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The O(1) loop model
Properties of the ground state
Introduction of inhomogeneities

The O(n) loop model is a two-dimensional statistical lattice model
with non-local Boltzmann weights and observables. We use here
the square lattice and “Completely Packed Loops”:

The Boltzmann weight of a configuration contains both local
weights and a weight of n to each closed loop:

Z =
∑

configurations

w#
1 w#

2 n# loops
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The O(n) model allows to study in a simple setting various
physical phenomena (polymers, self-avoiding walks, Hamiltonian
paths, percolation. . . ); it is critical in the region |n| ≤ 2.

It is also connected to Stochastic/Schramm Loewner Evolution, to
Logarithmic Conformal Field Theory. . .

The O(n) model of Completely Packed Loops is exactly solvable:
its Boltzmann weights satisfy the Yang–Baxter equation.
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In the O(1) loop model, one ignores the number of loops. The
model is equivalent to a model of critical bond percolation:
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The O(1) model is a probabilistic model in which one fills a
two-dimensional region (with boundary) with plaquettes:

with probability p, with probability 1− p. (0 < p < 1)

1 2 3 42n ......

Case of the half-infinite
cylinder geometry (“periodic
boundary conditions”)

Probability law of the connectivity of the external vertices?
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The connectivity of the external vertices can be encoded into a
link pattern = a planar pairing of 2n points on a circle. There are
c(n) = (2n)!/n!/(n + 1)! possible link patterns.

Example

In size L = 2n = 8,
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The “Ground state” Ψ of the transfer matrix (or “Steady state” of
the Markov process) is a formal linear combination of link patterns.
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Observations [Batchelor, de Gier, Nienhuis ’01]

Normalize Ψ so that the smallest entries, with patterns of the type

1

2
3 4

5

6

7

8
910

11

12 , are set to 1. Then:

1 All entries are Ψ are (positive) integers. [Di Francesco, PZJ ’07]

2 The largest entries of Ψ correspond to patterns of the type

1

2
3 4

5

6

7

8
910

11

12 and are equal to An−1.

[Di Francesco, PZJ + Zeilberger ’07 or Razumov, Stroganov, PZJ ’07]

3 The sum of entries of Ψ is 〈1|Ψ〉 = An. [Di Franccesco, PZJ ’04]

where

An =
1!4!7! · · · (3n − 2)!

n!(n + 1)!(n + 2)! · · · (2n − 1)!
= 1, 2, 7, 42, 429 . . .

Remark: the combinatorial meaning of every entry is the subject of
the Razumov–Stroganov conjecture.
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Inhomogeneous O(1) loop model

Consider the probabilistic model (on the cylinder) with probabilities
pi which depend on the column i = 1, . . . , 2n of the plaquette.

Parametrize the probabilities as pi = zi−q t
t−q zi

, q = e2iπ/3. zi are the
spectral parameters.

The ground state is now a function of these zi :

Ψ(z1, . . . , z2n) =
∑
π

Ψπ(z1, . . . , z2n) π

where the Ψπ(z1, . . . , z2n) can be chosen to be polynomials.
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Temperley–Lieb algebra
Back to the O(1) model ground state
Vertex operators and qKZ
Integral formulae for qKZ solutions

The Temperley–Lieb algebra TLL(τ) (a quotient of the Hecke
algebra) is defined by generators ei , i = 1, . . . , L− 1, and relations

e2
i = τei eiei±1ei = ei eiej = ejei |i − j | > 1

Define the action of Temperley–Lieb generators ei on link patterns
of size L = 2n: (for convenience link patterns are drawn in the half-plane)

e1

1 2 3 4 5 6

=

1 2 3 4 5 6

=
1 2 3 4 5 6

e2

1 2 3 4 5 6

=

1 2 3 4 5 6

= τ
1 2 3 4 5 6

where the weight of a closed loop is τ .
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Integral formulae for qKZ solutions

R-matrix

Set τ = −q − 1/q, and define the R-matrix:

Ři (u) =
(q u − q−1)I + (u − 1)ei

q − q−1u

where I = and ei = .

It satisfies the Yang–Baxter equation:

Ři (u)Ři+1(uv)Ři (v) = Ři+1(v)Ři (uv)Ři+1(u)

and the unitarity equation:

Ři (u)Ři (1/u) = I

NB: no crossing relation . . .
P. Zinn-Justin O(1) loop model and Combinatorics
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Set q = exp(2πi/3), so that τ = 1.

zi zi+1

zi+1

zi

zi

zi+1

Ψ
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Set q = exp(2πi/3), so that τ = 1.

zi+1

zi+1

zi

zi

zi+1 zi

Ψ(. . . , zi+1, zi , . . .)
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Exchange relation:

Ři (zi+1/zi )Ψ(z1, . . . , z2n) = Ψ(z1, . . . , zi+1, zi , . . . , z2n)

cheating slightly: there is a priori a scalar factor which is not easy to get rid of.

Rotation relation:

ρ−1Ψ(z1, . . . , z2n) = Ψ(z2, . . . , z2n, z1)

where ρ implements rotation of link patterns:

ρ
1

2 3

4

5

67

8

=
1

2 3

4

5

67

8
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Integral formulae for qKZ solutions

The quantum Knizhnik–Zamolodchikov equation. is a system of
equations that appears:

in the study of form factors of integrable models
[Smirnov, ’86]

in the representation theory of quantum affine algebras
[Frenkel, Reshetikhin ’92]

in the study of correlation functions of integrable models
[Jimbo, Miwa et al, ’93]

in relation to representation theory of affine Hecke algebra
and DAHA [Cherednik, Pasquier. . . ]
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Temperley–Lieb algebra
Back to the O(1) model ground state
Vertex operators and qKZ
Integral formulae for qKZ solutions

If Φ(z) = (Φ(0)(z),Φ(1)(z)) is the vertex operator (type I/II)

associated to level 1 highest weight modules of Uq(ŝl(2)), then
Ψ̂(z1, . . . , z2n) = 〈0|Φ(z1) · · ·Φ(z2n) |0〉 satisfies the following
system of equations:

Exchange relation: (i = 1, . . . , 2n − 1)

Ři (zi+1/zi )Ψ̂(z1, . . . , z2n) = Ψ̂(z1, . . . , zi+1, zi , . . . , z2n)

Rotation relation:

ρ−1Ψ̂(z1, . . . , z2n) = Ψ̂(z2, . . . , z2n, s z1)

with s = q6 (level 1).

For q = exp(2πi/3), this coincides with the relations satisfied by
the O(1) loop model ground state, and in fact Ψ = Ψ̂ (up to
change of basis).

P. Zinn-Justin O(1) loop model and Combinatorics



Definition of the model
Quantum Knizhnik–Zamolodchikov equation

Relation to combinatorics

Temperley–Lieb algebra
Back to the O(1) model ground state
Vertex operators and qKZ
Integral formulae for qKZ solutions

If Φ(z) = (Φ(0)(z),Φ(1)(z)) is the vertex operator (type I/II)

associated to level 1 highest weight modules of Uq(ŝl(2)), then
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Temperley–Lieb algebra
Back to the O(1) model ground state
Vertex operators and qKZ
Integral formulae for qKZ solutions

Vertex operators can be expressed in terms of a (q-deformed)
bosonic field:
[bm, bn] = [2m][m]

m δm,−n, [b0, β] = 2

Φ(0)(z) = eβzb0 :e

∑
n∈Z6=0

q−|n|/2 bn
[2n]z

−n

:

Φ(1)(z) =

∮
w dw

(q w − z)(w − q z)
: j−(w)Φ(0)(z) :

Their correlation functions can then be computed explicitly. For
example,

∑
π

Ψ̂π =
∏

1≤i<j≤2n

(q zi − q−1zj)

∮
· · ·
∮ n∏

`=1

dw`(q w` − z2`−1)

2πi∏
1≤`<m≤n(wm − w`)(q w` − q−1wm)∏n

`=1

∏
1≤i≤2`−1(w` − zi )

∏
2`−1≤i≤2n(q w` − q−1zi )
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Relation to combinatorics

Totally Symmetric Self-Complementary Plane Partitions
Alternating Sign Matrices
Exact result for some observables

Homogeneous limit for generic q

What is the combinatorial meaning of the level 1 polynomial
solution of qKZ for generic q? In particular, what can one say
about the homogeneous limit zi = 1?

Example (2n = 4)

Ψ

1 2 3 4

= (q z1 − q−1z2)(q z3 − q−1z4) −→ 1

Ψ

1 2 3 4

= (q z2 − q−1z3)(q−2z4 − q2z1) −→ τ

where τ = −q − q−1.
In general, one observes that the entries are polynomials of τ .
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Totally Symmetric Self-Complementary Plane Partitions
Alternating Sign Matrices
Exact result for some observables

In general, plane partitions can be thought of as pilings of cubes in
a corner (or equivalently, lozenge tilings):

Here we are interested in Totally Symmetric Self-Complementary
Plane Partitions, that is Plane partitions in a 2n× 2n× 2n hexagon
with every possible symmetry of the hexagon:
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Physically, plane partitions are free fermions and their enumeration
produces a Pfaffian or a determinant.
Here the corresponding computation can be carried out [Andrews,
’94], and we find that the number of TSSCPPs of size n is given
by the sequence

An =
1!4!7! · · · (3n − 2)!

n!(n + 1)!(n + 2)! · · · (2n − 1)!
= 1, 2, 7, 42, 429 . . .
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After some computations [Di Francesco, PZJ ’07] (using a formula
from [Zeilberger ’07] reproved in [Fonseca, PZJ ’08]):

∑
π

Ψπ|homogeneous

=
∑

0≤r1<r2<···<rn

τn(n−1)−
P

j rj det

[(
2i − rj

i

)]
1≤i≤n,0≤j≤n−1
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LGV formula for non-intersecting paths

As a special case of the Lindström–Gessel–Viennot formula,

det
[(2i−rj

i

)]
1≤i≤n,0≤j≤n−1

= # non-intersecting lattice paths from

(i ,−i) to (rj , 0) with moves (1, 0) and (1, 1), so that

∑
π

Ψπ|homogeneous

=
∑

endpoints

∑
NILPs

τ# up steps
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Totally Symmetric Self-Complementary Plane Partitions

∑
π

Ψπ|homogeneous =
∑

TSSCPPs

τ# blue lozenges
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Example (2n = 6)

There are A3 = 7 TSSCPPs:

1 τ τ τ τ τ τ 322

Ψ

1 2 3 4 5 6

|homogeneous = 1

Ψ

1 2 3 4 5 6

|homogeneous = τ2 Ψ

1 2 3 4 5 6

|homogeneous = τ2

Ψ

1 2 3 4 5 6

|homogeneous = 2τ Ψ

1 2 3 4 5 6

|homogeneous = τ3 + τ

so that
∑

π Ψπ|homogeneous = 1 + 3τ + 2τ2 + τ3.
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Zeilberger [’94], in a famous 80-page computation, showed that the
number of ASMs of size n is equal to the the number of TSSCPPs
of size 2n × 2n × 2n, and thus given by the same sequence

An = 1, 2, 7, 42, 429 . . .

1 0 0
0 1 0
0 0 1

1 0 0
0 0 1
0 1 0

0 1 0
1 0 0
0 0 1

0 1 0
0 0 1
1 0 0

0 1 0
1−1 1
0 1 0

0 0 1
1 0 0
0 1 0

0 0 1
0 1 0
1 0 0

However, his proof is non-bijective!
(and neither are alternative proofs)
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ASM=TSSCPP without calculations!

Zeilberger’s 80 page theorem reduced to a few simple points:

Introduce the same integral as before at q = e±2iπ/3:

Zn(z) =
∏

1≤i<j≤2n

(q zi − q−1zj)

∮
· · ·
∮ n∏

`=1

dw`(q w` − z2`−1)

2πi∏
1≤`<m≤n(wm − w`)(q w` − q−1wm)∏n

`=1

∏
1≤i≤2`−1(w` − zi )

∏
2`−1≤i≤2n(q w` − q−1zi )

When the zi are set to 1, as has been shown before,
Zn(1) = #TSSCPPs.

As a function of the zi , Zn is a symmetric polynomial which
satisfies the Korepin–Stroganov recursion relations.
Therefore it is equal to the Izergin partition function for the
6-vertex model, which specializes to Zn(1) = #ASMs.
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Doubly refined ASM=doubly refined TSSCPP

In 1986, Mills, Robbins and Rumsey conjectured that the doubly
refined ASM counting∑

ASMs

xposition of 1 of 1st rowyposition of 1 of last row

coincides with an [appropriately defined] doubly refined TSSCPP
counting.
One can write integral formulae for these weighted sums and show
that they agree [Fonseca, PZJ ’08]; the simple refinement was
already pointed out in [Razumov, Stroganov, PZJ, ’07].
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Partial sums as observables [Fonseca, PZJ ’09]

What are interesting observables? (e.g. from the point of view of
percolation)

1 Probability that the first p points are connected to last p
points.

p = 2
2 Probability that first p points are not connected to each other.

p = 5
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First p points are connected to last p points:

∑
π: first p points

connected to last p

Ψπ =
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First p points are not connected to each other:

∑
π: no pairings

among first p points

Ψπ =
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First p points are not connected to each other: (cont’d)

∑
π: no pairings

among first p points

Ψπ =

=

{∏r−1
i=0

(3p+3i+1)!
(3p+2i+1)!(p+2i)!

∏(r−2)/2
i=0 (2p + 2i + 1)!(2i)! r even

2p
∏r−1

i=1
(3p+3i+1)!

(3p+2i+1)!(p+2i)!

∏(r−1)/2
i=1 (2p + 2i)!(2i − 1)! r odd

where n = p + r . Asymptotically,

probability(no pairings among first p points)

∝ 4−p(3p+2)/4(3
√

3)p(p+1)/2p7/72
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