbers; = d;/(t2 — t1).

Once the diffusion velocity has been determined, it may leéuliso perform a con-
sistency check by doing the diffusion experiment shown efifure.

An escape experiment will already give a crude idea of therdattractivity. Thus,
there is a clear difference between the behavior of socgdrasms which tend to
cluster in the same side of the container and non-sociaingge for which the
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behavior is more similar to that of a gas.

Fruit flies Ants, bees
n(t) m(t)
Escape eete v o bon() n(t)
experiment | + +3 %% - K ~—
Initial state time time
n(t) m(t) n(t)-m(t) n(t)-m(t)
Clustering [s.oss % .-L S !
test s el Ui el e PO
Initial state

Fig. xx: Two basic tests.
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CHAPTER 6: MODELS PROVIDING INTERACTION STRENGTH ESTIMATE S

Introduction

How can one formalize the question?
We want to solve the following problem.

One suspects that the elements (which in practice will bg, &r@es, fishes, and so
on) belonging to a group (of size are interdependent and one wants to characterize
this inter-dependence quantitatively. To do that one mtstfibrmalize the interde-
pendence through a specific criterion which will associataraber to each level of
interdependence. Several formalizations can be prop&@eelmethod which seems
fairly natural is to describe each elemeébty a random variabl&(;; then our question
conists in measuring the degree of interdependence betWweernvariablesX;.

Two classes of models

One simple way to espress such an interdependence is firsitpute the inter-
correlationsp;; between all the pairgX;, X;); then the global interdependence can
be defined as the average:

1
=D Ty
n(n_ 1)/2 1<j ’

In this perspective, one must find a procedure which allonts egemputer.

Another possible approach is to set up a full-fledged modehich the interactions

between theX; are described by a specific mechanism (e.g. interactiondastw
nearest neighbors, global interaction and so on). This i®eemsky approach for

if the model’'s assumptions are incorrect the estimatednpaters will turn out to be

wrong.

Let us emphasize that the the models that will be built areanand in themselves.
They are merely tools. As a matter of fact, it would be pogstblconstruct many
models that would be appropriate enough to be adjusted eradddata in a “mean-
ingful” way. The main purpose of the proposed models is tovallis to estimate
interaction strength. Typically, parameters describigdtrength of the interactions
will be defined in the models and by adjusting them to expemniadedata we will be
able to get estimates which will give an idea not only of theraction strength but
also of the characteristics of the interaction such as rangdime constant.

Nedless to say, the quality of the estimates that we willgasimuch (or even more)
dependent on the experiments as on the model. The less ndise experimental
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data, the cleaner our estimates.

In the first section we propose a fairly broad model which da#snake specific as-
sumptions about the form of the interaction. In this modelititeraction is described
as a global average correlation. The more positive the letioa, the stronger the
attraction between the living organisms.

The second section describes a model that is more detaitediways.

e Itis atime dependent model which will allow us to estimatediconstants.

e The interactions are described in a more detailed way thahanprevious
model. In particular, this model allows separate estimafethe various factors
which contribute to the observed behavior, such as the moisgonent (that is to
say the analog of temperature), the attraction, the regorexternal shocks and so
on.

Both models are analytical models.

Before describing these models we give some basic backdnatormation regard-
ing the question of interaction strength measurements.

Background information about interaction strength

Physics methodology cannot be used for systems of living agisms

In physics it is possible to estimate interaction strengtimleasuring the input energy
required to break up the links between molecules and atom¥ortunately, for
living organisms this kind of method does not seem prackcalyhy?

When one puts more energy into a liquid it will eventually i@ a gas. The gas
has the interesting property of still being composed of #rmae molecules but with
almost no interaction between them. If we raise the tempeaif the liquid even
more there will be a point where the molecules begin to brgakito individual
atoms. For water vapor for instance, whereas at room teryseranly about one
molecule in10' is decomposed into hydrogen and oxygen, the proportionrbeso
3% at 2,200 degree Celsius and 50% at 3,000 degree. In othhdswbone wants
to estimate intermolecular interaction in liquid water anest measure the amount
of energy necessary to transform the water into vapor at peesiure between 100
and (say) 2,200 degree. Above this temperature the mokeeuilebe replaced by
atoms in ever increasing proportion.

Is there a similar phenomenon for living organisms? Firgtit be observed that
the greater molecular agitation at higher temperature @tsars in populations of
living organisms. Indeed, as described in a previous sgctliee average velocity
of fishes increases with the temperature of the water. Haythis effect is limited
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to a narrow temperature interval, basically between 10 &degrees. Outside this
interval the physiology of the fishes is affected. When thaperature becomes
too high they will die thus releasing the separate molecwl@sh compose them in
a phenomenon which is similar to the decomposition of theegwdes into atoms
discussed above.

Ultimately, what makes the method very effective in physicthe existence of two
different states, liquid with fairly strong interactionchmapor with almost no inter-
action. Is there something similar in systems of living oigans?

As an analog of a liquid one can think of a cluster of bees as.&#, the methology
used in physics leads us to ask what happens when the tenmgesésuch a cluster
Is increased? Is there a specific temperature (below thehbied above which the
physiology of the individuals is affected) at which clustéreak up into separate
individuals? Answering this question is made more diffitiyltthe fact that even at
a fairly low temperature of 25 degrees, a cluster of bees liastad duration. So,
the question is less clearly defined than for water and vapor.

Apart from the breaking up methodology another possiblehoeis to derive in-
teraction strength estimates just by observing the behafia system in certain
conditions. Naturally, in order to achieve a good (or at eatasonable) accuracy
we will try to choose these conditions so as to minimize thekgeound noise. The
main challenge will be the following.

Once we behavior of the system has been documented trouglobaeservations,
we want to know what part of this behavior is due to interactiorces. In other
words, we need to know what would be the behavior of a simylatesn whose ele-
ments would be independent. Such a system will serve as asneéanmparison in
the same way as vapor is used in physical systems.

Most often such an hypothetical system of independent eleswall be defined and
analyzed through theoretical arguments. That is why it isartant to set up fairly
simple experiments. In what follows we will mainly rely ong@timents in which
the elements can be in oniyo states

More specifically, these two states will be two spatial lamad. The domain contain-
ing the elements will be divided into 2 parts of same atead2. Thus, an element
i of the system will be in state 1 when it is located in pagnd in state 2 when it
Is in part 2. With this definition the behavior of the systentl we summarized in
the number:(¢) of elements contained in part 1. For a specific experimegtsanh

function z(¢) will be a realization of a aandom functionX (¢) and our task is to
derive information about the interaction strength fromghaperties of this function.

As one knows, the main characteristics of a random functiertree following:
e Its meanm(t) = E[X(t)]
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o lts variance:o?(t) = E [(X — m(t))’] which represents the magnitude of the
fluctuations ofX (¢) around its mean.
e Its autocorrelation function:

E[(X(t+7r)—m(t+7)) (X(t) —m(t))]
oa(t)

The autocorrelation characterizes the more or less efvati@vior of X (¢) in the
course of time. 1fX(¢) is very erratic in the sense that the valuég,), X (¢,) that
it takes at two successive timgst, are almost uncorrelated, theft, — t1) will be
small. On the contrary, if these values are strongly caiedla(t, — t1) will be close
to 1.

When the mean is constant in the course of time, that(i3 = m, the functionX (¢)

Is said to be stationary with respect to the mean.

Similarly, one can also define stationarity with respechitivo other characteris-
tics.

e When the standard deviation is constant in the course of, tirfti¢ = o, the
function X (¢) will be said to be stationary with respect to the variance staddard
deviation.

e Whenp(t,r) depends only upon the lagand not upor, that is to say(¢, r) =
p(r), the functionX (¢) will be said to be stationary with respect to the autocorrela
tion.

,O(t, T) -

In what follows, our interest will more particularly be fased on two aspects:
(1) The standard deviatian
(2) The time constant.

We need to define more precisely what is the time constant yétars.

Definition of the time constant of a system?

Anytime that the properties of a system in the course of timeedefined by an
exponential function, it is possible to define the tome camsof the system. For
instance, when the sizgt) of a population is ruled by(t) = yy exp(t/7), one will
say thatr is the time constant of the system. This definition becomés gatural if
we consider the differential equation of whigft) is the solution.
dy
—=ar=>——=z=>7=1/a, ' =at =t/7, = =

ax > r=717=1/aq, « /T, T =
In the last expressiony (and 7) have been absorbed into a rescaling of the time
variable.

This can be seen as a fairly trivial definition and one may veomehy it is important.
After all, the differential equatiody/dt = «x is too simple to adequately describe
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Fig. xx: Experiments with ants in a two-compartment deviceln the first picture, one starts with an out
of-equilibrium situation. It is similar to water in a cup Wiho vapor molecules over it. In the course of time,
some of the ants will move from left to right. Recording thi®gess in the course of time gives a way to
estimate the time constant of the system.

In the second picture there are almost as many ants on eaeh Hmwvever, this is not necessarily a stable
equilibrium. On the right-hand side one can notice a sma#itelr. Such clusters appear frequently. Sometimes
they grow, sometimes they do not.

any real system. Nevertheless, the importance of the nofitime constant is un-
derlined by the two following observations.

e The notion of time constant is closely related to the notibreigenvalue of
a system. IfL(d/dx) denotes a differential operator, a functign which satisfies
L(d/dx)y,, = s;y will be called an eigenfunctio?f of L(d/dz) associated with the
eigenvaluss;. In the context of time dependent systems, the importanitesohotion
comes from the fact that the solutions of the partial diffeigd equationl.(d/dx)y =
dy/ot are of the form

y(x,t) = > ciyi(w) exp(sit)
where the constants will be determined from some initial conditiogp(z,0) =

Yo(x).

30The terms eigenvalue and eigenfunction are built with tredipteigen”, a German word which means “its own” or
“characteristic of”.
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The expression of(z, t) shows that it has a whole set of time constamnts: 1/s;.
However, the behavior of the system is largely controled iy a few of ther;. In
order to preveny(x, t) from going to infinity fort — oo, thes; must be negative or
zero:s; = —s, s, > 0.

The term withs, = 0 gives the limit ofy(z, t) for larget. Clearly, due to the factor
exp(—sit), the terms containing largeé will decay very quickly whent increases .
Thus, only the smallest values gf(which correspond to the longest time constants)
will have a significant contribution.

In short, the behavior of the system will be mostly contrll®y the longest time
constant; shorter ones can be treated as corrections.

e Even if a system does not exactly follow the previous equattanay neverthe-
less be characterized by a time constant that can be obttirmeyh the following
procedure.

First, we extract from the expression af(t).

y(t) = yoexp(t/7) = t/7 = log(y(t)/yo)

Thus, the graplt, log(y(t)/v0)) should be a straight line whose slopd js-.

Now, suppose one has made several observations of the sgstenest;,, and that
the points(t;, log(yx/yo)) are more or less aligned along a straight line, then the
coefficient of the regression line through these pointsa@Bcribe the time constant
of the system. This procedure may work even for systems warielstochastic rather
than deterministic. It is important to realize that it prde$ both a test of whether or
not the system has a time constant and (if the test is pos#tivestimate of this time
constant.

e The functiony(t) = yyexp(t/7) is a monotonic function. However, it is possi-
ble to define a time constant even for functions which arertanfoeing monotonic.
For instance, the number of elements in compartment 1 thatonsidered above
may fluctuate around an equilibrium valye In spite of the fact that such a function
will have many ups and downs it is possible to compute its tomstant.

One procedure that one can think of is to collect all monatquairts, to apply the
previous procedure to all of them and to take the averageeofdbulting estimates
of 7. However, this procedure does not work because wfienis close toy, the
restoring force due to the equation is small and therefoeecannot neglect the effect
of the noise. Unfortunately, in practice the noise is unknow

There is an alternative procedure which relies on the faadtttie time constant of

the autocorelation function (usually) is the same as the tonstant of the process
X (t) itself. Intuitively, this makes sense as can be seen by deriag two opposed

situations.
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e White noise on the one hand. In this case all successive fltiotis are uncor-
related which means that the curveydt) has a great number of short fluctuations.
In other words, everytime the system is displaced away frguiierium it returns to
it very quickly, a behavior which characterizes a systerhsitort time constant. As
one knows, for white noise the autocorrelation function) is equal to 1 for- = 0,
then falls off to zero very quickly because even a small tiagedhift will result in a
vanishing correlation.

e Onthe contrary a case whey&) shows wide hills and troughs corresponds to a
system with a long time constant. The autocorrelation fionawill decrease slowly
because for the correlation betwegi) andy(t + r) to become small the time lag
must be larger than the average duration of the hills andjtrethat is to say larger
than the time constant

This procedure will involve the following steps.

(1) One must select a time interval during which the seriegp@oximately sta-
tionary for otherwise the values taken by the autocor@awvill be much affected
by the trend ofy(t).

(2) One computes the autocorrelation for different timeslag

(3) If the present model applies then the graptirofog (p(r))) should be (more
or less) a straight line. The inverse of the absolute valub®tlope of this line is
the time constant of the system.

Effect of interaction strength on o and 7

As the standard deviatian and the time constant are two basic characteristics of
any process, it would be useful to have an idea about how tteegféected by the
interaction strength. This is not an easy question. Imnitells us very little about
that. It would be desirable to rely on experimental eviderioethat purpose one
would need a system whose interaction strength can be ctiaigell and whose
standard deviation and time constant can be measured. ,Secfavere not able to
find an appropriate case. This leaves the possibility of éxizg the question on
models but even at this level there are few cases of andlytisalvable systems
with interaction. One of them, which has been studied extelysby physicists is
the so-called Ising mod&

In the Ising model, one considersrandom variables; which are called spins and
can take only two values 1 and1. For our purpose, we will interpret these values
in the following way:

31The model is named after the German-American physicisttEsirg (1900-1998). Under the direction of Wilhelm
Lenz he studied chains of coupled magnetic moments. Becdilnse Jewish origin, he lost his position in 1933. Surpris-
ingly, however, he spent the whole war in Germany and enegdrtt the United States only in 1947. Until his retirement
in 1976 he was a physics professor at Bradley Universityiimolis. In this position, he devoted himself mostly to teiach
and did not write any new research paper.
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Fig. xx: Time constant of ants. In all experiments with more than 20 ants, one part of theagewias initially
empty. In the course of time, during a first phase ants mowvedtliis compartment until it contained about one
half of the number, then in a second phase the numbers on elgechiustuated in a fairly stationary way. The
blue points are estimates based on the regressioiy 0f — y(t)/y.) against time over the first phase. The red
squares are estimates based on the autocorrelation famctoputed from the (more or less) stationary regime
of the second phase.
Sometimes, especially for large populations the statiomaocess of phase 2 lasted only shortly and was
followed by the formation of a cluster in one of the companmise The time constants of this clustering process
are given in the next graph.

The domain available ta living organisms is divided into two parisand2.
o; = 1 means that elemeritis in part 1, whereas; = —1 means that it is in
part 2.

If one denotes by:; the number of ther; which are equal to 1, the sui(n) =
o1+ ...+ 0, will be equal ton; — (n —n;) = 2ny —n. Thus, the sum of the spins is
closely related to the number of elements in part 1; the arbe easily measured
in our experiments

The transition probability of elementduring the time interval\¢ is assumed to be
given by (Glauber 1963 p. 296)

« YO
;At, wherew; = — |1 — —
w w 9 9
Thus, whensigma,;_1 = 0;,1 = 1 (which means that both elements are in part 1) the
probability for element to move to the other part is:
o S(1—m)ifo;=1
o S(1+7)ifo;=—1
We see that ify > 0, < has a low probability to leave part 1 if it is already in part 1

(0im1 + 0441
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Fig. xx: Time constant as a function of the population sizen for a clustering process.Initially, there
were equal numbers of ants (red fire ants) in the two compatsnén the course of time a clustering process
took place through which they gathered into one compartieaning the other one almost empty (in practice
compartment with a population of less than 10% of initiak¥iz
Each data point is an average over 5 repetitions.
Comparison with the previous graph shows that time corstamtdispersion are longer than time constants
for dispersion. However, before drawing any conclusion simeuld make sure that all other conditions were
similar, particularly the section of the communicationmhel between part 1 and Source: The measurements

were made by Wang Lei in August 2011.
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but a high probability to move to pattif it is in part 2. it is in this sense that can
be considered as representing the attraction strength.

The factora controls the frequency rate of the transitions. The highéne more
transitions in a given time interval.

The formulas giving the standard deviation and the time @orniss a function of
are as follows (Glauber 1963 p. 299-301).

fo C8m) 14 po Lo vVI=Y?
0% (Sing(n))  1—n’ 2l
b T 1

Thboxind B 1 - Y
Sind(n) rep_res_ents the expression®fn) for indepe_ndent elements, that is to say
for v = 0. Similarly, T0.inq represents the expressionmoivhen~ = 0.

As can be seen on the graph, bgtandh increase with the attraction strength and
tend toward>o wheny — 1.

Can one understand intuitively why the time constant of gs#esn increases along
with the interaction strength?



72

r Standard deviation of S(n)
r  Time constant of S(n) — 3 20

[ w
N o w (&)l

Ratio of stand.dev. with/without interactiora(S(n))io(S,,4(n))

=
w

1

T I

T T T T T S A S S RO
0 0.2 0.4 0.6 0.8 1

Interaction strength ¢)
Fig. xx: Effect of changing interaction strength in the Ising model. In the Ising model the elements are
supposed to form a linear chain. The parameteepresents the interaction strength between elemand
its two neighborsi — 1 andi + 1. For~y > 0 elementi has a propensity to imitate its two neighbors. In
physics, such a disposition is referred to as ferromagnefithe graph shows the standard deviation of the sum
S(n) = o1 ...0, relative to its value when = 0. The inverse of the time constant is the coefficient of time in
the exponential decrease $fn). It can be seen that both the standard deviation and the timstant increase
with the interaction strength.
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Fig. xx: Relation between the time constant and standard deation in an Ising model. It is interesting to
observe that one has a very similar relationship betweetirtteeconstant and standard deviation of a first-order
auto-regressive process (that is to say a discrete finiferelifce equation with a noise term in the right-hand
side) in spite of the fact that this equation has a compledéfgrent origin and meaning. In other words, this

relationship seems to have a fairly broad range of validity.

At least one can easily understand why for independent elentlee time constant
of the system will be independed of its size. Consider the siith = X;(¢) +
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...+ X, (t) and suppose that initially all elements are in part 1. Thismsethat
initially all ants are on the same side numberS(0) = n. How long will it take

for the system to return to its quasi-equilibrium state~ »n/2? If the ants move
independently from one another and independently of timgial position, during
the first time intervalAt each ant will select completely randomly the compartment
in which it will be at the end of time\¢. As one knows, the surfi(1) will follow

the binomial distribution which means that at the end of the& ftep with a high
probability we will haveS(1) ~ n/2. The largem the closerS(1) will be to n/2

in relative terms. In short, the time constant will be jusé @tep and this result will
hold independently of the value of

As will be seen below, the fact that there is a cross-cormgldietween theX; does
not change the result of the previous argument.

Cross-correlation model

We will introduce this models by steps. First we explain tthea of the model, then
we discuss how it should be used for the purpose of estim#tie@verage cross-
correlation.

General idea of the model

Consider a container which containsaants. In this container we define a subdet
and we count in the course of time the numbg(t) of ants that are found id . For
instance, we can record these numbers every 15 seconds peeod of one hour
which will give 60 x 4 = 240 numbers. From these numbers we can compute their
averagen and their standard deviation3?.

The question is: can we learn something about the interabebwveen the ants from
the values ofn ando?

Intuitively one would expect that if the elements are highly correlated the standard
deviation will be higher than when they are not correlateallatwhy?

If the elements are completely correlated they will moveadkther intoA or out of
A. Thus,ny(t) will make big jumps as seen in the graph below. On the contifary
the elements are not correlated at all(¢) will change by small steps of, 1,2, . ..
as shown in the picture. A jJump of 9 can happen but it will be xxeptional event.
Indeed, it will have the same likelihood as obtaining 9 hdadsgrowing 9 coins.

In other words, one expects that the correlation betweeeldmaents will be more
or less proportional to the standard deviation. The higherdtandard deviation,

32The average and the standard deviation will be fairly indejeat of the time interval between successive observations
because changing this interval amounts to changing thelsagrime of the functiom 4 (¢). If n(t) is fairly stationary,
m ando will also be fairly independent of the total length of theoet:
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the higher the correlation. In other words, by measuringstaedard deviation of
n4(t) we can estimate the correlation which is itself a measurkeiriter-attraction
between the ants.

Fluctuations of the number of elements in a given cell

* (X7=0)

* (x8=0) * (x9=0) * (X7=0)

* (X9=0)

* (X8=0)

S=X1+X2+X3+X4+X5+X6+X7+X8+X9=3 S=X1+X2+X3+X4+X5+X6+X7+X8+X9=2

Fig. xx: Fluctuation of the number of elements in a subset A (ragenta colored) of the whole domain.
Each star represents an element. To each of them one camaéssocandom variable which will be equal to
1 when the element belongs to A and to O otherwise. With thigitien the sumS will count the number of
elements indA and the fluctuations of the random variatslewill represent the fluctuations of the number of
elements counted id in the course of time.

Completely
correlated
elements

Time

Completely
independent
elements

Number of elements in subset A Number of elements in subset A

Time

Fig. xx: Fluctuations of the numbern 4(t) of elements in a subset A of the whole domain in two special
cases.When the movements of the elements are completely cordeddlt® will move to A or out of A at the
same time which will result in big fluctuations. On the congravhen the elements are completely independent
from one another, the fluctuations of;(¢) will be fairly small.

Main formula
More precisely, the method relies on the following progosit
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Proposition 1: Standard deviation of a sum of cross-correlted variables.
We consider a surfi,, of n identically distributed random variablé§ of mean
m and standard deviatiom. We assume that betweé¥y, X;,: # j there is a
cross-correlatiom;;. The average of all cross-correlations is denoted:by
1 n
r = Z T4
[n(n —1)/2] i#j ’

Then, the variance of,, = X; + ... + X,, is given by:

0*(S,) = no?[l + (n — 1)7]

Proof
We proceed in several steps.

For the sake of simplicity we first consider the average ofra setithree correlated random variables
X1, X5, X3 of meanm and identical standard deviatien Our objective is to compute the standard
deviation of:

Sy S =X+ X5+ X5

By definition of the variance one gets: one gets:
0*(S3) = E[(S5 — B(S5))’

One knows that the expectation of a sum of random variablednays equal to the sum of the
expectations, whether the variables are correlated offtmis: £(S;) = E(X;) + E(X») + E(X3).
Consequently:

0%(S5) = E [(23: XZ»)Q] . where:X; = X; — E(X))

The mean of the variabl¥; is equal to zero and it has the same standard deviates1X;. Thus,
3 A A A A A A A
0*(S3) =Y _E(X?) +2 [E(X2X3) + E(X3X1) + E(X1X2)]
=1
We express the expectations of the products by introduti@gaoefficient of correlation of th&;:
E[(Xi - B(X))) (X2 — E(X2))] _ E(X1X5)
J(Xl)U(XQ) 02

T2 =

Thus:
02(S3) = 302 4 20%(ro3 + 131 + 712)

Introducing the mean of the;, 7 = (ra3 + r3; + 712)/3
we obtain:
0?(S3) = 30°[1 + 27]
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This formula has an obvious generalization to an arbitrampimern. of random vari-
ables:

o*(Sy) =no’g®> g= 1+ (n—-1)F (3.1b)

where:
1

T /2 ="

Interpretation of the coefficient ¢

What is the significance of the coefficiesf?
Under the assumption that thé are independent (which means that they are also
uncorrelated) the variance 6f, would ben times the variance okj; that is to say
02(S,) = no?. In other wordsy is the ratio of the standard deviation of correlated
variables to the standard deviation of uncorrelated viasab
a(Sy)

T 5i(Sy)
It can be noted that if < 0, the standard deviation of the correlated variables will be
smallerthan the standard deviation of the independent variablesvhiat practical

situation would this correspond?

To get a better insight let us assume that there are only Wwvmlorganisms+® = 2)
that the total area has been divided into only two parts (1/2) and that- = 5 =
—1. The fact that the correlation is1 means that when the variabl&s and X, will
always take “opposite” valué$ In other words, when is in A, 2 will be outside

A and whenl leavesA element2 will enter A. Such a behavior corresponds to a
situation in which the two elements do not wish to be togetere can think of a
prey-predator situation in which the prey tries to avoidphedator.

As our main objective is to estimate attraction forces wiugtrespond t@ > 0, we
will not be concerned with the case< 0.

Special cases

It is enlightening to apply the previous formula to a numbiespecial cases.

(1) When ther;; are all equal to zerg = 1 and we get?(S,) = no? which is
the standard result for independent variables. Indeed; aeli known, in the case
of independent variables the variance of a sum is the suneofdhances.

(2) On the other hand, = 1 implies thatall ther;; are equal to 1. In this case the
three variables are identical (with probability 1) and osesgr (S3) = 30(X;) = 30
in agreement with the above result.

33The values assumed By, X, are0 and1 which means that they are not really opposite in the aritfoaksense. If
we defineX! = X, —1/2, thenX will take on the opposite valuesl /2 and1/2. However, in thiscas§ = X +... X/,
will no longer count the number of living organisms which ared but will be proportional to the difference of those in
A and those not i.
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(3) The previous formula apply in a general way to any randamablesX;. For
the analysis of experiments with living organisms, thealles.X; have a specific
meaning which gives them the following characteristics:

BE(X;) = P{ic AV1+ P{i¢ AY0=p

o= E(XZ-Q)—EQ(Xi) = P{i € A}12—|—P{i ¢ A}OQ—p2 = p—p? ==pq, Whergg=1—p

Thus, the expression of (.S, leads to:
o2(S,) = npgl(n — 1) + 1

As an illustration let us apply this formula to the case cgprnding to the top graph
in the previous figure. Witlt = 1 one gets:

0*(S,) = n’pq = o(S,) = ny/pq
The result is reasonable because when 1 all the variablesX; are identical (with
probability 1) andS, = nX; from which results that(S,,) = no(X1) = ny/(pg).
With n = 9 andp = 1/4 one getso(Sy) = (9/4)v/3 ~ 3.9

Alternativelys2(S,,) can also be written:
a*(Sn)
npq

This expression leads to a methodology for estimating tleeaaye cross-corelation
which is described in the following proposition.

=n-1)7r+1

Experimental methodology

Proposition 2: How to estimate the average cross-correlain The average
cross-correlatiom can be estimated by taking the following steps:

1) One defines an areawhich is a fractiorp of the whole domain occupied by
n living organisms.

2) One counts in the course of time the numbeysgt) of living organisms
which are inA and one computes the experimental values of the meaand
variances? of n4(t).

3) Under the assumptions of the cross-correlation modeldingbers: 4(¢) are
represented by the random variasle; thus,o? will be represented by?(S,,).
4) Consequently, if one repeats these measurements fouganumbers,, of
living organisms, the variance ofy(¢) should follow the following expression:

o’ (Snk)
ngpq

= (nk— 1)T+1
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which means that will be the slope of the regression— 1, 2) /npq).

5) Similarly, for givenn one repeats these measurements for areas of various

sizes for which the fractiop takes the valueg; the variance of. 4(t) should
follow the following expression:
UQ(Sn)

7=
n(n— 1)prgr — -5

which means that will be the average of the quantity on the right-hand side.

Implication of asymmetric observations?

It can be noticed that so far we did not make use of the meaof the observations
n4(t). The reason is very simple. According to the present modeitban should
always be given bym, = E(S,) = nE(X;) = n/p. For instance, iln = 200
and if the whole domain occupied by the living organisms heenldivided in only
2 parts so thap = 1/2, one should have:. = 100. Needless to sayp. will never
be exactly equal to 50 because of inevitable statisticatifatons. However, such
fluctuations should remain compatible with the order of niagie ofo.. This is not
always the case.

As an illustration, let us mention the following observati@corded with ants: =
195, me. = 58, 0. = 12. In this examplen/2 — m, = 195/2 — 58 = 39 =
3.30.. For variables which have a gaussian distribution (as isigdpy our model),
a fluctuation of3.30 has a probablity as low af)=3. Here, however, it is not a
fluctuation which reaches this value but the mean itselfaBjesuch an observation
IS not compatible with the assumptions of our model. Unifoately, this kind of
observation is the rule rather than the exception. How ciarbnunderstood?

Before discussing this point in greater detail, it is impottto emphasize that this
asymmetry seriously affects the determinatiom.oivhy?

The standard deviation of a random variable depends ondljaéncy and amplitude
of the fluctuations but the most basic factor is its very ommfemagnitude. What
we mean is that, except in exceptional circumstances, tralatd deviation of a
variable which flutuates around 100 is usually higher tharotie of a variable which
fluctuates around 1. In other words, an abnormally low medirawtificially reduce
the standard deviatiom. which will result in underestimating and thus®. On the
contrary, an abnormally high mean will lead to an overesiua. So, this issue
regarding the mean is quite an essential point.

Simulation

In order to illustrate how the present model is supposed tkwe present results
provided by a simulation. This simulation involved the éoling steps.
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(1) First we need to built a set of interdependent randomalbées. To this end
we start with a set of independent random varialiieand we define new variables
X; as linear combinations of thg,. We have been using the Choleski procedure to
produce variables whose cross-correlations are all edjuéthis caser;; = r for all
pairs. As an illustration we give the matrix form of thesesln combinations for
n = 2 andn = 3.

X, 1 0 0 A
X2 =1|r \/1 —7“2 0 Z2
X3 r r %—_T_: 1 — 12—_7; Z3

For the purpose of the simulation the random variables wéogear in these expres-
sions will be replaced by m-dimensional vectors. As a rethilk step gives a set of
n correlated vectors each of dimensian

Xi(t),i=1,...,n, t=1,...,m,i#j:cofX; X;)=r

(2) The second step consists in checking if the random Jasak; have the
properties that one expects. This is done in the followirepgs. The first set of
graphs shows the trajectories of each element. One canaewhbnr is close to
one the trajectories are fairly parallel. On the contratyewr is close to zero they
are almost independent. In practice, the trajectoriesdvidual elements cannot be
observed for that would require a different marker on eachevery element. The
second set of graphs shows what can actually be observed|yhaset of successive
pictures of the whole population.

(3) Now we come to the methodology for measuring As explained earlier,
the methodology that we suggest is to measure the fluctisatbthe number of
elements in a subset of the whole container.

The following table shows the estimates obtained in this.Wagan be seen that the
ratio ¢> defined previously increases with the number of elements.

It is true that in the present case the estimates are faifyyamse but one must keep
in mind that these estimates were obtained through a regnesa only 4 points.
Two interesting conclusions can be drawn. (i) It is importdrat the time-series
defining the variables(; are as long as possible. Here we have takea= 500;

for smaller values ofn the imprecision would be even higher. (ii) the weaker the
correlation the more difficult it is to to measurdéecause in such cases the effects of
the cross-correlation are buried in the noise-background.

(4) A more direct procedure would be to compute the corm@atibetween all
pairs of trajectories. As already said, in practice it isantfnot possible to observe
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n=6, rm=0.98, jm=20, a=0.95, sig=1, D=0

Fig. xx: Simulation of a process with high cross-correlatio. The cross-correlation between the trajecto-
ries of the 6 elements is 0.98. Thg, i = 1,...6 designate the starting points of the trajectories while the
B;, i=1,...6 are the end points.

For this graph as well as for the following graphs the trajacof each of the 8 elements follows an autoregres-
sive processX (t) = aX (t — 1) + B(t) whereB(t) is a random variable which represents the naise; 0.95
which implies that the process has a fairly large time carigthat is to say a long memory).

n=6, M=0.9, jm=20, a=0.95, sig=1, D=0

Fig. xx: Simulation of a process with medium cross-correldbn. The cross-correlation between the trajec-
tories of the 6 elements is 0.90.

these trajectories. However, in the simulation the indieidtrajectories are well
defined which makes it possible to test this procedure. MHiyyas this method uses
a much greater amount of information one expects a betteracg One gets the
following estimates:

r=0.90 : z variablesry-gst= 0.91y variablesry_est= 0.88, rxy-est= 0.89
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n=6, m=0.2, jm=20, a=0.95, sig=1, D=0

Fig. xx: Simulation of a process with low cross-correlation The cross-correlation between the trajectories
of the 6 elements is 0.20.

n=6, rm=0.98, jm=20, a=0.95, sig=1, D=0
K

e

- . .,
.

K

Fig. xx: Simulation of a process with high cross-correlatio. The cross-correlation between the trajectories
of the 6 elements is 0.98.

r = 0.60 : z variablesry-gst= 0.64y variablesry.est= 0.63, rxy-est= 0.63

r=0.20 : z variablesry-gst= 0.33y variablesry.est= 0.17,  rxy-est= 0.25

It can be seen that the accuracy is indeed much better.
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n=6, rm=0.9, jm=20, a=0.95, sig=1, D=0

L)
N

Fig. xx: Simulation of a process with medium cross-correlabn. The cross-correlation between the 6 ele-
ments is 0.90. This figure (as well as the following ones)ysetheir positions on 20 successive time steps.

n=6, rm=0.2, jm=20, a=0.95, sig=1, D=0

Fig. xx: Simulation of a process with low cross-correlation The cross-correlation between the 6 elements
is 0.2.

How to deal with asymmetric observations: first method

The description given by our model implies that if the totedaais divided into two
partsA;, A,. none is favored. This means that the probablity to bd;irshould be
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Table Estimates of the cross-correlation based on simulatiedata

Cross-correlation n ' g* Slopes of
method 1 method 2 regression lines
Texact Test
0.90 3 2.48 2.90
4 2.91 4.52
) 4.16 5.32
6 4.45 4.53

0.72+0.25, 0.57 £ 0.75

0.60 3 1.75 1.89
4 2.24 2.46
5 2.91 3.30
6 3.71 4.39
0.65+0.10, 0.83 £0.16
0.20 3 1.24 1.69
4 1.75 2.18
5 1.62 1.79
6 1.47 1.90

0.056 £0.2, 0.02+0.2

Notes:n is the number of elements in the populati@gad.is the ratio of the observed variance to the variance for unco
related variables. Method 1 refers to the method in whick the probabilityp which is adjusted beforg? is computed,
whereas in method 2 it is the number of active elements wisicljusted prior to computing?. The column “Slopes

of regression line” refers to the regression— 1, ¢?); the first and second numbers are the slopes for method 1 and 2
respectively.

the same as the probability to bedn. If it is not the case, there must be some kind
of asymmetry. One can think of (at least) two possible caaasymmetry.

(1) If the number counted inl; is much larger tham /2, it may be because for
some reason(s) (usually unknown to us) the ants prefer to He.iFor instance, if
there is a dead ant iA, this part may be avoidédl If this is the case, it means that
if A represents a fractiomof the total area, the probability to be #hshould not be
taken as equal tp but rather as equal t& = m,./n. For instance, in the previous
example wherex = 195 andp = 0.5, one get9/'n = m, = 58 = p’ = 58/195 =
0.30.

In short, in this methodology the theoretical variablavill be replaced in all the
formulas of Proposition 2 by the adjusted paramgtetr m./n.

(2) A second possible cause is the fact that some individuatsdo not move.
One can say that they are “frozen”. It is to this case that we now.

How to deal with asymmetric observations: second method (6zen elements)

34t should be noted that at this point this remains a fairlydtipetical reason. We did not try to test it by putting several
dead ants on one side. In fact, we did not wish to engage inadatection because it seems a hopeless task to try to find
out what are the parameters which rule the behavior of the &noreover, the “frozen ant” mechanism that we discuss
later on seems simpler and more satisfactory anyway.
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On using the previous method one does not have to care aleocatise of the asym-
metry. However, observations show that a fairly common easisimply the fact
that some of the living organisms remain motionless. If theye in subsetl ini-
tially, they will remain there during the whole duration bgtobservation. Similarly,
if they were not inA initially, they will remain outside ofA all along. As they never
change side, these elements can be said to be “frozen”. Quothery, the elements
which move in and out ol will be called active elements.

If one assumes that there areactive elements, the sughcan be written as follows:
Sp =Sy + fa, Where:S! = X1 +... X, fa=Xpi1+...X,

WhereasS’ is a random variablef, is a deterministic constant which is equal to the
number of frozen elements locatedAn Thus, the variance f,, becomes:

0%(Sn) = E[(Sy — E(Sn))’] = E[(Sw + fa— E(Sw) — fa)’] = o*(S},)

which shows that our previous calculation applies here diganavidedn is replaced
by n'.

o*(S,) =nog®, g= 1+ —1)F
So, the only question which remains is how to determiheln fact, there are 3
unknown numbersy/, the number of frozen elements ihthat we have denoted by
fa, and the number of frozen elements that are nod which will be denoted by
f . Although we only need’, this number can only be found together with the two
other unknown numbers.
At first one might think that there can be a way to determinseh@umbers from
evidence based on the meanstimnd A. This is not the case, however, for a reason
which is explained below.

As the question cannot be solved in a general way we will béecrwith exam-
Ining two special cases which are of special practical ficance. For the sake of
simplicity, in the following discussion it will be assumdthtp = 1/2.

(1) One major cause of frozen elements occurs when ants sichester together.
If the cluster is formed i this will result in a bigfs. As S, = S,y + f4 we see
that this will result in the fact that. (which is the observed value éf(S,,)) will be
fairly large and in particlar larger thary2, the expected value in the absence of any
frozen element. Consequently, we will consider the fadt#ha> n/2 as indicating
that a cluster has formed iA and none outsidel. In such a case almost all the
frozen elements are iA which means thaf, ~ n — n’. Thus one gets:

E(S,) =E(S)+fa~E(S)+(n—n)1=m.=n'/24n—n"=n"=2(n—m,)

In the general case, the last result would take on the ferm: (n — m.)/(1 — p)
and this case will be signaled by the fact thatis substantially larger thamp.
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(2) On the contrary, if the cluster is formed outsidedothen almost none of the
n — n' frozen elements will be ill which means that

Sp==FE(S)+ fa~Sy+ (n—-n)0=m.=n"/2=n'=2m,

In the general case, the last result would take on the ferm: pm, and this case
will be characterized by the fact that, is substantially smaller thawp

(3) Finally, one must consider the intermediate case inwtiie number of frozen
elements is approximately the samedrand outside ofA. This may happen when
there are two clusters, onkand the other iml. It can also happen in the absence of
any cluster when the individuals which are frozen (or attlsamewhat “sleepy”) are
distributed uniformly in the whole population. Under thairly natural assumption:
it makes sense to assume that the sleepy elements are meeajyal number in the
two parts. In such a situation:

n—mn' n—n'

S, =S, + 1= me,=n'/2+

=n/2

We see thatn,, the average population id, will be the same as without frozen
individuals®®. This result could of course have been expected in advandeed, if
the frozen elements are distributed in the same way as thefrése population the
mean will not be affected. For instance, if for= 200 there are 198 frozen elements
and just 2 non-frozen elements and if the 198 elements atebdiged uniformly
betweenA and A, one will havem, = (0 or1) + 99 ~ n/2. In other words, the
mean is the same as without any frozen elements In contrasvariances will be
very different:

e With 198 frozen elementst?(Syy) = 0.

o Without any frozen elements?(Syy = 20002,

Conclusions The previous discussion shows that:

(1) A problem due to frozen elements can be detected (andated) ifm, the
time-averaged population iA is substantially different fromp.

(2) If m, ~ np but there are nevertheless frozen elements, this problameia
ther be detected nor corrected and it will leadutaler-estimatinghe variance and
therefore also the average cross-correlation

Remark Frozen elements can of course be detected by individuahhisspection
of the living organisms. However, when their number read®e®ral hundreds this
becomes an almost impossible task.

Example of application of the previous methodology

35The same argument holds in the general case when theddsea fractionp of the total area.
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We consider the following case which corresponds to a res¢dation performed
on ants
n=>520, p=1/2m, =212, o, = 47
and we apply successively the two previous methods.
Method 1 (asymmetrical preference for some unknown reason)
The adjusted probability is

p=me/n=041= ¢ =1-p' = 0.59 = *(S;) = pg = 0.24 = 02-2(5”) = npq = 126

As a result: ) ) )
— = —17T=7= =0.032
= 52(s,) 126 P

Method 2 (frozen elements)
Here we are in the case where = 212 is substantially lower thanp = 520/2 =
260. Hence we get the adjusted number of active elemeérttrough the formula:

n' = — 9% 912 — 494
P

Then we determing by using the standard formula withreplaced by.'.

2 2 2
o, o 47 g2 —1 21—1
npPag = P E 1T a3

= = 0.047
n'pqg 424 x (1/4)

As can be seen the two methods lead to average cross-cimslaf the same order
of magnitude (they differ by 32%). Here, just for the sakelo$tration, we have
computedr from a single experimental result. One should observe tmatight
method for determining is not to compute it from individual results but to get it as
the slope of the regression line determined by severaltee@nifact, as many results
as possible).

For a giveno,, the average correlatianis completely determined hy?. However,
in computing the regression line it is not onjy which matters but also the value
of n’ because the-variable of the regression is the numberactiveelements. For
instancep = 1/2 andm, = n/20 impliesn’ = n/10. The fact that»’ is much
smaller thann makes a big difference in the regression. This is illustratethe
following graph which summarizes 11 experiments carriedath various number
of ants.

At first sight it may seem surprising that the estimated camsselation is as low as
0.04. In the next section we explain why this is so.

Why is the estimated cross-correlation so small?
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Fig. xx: Comparison of two estimation methods of the averageross-correlation of a population of
ants. The cross-correlation is a way of expressing the averageaiction strength between the ants. The
correlation of the set of 11 points (not to be confused withéltimated cross-correlation which is the slope
of the regression line) i8.84 for the first method an@.95 for the second. In the second method the frozen
elements are left out and do not contribute. The presenttsesuggest that at least in this case the second

method does a better job. The error barg ofpresent a confidence interval for a confidence level .

First of all, it is necessary to make an important distinctiSBuppose that by comput-
ing the correlation of a set of data;, y;) 1 < i < n one gets a correlation as low
as 0.04. Such a low correlation would almost always meartlieatorrelation is not
significant in the sense that the confidence interval costthia correlation zef

Here, however, the correlationis obtained in a completely different way, namely as
the slope of a regression line. From the errors bars giveimarcaption of the figure

it can be seen that this estimate is quite significan in theesémat the confidence
interval of7 doesnotinclude O.

However important, this distinction does not explain whyged such a low correla-
tion. This is what we wish to understand now.

The formulac? = npq[1 + (n — 1)7] shows that iff ~ 1, the observed standard
deviation is proportional to the total number of elements:~ n,/pq. What does
that mean in practice?

Can the cross-correlation model explain the increase of theme constant with
population size?

The time constant of a population of ants, bees or flies candasured through their
relaxation time from an out-of-equilibrium condition tosdaequilibrium or quasi

36The only exception to this rule may occur when the numbef pairs is very large (say several thousands) so that
the confidence interval becomes smaller than 0.04.
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0=196, r=0.56

0=166, r=0.40 0=64, r=0.06

Fig. xx: Relation between the fluctuations ofr; (¢) and the values ofr. We suppose that the whole domain
which contains the ants has been divided into two parts andbserve the fluctuations; (¢) of the number

of ants in part 1. The black curve corresponds to an hypatietiurve while the red curve is the one that
was actually observed. The numbers given under the graphegandard deviation and the (corresponding)
correlation for the black curves. For thered curve thesebmrmare 47 and about 0.04 respectively.

The first graph corresponds to the greatest possible stha@aration in the sense that each time step all the
ants move from part 1 to part 2 or vice versa,; in this case tleeage cross-correlation is almost equal to 1.
In the second case the same move occurs in two time step® mtilie third it occurs in 4 time steps. As in
the actual experiment one time step was 5 mn, in this lasta@asats would change side within 20 minutes.
Finally, the last graph corresponds to a case in which thiavee of the simulated curve is similar to the
variance of the observed curve.

equilibrium. Some results of this kind are summarized ingtaphs below.

In the next sections we will see that adding together randomtions that have the
same time constant results in a sum that has also the samedmatant. This result
could be expected in so far as the addition of variatd&en at the same momast
not likely to affect the time structure. This result will bleasvn first for uncorrelated
random functions and then for correlated random functions.

Time constant of a sum of uncorrelated random functions

For the sake of simplicity we will consider the sum of only tvemdom functions.
The same argument can be easily extended to a sunmasidom functions.

We consider two stationary random functiakig(t), X»(¢) which have the same dis-
tribution (their expectation is supposed to be equal to fmrthe sake of simplicity)
and the same autocorrelation functjon(r) and we want to compute the autocorre-
lation functionpg(r) of the sumS(t) = X (¢) + X (t).
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Fig. xx: Time constant as a function of the population size:. Initially, all ants were in one compartment, say
1. In the course of time a process of dispersion took placgir which they occupied the two compartments
in approximately equal numbers. This process comprisedotveses. In the first phase the number of ants in
compartment 2p,(t) increased quickly, then after a quasi-equilibrium has lreanhed there was a stationary
process during whichs(t) fluctuated arouneh /2.
The data corresponding to the blue dots were measured duerfgst phase whereas those for the red squares
were measured during the second phase through the autatiomemethod. Sometimes, especially for large
populations the stationary process of phase 2 lasted oolyigland was followed by the formation of a cluster
in one of the compartments. The time constants of this dingtgrocess are given in the next graph.

The calculation is straightforward.
E15()S(t —1)]

0%

ps(r) =

E[S)S(t —r)] = E[(Xu1(t) + Xa(t)) (Xo(t —7) + Xo(t —7))]

E[S(t)S(t —1)] = 2px(r)o% + E[X1(t) Xa(t — 7)] + E [Xo(t) X1(t — 7)]
BecauseX; (t) and X, (t) are supposed uncorrelated,
E[X,(t)Xa(t — 1)) = E[X1(t)] B [Xalt — )] = 0

Thus:
E[S(t)S(t —1)] = 2px(r)ok
As the variance % of S is equal to twice the variance of thé (¢), one gets:

_2x0ox _
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Thus, the sun®(¢) will have the same time constant as each ofxhe

Next, we examine what must be changed in this calculatiomvitveX;(¢) are cor-
related.

Time constant of a sum of correlated random functions

The assumption are the same as in the previous sub-sectiepteakat theX;(¢) are
correlated. Such a correlatiom,can be introduced explicitely by defining th&(t)
in the following way:

Xl(t) = Zl(t), XQ( = le + \/1 — ZQ

where theZ;(t) are two uncorrelated random functions which have same autsc
lation functionp(r) With these definitions,

5 9 9,9 0N 2 9
ox, =0z, 0%, = (p"+1—p°)oz =0y

It can also be seen that the autocorrelation functioXofs p(r). The calculation
is the same as previously except for the two factoasnd/1 — p?. One gets:

E[Xs(t)Xa(t — 7)) = (p° + 1 = p*)p(r)o7
Taking into account that the variance of the is equal to the variance of thg, it
follows thatpx (1) = pz(r).
The sumS(t) of the X;(¢) becomes:

S(t) =aZy(t) +bZs(t), a=1+p, b=/1—p?
Thus:

E[S)S(t —1r)] = (a*+ %) o%pz(r)+abE [Z,(t) Zy(t — r)]+abE [Zy(t) Zy(t — 1))

As the Z;(t) are uncorrelated, the ternis[Z;(t)Z1(t — r)] and E [Z(t) Zs(t — r)]
are equal to zero. The left-hand side can be writigs{r)o% and the variance of
will be expressed in terms of the variance of thigin the way seen earlierr? =
20% (1 + p). Thus one gets:

ps(r)20% (1 + p) = (a® + V)0 pz(r)

Taking into account that? + b* = 2(1 + p), thato? = 0% and thatpz(r) = px(r)
one gets:

ps(r) = px(r)
In conclusion, one sees that with this model it is impossibldescribe changes in

the time constant. That is hardly surprising for a model aagcthe present one which
is basically time independent.
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MEASURING INTERACTION STRENGTH

BETWEEN LIVING ORGANISMS

Bertrand Roehner
Institute for Theoretical and High Energy Physics
University of Paris.

Lecture given at Tokyo University on 28 November 2012, 40 Pepartment of
Economics (3rd seminar room, 12th floor of the Economics &eld3uilding)

Abstract

In economics as in other fields one would like to derive th@erties of macro-systems from the characteristics
of individual elements. In physics, this problem was solbgdstatistical mechanics at least in principle and
provided the system is in equilibrium. So a natural quesigohow to adapt the concepts and methods of
statistical mechanics to non-physical systems.

A first question that we will address (albeit only briefly) isWhto make sure that physical concepts, e.g. the
notion of temperature, can be used in non-physical systermsdnsistenandfruitful way.

In statistical physics a system is described by the knoveexddgts energy functior{ (also called Hamiltonian).

It takes the following form:

H = Heee particlest Hinteractions™ external factors :
The termHjnteractionsdescribes inter-individual interactions. Unless we cauae that the system is com-

posed only of free particles which is a fairly trivial caseorder to use statistical mechanics we need to know
(quantitatively) the interactions within the system. Mosthe methods that physicists use for measuring in-
teractions cannot be used in non-physical systems, foarinst because they lead to the dislocation of the
system (as for instance in melting, boiling or evaporatidrus, if we want to extend statistical mechanics to
non-physical systems it is important to define methods tjinouhich one can measure interaction strength in
non-physical systems.

As afirst step, we attempt such measurements for systemsraf brganisms such as groups of insects. Such
systems are closer to physical systems than are sociahsy$tecause the notions of distance, velocity or en-
ergy can be defined in the very much the same way as in physigsoulr hope that such methods will also
prove useful for social systems.

In one of the methods that we propose, one divides the alaigace into two partd and B and one records

in the course of time the numbers, (¢) of individuals located in paril.

Beginning of drift to the right

]/
297 ants S~ | detailed )
view of Y
{ | \ / - \
ants “‘ ‘/
Quasi-equilibrium \‘/ A |
- - - N N
A . ants
= I
\ \

80 ants

Simulation with crosscorrelation equal to 0.2.
Experiments with ants in a two-compartment device

We then use a probabilistic model that allows us to derive(dlverage) cross-correlation between individual
organisms from the standard deviation of the functgrit).
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Role of interaction in physical and social systems

In statistical physics

In statistical physics the properties of macroscopic systare derived from the char-
acteristics of molecules (or atoms or electrons). One atwtiaracteristic specifies
how these molecules interact.
As an illustration for a real gas (as opposed to an ideal gasticch interactions are
supposed to be negligible), the energy function may takéalf@ving form:

mu? k
H = Hfree particleé‘H interactions  Hfree particles— >~ Hinteractions= >_ T \6
P2 i=j (ri —1j)
This expression focuses on one specific form of interachanin fact several forms
of interaction are at work simulateously.

In trying to apply a similar approach to economics, the males will be replaced by

economic units which can be traders in financial markets paomes, economic sec-
tors or the economies of different countries. Needlessytoadldhese economic units
interact in one way or another. In order to apply the methddsatistical physics to

economic systems we need to know the ways and strength @& iffeesactions.

However, even if we do not intent to use the formalism of sta@l mechanics,
estimates of interaction may turn out to give useful insigtd the economic systems
under consideration. Let me explain why.

In physical chemistry

Although the objective of physical chemistry is also to explthe properties of
macroscopic systems in terms of molecular interactioresetiare two main differ-
ences with the approach of statistical mechanics.

e First, physical chemistry considers a broad range of médsa@ther than just
the simplest ones as is done in physics. Thus, because msey &g being consid-
ered it becomes a necessity to adopt a comparative perggaestiy is the melting
point of argon lower than the melting point of water? Why is gguilibrium vapor
pressure higher for ethanol than for water? Why is the bgpitemperature higher
for decane than for methane? And so on and so forth.

e Because to propose full-fledged models for all these casafvibe an almost
impossible task, physical chemistry will rather resort t@lifative arguments.

Implications of interactions for macroscopic properties

Physical properties
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Most of the properties of physical systems are closely coigaeto the interaction
strength.

100 — * Water

* Ethanol

o
o
I

o
I

% Ammonia

Boiling point (Celsius degree)

o
S
I

-100 —
r Alkane (C H,,,, linear chain) [e]
150 = Isomers .
[ % Argon
_200 I — ‘ I — ‘ I — ‘ I — ‘ I — ‘ N ‘ | ‘ L
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Molecular weight (g)
Boiling point as a function of molecular weight, i.e. interaction strength.

Weak coupling

C4H10HHHH C4H10

Stronger coupling

Attraction between alkane molecules.

One can mention:

State of matter: solid, liquid or gas (see below)
Equation of state of gases connecting density, pressumn@giature (ideal gas

versus van der Wall gas)

Boiling temperature (illustrated in graph)

Heat of vaporization

Surface tension (energy to take a molecule to the surface)
Equilibrium vapor pressure

Rate of evaporation (escape experiment)

Viscosity
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e \elocity of sound (ex: diamond)

States of matter

Among the properties that can be (more or less) predictechvame knows the
strength of interaction between molecules there is onech@siperty which is of
particular importance, namely the system’s state of matter

Physics distinguishes 3 states of matter: gas, liquid ald®$o

Solid-like systems versus gas-like systems

An obvious question is whether the previous distinctiondyparallel in non-physical
systems. For the sake of simplicity, we consider only thedwtoeme cases of solid
like versus gas-like systems.

One distinctive property of gases is that when put togetheigas systems will form

a new system identical to the former ones except for its velu@n the contrary, two
solid systems put together will remain separate.

In physical terms this property will be expressed by the that for gases the dif-
fusion constantD is muchlarger than for solids. For hydrogen (at zero degree)
D = 6 10" m?/s, whereas for copper at 600 degiee= 3 105 m?/s.

(the source is http://web.mit.edu/3.091/www/WittNo¢stes 9. pdf)

What about non-physical systems? If we put together twadivirganisms, they will
notform a new living organism but will remain separate. Thuscae say that living

organisms are solid-like systems, in other words they hteag interactions.

On the contrary, when put together two groups of people whealsphe same lan-
guage will form a new group. Thus, we can say that they ardigasystems in

which interaction is fairly low.

At this point it is important to realize that the ability fovd systemsA and B to
form a new system does not only depend on the strength obictten within theA
and B components but also upon the interaction that the elemént<an have with
the elements of3. This can be illustrated by our previous example.

e If all people in groupA speak the same languagg that is different from the
languagel z spoken in groupB, then it will be difficult for the reunion ofA and
B to form a stable group because the group B will tend to split into its initial
components.

This is the situation for two groups of immigrants freshlynagd in a country. As a
result, these groups will form separate clusters in theigityhich they arrive. This
is what can be seen in New York with the areas of “Little Itaty™Chinatown”. In

37A 4th state would be plasma which is a high-tempertaure gagioh the atoms have lost their electrons. Although
plasma has specific properties, for the issue we are coirgideere it does not differ significantly from gases. That is
why we will limit ourselves to the three other states of matte
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short, immediately after their arrival such groups of imrargs are solid-like.

e If, apart from their own languages, the people in the two gsaare able to speak
(even if imperfectly) a common languadg:, then their ability to form a reunion
AU B will be increased.

This is what happened when the immigrants in “Little Italyide‘Chinatown” little
by little learned to speak English. From solid-like suchugr®will become gas-like.

As another illustration, one can mention the following saséwo neighboring
colonies of thesame speciesften fight one another. On the contrary, a colony of
ants may contain ants ofdifferentspecies with which it lives in symbiosis. To ex-
plain such cases in terms of interactions will require aitktatudy. However, there
are similar cases in physics. Why does hydrogen (and onlyogyh) diffuse very
quickly in palladium (and only in palladium)? This showstthé& should not expect
any universal rules but satisfy ourselves with broad, ¢aiare rules (even if these
rules are plagged with a few exceptions).

Parallel of surface tension in social systems: separatism
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Forces on bulk versus surface molecules. Equilibrium vapor pressure.
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Relation between the equilibrium vapor pressure and tempeaiture. It can be noted that the vapor pressure
for the solid follows almost the same law as for the liquid.
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When two states of matter are in contact, they share a suctdlel an interface.
Whereas bulk molecules have neighbors in all directionanahterface, molecules
have neighbors of same kind only on one side. Thus, surfatecoies are different
from those in the bulk.

It takes energy to create a new surface of a solid or liquidhbse one must move a
molecule from the bulk to a site at the surface and this takesgy. The amount of
energy it takes to create one unit of area of new surfaceliscctile surface tension.
It is expressed in Joule/square meter. The surface tensitects fairly well the
strength of interaction in a system. For instance, at 20edetire surface tension at a
water-air interface is 73 mJ/(square meter) whereas tliacitrension at a mercury-
air interface is 472 mJ/(square meter).

If one reviews separatist movements one quickly finds thabat all of them are
located near border or coast lines. This characteristigiavated whenever such
places are separated from the rest of the country by mouraiages with poor means
of transportation.

Many illustrative examples are described in “Separatisohlategration” (Roehner
and Rabhilly 2002)

Parallels of equilibrium vapor pressure in non-physical sytems: dropout and
escape rates

Among the molecules which are near the interface those whade the highest
velocity are the most likely to be able to escape. For a givemname velocity (that

is to say for a given temperature) the number of moleculeshvhiill escape is

conditioned by the interaction strength in the liquid. Those is not surprised that
there is a close connection between the number of escapestued (that can be
measured by the equilibrium vapor pressure) and the irtterastrength. In other
words, the equilibrium vapor pressure is a good indicatdhefinteraction strength.

How can this be applied to non-physical systems?

For any organization such as school, army, church, pdlipiaety or club the number
of people who leave the organization in a given time intereédcts the attraction
force of the organization. In most of these cases the pemsbnsdrop out are ab-
sorbed by the society in which the organization is estabtisind few will come
back. In other words, we are not in a situation where the velatyove the liquid is
closed but rather in a situation in which the liquid is in o@én In this case it is the
rate of evaporation which replaces the vapor pressure @sation indicator.

Some 4 years ago,
| tried to collect dropout data for various clubs such as galsassociations, card-
player clubs, sport clubs and so on, in the hope that they nvayegtimates of the
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interaction strength inside these organizations. At fiinés,could appear as a promis-
ing approach for indeed in all developed countries therdlaesands of clubs and
associations of all kinds. There were many obstacles, hemev

e |t was difficult to make a clear distinction between real ggrants and those
who registered but did not really participate. This probleas particularly serious
which clubs which charged no or minimal entrance fee.

e The dropout (as well as the registrations) do not only retleetattraction of
the club but also the influence of various other possible patans between which
a person may share its free time.

e One obvious bias comes from the persons whose dropout isodheit death.
This bias becomes all the more serious in clubs in which maembers are retired
persons.

For all these reasons, this approach was eventually drogebohstead we started to
do experiments with insects. Here are some pictures wHigstriate some practical
aspects of this approach. Their main objective is to showdiheh experiments can
be done with fairly modest equipment.

Phase transitions

As an example let us consider water. The three states wikkdeiguid water and
vapor water. Whether in the solid, liquid or gas state, tieraction mechanisms of
water molecules are basically the same but the couplinggtnewill be stronger in
ice, than in liquid (and stronger in liquid than in gas) besmathe average distance
between the molecules is smaller in a solid than in a liquidl (®maller in a liquid
than in a gas). As most of the interactions are decreasirfginareasing distance
(as are the power laws in the formula given above), largeraaseinter-molecular
distance means weaker interaction. In other words, in aaenove from gas to
liquid or from liquid to solid one has to reduce inter-molkguistance. This can be
done in two ways.

(1) One can reduce the volume of the container containingyeeem. This will
bring the elements closer together.

(2) Reducing the translational momentum of the elementsaNdw the inter-
attraction bring them closer together. Ideally, if the ncoles were completely
steady, even a small inter-attraction would bring them tloge

Presentation of methods and experimental devices

Methods
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Clustering process for bees (Apis mellifera mellifera).Altogether there were about 300 bees. Initially they
were put to sleep through 5 minutes in carbon dioxid@ource: The data are from an experiment done in July
2012 by J. Darley and B. Roehner.

Which method to use?
1) Is there clustering?
Yes — How fast? Proportion of outliers not in
cluster?
No — UseCross-correlation methqar Expan-
sion rate method
2) Cross-correlation method
In order to know if this method will give reliablé
results, one must answer the following que
tions.
e What is the proportion of elements moving
from left to right versus from right to left?
e What is the number of “frozen elements” i.e.
those elements that do not move?
3) Expansion methoffemains to be tested)

\V

%4

S_

Presentation of some useful experimental devices
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To be eventually successful this approach needs to be explyrseveralresearch
groups. This is the way physics has been working in the pasetbenturies. All
experiments were tried, retried and checked by many plsgsicilt is through the
comparison of their results that a better understandinigeoékperimental conditions
necessary for the experiment to succeed could eventuatipined.

Such a collective exploration process is even more impbtare because, due to
the very nature of these experiments, the fluctuations atg f@arge.

Ants and drosophiles On the left: collecting ants. The white Bristol board was &efew centimeters from the
exit hole of a colony for about half an hour. The brown prodaathesnut cream with a few drops of water.
On the right: a tube containing drosophila as prepared bgeareh laboratory in population genetics.

Carbon dioxide gas cylinder. As compressed carbon dioxide is necessary in many acsivéieall cylinders
similar to the one shown on the picture can be bought fairbjiygand at low cost. The one represented here is
used for the production of sparkling water, it weighs onlg &ilogramme and costs about 20 euros (10 euros
for the empty bottle and 8 euros for a refill).
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Beginning of drift to the right
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Container with weighing device on one side (2)Here most of the beetles have formed a cluster in one of the
corners. The weight is 375 mg which, when divided by 19 mgeg & total of 20 beetles.

In showing some of the experimental devices my purpose i®twince the audi-
ence that it is possible to do this kind of experiments wiinydittle sophisticated
equipment.
Basically, the needs can be summarized as follows:

e First one needs to get thiging organismsants can be easily collected (see pic-
ture), drosophila can be obtained from biology laboramriruit flies can be bought
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in the form for worms (larvae) destined for fishermen or fagy Bguarium fishes,
small fishes are sold as preys and foodstuff for bigger fishetlles can also be
bought in the form of worms.

e Secondly, in many cases, one needs a small bottle of carlearddito make
them sleep in order to be able to handle them easily. Carlmaddi has an almost
instantaneous anesthesic effect on all these insects.rdiogato a paper published
in the Journal of Experimental biology (Ribbands 1950) atteesia through carbon
dioxide does not infer a memory loss and changes only sjigi behavior of bees.
It is probably safe to assume that the effect on the otheciasaentioned above is
similar.

e Next one needs an appropriate container. A simple soluida tut it into a
piece of flexible plastic (such as PVC) of adequate thickii@te 5mm is usually
enough). This is illustrated in one of the pictures.

e Finally, one needs a counting device. Taking pictures amaiwag by hand is a
simple solution but not always satisfactory especiallydmunting the elements in a
cluster. For this reason we have developed a weighing médttastrated in one of
the pictures).

Next we describe one of the methods that we have developecdofaputing the
average correlation between interdependent elementsystans.

Cross-correlation method

The main advantages of this method are the following.

(1) Contrary to the dropout model, the cross-correlatiodehoan be used whether
or not there is a clustering process.

(2) The (usually) few non-clustering elements considerethe dropout model
present high fluctuations. On the contrary, the cross-tadioa model relies on data
for the relatively large number of elements which cross fiame side to the other.
As a result, one expects a smaller dispersion of the results.

(3) As cross-correlation measurements take only aboutamalfour this method
can be used to follow the interaction of a system in the coafdene. This is not
possible with the dropout model because one must wait Ungittustering process
Is completed.

We will introduce this models by steps. First we explain thea of the model, then
we discuss how it should be used for the purpose of estim#tie@verage cross-
correlation.

General idea of the model
Consider a container which containsants. In this container we define a subdet
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and we count in the course of time the numbg(t) of ants that are found id . For
instance, we can record these numbers every 15 seconds peeod of one hour
which will give 60 x 4 = 240 numbers. From these numbers we can compute their
averagen and their standard deviation3®,

The question is: can we learn something about the interabebwveen the ants from
the values ofn ando?

Intuitively one would expect that if the elements are highly correlated the standard
deviation will be higher than when they are not correlateallaiwhy?

If the elements are completely correlated they will moveaikether inta4d or out of
A. Thus,n(t) will make big jumps as seen in the graph below. On the contifary
the elements are not correlated at all(¢) will change by small steps of, 1,2, ...
as shown in the picture. A jump of 9 can happen but it will be xezeptional event.
Indeed, it will have the same likelihood as obtaining 9 hdadsgrowing 9 coins.

In other words, one expects that the correlation betweeeldmaents will be more
or less proportional to the standard deviation. The higherdstandard deviation,
the higher the correlation. In other words, by measuringstaedard deviation of
n4(t) we can estimate the correlation which is itself a measurkeiriter-attraction
between the ants.

Fluctuations of the number of elements in a given cell

* (X7=0)

* (x8=0) | * (x9=0) * (x7=0) : * (X9=0)

* (X8=0)

S=X1+X2+X3+X4+X5+X6+X7+X8+X9=3 S=X1+X2+X3+X4+X5+X6+X7+X8+X9=2

Fluctuation of the number of elements in a subset A (magentaatored) of the whole domain.Each star
represents an element. To each of them one can associatdoarraariable which will be equal to 1 when the
element belongs to A and to 0 otherwise. With this definitimmgums will count the number of elements i
and the fluctuations of the random variaBlevill represent the fluctuations of the number of elementsteadl
in A in the course of time.

Main formula
The method relies on the following proposition.

38The average and the standard deviation will be fairly indejeat of the time interval between successive observations
because changing this interval amounts to changing thelsagrime of the functiom 4 (¢). If n(t) is fairly stationary,
m ando will also be fairly independent of the total length of theoedt:
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Completely
correlated
elements

Time

Completely
independent
elements

Number of elements in subset A Number of elements in subset A

Time

Fluctuations of the number n 4(t) of elements in a subset A of the whole domain in two special cas.
When the movements of the elements are completely cordett® will move to A or out of A at the same
time which will result in big fluctuations. On the contraryh@n the elements are completely independent from
one another, the fluctuations of; (¢) will be fairly small.

Proposition: Standard deviation of a sum of cross-correlaéd variables.
We consider a surfy,, of n identically distributed random variablé§ of mean
m and standard deviation. We assume that betweeYy, X;,¢ # j there is
a cross-correlation;;. The average of all cross-correlations is denoted by
T = [TL(Tll)/?] >i;rij. Then, the variance f, = X + ... + X, is given by:
Oz(sn)
2

oc*(Sy) =no’[(n—1)T+1] = ¢° = =n—-1r+1

no

no? is the variance of the sutsi, when theX; are uncorrelated.

Proof
We proceed in several steps.

For the sake of simplicity we first consider the average ofra efithree correlated random variables
X1, X5, X5 of meanm and identical standard deviatien Our objective is to compute the standard
deviation of:

Sy S =X+ X5+ X5

By definition of the variance one gets: one gets:
0*(S5) = E (S5 — E(S5))’]

One knows that the expectation of a sum of random variablednays equal to the sum of the
expectations, whether the variables are correlated offtmts: £(S3) = E(X;) + E(X») + E(X3).

Consequently:
3
0'2(53) =F l(z XZ)Q] s Where:Xi = Xz - E(XZ)

i=1
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The mean of the variabL&- is equal to zero and it has the same standard deviatasX;. Thus,

P(S5) = " B(XD) 12 [B(oXy) + B(XX0) + B(X,5)

=1
We express the expectations of the products by introduti@gaoefficient of correlation of th&;:

E[(X) - B(X1)) (X2 — E(X5))] _ E(X,X5)
o(X1)o(Xs) o2

o =

Thus:
0'2(53) == 30'2 + 20’2(7“23 + 731 -+ 7“12)

Introducing the mean of thg;, 7 = (ra3 + r31 + 112)/3
we obtain:
0%(S3) = 30°[1 4 27]

This formula has an obvious generalization to an arbitrampioern of random vari-
ables:

o%(S,) =no’g®> g=\1+(n— 1T (3.1b)

where:
1

T /2 ="

Interpretation of the coefficient ¢

What is the significance of the coefficiejR

Under the assumption that thé are independent (which means that they are also
uncorrelated) the variance 6f, would ben times the variance ok; that is to say
02(S,) = no?. In other wordsy is the ratio of the standard deviation of correlated

2

variables to the standard deviation of uncorrelated véasab
o(S,
,_ (5
Ui(Sn)
It can be noted that if < 0, the standard deviation of the correlated variables will be

smallerthan the standard deviation of the independent variablesvhiat practical
situation would this correspond?

To get a better insight let us assume that there are only Wwvmlorganisms+® = 2)
that the total area has been divided into only two parts (1/2) and thatr = 1, =
—1. The fact that the correlation is1 means that when the variabl&s and.X, will
always take “opposite” valués In other words, when is in A, 2 will be outside

3%The values assumed By, X, are0 and1 which means that they are not really opposite in the aritioaksense. If
we defineX! = X, —1/2, thenX will take on the opposite valuesl /2 and1/2. However, in thiscas§ = X +... X/,
will no longer count the number of living organisms which ared but will be proportional to the difference of those in
A and those not i.
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A and whenl leavesA element2 will enter A. Such a behavior corresponds to a
situation in which the two elements do not wish to be togetere can think of a
prey-predator situation in which the prey tries to avoidphedator.

As our main objective is to estimate attraction forces witicirespond t@ > 0, we
will not be concerned with the cage< 0.

Special cases

It is enlightening to apply the previous formula to a numbiesecial cases.

(1) When ther;; are all equal to zerg = 1 and we get?(S,) = no? which is
the standard result for independent variables. Indeed asglli known, in the case
of independent variables the variance of a sum is the suneofdhances.

(2) On the other hand;, = 1 implies thatall ther;; are equal to 1. In this case the
three variables are identical (with probability 1) and oaesgr (S3) = 30(X;) = 30
in agreement with the above result.

(3) The previous formula apply in a general way to any randamablesX;. For
the analysis of experiments with living organisms, theakles.X; have a specific
meaning which gives them the following characteristics:

E(X;)=P{ic A}1+P{i¢ A}J0=p
o= BE(X})-E*(X;) = P{i € A}1’+P{i ¢ A}0*—p*> = p—p° == pq, Wherg;=1-p
Thus, the expression of (S,,) leads to:
0*(Sy) = npg[(n — 1)7 + 1]

As an illustration let us apply this formula to the case cgpanding to the top graph
in the previous figure. Witht = 1 one gets:

0*(S,) = n’pq = o(S,) = ny/pq
The result is reasonable because when 1 all the variablesX; are identical (with
probability 1) andS,, = n.X; from which results that (S,,) = no(X;) = n\ﬂpq).
With n = 9 andp = 1/4 one getso(Sy) = (9/4)v/3 ~ 3.9

Alternativelyo?(S,,) can also be written:
o*(Sn)
npq

This expression leads to a methodology for estimating tleeaae cross-corelation
which is described in the following proposition.

=n-1)7r+1

Experimental methodology
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Proposition 2: How to estimate the average cross-correlain The average
cross-correlatiom can be estimated by taking the following steps:

1) One defines an areawhich is a fractiorp of the whole domain occupied by
n living organisms.

2) One counts in the course of time the numbeys$t) of living organisms
which are inA and one computes the experimental values of the meaand
varianceo? of n4(t).

3) Under the assumptions of the cross-correlation modeldingbers: 4(¢) are
represented by the random variable; thus,o? will be represented by?(S,,).

4) Consequently, if one repeats these measurements fouganumbers,, of
living organisms, the variance ofy(¢) should follow the following expression:

0-2 (Snk )
nipq

= (nk— 1)?—{-1

which means that will be the slope of the regressign — 1, 02 /npq).

5) Similarly, if for givenn one repeats these measurements for areas of various

sizes for which the fractiop takes the valuegy, then the variance of 4(#)
should follow the following expression:

UZ(Sn)
n(n— 1)prge — -

T =

which means that will be the average of the quantity on the right-hand side.

Dealing with asymmetric observations

It can be noticed that so far we did not make use of the meaof the observations
na(t). The reason is very simple. According to the present modetthan should
always be given bym, = E(S,) = nE(X;) = n/p. For instance, iln = 200
and if the whole domain occupied by the living organisms heenidivided in only
2 parts so thap = 1/2, one should have:. = 100. Needless to sayp. will never
be exactly equal to 50 because of inevitable statisticatiatmons. However, such
fluctuations should remain compatible with the order of niagie ofo.. This is not
always the case.

As an illustration, let us mention the following observati@corded with ants: =
195, m. = 58, 0. = 12. In this examplen/2 — m, = 195/2 — 58 = 39 =
3.30.. For variables which have a gaussian distribution (as isigdpy our model),
a fluctuation of3.30 has a probablity as low a)~3. Here, however, it is not a
fluctuation which reaches this value but the mean itselfafBjesuch an observation
IS not compatible with the assumptions of our model. Unfoately, this kind of
observation is the rule rather than the exception. How cisrbénunderstood?
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Before discussing this point in greater detalil, it is impottto emphasize that this
asymmetry seriously affects the determinatiom.ofvhy?

The standard deviation of a random variable depends ondljaéncy and amplitude
of the fluctuations but the most basic factor is its very omfemagnitude. What
we mean is that, except in exceptional circumstances, dralatd deviation of a
variable which flutuates around 100 is usually higher tharotie of a variable which
fluctuates around 1. In other words, an abnormally low or mggan will result in
an abnormally low or high standard deviatienwhich in turn will affectg and the
estimate ofr. So, the issue regarding the mean is quite an essential point

Simulation

In order to illustrate how the present model is supposed tkwe present results
provided by a simulation. This simulation involved the @wling steps.

(1) First we need to built a set of interdependent randomabées. To this end
we start with a set of independent random variallieand we define new variables
X; as linear combinations of thg,. We have been using the Choleski procedure to
produce variables whose cross-correlations are all edjuéthis caser;; = r for all
pairs. As an illustration we give the matrix form of thesesln combinations for
n = 2 andn = 3.

X 1 0 0 1
Xo|=|r V1I-—1r? Z
X3 1+r \/1 o % Z3

For the purpose of the simulation the random variables wéyogear in these expres-
sions will be replaced by m-dimensional vectors. As a rethilt step gives a set of
n correlated vectors each of dimensian

Xi(t),izl,...,n, t:].,...,m,i#leOl’(Xi,Xj):

(2) The second step consists in checking if the random Jasak; have the
properties that one expects. This is done in the followirgphs. The first set of
graphs shows the trajectories of each element. One canaewhbnr is close to
one the trajectories are fairly parallel. On the contratyewr is close to zero they
are almost independent. In practice, the trajectoriesdwidual elements cannot be
observed for that would require a different marker on eachevery element. The
second set of graphs shows what can actually be observed|yhaset of successive
pictures of the whole population.

(3) Now we come to the methodology for measuring As explained earlier,
the methodology that we suggest is to measure the fluctisatbthe number of
elements in a subset of the whole container.
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n=6, rm=0.98, jm=20, a=0.95, sig=1, D=0

Simulation of a process with high cross-correlation.The cross-correlation between the trajectories of the 6
elements is 0.98. Thd;, i = 1,...6 designate the starting points of the trajectories whileBhei = 1,...6

are the end points.

For this graph as well as for the following graphs the trajacof each of the 8 elements follows an autoregres-
sive processX (t) = aX (t — 1) + B(t) whereB(t) is a random variable which represents the naise; 0.95
which implies that the process has a fairly large time carigthat is to say a long memory).

n=6, M=0.9, jm=20, a=0.95, sig=1, D=0

Simulation of a process with medium cross-correlation.The cross-correlation between the trajectories of
the 6 elements is 0.90.

The following table shows the estimates obtained in this.Wagan be seen that the
ratio ¢> defined previously increases with the number of elements.

Itis true that in the present case the estimates are faifyyamse but one must keep
in mind that these estimates were obtained through a regnesa only 4 points.
Two interesting conclusions can be drawn. (i) It is importdrat the time-series
defining the variables(; are as long as possible. Here we have takers= 500;
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n=6, m=0.2, jm=20, a=0.95, sig=1, D=0

Simulation of a process with low cross-correlation.The cross-correlation between the trajectories of the 6
elements is 0.20.

n=6, rm=0.98, jm=20, a=0.95, sig=1, D=0

X3

- hh .,

K

Simulation of a process with high cross-correlation.The cross-correlation between the trajectories of the 6
elements is 0.98.

for smaller values ofn the imprecision would be even higher. (ii) the weaker the
correlation the more difficult it is to to measurd&ecause in such cases the effects of
the cross-correlation are buried in the noise-background.

(4) A more direct procedure would be to compute the cor@atibetween all
pairs of trajectories. As already said, in practice it isantfnot possible to observe



111

n=6, rm=0.9, jm=20, a=0.95, sig=1, D=0

.~
.

Simulation of a process with medium cross-correlation.The cross-correlation between the 6 elements is
0.90. This figure (as well as the following ones) picture ttipeisitions on 20 successive time steps.

n=6, rm=0.2, jm=20, a=0.95, sig=1, D=0

Simulation of a process with low cross-correlation.The cross-correlation between the 6 elements is 0.2.

these trajectories. However, in the simulation the indiwidtrajectories are well
defined which makes it possible to test this procedure. dHyyas this method uses

a much greater amount of information one expects a betteracg One gets the
following estimates:
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Estimates of the cross-correlation based on simulated data

Cross-correlation n ' g* Slopes of
method 1 method 2 regression lines
Texact Test
0.90 3 2.48 2.90
4 2.91 4.52
) 4.16 5.32
6 4.45 4.53

0.72+0.25, 0.57 £ 0.75

0.60 3 1.75 1.89
4 2.24 2.46
5 2.91 3.30
6 3.71 4.39
0.65+0.10, 0.83 £ 0.16
0.20 3 1.24 1.69
4 1.75 2.18
5 1.62 1.79
6 1.47 1.90

0.056 £0.2, 0.02+0.2

Notes:n is the number of elements in the populati@gad.is the ratio of the observed variance to the variance for unco
related variables. Method 1 refers to the method in whick the probabilityp which is adjusted beforg? is computed,
whereas in method 2 it is the number of active elements wisicljusted prior to computing?. The column “Slopes

of regression line” refers to the regression— 1, ¢?); the first and second numbers are the slopes for method 1 and 2
respectively.

Regression on every position of the ants

r=0.90: zvariables — ry_est= 0.91 y variables— ry_est=0.88, rxy-est=0.89

r=0.60: xvariables — ry_gst=0.64 y variables— ry_est=0.63, rxy-est=0.63

r =0.20 : x variables — rx-est= 0.33 vy variables — ry-est= 0.17, Txy-est= 0.25

It can be seen that the accuracy is indeed better than foeshdts given in the table
especially for lowr.

How to deal with asymmetric observations: first method

The description given by our model implies that if the totedaais divided into two
partsA;, A,. none is favored. This means that the probablity to bd;irshould be
the same as the probability to bedn. If it is not the case, there must be some kind
of asymmetry. One can think of (at least) two possible caaasymmetry.

(1) If the number counted inl; is much larger tham /2, it may be because for
some reason(s) (usually unknown to us) the ants prefer to He.iFor instance, if
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there is a dead ant iA, this part may be avoidél If this is the case, it means that
if A represents a fractiomof the total area, the probability to be #hshould not be
taken as equal tp but rather as equal t8 = m,./n. For instance, in the previous
example wherev = 195 andp = 0.5, one get9'n = m, = 58 = p' = 58/195 =
0.30.

In short, in this methodology the theoretical variablavill be replaced in all the
formulas of Proposition 2 by the adjusted paramgtet m. /n.

(2) A second possible cause is the fact that some individuatsdo not move.
One can say that they are “frozen”. Itis to this case that we nhow.

How to deal with asymmetric observations: second method (6zen elements)

On using the previous method one does not have to care aleocaitise of the asym-
metry. However, observations show that a fairly common easisimply the fact
that some of the living organisms remain motionless. If theye in subsetl ini-
tially, they will remain there during the whole duration b&tobservation. Similarly,
if they were not inA initially, they will remain outside ofd all along. As they never
change side, these elements can be said to be “frozen”. Quoiiteary, the elements
which move in and out ofi will be called active elements.

If one assumes that there areactive elements, the sughcan be written as follows:
Sp = Sw+ fa, Where:S, = X1 +... X, fa=Xp+...X,

WhereasS’ is a random variablef 4 is a deterministic constant which is equal to the
number of frozen elements locatedAn Thus, the variance f,, becomes:

0(Sy) = E[(Sp — E(S,))?] = E[(Sw + fa — E(Sw) — fa)*] = 0*(S})

which shows that our previous calculation applies here diganavidedn is replaced
by n'.

o*(S,) =nog®, g= 1+ —1)F

So, the only question which remains is how to determiheln fact, there are 3
unknown numbersy’, the number of frozen elements_ ihthat we have denoted by
fa, and the number of frozen elements that are nod which will be denoted by

f . Although we only need’, this number can only be found together with the two
other unknown numbers.

At first one might think that there can be a way to determinseh@umbers from

491t should be noted that at this point this remains a fairlydtyetical reason. We did not try to test it by putting several
dead ants on one side. In fact, we did not wish to engage inadatection because it seems a hopeless task to try to find
out what are the parameters which rule the behavior of the &ntreover, the “frozen ant” mechanism that we discuss
later on seems simpler and more satisfactory anyway.
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evidence based on the meansiimnd A. This is not the case, however, for a reason
which is explained below.

As the question cannot be solved in a general way we will beéecdiwith exam-
ining two special cases which are of special practical ficance. For the sake of
simplicity, in the following discussion it will be assumdthtp = 1/2.

(1) One major cause of frozen elements occurs when ants sichester together.
If the cluster is formed i this will result in a bigfs. As S, = S, + f4 we see
that this will result in the fact that. (which is the observed value éf(S,,)) will be
fairly large and in particlar larger thary2, the expected value in the absence of any
frozen element. Consequently, we will consider the fadttha> n/2 as indicating
that a cluster has formed iA and none outsidel. In such a case almost all the
frozen elements are iA which means thaf, ~ n — n’. Thus one gets:

E(S,) =E(S)+fa~ES)+(n—n)1=m.=n'/24n—n"=n"=2(n—m,)

In the general case, the last result would take on the form: (n — m.)/(1 — p)
and this case will be signaled by the fact thatis substantially larger thamp.

(2) On the contrary, if the cluster is formed outside/othen almost none of the
n — n' frozen elements will be il which means that

Sp==E(S,)+ fa~Sy+ (n—n")0=m,=n"/2=n"=2m,

In the general case, the last result would take on the form: pm,. and this case
will be characterized by the fact that, is substantially smaller thawp

(3) Finally, one must consider the intermediate case inkwtine number of frozen
elements is approximately the sameArand outside ofd. This may happen when
there are two clusters, onkand the other iml. It can also happen in the absence of
any cluster when the individuals which are frozen (or attleamewhat “sleepy”) are
distributed uniformly in the whole population. Under thairly natural assumption:
it makes sense to assume that the sleepy elements are meegjyal number in the
two parts. In such a situation:

—n! o
n2n1:>m€:n’/2—|—n 1

We see thatn,., the average population id, will be the same as without frozen
individuals™. This result could of course have been expected in advandeed, if
the frozen elements are distributed in the same way as thefrése population the
mean will not be affected. For instance, if for= 200 there are 198 frozen elements
and just 2 non-frozen elements and if the 198 elements atebdiged uniformly

Sn:Sn/+ :n/2

41The same argument holds in the general case when thelasea fractionp of the total area.
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betweenA and A, one will havern, = (0 or1) + 99 ~ n/2. In other words, the
mean is the same as without any frozen elements.
In contrast, the variances will be very different:

e With 198 frozen elementst?(Syy) = 0.

e Without any frozen elementt?(Syy) = 20052

Conclusions The previous discussion shows that:

(1) A problem due to frozen elements can be detected (andated) ifm,, the
time-averaged population i, is substantially different fromp.

(2) If m. ~ np but there are nevertheless frozen elements, this probleameia
ther be detected nor corrected and it will leadutaler-estimatinghe variance and
to a biased estimate for the average cross-correlation

Remark Frozen elements can of course be detected by individuahhisspection
of the living organisms. However, when their number read®e®ral hundreds this
becomes fairly difficult.

Example of application of the previous methodology

We consider the following case which corresponds to a res¢dation performed
on ants
n=>520, p=1/2m, =212, 0, = 47

and we apply successively the two previous methods.

Method 1 (asymmetrical preference for some unknown reason)
The adjusted probability is

p=m./n=041= ¢ = 1—p = 0.59 = 0*(S)) = pqg = 0.24 = 07(S,) = npq = 126

As a result; ) = )
2 Ue _ g -
— — —17T=7= =0.032
= 52(s,) 126 A

Method 2 (frozen elements)
Here we are in the case whefe = 212 is substantially lower thanp = 520/2 =
260. Hence we get the adjusted number of active elemerttrough the formula:

n = 95912 = 494

p
Then we determing by using the standard formula withreplaced by.'.
2 472 21 21-1
= n'pqq® = e — ==Y = = 0.047

n'pg 424 x (1/4) n—1 423

As can be seen the two methods lead to average cross-camslaf the same order
of magnitude (they differ by 32%). Here, just for the sakeloétration, we have
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computedr from a single experimental result. One should observe tmatight
method for determining is not to compute it from individual results but to get it as
the slope of the regression line determined by severaltee@nifact, as many results
as possible).

For a giveno,, the average correlatiaohis completely determined by?. However,
in computing the regression line it is not onyy which matters but also the value
of n’ because the-variable of the regression is the numberactiveelements. For
instancep = 1/2 andm, = n/20 impliesn’ = n/10. The fact that»’ is much
smaller thann makes a big difference in the regression. This is illustratethe
following graph which summarizes 11 experiments carriednth various number
of ants.

g
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Number of active elements
Comparison of two estimation methods of the average crosssgelation of a population of ants. The
cross-correlation is a way of expressing the average ittierastrength between the ants. The correlation of
the set of 11 points (not to be confused with the estimateskecorrelation which is the slope of the regression
line) is 0.84 for the first method and.95 for the second. In the second method the frozen elementsfact
and do not contribute. The present results suggest thaasttitethis case the second method does a better job.
The error bars of represent a confidence interval for a confidence level 9.

At first sight it may seem surprising that the estimated camsselation is as low as
0.04. In the next section we explain why this is so.
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Why is the estimated cross-correlation so small?

First of all, it is necessary to make an important distinctiSBuppose that by comput-
ing the correlation of a set of data;,y;) 1 < i < n one gets a correlation as low
as 0.04. Such a low correlation would almost always meartlleatorrelation is not
significant in the sense that the confidence interval cosithia correlation zef8.

Here, however, the correlationis obtained in a different way, namely as the slope
of a regression line. From the errors bars given in the camfdhe figure it can be
seen that this estimate is quite significan in the sensetibatdnfidence interval of

7 doesnotinclude 0.

0=196, r=0.56
4

0=166, r=0.40 0=64, r=0.06

Relation between the fluctuations ofn;(¢) and the values ofr. We suppose that the whole domain which
contains the ants has been divided into two parts and weabte fluctuations (¢) of the number of ants in
part 1. The black curves correspond to different hypothetiarves while the red curve is what was actually
observed in the experiment with ants considered above. Tih#ars given under the graph are the standard
deviation and the (corresponding) correlation for the blaarves. For the red curve these numbers are 47 and
about 0.04 respectively.

The first graph corresponds to the greatest possible sthdéaration in the sense that at each time step all the
ants move from part 1 to part 2 or vice versa; in this case tleeage cross-correlation is almost equal to 1.
In the second case the same move occurs in two time step® wtilie third it occurs in 4 time steps. In the
actual experiment one time step was 5 mn which means thaisitett case all ants would change side within
20 minutes. Finally, the last graph corresponds to a caséichvhe variance of the simulated curve is similar
to the variance of the observed curve.

Conclusion: the route ahead

42The only exception to this rule may occur when the numbef pairs is very large (say several thousands) so that
the confidence interval becomes smaller than 0.04.
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The experiments carried out over the past months were wentatd provisional in
many ways. The research involved the following steps.

e New measurement methods had to be designed

e Appropriate devices had to be bought and pieced together

e The consistency of the results obtained by different methodst be checked.

Whereas the first two steps have been largely completedhédast one more work
is still needed.

Once the methodology will be found to work two important gigss will have to
be addressed.

e How does the strength of interaction change with the avedaiance between
the elements?

e How can one estimate the level of noise?

Why are these questions important?

In our discussion of phase transitions in physics, we hauaddhat they are mainly
determined by two facteurs: (i) the average inter-moleaadilstance (ii) the velocity
of the molecules which is directly related to the tempegatof the suystem. A
change of state can be achieved through either (or bothesttharameters.

So far we did not consider the question of the temperatur@mphysical systems
because we were not really in a position to do so.
Indeed, a given level of fluctuations can be due

e To a strong interaction combined with a low level of noise, or

e To aweak interaction combined with a substantial amounbafen
These two possibilities are well illustrated by the formidaa sum of coupled ran-
dom variables that we have written earlier.

0*(S,) = no?[(n — 1)7 + 1]

In this formulaS(n) is the number of molecules contained in a subset of the system
For a givenn the samer?(.S,,) can be obtained with a highcombined with a small

o or with a7 close to zero and a large The first case would correspond to a solid
at a low temperatur&’; whereas the second would correspond to a gas at a high
temperaturds; (77 < Ts).

We leave this question open for further discussion.
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Appendix A: Practical hints for doing experiments

In recent decades experiments in molecular biology, bimstey or biogenetics
have become more and more sophisticated. It seems thay tedtinical devices
had become a must. Yet, the history of physics tells a fairfigreent story. For
instance, the experiments done par Galileo (1564-1642jicédli (1608-1647) or
Pascal (1623-1662) which opened the road of modern expetanghysics relied
on fairly simple devices. Similiarly, the experiments ddneGregor Mendel re-
guired great care and patience but fairly little in terms g@iipment. It is likely
that for developing the statistical mechanics of livingangms that is envisioned in
this report it is more essential to find appropriate expeni@edeas than to rely on
high-technology measurement devices. Once the bases bauwddd and the need
emerges for more accuracy in the measurements then, buthemywill be the right
time for resorting to high-tech equipment.

Fig Al: Ants and drosophiles On the left: collecting ants. The white Bristol board was &few centimeters
from the exit hole of a colony for about half an hour. The brgwaduct is chesnut cream with a few drops of
water.

On the right: a tube containing drosophila as prepared bgeareh laboratory in population genetics.

To do experiments on populations of ants, fruit flies or srfialles is somewhat
similar to running simulations on a computer in the sensethigeexperimenter asked
guestions and the experiment provides the answer. As wildes, the techniques
which are necessary for such experiments are fairly singpieplement.

We will successively describe how to get the populationsy tiokeep and control

them and how to do the experiments

How to get the fishes or insects?
Small fishes The organisms which are probably the simplest to buy andlaand
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Fig. xx: Carbon dioxide gas cylinder. As compressed carbon dioxide is necessary in many acsiviimall
cylinders similar to the one shown on the picture can be bfiagiy easily and at low cost. The one represented
here is used for the production of sparkling water, it weighly one kilogramme and costs about 20 euros (10
euros for the empty bottle and 8 euros for a refill).

small fishes. Whymallfishes. The answer is obvious for in order to reduce statis-
tical fluctuations it is often necessary to use populatidnsne or several hundred
fishes. Thus, to minimize cost and size of containers one focss on fishes of less
than 2 or 3 cm in length. Fresh-water fishes of such a smallassgzesually sold to
serve as preys for bigger fishes and for that reason are fagkpensive.

Such small fishes are not only easy to buy, they are also edmntiie in the sense
that, unlike ants or fruit flies, they remain in their contin
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