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• Classification and Enumeration of Knots, Links, Tangles.

• Feynman diagrams. O(n) matrix model and renormalization.

• Universality and conjectures on asymptotic counting.

• Phase diagram of O(n)-symmetric 2D statistical models.

• Numerical check: Monte Carlo.

• Virtual link diagrams and Links on thickened surfaces.

• Renormalization and the generalized flyping conjecture for vir-

tual alternating links.
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A bit of History. . .

The Gordian knot: (Piotr Pieranski, 2001)

• Knots represented by their projection: diagrams (Tait, 1876):

61

• Two diagrams represent the knot/link/tangle iff they are related

by a sequence of Reidemeister moves: (Reidemeister, 1932)

; ;

• All knots are connected sums of prime knots (Schubert, 1949):
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Knots, links and tangles

Links are collections of knots: tangles have strings coming out:

• Alternating vs Non-Alternating:

Tait’s flyping conjecture: (Tait, 1898)

Two reduced alternating diagrams represent the same object iff

they are related by a sequence of flypes:

Proved by Menasco and Thisthlethwaite (’91).
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What is the problem?

We want to enumerate (prime) alternating tangles with a given

number of connected components and crossings:

Γ(n, g) =
∞
∑

k,p=1

ak;pg
pnk

Example: tangles with four external legs. Two types:

= + +

Γ1(n, g) = g + g3 + g3 + · · ·

= + +

Γ2(n, g) = g2 + g3 + ng4 + · · ·

n = “number of colors”: a diagram with k closed loops can be

drawn in nk ways.
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Feynman diagrams

Gaussian integral over real variables xi, A = AT > 0 def. matrix:
∫

ddx e−
1
2

∑

xiAijxj =
(2π)n/2

det
1
2 A

∫

dnx e−
1
2

∑

xiAijxj +
∑

bixi =
(2π)n/2

det
1
2 A

e
1
2

∑

biA
−1
ij bj

Differentiate w.r.t. bi

〈xk1
xk2

· · ·xk`
〉 =

∫

dnx xk1
xk2

· · ·xk`
e−

1
2
x.A.x

∫

dnx e−
1
2
x.A.x

=
∂

∂bk1

· · · ∂

∂bk`

e
1
2b.A−1.b

∣

∣

∣

b=0

=
∑

all distinct

pairings P of the k

A−1
kP1

kP2
· · ·A−1

kP`−1
kP`

Non-Gaussian integral: power series (“perturbative”) expansion.

Example: (d = 1)

Z =

∫

dx e−
1
2Ax2 + g

4!x
4

=
(2π

A

)
1
2

∞
∑

p=0

gp

p!

∫

dx
(x4

4!

)p

e−
1
2Ax2

=
(2π

A

)
1
2

∞
∑

p=0

∑

graphs G with 2p lines

and p 4−valent vertices

gp

|AutG|A
−2p

log Z = connected Feynman diagrams

=
g

8A2
+

g2

A4

( 1

2.4!
+

1

24

)

+ · · ·

=

〈x2〉 =
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Matrix Integrals: Feynman Rules

N × N Hermitean matrices M ,

dM =
∏

i dMii

∏

i<j d<eMij d=mMij

Z =

∫

dMeN [− 1
2 tr M2 + g

4 trM4]

Feynman rules:

propagator
i
j

l
k = 1

N δi`δjk

4-valent vertex

j
i

k
l

mnp
q

= gNδjkδ`mδnpδqi

Count powers of N in a connected diagram:

• each vertex → N ;

• each double line → N−1;

• each loop → N .

#vert. − #lines + #loops = χEuler(Σ)

’t Hooft (1974):

log Z =
∑

conn. surf.Σ

N2−2genus(Σ) g#vert.(Σ)

symm. factor
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A Matrix Model for Alternating Link Diagrams

Z(N)(n, g) =

∫ n
∏

a=1

dMa eN tr
(

− 1
2M2

a + g
4 (MaMb)

2
)

g

The large N free energy F (n, g) and correlation functions are dou-

ble generating series in n, g (number of connected components,

number of crossings).

F (n, g) counts link diagrams (weighted by their symmetry fac-

tors):

F (n, g) = lim
N→∞

log Z(N)(n, g)

N2
=

∞
∑

k,p=1

fk;pg
pnk

The correlation functions count tangle diagrams:

lim
N→∞

〈

1

N
tr(M1M2M3M2M1M3)

〉

c

=
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From tangle diagrams to tangles:

Renormalization

General idea: removal of the redundancy associated to multiple

equivalent diagrams acts like a “finite renormalization” on the

model.

• Reduced diagrams ⇒ renormalization of the quadratic term in

the action.

• Taking into account the flyping equivalence renormalizes the

quartic term. However, there are two four-vertex interactions

compatible with the O(n)-symmetry → more general O(n) model:

Z(N)(n, t, g1, g2) =

∫ n
∏

a=1

dMa

eN tr
[

− t
2M2

a +
(

g1

4 MaMbMaMb + g2

2 MaMaMbMb

)]

g21gt −1

t, g1 and g2 are functions of the renormalized coupling constant

g, chosen such that the correlation functions are the appropriate

generating series in g of the number of alternating links.



Matrix Models & Knot Theory — Moscow 10/03 (10)

Exactly solved cases

• n = 1: the counting of alternating tangles, and more

Usual one-matrix model:

Z(N)(t, g0) =

∫

dM eN tr
(

− t
2M2 + g0

4 M4
)

with g0 = g1 + 2g2.

Renormalization equations recombine into a fifth degree equation:

32 − 64A + 32A2 − 4
1 + 2g − g2

1 − g
A3 + 6gA4 − gA5 = 0

Correlation functions are given in terms of its solution. In partic-

ular, if
〈

1
N tr M2`

〉

c
=
∑∞

p=0 apg
p is the generating function of

prime alternating tangles with 2` legs, then

ap
p→∞∼ cst g−p

c p−5/2

with gc =
√

21001−101
270 (g−1

c ≈ 6.1479).

(` = 2: Sundberg & Thistlethwaite ’98)

⇒ The number fp of prime alternating links grows like

fp ∼ cst g−p
c p−7/2

(Schaeffer & Kunz-Jacques, ’01)

• n = −2 . . .
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• n = 2: the counting of oriented alternating tangles (P.Z-J. &

J.-B. Zuber)

Z(N)(t, g1, g2) =

∫

dM1dM2 e
N tr

[

− t
2 (M2

1 + M2
2 )

+
g1 + 2g2

4
(M4

1 + M4
2 ) +

g1

2
(M1M2)

2 + g2M
2
1 M2

2

]

Introduce a complex matrix X = 1√
2

(M1 + iM2):

Z(N)(t, b, c) =

∫

dXdX† eN tr
(

−tXX† + bX2X†2 + 1
2c(XX†)2

)

with b = g1 + g2 and c = 2g2. Feynman rules:

c

b

t
-1

Six-vertex model on random lattices. This model has been exactly

solved (P.Z-J.; I. Kostov).

⇒ Generating function of (prime, alternating) tangles given by

transcendental equation. Asymptotics:

ap
p→∞∼ cst g−p

c p−2(log p)−2

with g−1
c ≈ 6.2832.
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Conjectures on the asymptotic behavior

Links ∼ discretized surfaces with random geometry

→ 2D quantum gravity. . .

Conjecture: For |n| < 2, the matrix model is in the universality

class of a 2D field theory with spontaneously broken O(n) sym-

metry, coupled to gravity.

The large size limit is described by a CFT with c = n−1 ⇒ (KPZ)

ap(n) ∼ cst(n) gc(n)−p pγ(n)−2

fp(n) ∼ cst(n) gc(n)−p pγ(n)−3

γ =
c − 1 −

√

(1 − c)(25 − c)

12

In particular, knots correspond to the limit n → 0:

fp(0) ∼ cst g−p
c p−

19+
√

13
6
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O(n) Spontaneous Symmetry Breaking

Continuum limit of a O(n)-symmetric statistical model = O(n)-

symmetric field theory.

Spontaneous symmetry breaking? O(n) → O(n − 1)

-1

0

1
-1

0

1

0

1

2

3

-1

0

1

→ σ-model on Sn−1. Renormalization group equation:

L
d

dL
g = (n − 2)g2 + O(g3)

• Perturbation marginally relevant for n > 2.

• Perturbation marginally irrelevant for n < 2.

→ Statistical model for this phase?
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O(n) Statistical Lattice Models

Model of non-crossing loops: (weight n per loop)

Nienhuis (’82): critical (dense phase) with central charge

c = 1 − 6(
√

e − 1/
√

e)2 n = −2 cos(πe)

Read & Saleur: study of supersymmetric models → different

models! Jacobsen, Read & Saleur: numerical evidence that non-

crossing loops model unstable to perturbation by crossings:

Conjecture central charge for n ∈ [−2, 2]:

c = n − 1
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KPZ formula and asymptotic enumeration

link diagrams ≡ statistical model on a random lattice.

Continuum limit = CFT coupled to gravity.

Knizhnik Polyakov Zamolodchikov. David. Distler Kawai. (’89)

Z(h) ∼ A(1−h)(γ−2)−1

where

γ =
c − 1 −

√

(1 − c)(25 − c)

12
.

Here, p ∼ A, fp = number of links ∼ Z.

f (h)
p (n) ∼ eσ(n) p + ((1 − h)(γ(n) − 2) − 1) log p + κ(n)

where σ(n), κ(n) are non-universal parameters.

Conjecture: c = n − 1.

In particular for knots (n = 0), γ = − 1+
√

13
6 .

(Also, formulae for dimensions of operators)
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Monte Carlo: random sampling of planar maps

(G. Schaeffer and P. Z.-J., ’03)

Schaeffer’s bijection between trees and planar maps:

Results in an algorithm to produce random planar maps in linear

time. Used to sample maps up to p = 107 vertices.

Test quantity: γ′ ≡ dγ
dn |n=1

= 3/10 according to the conjecture.

Very good agreement:

2.5 5 7.5 10 12.5 15

-1

1

2

3

4

5
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Virtual Link Diagrams

“Classical” link diagrams = embedded planar graphs (planar maps).

Kauffman’s definition of virtual link diagrams:

Idea: we’re trying to draw non-planar graphs in a planar way. . .

Reidemeister moves:

More precisely, we want to imagine them as links in thickened

surfaces Σ × I
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Thickened Surfaces and Non-Planar Maps

To each virtual link diagram one can associate an abstract surface:

−→ −→

Problem: what is the relation with knot theory on the correspond-

ing thickened surface?

• How can one compare diagrams when they each live on their

own surface?

• What is the meaning of classical / virtual Reidemeister moves

in this context?

Carter, Kamada, Saito (’00). Kuperberg (’02).

Virtual links are links embedded in thickened surfaces Σ× I up to

orientation-preserving homeomorphisms of the surface Σ and up

to addition/removal of handles.

NB: Higher genus surface possess homeomorphisms that are non-

isotopic to the identity! (torus: Dehn twists)
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A matrix model for virtual alternating links

Matrix models produce abstract discretized surfaces. How to re-

cover under/over-crossings?

We concentrate on alternating diagrams ⇒ complex matrix model:

Z(N)(n, g) =

∫ n
∏

a=1

dMadM †
a e

N tr
(

−MaM†
a + g

2 (MaM†
b )2
)

g

NB: in genus > 0, not every quadrangulation is bipartite!!!

log Z(N)(n, g) =
∑

h≥0,k≥1,p≥1

f
(h)
k;p N2−2hgpnk

Triple generating function of alternating link diagrams living on

asbtract surfaces.

“Renormalization” ? General conjecture: the same combinatorial

process used for classical alternating links and tangles works in

higher genus.

Z(N)(n, t, g1, g2) =

∫ n
∏

a=1

dMadM †
a

e
N tr

[

−tMaM†
a +

(

g1

2 MaM†
b MaM†

b + g2MaM†
aMbM

†
b

)]
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Step 1: reduced diagrams of prime links

Conjecture 1: Reduced alternating diagrams have minimal cross-

ing number. (proved?)

Conjecture 2: Reduced alternating diagrams have minimal genus.

b)a)

Forbidding at the level of diagrams decompositions of type b)

removes irrelevant crossings and restricts to prime links / tangles.

Clearly this amounts to imposing on the two-point function

G ≡ limN→∞
〈

1
N tr M2

a

〉

:

G = 1

This is equivalent to

t = 1 + σ (1)

where σ counts one-particle-irreducible diagrams, via the equa-

tion G = 1
t−σ :

t−1 t−1 t−1 t−1 t−1 t−1G Σ Σ Σ
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Step 2: flypes

Conjecture 3: Tait’s flyping conjecture also holds for virtual al-

ternating links and tangles.

NB: only planar flypes are allowed!

One must first decompose flypes into elementary flypes:

Introduce generating functions H ′
1(g), H ′

2(g), V ′
2(g) for H-2PI

planar tangles. Then the equations fixing g1(g), g2(g) are:

g1(g) = g(1 − 2H ′
2(g)) (2)

g2(g) = −g(H ′
1(g) + V ′

2(g)) (3)

g1 g H’2 g H’2

g2 g H’1 2g V’

g
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Analytic results at n = 1

ZN (g, t) =

∫

dMdM †eN tr
[

−tMM † + g
2 (MM †)2

]

log ZN (g, t) =

∞
∑

h=0

N2−2hF (h)(g, t)

First few terms of the expansion were computed. (h = 1: Morris.

h = 2, 3: Akemann & Adamietz). In terms of A solution of

A = 1 + 3gA2

We find:

F (0)(g, 1) = log A − 1

12
(A − 1)(9 − A)

F (1)(g, 1) = − 1

24
log

(2 − A)(2 + A)3

27

After renormalization, we find that the number of prime virtual

alternating links of genus h grows like

f (h)
p

p→∞∼ c g−p
c p5/2(h−1)−1 h = 0, 1, 2, 3

with gc =
√

21001−101
270 (g−1

c ≈ 6.1479).


