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Example (A typical problem)

We wish to compute∫
O(N)

dU P(U1,1, . . . ,UN,N)

where we integrate over orthogonal matrices U = (Ui ,j)i ,j=1,...,N ,
dU is the Haar measure and P is a polynomial.

Useful in

Lattice gauge theory [Weingarten, 70’s].

Random Matrix Theory (CUE). N →∞.

Free probability [Collins, 00’s].

Statistical loop models.

Invariant theory (next slide).
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Representation-theoretic aspect

∫
O(N)

dU Ui1,j1 . . .Ui2k ,j2k
=

(∫
dU ρ(U)

)
i ,j

i = (i1, . . . , i2k)

j = (j1, . . . , j2k)

ρ = rep on (RN)⊗2k

=
∑

R irrep

(∫
dU ρ(U)PR

)
i ,j

∑
R irrep

PR = 1

= P∅
i ,j

So we are looking for an explicit description of the projector onto
the trivial subrepresentation of (RN)⊗2k .
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Example (O(N), 2k = 2, 4)

2k = 2 :

∫
O(N)

dU Ui1,j1Ui2,j2 =
1

N
δi1,i2δj1,j2 =

1

N
|1〉 〈1|

where
|1〉 =

1 2
〈1|1〉 = N

2k = 4 : |1〉 =
1 2 3 4

|2〉 =
1 2 3 4

|3〉 =
1 2 3 4
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Weingarten matrix as a pseudo-inverse

Question: given a generating set {|i〉} of a subspace of a
Euclidean space, how to write the orthogonal projector P onto this
subspace?

Answer: compute the Gramm matrix:

Gij = 〈i | j〉

and take its (pseudo-)inverse:

W = W T GWG = G WGW = W

Then
P =

∑
i ,j

Wi ,j |i〉 〈j |
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Example (O(N), 2k = 4, cont’d)

G =




=

N2 N N
N N2 N
N N N2


W =

1

N(N − 1)(N + 2)

N + 1 −1 −1
−1 N + 1 −1
−1 −1 N + 1


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A matching is a set partition into pairs. Call Bk the set of
matchings of {1, . . . , 2k}.∫

O(N)
dU Ui1,j1 . . .Ui2k ,j2k

=
∑

π,π′∈Bk

Wπ,π′
∏

(a,b) paired in π

δia,ib
∏

(a,b) paired in π′

δja,jb

where W is the pseudo-inverse of G :

Gπ,π′ = 〈π|π′
〉
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Remark: #Bk = (2k − 1)!!, dim(RN)⊗2k = N2k .
But! viewing matchings as fixed-point-free involutions,

Theorem (Baik, Rains, ’01)

Let B(N)
k be the subset of Bk of fixed-point-free involutions with no

decreasing subsequence of length N + 1 (i.e. whose RS diagram

has at most N rows). Then {|π〉 , π ∈ B(N)
k } is a basis of the

invariant subspace of (RN)⊗2k .
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∫
U(N)

dU Ui1,j1 . . .Uik ,jk Ūı̄1,̄1 . . . Ūı̄k ,̄k = P∅
i ,j

where the projector acts on V⊗k ⊗ (V ?)⊗k , V ∼= CN .
Invariants:

1 2 3 4 4̄ 3̄ 2̄ 1̄

or

1̄ 2̄ 3̄ 4̄

1 2 3 4

∫
U(N)

dU Ui1,j1 . . .Uik ,jk Ūī1 ,̄j1
. . . Ūı̄k ,̄k

=
∑

σ,σ′∈Sk

Wσ,σ′
∏

a=1,...,k

δia ,̄ıσ(a)

∏
a=1,...,k

δja,̄σ′(a)
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where W is the pseudo-inverse of G :

G = 〈σ|σ′
〉

= N#cycles of σ−1σ′

Remark: #Sk = k!, dim(CN)⊗2k = N2k .
But!

Theorem (Baik, Rains, ’01)

Let S(N)
k be the subset of Sk of permutations with no decreasing

subsequence of length N + 1 (i.e. whose RS diagram has at most

N rows). Then {|σ〉 , σ ∈ S(N)
k } is a basis of the invariant subspace

of V⊗k ⊗ (V ?)⊗k .

P. Zinn-Justin Weingarten matrices and Jucys–Murphy elements



Weingarten matrices
Jucys–Murphy elements

Introduction
General formula for O(N)
General formula for U(N)

where W is the pseudo-inverse of G :

G = 〈σ|σ′
〉

= N#cycles of σ−1σ′

Remark: #Sk = k!, dim(CN)⊗2k = N2k .
But!

Theorem (Baik, Rains, ’01)

Let S(N)
k be the subset of Sk of permutations with no decreasing

subsequence of length N + 1 (i.e. whose RS diagram has at most

N rows). Then {|σ〉 , σ ∈ S(N)
k } is a basis of the invariant subspace

of V⊗k ⊗ (V ?)⊗k .

P. Zinn-Justin Weingarten matrices and Jucys–Murphy elements



Weingarten matrices
Jucys–Murphy elements

Definition
Application to U(N) Weingarten matrix
Back to the O(N) case

Define the Jucys–Murphy elements to be

m1 := 0 mj :=

j−1∑
i=1

(ij) j = 2, . . . , k

They form a maximal commutative subalgebra of C[Sk ].
If we write C[Sk ] =

⊕
λ M(dλ,C), then the mj are just a bunch of

diagonal matrices.
In this subalgebra, the rank 1 projectors (elementary diagonal
matrices) are Young’s orthogonal idempotents. They are naturally
indexed by Standard Young Tableaux with k boxes. We denote
them eT . Note that

Pλ :=
∑

T of shape λ

eT

is the central idempotent associated to the Young diagram λ.
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Definition
Application to U(N) Weingarten matrix
Back to the O(N) case

The eigenvalues of mj are the contents of the boxes j of the
tableaux:

mjeT = eT mj = cT (j)ej

Example

m5 e 1 3 5
2 6
4

→

3

1 1 3 5

2 6

4

= 2 e 1 3 5
2 6
4
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Jucys’ formula

The eigenvalues of the mj are permutations of each other for all
tableaux of a given shape! Therefore symmetric polynomials of the
mj are central. In particular there is the following explicit form for
elementary symmetric polynomials:

Theorem (Jucys, ’71)

k∏
j=1

(t + mj) =
∑
σ∈Sk

σ t#cycles of σ

Note that according to the above, we also have

k∏
j=1

(t + mj) =
∑
λ`k

Pλ
∏

(i ,j)∈λ

(t + j − i)
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Back to the O(N) case

We now notice that the U(N) Gramm matrix G is the matrix of
left or right multiplication by

∏k
j=1(N + mj) on C[Sk ].

Theorem (Collins, ’03)

The U(N) Weingarten matrix W is the matrix in both left or right
regular representation of the operator

W =
∑
λ`n
cλ 6=0

c−1
λ Pλ

where
cλ :=

∏
(i ,j)∈λ

(N + j − i)
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Back to the O(N) case

If G =
∏k

j=1(N + mj), then for N sufficiently large

W = N−k
k∏

j=1

(1 + mj/N)−1

=
∞∑
i=0

1

Nk+i
(−1)ihi (m1,m2, . . . ,mk)

where the hi are the complete symmetric functions.
This provides the 1/N expansion of W as N →∞.
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Definition
Application to U(N) Weingarten matrix
Back to the O(N) case

S2k acts transitively on Bk . Explicitly, Bk
∼= S2k/Hk where Hk is

the hyperoctahedral group. Choosing a particular element of Bk :

βk =
1 2 3 4 2k − 1 2k

identifies Hk with the stabilizer of βk .

Therefore, there is a natural inclusion: C[Bk ] ⊂ C[S2k ] that sends
a matching π viewed as a coset to the sum of its elements

∑
σ∈π σ.
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A variation of Jucys’ formula

Proposition (PZJ, ’09)

There exists a choice of representatives of cosets of S2k/Hk , that
is of σπ ∈ π such that

k∏
j=1

(t + m2j−1) =
∑
π∈Bk

σπ t#loops of βk∪π
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Definition
Application to U(N) Weingarten matrix
Back to the O(N) case

Example (2k = 4)

t(t + m3) =t2 + t + t

t2 + t + t

=t2 + t + t
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Back to the O(N) case

Proposition (PZJ, ’09)

The O(N) Gramm matrix G is the matrix of
∏k

j=1(N + m2j−1)
acting by multiplication on the right of C[Bk ].

The restriction to C[Bk ] implies that one should only consider
Young tableaux obtained by the “doubling procedure”:

1 3

2
−→ 1 2 5 6

3 4
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Definition
Application to U(N) Weingarten matrix
Back to the O(N) case

Proposition (Collins, Matsumoto, ’09)

The O(N) Weingarten matrix W is the matrix of∑
λ`n

cλ;2 6=0

c−1
λ;2 P2λ

acting by multiplication on the left or right on C[Bk ], where

cλ;2 :=
∏

(i ,j)∈λ

(N + 2j − 1− i)

and also for N sufficiently large,

W =
∞∑
i=0

1

Nk+i
(−1)ihi (m1,m3, . . . ,m2k−1)
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Back to the O(N) case

Example (2k = 4)

G = N(N + 2)P + N(N − 1)P

and indeed

G =

N2 N N
N N2 N
N N N2


has eigenvalue N(N + 2) with multiplicity 1 and N(N − 1) with
multiplicity 2.
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Symplectic case: Sp(2N) ∼= O(−2N).

More general β-ensemble (use Jack polynomials).

Quantum group analogues?

P. Zinn-Justin Weingarten matrices and Jucys–Murphy elements


	Weingarten matrices
	Introduction
	General formula for O(N)
	General formula for U(N)

	Jucys--Murphy elements
	Definition
	Application to U(N) Weingarten matrix
	Back to the O(N) case

	

