O(1) loop model and Combinatorics

P. Zinn-Justin

LPTHE, Université Paris 6

Infinite Analysis '09 - Miwa Fest, Kyoto University, 31/07/2009

- 4 同 2 4 回 2 4 回 2 4

Outline of the talk

Definition of the model

- The O(n) loop model
- The O(1) loop model
- Properties of the ground state
- Introduction of inhomogeneities
- Quantum Knizhnik–Zamolodchikov equation
 - Temperley–Lieb algebra
 - Back to the O(1) model ground state
 - Vertex operators and qKZ
 - Integral formulae for qKZ solutions

8 Relation to combinatorics

- Totally Symmetric Self-Complementary Plane Partitions
- Alternating Sign Matrices
- Exact result for some observables

< ロ > < 同 > < 回 > < 回 >

Outline of the talk

Definition of the model

- The O(n) loop model
- The O(1) loop model
- Properties of the ground state
- Introduction of inhomogeneities
- Quantum Knizhnik–Zamolodchikov equation
 - Temperley–Lieb algebra
 - Back to the O(1) model ground state
 - Vertex operators and qKZ
 - Integral formulae for qKZ solutions

8 Relation to combinatorics

- Totally Symmetric Self-Complementary Plane Partitions
- Alternating Sign Matrices
- Exact result for some observables

・ロト ・同ト ・ヨト ・ヨト

Outline of the talk

Definition of the model

- The O(n) loop model
- The O(1) loop model
- Properties of the ground state
- Introduction of inhomogeneities
- Quantum Knizhnik–Zamolodchikov equation
 - Temperley–Lieb algebra
 - Back to the O(1) model ground state
 - Vertex operators and qKZ
 - Integral formulae for qKZ solutions

8 Relation to combinatorics

- Totally Symmetric Self-Complementary Plane Partitions
- Alternating Sign Matrices
- Exact result for some observables

・ロト ・同ト ・ヨト ・ヨト

The O(n) loop model The O(1) loop model Properties of the ground state Introduction of inhomogeneities

The O(n) loop model is a two-dimensional statistical lattice model with *non-local* Boltzmann weights and observables. We use here the square lattice and "Completely Packed Loops":

The Boltzmann weight of a configuration contains both local weights and a weight of *n* to each closed loop:

$$Z = \sum_{\text{configurations}} w_1^{\#} \sum_{w_2^{\#}} w_2^{\#} \sum_{n^{\#} \text{ loops}} n^{\#} \text{ loops}$$

The O(n) loop model The O(1) loop model Properties of the ground state Introduction of inhomogeneities

The O(n) loop model is a two-dimensional statistical lattice model with *non-local* Boltzmann weights and observables. We use here the square lattice and "Completely Packed Loops":

The Boltzmann weight of a configuration contains both local weights and a weight of n to each closed loop:

$$Z = \sum_{\text{configurations}} w_1^{\#} w_2^{\#} n^{\# \text{ loops}}$$

The O(n) model allows to study in a simple setting various physical phenomena (polymers, self-avoiding walks, Hamiltonian paths, percolation...); it is critical in the region $|n| \le 2$.

It is also connected to Stochastic/Schramm Loewner Evolution, to Logarithmic Conformal Field Theory...

The O(n) model of Completely Packed Loops is *exactly solvable*: its Boltzmann weights satisfy the Yang–Baxter equation.

< ロ > < 同 > < 回 > < 回 > .

The O(n) model allows to study in a simple setting various physical phenomena (polymers, self-avoiding walks, Hamiltonian paths, percolation...); it is critical in the region $|n| \le 2$.

It is also connected to Stochastic/Schramm Loewner Evolution, to Logarithmic Conformal Field Theory...

The O(n) model of Completely Packed Loops is *exactly solvable*: its Boltzmann weights satisfy the Yang–Baxter equation.

The O(n) model allows to study in a simple setting various physical phenomena (polymers, self-avoiding walks, Hamiltonian paths, percolation...); it is critical in the region $|n| \le 2$.

It is also connected to Stochastic/Schramm Loewner Evolution, to Logarithmic Conformal Field Theory...

The O(n) model of Completely Packed Loops is *exactly solvable*: its Boltzmann weights satisfy the Yang–Baxter equation.

・ロン ・雪 と ・ ヨ と ・ ヨ と …

The O(n) loop model **The O(1) loop model** Properties of the ground state Introduction of inhomogeneities

In the O(1) loop model, one ignores the number of loops. The model is equivalent to a model of *critical bond percolation*:

イロト イポト イヨト イヨト

The O(n) loop model **The O(1) loop model** Properties of the ground state Introduction of inhomogeneities

In the O(1) loop model, one ignores the number of loops. The model is equivalent to a model of *critical bond percolation*:

(日) (同) (三) (三)

The O(n) loop model **The O(1) loop model** Properties of the ground state Introduction of inhomogeneities

The O(1) model is a probabilistic model in which one fills a two-dimensional region (with boundary) with plaquettes:

with probability p, \swarrow with probability 1 - p. (0

Case of the half-infinite cylinder geometry ("periodic boundary conditions")

Image: A image: A

Probability law of the connectivity of the external vertices?

The O(n) loop model **The O(1) loop model** Properties of the ground state Introduction of inhomogeneities

The O(1) model is a probabilistic model in which one fills a two-dimensional region (with boundary) with plaquettes:

with probability p, \swarrow with probability 1 - p. (0

Case of the half-infinite cylinder geometry ("periodic boundary conditions")

Probability law of the connectivity of the external vertices?

The O(n) loop model The O(1) loop model **Properties of the ground state** Introduction of inhomogeneities

The connectivity of the external vertices can be encoded into a link pattern = a planar pairing of 2n points on a circle. There are c(n) = (2n)!/n!/(n+1)! possible link patterns.

Example In size L = 2n = 8, a = 2n = 8, a

The "Ground state" Ψ of the transfer matrix (or "Steady state" of the Markov process) is a formal linear combination of link patterns.

The O(n) loop model The O(1) loop model **Properties of the ground state** Introduction of inhomogeneities

The connectivity of the external vertices can be encoded into a link pattern = a planar pairing of 2n points on a circle. There are c(n) = (2n)!/n!/(n+1)! possible link patterns.

Example

The "Ground state" Ψ of the transfer matrix (or "Steady state" of the Markov process) is a formal linear combination of link patterns.

The O(n) loop model The O(1) loop model **Properties of the ground state** Introduction of inhomogeneities

The connectivity of the external vertices can be encoded into a link pattern = a planar pairing of 2n points on a circle. There are c(n) = (2n)!/n!/(n+1)! possible link patterns.

Example

The "Ground state" Ψ of the transfer matrix (or "Steady state" of the Markov process) is a formal linear combination of link patterns.

The O(n) loop model The O(1) loop model **Properties of the ground state** Introduction of inhomogeneities

Observations [Batchelor, de Gier, Nienhuis '01]

Normalize Ψ so that the smallest entries, with patterns of the type

) All entries are Ψ are (positive) integers. [Di Francesco, PZJ '07]

The largest entries of Ψ correspond to patterns of the type

and are equal to A_{n-1} .

[Di Francesco, PZJ + Zeilberger '07 *or* Razumov, Stroganov, PZJ '07]

(a) The sum of entries of Ψ is $\langle 1|\Psi
angle=A_n$. [Di Franccesco, PZJ '04]

where

$$A_n = \frac{1!4!7!\cdots(3n-2)!}{n!(n+1)!(n+2)!\cdots(2n-1)!} = 1, 2, 7, 42, 429\dots$$

The O(n) loop model The O(1) loop model **Properties of the ground state** Introduction of inhomogeneities

Observations [Batchelor, de Gier, Nienhuis '01]

Normalize Ψ so that the smallest entries, with patterns of the type

- All entries are Ψ are (positive) integers. [Di Francesco, PZJ '07]
 - The largest entries of Ψ correspond to patterns of the type and are equal to A_{n-1} .

[Di Francesco, PZJ + Zeilberger '07 or Razumov, Stroganov, PZJ '07]

3) The sum of entries of Ψ is $\langle 1|\Psi
angle=A_n.$ [Di Franccesco, PZJ '04]

where

$$A_n = \frac{1!4!7!\cdots(3n-2)!}{n!(n+1)!(n+2)!\cdots(2n-1)!} = 1, 2, 7, 42, 429\dots$$

The O(n) loop model The O(1) loop model **Properties of the ground state** Introduction of inhomogeneities

Observations [Batchelor, de Gier, Nienhuis '01]

Normalize Ψ so that the smallest entries, with patterns of the type

- are set to 1. Then:
- All entries are Ψ are (positive) integers. [Di Francesco, PZJ '07]
- **2** The largest entries of Ψ correspond to patterns of the type ψ and are equal to A_{n-1} .

[Di Francesco, PZJ + Zeilberger '07 or Razumov, Stroganov, PZJ '07]

 \Im The sum of entries of Ψ is $\langle 1|\Psi
angle=A_n.$ [Di Franccesco, PZJ '04]

where

$$A_n = \frac{1!4!7!\cdots(3n-2)!}{n!(n+1)!(n+2)!\cdots(2n-1)!} = 1, 2, 7, 42, 429\dots$$

The O(n) loop model The O(1) loop model **Properties of the ground state** Introduction of inhomogeneities

Observations [Batchelor, de Gier, Nienhuis '01]

Normalize Ψ so that the smallest entries, with patterns of the type

- are set to 1. Then:
- All entries are Ψ are (positive) integers. [Di Francesco, PZJ '07]
- **2** The largest entries of Ψ correspond to patterns of the type ψ and are equal to A_{n-1} .

[Di Francesco, PZJ + Zeilberger '07 *or* Razumov, Stroganov, PZJ '07]

) The sum of entries of Ψ is $\langle 1|\Psi
angle=A_n$. [Di Franccesco, PZJ '04]

where

$$A_n = \frac{1!4!7!\cdots(3n-2)!}{n!(n+1)!(n+2)!\cdots(2n-1)!} = 1, 2, 7, 42, 429\dots$$

The O(n) loop model The O(1) loop model **Properties of the ground state** Introduction of inhomogeneities

Observations [Batchelor, de Gier, Nienhuis '01]

Normalize Ψ so that the smallest entries, with patterns of the type

- are set to 1. Then:
- All entries are Ψ are (positive) integers. [Di Francesco, PZJ '07]
- **2** The largest entries of Ψ correspond to patterns of the type ψ and are equal to A_{n-1} .

[Di Francesco, PZJ + Zeilberger '07 *or* Razumov, Stroganov, PZJ '07]

§ The sum of entries of Ψ is $\langle 1|\Psi\rangle=A_n.$ [Di Franccesco, PZJ '04]

where

$$A_n = \frac{1!4!7!\cdots(3n-2)!}{n!(n+1)!(n+2)!\cdots(2n-1)!} = 1, 2, 7, 42, 429\dots$$

The O(n) loop model The O(1) loop model Properties of the ground state Introduction of inhomogeneities

Inhomogeneous O(1) loop model

Consider the probabilistic model (on the cylinder) with probabilities p_i which depend on the column i = 1, ..., 2n of the plaquette.

Parametrize the probabilities as $p_i = \frac{z_i - q t}{t - q z_i}$, $q = e^{2i\pi/3}$. z_i are the spectral parameters.

The ground state is now a function of these z_i :

$$\Psi(z_1,\ldots,z_{2n})=\sum_{\pi}\Psi_{\pi}(z_1,\ldots,z_{2n})\ \pi$$

where the $\Psi_{\pi}(z_1, \ldots, z_{2n})$ can be chosen to be polynomials.

・ロト ・四ト ・モト・ モー

The O(n) loop model The O(1) loop model Properties of the ground state Introduction of inhomogeneities

Inhomogeneous O(1) loop model

Consider the probabilistic model (on the cylinder) with probabilities p_i which depend on the column i = 1, ..., 2n of the plaquette.

Parametrize the probabilities as $p_i = \frac{z_i - q t}{t - q z_i}$, $q = e^{2i\pi/3}$. z_i are the spectral parameters.

The ground state is now a function of these z_i :

$$\Psi(z_1,\ldots,z_{2n})=\sum_{\pi}\Psi_{\pi}(z_1,\ldots,z_{2n})\ \pi$$

where the $\Psi_{\pi}(z_1, \ldots, z_{2n})$ can be chosen to be polynomials.

ヘロン 人間 とくほと 人ほとう

The O(n) loop model The O(1) loop model Properties of the ground state Introduction of inhomogeneities

Inhomogeneous O(1) loop model

Consider the probabilistic model (on the cylinder) with probabilities p_i which depend on the column i = 1, ..., 2n of the plaquette.

Parametrize the probabilities as $p_i = \frac{z_i - q t}{t - q z_i}$, $q = e^{2i\pi/3}$. z_i are the spectral parameters.

The ground state is now a function of these z_i :

$$\Psi(z_1,\ldots,z_{2n})=\sum_{\pi}\Psi_{\pi}(z_1,\ldots,z_{2n})\ \pi$$

where the $\Psi_{\pi}(z_1, \ldots, z_{2n})$ can be chosen to be polynomials.

Temperley–Lieb algebra Back to the O(1) model ground state Vertex operators and qKZIntegral formulae for qKZ solutions

The Temperley–Lieb algebra $TL_L(\tau)$ (a quotient of the Hecke algebra) is defined by generators e_i , i = 1, ..., L - 1, and relations

$$e_i^2 = au e_i$$
 $e_i e_{i\pm 1} e_i = e_i$ $e_i e_j = e_j e_i$ $|i-j| > 1$

Define the action of Temperley–Lieb generators e_i on link patterns of size L = 2n: (for convenience link patterns are drawn in the half-plane)

where the weight of a closed loop is τ .

Image: A matrix and a matrix

Temperley–Lieb algebra Back to the O(1) model ground state Vertex operators and qKZIntegral formulae for qKZ solutions

R-matrix

Set
$$\tau = -q - 1/q$$
, and define the *R*-matrix:

$$\check{R}_i(u) = rac{(q \, u - q^{-1})I + (u - 1)e}{q - q^{-1}u}$$

where
$$I = \bigcirc$$
 and $e_i = \bigcirc$.

It satisfies the Yang–Baxter equation:

$$\check{R}_i(u)\check{R}_{i+1}(uv)\check{R}_i(v)=\check{R}_{i+1}(v)\check{R}_i(uv)\check{R}_{i+1}(u)$$

and the unitarity equation:

$$\check{R}_i(u)\check{R}_i(1/u)=I$$

NB: no crossing relation . .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Temperley–Lieb algebra Back to the O(1) model ground state Vertex operators and qKZIntegral formulae for qKZ solutions

R-matrix

Set
$$\tau = -q - 1/q$$
, and define the *R*-matrix:

$$\check{R}_i(u) = rac{(q \ u - q^{-1})I + (u - 1)e_i}{q - q^{-1}u}$$

where
$$I = \bigcirc$$
 and $e_i = \bigcirc$

It satisfies the Yang–Baxter equation:

$$\check{R}_i(u)\check{R}_{i+1}(uv)\check{R}_i(v)=\check{R}_{i+1}(v)\check{R}_i(uv)\check{R}_{i+1}(u)$$

and the unitarity equation:

$$\check{R}_i(u)\check{R}_i(1/u)=I$$

NB: no crossing relation ...

イロン 不同 とくほう イロン

3

Temperley–Lieb algebra Back to the O(1) model ground state Vertex operators and qKZ Integral formulae for qKZ solutions

• Exchange relation:

$$\check{R}_i(z_{i+1}/z_i)\Psi(z_1,\ldots,z_{2n})=\Psi(z_1,\ldots,z_{i+1},z_i,\ldots,z_{2n})$$

cheating slightly: there is a priori a scalar factor which is not easy to get rid of.

• Rotation relation:

$$\rho^{-1}\Psi(z_1,\ldots,z_{2n})=\Psi(z_2,\ldots,z_{2n},z_1)$$

where ρ implements rotation of link patterns:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Temperley–Lieb algebra Back to the O(1) model ground state Vertex operators and qKZ Integral formulae for qKZ solutions

• Exchange relation:

$$\check{R}_i(z_{i+1}/z_i)\Psi(z_1,\ldots,z_{2n})=\Psi(z_1,\ldots,z_{i+1},z_i,\ldots,z_{2n})$$

cheating slightly: there is a priori a scalar factor which is not easy to get rid of.

• Rotation relation:

$$\rho^{-1}\Psi(z_1,\ldots,z_{2n})=\Psi(z_2,\ldots,z_{2n},z_1)$$

where ρ implements rotation of link patterns:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The quantum Knizhnik–Zamolodchikov equation. is a system of equations that appears:

- in the study of form factors of integrable models [Smirnov, '86]
- in the representation theory of quantum affine algebras [Frenkel, Reshetikhin '92]
- in the study of correlation functions of integrable models [Jimbo, Miwa et al, '93]
- in relation to representation theory of affine Hecke algebra and DAHA [Cherednik, Pasquier. . .]

Temperley–Lieb algebra Back to the O(1) model ground state Vertex operators and qKZIntegral formulae for qKZ solutions

If $\Phi(z) = (\Phi^{(0)}(z), \Phi^{(1)}(z))$ is the vertex operator (type I/II) associated to level 1 highest weight modules of $U_q(\widehat{sl(2)})$, then $\hat{\Psi}(z_1, \ldots, z_{2n}) = \langle 0 | \Phi(z_1) \cdots \Phi(z_{2n}) | 0 \rangle$ satisfies the following system of equations:

• Exchange relation: $(i = 1, \dots, 2n - 1)$

 $\check{R}_i(z_{i+1}/z_i)\hat{\Psi}(z_1,\ldots,z_{2n})=\hat{\Psi}(z_1,\ldots,z_{i+1},z_i,\ldots,z_{2n})$

• Rotation relation:

$$\rho^{-1}\hat{\Psi}(z_1,\ldots,z_{2n})=\hat{\Psi}(z_2,\ldots,z_{2n},s_{2n})$$

with $s = q^6$ (level 1).

For $q = \exp(2\pi i/3)$, this coincides with the relations satisfied by the O(1) loop model ground state, and in fact $\Psi = \hat{\Psi}$ (up to change of basis).

Temperley–Lieb algebra Back to the O(1) model ground state Vertex operators and qKZIntegral formulae for qKZ solutions

If $\Phi(z) = (\Phi^{(0)}(z), \Phi^{(1)}(z))$ is the vertex operator (type I/II) associated to level 1 highest weight modules of $U_q(\widehat{sl(2)})$, then $\hat{\Psi}(z_1, \ldots, z_{2n}) = \langle 0 | \Phi(z_1) \cdots \Phi(z_{2n}) | 0 \rangle$ satisfies the following system of equations:

• Exchange relation: (i = 1, ..., 2n - 1)

$$\check{R}_i(z_{i+1}/z_i)\hat{\Psi}(z_1,\ldots,z_{2n}) = \hat{\Psi}(z_1,\ldots,z_{i+1},z_i,\ldots,z_{2n})$$

Rotation relation:

$$\rho^{-1}\hat{\Psi}(z_1,\ldots,z_{2n})=\hat{\Psi}(z_2,\ldots,z_{2n},s\,z_1)$$

with $s = q^6$ (level 1).

For $q = \exp(2\pi i/3)$, this coincides with the relations satisfied by the O(1) loop model ground state, and in fact $\Psi = \hat{\Psi}$ (up to change of basis).

Temperley–Lieb algebra Back to the O(1) model ground state Vertex operators and qKZIntegral formulae for qKZ solutions

If $\Phi(z) = (\Phi^{(0)}(z), \Phi^{(1)}(z))$ is the vertex operator (type I/II) associated to level 1 highest weight modules of $U_q(\widehat{sl(2)})$, then $\hat{\Psi}(z_1, \ldots, z_{2n}) = \langle 0 | \Phi(z_1) \cdots \Phi(z_{2n}) | 0 \rangle$ satisfies the following system of equations:

• Exchange relation: (i = 1, ..., 2n - 1)

$$\check{R}_i(z_{i+1}/z_i)\hat{\Psi}(z_1,\ldots,z_{2n})=\hat{\Psi}(z_1,\ldots,z_{i+1},z_i,\ldots,z_{2n})$$

Rotation relation:

$$\rho^{-1}\hat{\Psi}(z_1,\ldots,z_{2n})=\hat{\Psi}(z_2,\ldots,z_{2n},s\,z_1)$$

with $s = q^6$ (level 1).

For $q = \exp(2\pi i/3)$, this coincides with the relations satisfied by the O(1) loop model ground state, and in fact $\Psi = \hat{\Psi}$ (up to change of basis).

Vertex operators can be expressed in terms of a (*q*-deformed) bosonic field:

$$[b_m, b_n] = \frac{[2m][m]}{m} \delta_{m, -n}, \ [b_0, \beta] = 2$$

$$\Phi^{(0)}(z) = e^{\beta} z^{b_0} : e^{\sum_{n \in \mathbb{Z}_{\neq 0}} q^{-|n|/2} \frac{b_n}{[2n]} z^{-n}} :$$

$$\Phi^{(1)}(z) = \oint \frac{w \, dw}{(q \, w - z)(w - q \, z)} : j^{-}(w) \Phi^{(0)}(z) :$$

Their correlation functions can then be computed explicitly. For example,

$$\sum_{\pi} \hat{\Psi}_{\pi} = \prod_{1 \le i < j \le 2n} (q \, z_i - q^{-1} z_j) \oint \cdots \oint \prod_{\ell=1}^{n} \frac{\mathrm{d} w_{\ell} (q \, w_{\ell} - z_{2\ell-1})}{2\pi i}$$

$$\frac{\prod_{1 \le \ell < m \le n} (w_m - w_{\ell}) (q \, w_{\ell} - q^{-1} w_m)}{\prod_{\ell=1}^{n} \prod_{1 \le i \le 2\ell-1} (w_{\ell} - z_i) \prod_{2\ell-1 \le i \le 2n} (q \, w_{\ell} - q^{-1} z_i)}$$

Vertex operators can be expressed in terms of a (*q*-deformed) bosonic field:

$$[b_m, b_n] = \frac{[2m][m]}{m} \delta_{m, -n}, \ [b_0, \beta] = 2$$

$$\Phi^{(0)}(z) = e^{\beta} z^{b_0} : e^{\sum_{n \in \mathbb{Z}_{\neq 0}} q^{-|n|/2} \frac{b_n}{[2n]} z^{-n}} :$$

$$\Phi^{(1)}(z) = \oint \frac{w \, dw}{(q \, w - z)(w - q \, z)} : j^{-}(w) \Phi^{(0)}(z) :$$

Their correlation functions can then be computed explicitly. For example,

$$\sum_{\pi} \hat{\Psi}_{\pi} = \prod_{1 \le i < j \le 2n} (q \, z_i - q^{-1} z_j) \oint \cdots \oint \prod_{\ell=1}^{n} \frac{\mathrm{d} w_{\ell} (q \, w_{\ell} - z_{2\ell-1})}{2\pi i}$$

$$\frac{\prod_{1 \le \ell < m \le n} (w_m - w_{\ell}) (q \, w_{\ell} - q^{-1} w_m)}{\prod_{\ell=1}^{n} \prod_{1 \le i \le 2\ell-1} (w_{\ell} - z_i) \prod_{2\ell-1 \le i \le 2n} (q \, w_{\ell} - q^{-1} z_i)}$$

$$= 1 + (q + 2) + (q + 2) = 2$$
P. Zinn-Justin O(1) loop model and Combinatorics

ヘロト ヘ部ト ヘヨト ヘヨト

Homogeneous limit for generic q

What is the combinatorial meaning of the level 1 polynomial solution of qKZ for generic q? In particular, what can one say about the homogeneous limit $z_i = 1$?

where $\tau = -q - q^{-1}$. In general, one observes that the entries are polynomials of τ .

Totally Symmetric Self-Complementary Plane Partitions Alternating Sign Matrices Exact result for some observables

< ロ > < 同 > < 回 > < 回 > < □ > <

Homogeneous limit for generic q

What is the combinatorial meaning of the level 1 polynomial solution of qKZ for generic q? In particular, what can one say about the homogeneous limit $z_i = 1$?

Example (2n = 4)

where $\tau = -q - q^{-1}$. In general, one observes that the entries are polynomials of τ .

Totally Symmetric Self-Complementary Plane Partitions Alternating Sign Matrices Exact result for some observables

In general, plane partitions can be thought of as pilings of cubes in a corner (or equivalently, lozenge tilings):

Here we are interested in Totally Symmetric Self-Complementary Plane Partitions, that is Plane partitions in a $2n \times 2n \times 2n$ hexagon with every possible symmetry of the hexagon:

Totally Symmetric Self-Complementary Plane Partitions Alternating Sign Matrices Exact result for some observables

< ロ > < 同 > < 回 > < 回 >

In general, plane partitions can be thought of as pilings of cubes in a corner (or equivalently, lozenge tilings):

Here we are interested in Totally Symmetric Self-Complementary Plane Partitions, that is Plane partitions in a $2n \times 2n \times 2n$ hexagon with every possible symmetry of the hexagon:

Totally Symmetric Self-Complementary Plane Partitions Alternating Sign Matrices Exact result for some observables

Physically, plane partitions are free fermions and their enumeration produces a Pfaffian or a determinant.

Here the corresponding computation can be carried out [Andrews, '94], and we find that the number of TSSCPPs of size n is given by the sequence

$$A_n = \frac{1!4!7!\cdots(3n-2)!}{n!(n+1)!(n+2)!\cdots(2n-1)!} = 1, 2, 7, 42, 429\dots$$

After some computations [Di Francesco, PZJ '07] (using a formula from [Zeilberger '07] reproved in [Fonseca, PZJ '08]):

$$\sum_{\pi} \Psi_{\pi}|_{homogeneous}$$
$$= \sum_{0 \le r_1 \le r_2 \le \dots \le r_n} \tau^{n(n-1) - \sum_j r_j} \det \left[\binom{2i - r_j}{i} \right]_{1 \le i \le n, 0 \le j \le n-1}$$

Totally Symmetric Self-Complementary Plane Partitions Alternating Sign Matrices Exact result for some observables

イロト イポト イヨト イヨト

LGV formula for non-intersecting paths

As a special case of the Lindström–Gessel–Viennot formula, det $\begin{bmatrix} \binom{2i-r_j}{i} \end{bmatrix}_{1 \le i \le n, 0 \le j \le n-1} = \#$ non-intersecting lattice paths from (i, -i) to $(r_j, 0)$ with moves (1, 0) and (1, 1), so that

Totally Symmetric Self-Complementary Plane Partitions Alternating Sign Matrices Exact result for some observables

ヘロト ヘヨト ヘヨト ヘヨト

Totally Symmetric Self-Complementary Plane Partitions

Totally Symmetric Self-Complementary Plane Partitions Alternating Sign Matrices Exact result for some observables

ヘロト ヘ部ト ヘヨト ヘヨト

Totally Symmetric Self-Complementary Plane Partitions

Totally Symmetric Self-Complementary Plane Partitions Alternating Sign Matrices Exact result for some observables

P. Zinn-Justin O(1) loop model and Combinatorics

Zeilberger ['94], in a famous 80-page computation, showed that the number of ASMs of size n is equal to the the number of TSSCPPs of size $2n \times 2n \times 2n$, and thus given by the same sequence

 $A_n = 1, 2, 7, 42, 429 \dots$

However, his proof is non-bijective! (and neither are alternative proofs)

Zeilberger ['94], in a famous 80-page computation, showed that the number of ASMs of size n is equal to the the number of TSSCPPs of size $2n \times 2n \times 2n$, and thus given by the same sequence

 $A_n = 1, 2, 7, 42, 429 \dots$

However, his proof is non-bijective! (and neither are alternative proofs)

Totally Symmetric Self-Complementary Plane Partitions Alternating Sign Matrices Exact result for some observables

ASM=TSSCPP without calculations!

Zeilberger's 80 page theorem reduced to a few simple points:

• Introduce the same integral as before at $q = e^{\pm 2i\pi/3}$

$$Z_{n}(\underline{z}) = \prod_{1 \leq i < j \leq 2n} (q \, z_{i} - q^{-1} z_{j}) \oint \cdots \oint \prod_{\ell=1}^{n} \frac{\mathrm{d}w_{\ell}(q \, w_{\ell} - z_{2\ell-1})}{2\pi i}$$
$$\frac{\prod_{1 \leq \ell < m \leq n} (w_{m} - w_{\ell})(q \, w_{\ell} - q^{-1} w_{m})}{\prod_{\ell=1}^{n} \prod_{1 \leq i \leq 2\ell-1} (w_{\ell} - z_{i}) \prod_{2\ell-1 \leq i \leq 2n} (q \, w_{\ell} - q^{-1} z_{i})}$$

- When the z_i are set to 1, as has been shown before, $Z_n(\underline{1}) = \#TSSCPPs.$
- As a function of the z_i , Z_n is a symmetric polynomial which satisfies the Korepin–Stroganov recursion relations. Therefore it is equal to the Izergin partition function for the 6-vertex model, which specializes to $Z_n(\underline{1}) = \#ASMs$.

Totally Symmetric Self-Complementary Plane Partitions Alternating Sign Matrices Exact result for some observables

ASM=TSSCPP without calculations!

Zeilberger's 80 page theorem reduced to a few simple points:

• Introduce the same integral as before at $q = e^{\pm 2i\pi/3}$:

$$Z_{n}(\underline{z}) = \prod_{1 \leq i < j \leq 2n} (q \, z_{i} - q^{-1} z_{j}) \oint \cdots \oint \prod_{\ell=1}^{n} \frac{\mathrm{d}w_{\ell}(q \, w_{\ell} - z_{2\ell-1})}{2\pi i}$$
$$\frac{\prod_{1 \leq \ell < m \leq n} (w_{m} - w_{\ell})(q \, w_{\ell} - q^{-1} w_{m})}{\prod_{\ell=1}^{n} \prod_{1 \leq i \leq 2\ell-1} (w_{\ell} - z_{i}) \prod_{2\ell-1 \leq i \leq 2n} (q \, w_{\ell} - q^{-1} z_{i})}$$

- When the z_i are set to 1, as has been shown before, $Z_n(\underline{1}) = \#TSSCPPs.$
- As a function of the z_i , Z_n is a symmetric polynomial which satisfies the Korepin–Stroganov recursion relations. Therefore it is equal to the Izergin partition function for the 6-vertex model, which specializes to $Z_n(\underline{1}) = \#ASMs$.

Totally Symmetric Self-Complementary Plane Partitions Alternating Sign Matrices Exact result for some observables

ASM=TSSCPP without calculations!

Zeilberger's 80 page theorem reduced to a few simple points:

• Introduce the same integral as before at $q = e^{\pm 2i\pi/3}$:

$$Z_{n}(\underline{z}) = \prod_{1 \leq i < j \leq 2n} (q \, z_{i} - q^{-1} z_{j}) \oint \cdots \oint \prod_{\ell=1}^{n} \frac{\mathrm{d}w_{\ell}(q \, w_{\ell} - z_{2\ell-1})}{2\pi i}$$
$$\frac{\prod_{1 \leq \ell < m \leq n} (w_{m} - w_{\ell})(q \, w_{\ell} - q^{-1} w_{m})}{\prod_{\ell=1}^{n} \prod_{1 \leq i \leq 2\ell-1} (w_{\ell} - z_{i}) \prod_{2\ell-1 \leq i \leq 2n} (q \, w_{\ell} - q^{-1} z_{i})}$$

• When the z_i are set to 1, as has been shown before, $Z_n(\underline{1}) = \#TSSCPPs.$

• As a function of the z_i , Z_n is a symmetric polynomial which satisfies the Korepin–Stroganov recursion relations. Therefore it is equal to the lzergin partition function for the 6-vertex model, which specializes to $Z_n(\underline{1}) = \#ASMs$.

Totally Symmetric Self-Complementary Plane Partitions Alternating Sign Matrices Exact result for some observables

ASM=TSSCPP without calculations!

Zeilberger's 80 page theorem reduced to a few simple points:

• Introduce the same integral as before at $q = e^{\pm 2i\pi/3}$:

$$Z_{n}(\underline{z}) = \prod_{1 \leq i < j \leq 2n} (q \, z_{i} - q^{-1} z_{j}) \oint \cdots \oint \prod_{\ell=1}^{n} \frac{\mathrm{d}w_{\ell}(q \, w_{\ell} - z_{2\ell-1})}{2\pi i}$$
$$\frac{\prod_{1 \leq \ell < m \leq n} (w_{m} - w_{\ell})(q \, w_{\ell} - q^{-1} w_{m})}{\prod_{\ell=1}^{n} \prod_{1 \leq i \leq 2\ell-1} (w_{\ell} - z_{i}) \prod_{2\ell-1 \leq i \leq 2n} (q \, w_{\ell} - q^{-1} z_{i})}$$

- When the z_i are set to 1, as has been shown before, $Z_n(\underline{1}) = \#TSSCPPs.$
- As a function of the z_i , Z_n is a symmetric polynomial which satisfies the Korepin–Stroganov recursion relations. Therefore it is equal to the lzergin partition function for the 6-vertex model, which specializes to $Z_n(\underline{1}) = \#ASMs$.

イロト イポト イヨト イヨト

Doubly refined ASM=doubly refined TSSCPP

In 1986, Mills, Robbins and Rumsey conjectured that the doubly refined ASM counting $% \left({{\left[{{{\rm{ASM}}} \right]_{\rm{ASM}}}} \right)$

$\sum_{\rm ASMs} x^{\rm position \ of \ 1 \ of \ 1st \ row} y^{\rm position \ of \ 1 \ of \ last \ row}$

coincides with an [appropriately defined] doubly refined TSSCPP counting.

One can write integral formulae for these weighted sums and show that they agree [Fonseca, PZJ '08]; the simple refinement was already pointed out in [Razumov, Stroganov, PZJ, '07].

・ロン ・部 と ・ ヨ と ・ ヨ と …

Doubly refined ASM=doubly refined TSSCPP

In 1986, Mills, Robbins and Rumsey conjectured that the doubly refined ASM counting $% \left({{{\rm{ASM}}}} \right)$

$$\sum_{\mathsf{ASMs}} \mathsf{x}^{\mathsf{position}} \text{ of } 1 \text{ of } 1 \mathsf{st row}_{\mathcal{Y}} \mathsf{position } \mathsf{of } 1 \text{ of } \mathsf{last row}$$

coincides with an [appropriately defined] doubly refined TSSCPP counting.

One can write integral formulae for these weighted sums and show that they agree [Fonseca, PZJ '08]; the simple refinement was already pointed out in [Razumov, Stroganov, PZJ, '07].

Totally Symmetric Self-Complementary Plane Partitions Alternating Sign Matrices Exact result for some observables

・ロト ・同ト ・ヨト ・ヨト

Partial sums as observables [Fonseca, PZJ '09]

What are interesting observables? (e.g. from the point of view of percolation)

Probability that the first p points are connected to last p points.

p = 2
 Probability that first *ρ* points are not connected to each other.

Totally Symmetric Self-Complementary Plane Partitions Alternating Sign Matrices Exact result for some observables

- 4 同 6 4 日 6 4 日 6

Partial sums as observables [Fonseca, PZJ '09]

What are interesting observables? (e.g. from the point of view of percolation)

Probability that the first p points are connected to last p points.

Probability that first *p* points are not connected to each other.

Totally Symmetric Self-Complementary Plane Partitions Alternating Sign Matrices Exact result for some observables

- 4 同 6 4 日 6 4 日 6

Partial sums as observables [Fonseca, PZJ '09]

What are interesting observables? (e.g. from the point of view of percolation)

Probability that the first p points are connected to last p points.

Probability that first *p* points are not connected to each other.

Totally Symmetric Self-Complementary Plane Partitions Alternating Sign Matrices Exact result for some observables

・ 同 ト ・ ヨ ト ・ ヨ ト

Partial sums as observables [Fonseca, PZJ '09]

What are interesting observables? (e.g. from the point of view of percolation)

Probability that the first p points are connected to last p points.

Probability that first p points are not connected to each other.

Totally Symmetric Self-Complementary Plane Partitions Alternating Sign Matrices Exact result for some observables

・ロト ・回ト ・ヨト ・ヨト

э

First p points are connected to last p points:

Totally Symmetric Self-Complementary Plane Partitions Alternating Sign Matrices Exact result for some observables

・ロト ・回ト ・ヨト ・ヨト

3

First *p* points are not connected to each other:

Totally Symmetric Self-Complementary Plane Partitions Alternating Sign Matrices Exact result for some observables

First p points are not connected to each other: (cont'd)

$$\sum_{\substack{\pi: \text{ no pairings} \\ \text{ among first } p \text{ points}}} \Psi_{\pi} =$$

$$=\begin{cases} \prod_{i=0}^{r-1} \frac{(3p+3i+1)!}{(3p+2i+1)!(p+2i)!} \prod_{i=0}^{(r-2)/2} (2p+2i+1)!(2i)! & r \text{ even} \\ 2^p \prod_{i=1}^{r-1} \frac{(3p+3i+1)!}{(3p+2i+1)!(p+2i)!} \prod_{i=1}^{(r-1)/2} (2p+2i)!(2i-1)! & r \text{ odd} \end{cases}$$

where n = p + r. Asymptotically,

probability(no pairings among first p points)

 $\propto 4^{-p(3p+2)/4}(3\sqrt{3})^{p(p+1)/2}p^{7/72}$

ヘロン 人間 とくほと 人ほとう

э

Totally Symmetric Self-Complementary Plane Partitions Alternating Sign Matrices Exact result for some observables

First *p* points are not connected to each other: (cont'd)

$$\sum_{\substack{\pi: \text{ no pairings} \\ \text{ong first } p \text{ points}}} \Psi_{\pi} =$$

$$=\begin{cases} \prod_{i=0}^{r-1} \frac{(3p+3i+1)!}{(3p+2i+1)!(p+2i)!} \prod_{i=0}^{(r-2)/2} (2p+2i+1)!(2i)! & r \text{ even} \\ 2^p \prod_{i=1}^{r-1} \frac{(3p+3i+1)!}{(3p+2i+1)!(p+2i)!} \prod_{i=1}^{(r-1)/2} (2p+2i)!(2i-1)! & r \text{ odd} \end{cases}$$

where n = p + r. Asymptotically,

am

probability(no pairings among first p points)

$$\propto 4^{-p(3p+2)/4} (3\sqrt{3})^{p(p+1)/2} p^{7/72}$$

э