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e Classification and Enumeration of Knots, Links, Tangles.

e Feynman diagrams. O(n) matrix model and renormalization.
e Universality and conjectures on asymptotic counting.

e Phase diagram of O(n)-symmetric 2D statistical models.

e Numerical check: Monte Carlo.

e Virtual link diagrams and Links on thickened surfaces.

e Renormalization and the generalized flyping conjecture for vir-

tual alternating links.




A bit of History...
The Gordian knot: (Piotr Pieranski, 2001)

61

e Two diagrams represent the knot/link /tangle iff they are related

by a sequence of Reidemeister moves: (Reidemeister, 1932)
ATT N2 A
[NTYV V- A AT

e All knots are connected sums of prime knots (Schubert, 1949):

B




Knots, links and tangles

Links are collections of knots: tangles have strings coming out:
B /

(/‘//‘ | >)
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e Alternating vs Non-Alternating:

13

Tait's flyping conjecture: (Tait, 1898)

Two reduced alternating diagrams represent the same object iff

they are related by a sequence of flypes:

\

Proved by Menasco and Thisthlethwaite ('91).







What is the problem?

We want to enumerate (prime) alternating tangles with a given

number of connected components and crossings:

oo
I'(n,g) = Z arpgtn”
k,p=1
Example: tangles with four external legs. Two types:

[i(n,g) = + g + ¢+
\__7 s
<>
/ ('/ /N
N
Io(n,g) = 9° + g° + ng* 4 -
n = “number of colors”: a diagram with & closed loops can be

drawn in n* ways.




Feynman diagrams

Gaussian integral over real variables z;, A = AT > 0 def. matrix:
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Non-Gaussian integral: power series ( “perturbative”) expansion.

Example: (d = 1)
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p= 0 graphs G with 2p lines
and p 4—valent vertices

log Z = connected Feynman diagrams
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Matrix Integrals: Feynman Rules
N x N Hermitean matrices M,

1<J

1
Z = /dMeN[—§tI'M2 + %tI‘Mﬂ

Feynman rules:

| I
propagator < — k= 0300,

J

p\/ 'm
4-valent vertex q> < = gIN 01 00mOnp0qgi
i J/\kl

Count powers of N in a connected diagram:

e cach vertex — INV:

e each double line — N—1:

e each loop — N.

#vert. — F#lines + #loops = XEuler (2)

't Hooft (1974):

g#vert.(E)

lOg 7 — Z N2—2genus(2)

symm. factor
conn. surf.X




A Matrix Model for Alternating Link Diagrams

ZM (. g) = /HdMeNtr M2+ 4(M,M,)?)

H N (\

- & &

g \J

The large N free energy F'(n, g) and correlation functions are dou-
ble generating series in n, g (number of connected components,
number of crossings).

F(n,g) counts link diagrams (weighted by their symmetry fac-

tors):

, lo Z(N) (n
F(n,g) = lim 5 9) Z fre:pg?Pn”

N —0
k,p=1

The correlation functions count tangle diagrams:

1
lim <—tr(M1M2M3M2M1M3)> _ E%{
N —oo N c




From tangle diagrams to tangles:
Renormalization

General idea: removal of the redundancy associated to multiple
equivalent diagrams acts like a “finite renormalization” on the
model.

e Reduced diagrams = renormalization of the quadratic term in
the action.

e Taking into account the flyping equivalence renormalizes the
quartic term. However, there are two four-vertex interactions

compatible with the O(n)-symmetry — more general O(n) model:

Z(N)(n7t791792):/HdMa
a=1

N tr [~ EMZ + (% MMy MMy + %2 M, M, My My)]

| L

- |
t™ 9 9y

t, g1 and go are functions of the renormalized coupling constant

g, chosen such that the correlation functions are the appropriate

generating series in g of the number of alternating links.




Exactly solved cases
e n = 1: the counting of alternating tangles, and more

Usual one-matrix model:

t 2 go 4

with go = g1 + 2¢2.

Renormalization equations recombine into a fifth degree equation:

1+2g_g2A3

32 — 64A + 324% — 4 +6gA* —gA® =0

Correlation functions are given in terms of its solution. In partic-
ular, if (5 tr M>“) = 772 a,g” is the generating function of
prime alternating tangles with 2/ legs, then

p—00 —p,,—5/2
ap, ~ cstg,'p /

with g, = Y2I00L-10L (=1  6.1479).

(¢ = 2: Sundberg & Thistlethwaite '98)

= The number f,, of prime alternating links grows like

fp ~ cst g Pp /2

(Schaeffer & Kunz-Jacques, '01)

on—-—2...




e n = 2: the counting of oriented alternating tangles (P.Z-J. &

J.-B. Zuber)

N tr| — £(M? + M2
Z(N)(t791792):/dM1dM2€ 2 (Mi )

+ 2
+ %(Mf + M3) + %(M1M2)2 + 92M12M22]
Introduce a complex matrix X = % (M7 + iMs):

ZWN(t,b,¢) = /dXdXT Nt (—tXXT 4+ bX2XT2 4 Lo(XXT)?)

with b = g1 + g2 and ¢ = 2g>. Feynman rules:
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Six-vertex model on random lattices. This model has been exactly
solved (P.Z-J.; |. Kostov).
= Generating function of (prime, alternating) tangles given by

transcendental equation. Asymptotics:

p—00

ap ~ cstg,Pp *(logp)

with g1 ~ 6.2832.




Conjectures on the asymptotic behavior
Links ~ discretized surfaces with random geometry
— 2D quantum gravity. ..
Conjecture: For |n| < 2, the matrix model is in the universality
class of a 2D field theory with spontaneously broken O(n) sym-
metry, coupled to gravity.

The large size limit is described by a CFT with ¢ = n—1 = (KPZ)
ap(n) ~ cst(n) g(n) 7 p7 =2

fp(n) ~ CSt(H) gc<n>_p p’Y(n)—3

c—1—+/(1—-2¢)(25—c)

7= 12

In particular, knots correspond to the limit n — 0:

Vi3
fp(O) N CSt gc_pp_ 19+6 13




O(n) Spontaneous Symmetry Breaking
Continuum limit of a O(n)-symmetric statistical model = O(n)-
symmetric field theory.

Spontaneous symmetry breaking? O(n) — O(n — 1)

— o-model on S”~!. Renormalization group equation:

d
ar?

e Perturbation marginally relevant for n > 2.

L—g=(n—2)g"+ O(g’)

e Perturbation marginally irrelevant for n < 2.

— Statistical model for this phase?




O(n) Statistical Lattice Models

Model of non-crossing loops: (weight n per loop)

Nienhuis ('82): critical (dense phase) with central charge
c=1-6(ve—1/\e)? n = —2cos(me)
Read & Saleur: study of supersymmetric models — different

models! Jacobsen, Read & Saleur: numerical evidence that non-

crossing loops model unstable to perturbation by crossings:

Conjecture central charge for n € [—2,2]:

c=n-—1




KPZ formula and asymptotic enumeration
link diagrams = statistical model on a random lattice.
Continuum limit = CFT coupled to gravity.

Knizhnik Polyakov Zamolodchikov. David. Distler Kawai. ('89)
Zh) o AA=h)(v=2)-1

where

c—1—+/(1—-2¢)(25—c)

12 '
Here, p ~ A, f, = number of links ~ Z.

’Y:

£ () ~ o7() D+ (1= )(3(n) = 2) = 1) logp+ (n)

where o(n), x(n) are non-universal parameters.
Conjecture: c =n — 1.

In particular for knots (n = 0), v = —1£¥13.

(Also, formulae for dimensions of operators)




Monte Carlo: random sampling of planar maps

(G. Schaeffer and P. Z.-J., '03)

Schaeffer's bijection between trees and planar maps:

Results in an algorithm to produce random planar maps in linear
time. Used to sample maps up to p = 107 vertices.

o d . : .
Test quantity: +' = ﬁmzl = 3/10 according to the conjecture.

Very good agreement:
5,

4! *




Virtual Link Diagrams
“Classical” link diagrams = embedded planar graphs (planar maps).

Kauffman's definition of virtual link diagrams:
X XX
/ AN

Idea: we're trying to draw non-planar graphs in a planar way. ..

Reidemeister moves:

>0 D O D

xooC X oC
XX XX

More precisely, we want to imagine them as links in thickened

surfaces > x [

[




Thickened Surfaces and Non-Planar Maps

To each virtual link diagram one can associate an abstract surface:

Problem: what is the relation with knot theory on the correspond-
ing thickened surface?

e How can one compare diagrams when they each live on their
own surface?

e What is the meaning of classical / virtual Reidemeister moves
in this context?

Carter, Kamada, Saito ('00). Kuperberg ('02).

Virtual links are links embedded in thickened surfaces > x I up to
orientation-preserving homeomorphisms of the surface > and up
to addition/removal of handles.

NB: Higher genus surface possess homeomorphisms that are non-

isotopic to the identity! (torus: Dehn twists)




A matrix model for virtual alternating links
Matrix models produce abstract discretized surfaces. How to re-
cover under/over-crossings?

We concentrate on alternating diagrams =- complex matrix model:

Z<N>(n,g):/ﬁdMadMgeNtr( M, M + £(M, MT))
S
A — A

NB: in genus > 0, not every quadrangulation is bipartite!!!

logZ(N)(n,g) — Z g;)]\ﬂ 2h gpp
h>0,k>1,p>1
Triple generating function of alternating link diagrams living on

asbtract surfaces.
“Renormalization” 7 General conjecture: the same combinatorial
process used for classical alternating links and tangles works in

higher genus.

ZWMN) (n,t, g1, g2) /HdM dM ]

a=1

N tr [ —tMo M + (% MM Mo M + g Mo MM, M] ) |

e




Step 1: reduced diagrams of prime links
Conjecture 1: Reduced alternating diagrams have minimal cross-
ing number. (proved?)

Conjecture 2: Reduced alternating diagrams have minimal genus.
g @
BN
a) b)
Forbidding at the level of diagrams decompositions of type b)
removes irrelevant crossings and restricts to prime links / tangles.

Clearly this amounts to imposing on the two-point function

G =limy_oo {7 tr M2):

This is equivalent to
t=1+o0 (1)

where o counts one-particle-irreducible diagrams, via the equa-

tion G = -

t—o




Step 2: flypes

L O

Conjecture 3: Tait's flyping conjecture also holds for virtual al-
ternating links and tangles.
NB: only planar flypes are allowed!

One must first decompose flypes into elementary flypes:
\ B B
AN

Introduce generating functions Hi(g), H%(g), V5(g) for H-2PI

planar tangles. Then the equations fixing g1(g), g=(g) are:
91(9) = g9(1 — 2H3(9)) (2)

92(9) = —g(H{(g) + V5(9)) (3)

.
e




Analytic results at n =1

f f
ZN(g@:/deMTeNtr[ tMM?T 4+ S(MMT)?]

log Zn(g,t) = Y _ N> FM (g, 1)
h=0
First few terms of the expansion were computed. (h = 1: Morris.

h = 2,3: Akemann & Adamietz). In terms of A solution of

A=1+3gA?
We find:
FO(g,1) = log A — (A~ 1)(9— 4)
3
Mo L (2-A)2+4)
Fg:1) = —55 log >

After renormalization, we find that the number of prime virtual

alternating links of genus h grows like
[P egrp?P0TDT h=10,1,2,3

v21001—-101 (gc ~ 6. 1479)

with g. =

270




