
The Razumov–Stroganov correspondence
Quantum Integrability of the loop model

First combinatorial properties
The geometry

Razumov–Stroganov correspondences and the
geometry of Schubert varieties

P. Zinn-Justin

October 20, 2017
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Consider the following probabilistic model. Fill some
two-dimensional surface with boundary with plaquettes:

with probability p, with probability 1− p. (0 < p < 1)

1 2 3 42n ......

Case of the half-infinite
cylinder geometry (“periodic
boundary conditions”)

Probability law of the connectivity of the external vertices?
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The connectivity of the external vertices can be encoded into a
link pattern = a planar pairing of 2n points on a circle.

Example

In size L = 2n = 8,
1

42

3
42

7
42
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Relation to Markov process on link patterns

Using a transfer matrix formalism, one can reformulate the
computation of these probabilities in terms of a Markov process on
link patterns (dependent on p):

→ =

Then the vector |Ψ〉 =
∑

π Prob(π)|π〉 is the steady state
eigenvector:

T (p)|Ψ〉 = |Ψ〉
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A Fully Packed Loop configuration (FPL) on a n × n square grid:

Thus, FPL configurations are in bijection with ASMs and with
6-vertex configurations with DWBC. Their number is

An =
1!4!7! · · · (3n − 2)!

n!(n + 1)!(n + 2)! · · · (2n − 1)!
= 1, 2, 7, 42, 429 . . .
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It is natural to group FPLs by connectivity of their endpoints: cf
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Denote by A(π) the number of FPLs with connectivity described
by the link pattern π. Razumov and Stroganov observed (2001),
and then Cantini and Sportiello proved (2010), that A(π) is exactly
the (unnormalized) probability of pattern π in the model of loops
with the geometry of the cylinder.

In other words |Ψ〉 =
∑

π A(π)|π〉 is the (unnormalized) steady
state of the Markov process of loops:

T (p)|Ψ〉 = |Ψ〉

Remark: there are (still conjectural!) variations: other types of b.c.
on TL ↔ different symmetry classes of ASM/FPL [Batchelor, de
Gier & Nienhuis ’01; Razumov-Stroganov ’01; Pearce, de Gier &
Rittenberg ’01, . . . ]
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Consider the probabilistic model (on the cylinder) with probabilities
pi depending on the column i = 1, . . . , 2n, which we parameterize
as pi = t−q zi

zi−q t , 1− pi = q2 t−zi
zi−q t , q = e2πi/3.

This inhomogeneous model is still integrable, the zi are the
spectral parameters.

The corresponding steady state is |Ψ(z1, . . . , z2n)〉.

T (z1, . . . , z2n|t)|Ψ(z1, . . . , z2n)〉 = |Ψ(z1, . . . , z2n)〉
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Polynomiality.
|Ψ(z1, . . . , z2n)〉 can be normalized in such a way that its
components are homogenous polynomials of total degree
n(n − 1) and of partial degree at most n − 1 in each zi .

Factorization and symmetry.
The components possess various linear factors and properties
of symmetry by exchange of variables.
In particular, their sum is a symmetric polynomial of all zi .

Recursion relations.
Components of |Ψ(z1, . . . , z2n)〉 satisfy linear recursion
relations; their sum is entirely determined by these:∑
π

Ψπ(z1, . . . , z2n) = IKn(q; z1, . . . , z2n) = Schur( ; z1, . . . , z2n)
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Motivation

The quantum Knizhnik–Zamolodchikov equation is a system of
equations that appears:

in the study of form factors of integrable models
[Smirnov, ’86]

in the representation theory of quantum affine algebras
[Frenkel, Reshetikhin ’92]

in the study of correlation functions of integrable models
[Jimbo, Miwa et al, ’93]

in relation to representation theory of affine Hecke algebra
and DAHA [Cherednik, Pasquier, ’90s]

As we shall see now, it can also be applied to the
Temperley–Lieb loop model [Di Francesco, PZJ, ’05]
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The Temperley–Lieb algebra

The Temperley–Lieb algebra TLL(τ) (a quotient of the Hecke
algebra) is defined by generators ei , i = 1, . . . , L− 1, and relations

e2
i = τei eiei±1ei = ei eiej = ejei |i − j | > 1

Define the action of Temperley–Lieb generators ei on link patterns:

e1
1 2 3 4 5 6

=
1 2 3 4 5 6

=
1 2 3 4 5 6

e2
1 2 3 4 5 6

=
1 2 3 4 5 6

= τ
1 2 3 4 5 6

where the weight of a closed loop is τ .
P. Zinn-Justin Razumov–Stroganov correspondences and Schubert varieties
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Introduce the rotation operator ρ such that ρeiρ
−1 = ei+1. This

allows to define an extra element

eL = ρeL−1ρ
−1 = ρ−1e1ρ

Together the e1, . . . , eL form a representation of the affine
Temperley–Lieb algebra.

ρ naturally acts on link patterns by rotating them/shifting them
cyclically:

ρ 1

23

4

5 6

= 1

23

4

5 6

or ρ
1 2 3 4 5 6

=
1 2 3 4 5 6
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The R-matrix

Write τ = −q − 1/q, and define the R-matrix to be

Ři (u) =
(q u − q−1)I + (u − 1)ei

q − q−1u

Graphically, Ři = q u−q−1

q−q−1u
+ u−1

q−q−1u
acting on i th and

(i + 1)th sites, u being the ratio of spectral parameters at sites i
and i + 1.

It satisfies the Yang–Baxter equation

Ři (u)Ři+1(uv)Ři (v) = Ři+1(v)Ři (uv)Ři+1(u)

and the unitarity equation

Ři (u)Ři (1/u) = 1
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The qKZ system

Consider the following system of equations for |Ψ〉, function of
z1, . . . , zL, q, q

−1 with values in the space of linear combinations of
link patterns: (i = 1, . . . , L− 1)

Ři (zi/zi+1)|Ψ(z1, . . . , zL)〉 = |Ψ(z1, . . . , zi+1, zi , . . . , zL)〉 (1)

ρ |Ψ(z1, . . . , zL)〉 = c |Ψ(s zL, z1, . . . , zL−1)〉 (2)

z1
zi zi+1

zL
=

z1 zi+1 zi zL

z1 zL
= c

s zL z1 zL−1

P. Zinn-Justin Razumov–Stroganov correspondences and Schubert varieties
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The qKZ equation

By combining Eqs. (1) and (2), one can make one spectral
parameter zi wind around the cylinder:

z1 zi zL

s zi
=

z1 s zi zL

resulting in an equation of the form

Si (z1, . . . , zL)|Ψ(z1, . . . , zL)〉 = |Ψ(z1, . . . , s zi , . . . , zL)〉, i = 1, . . . , L
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Level 1 Polynomial solution of qKZ

Fact: in size L = 2n, for s = q6 (level 1), there exists a polynomial
solution of degree n(n − 1), unique up to normalization.

Example (2n = 4)

Ψ

1 2 3 4

= (q z2 − q−1z1)(q z4 − q−1z3)

Ψ

1 2 3 4

= (q z3 − q−1z2)(q−2z1 − q2z4)

Remark: connection to nonsymmetric Macdonald polynomials
[Kasatani, Takeyama] (s → q, q → t2)
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Factorization and symmetry

Given a link pattern π, one can separate vertices into maximal
groups of neighbors that are not paired with each other:

A1 A2 A3 A4

Then any solution of the qKZ system satisfies

Ψπ =
∏
k

∏
i ,j∈Ak
i<j

(q zj − q−1zi ) Φπ

where Φπ is symmetric in each set of variables {zi , i ∈ Ak}.
(This immediately implies uniqueness of Ψ, building the entries

inductively starting from )
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Quantum Integrability of the loop model

First combinatorial properties
The geometry

Inhomogeneous TL model
The qKZ equation
Level 1 solution and loop model

Connection to the loop model steady state

Set q = e±2πi/3, i.e., τ = 1. L = 2n.

Then |Ψ〉 coincides with the (unnormalized) steady state of the
Markov process introduced earlier.

Proof: because s = 1, the qKZ equation becomes an eigenvector
equation for Si (z1, . . . , z2n) = T (z1, . . . , z2n|t = zi ). By Lagrange
interpolation, |Ψ〉 is an eigenvector of T (z1, . . . , z2n|t) for all t.
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Summary of generalizations

|Ψ(z1, . . . , z2n; q)〉 = solution of qKZ

|Ψ(z1, . . . , z2n)〉 = steady state of
the inhomogeneous loop model

|Ψ〉 = steady state of
the homogeneous loop model

q=e2πi/3

zi=1

|Ψ(q)〉 = |Ψ̃(τ)〉

(q=e2πi/3)
τ=1

zi=1
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Homogeneous limit for generic q
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Young diagrams and polynomiality

What is the combinatorial meaning of the level 1 polynomial
solution of qKZ for generic q? In particular, what can one say
about the homogeneous limit zi = 1?

Example (2n = 4)

Ψ

1 2 3 4

|homogeneous = 1

Ψ

1 2 3 4

|homogeneous = τ

where τ = −q − q−1.
In general, one observes that the components are always
polynomials of τ with non-negative integer coefficients.
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Totally Symmetric Self-Complementary Plane Partitions

NILPTSSCPP∑
π

Ψπ|homogeneous =
∑

TSSCPPs

τ# pink lozenges

Remark: #TSSCPPs = #ASMs = An. (but no known bijection!)
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Example (2n = 6)

There are A3 = 7 TSSCPPs:

1 τ τ τ2 τ τ2 τ3

Ψ

1 2 3 4 5 6

|homogeneous = 1

Ψ
1 2 3 4 5 6

|homogeneous = τ2 Ψ
1 2 3 4 5 6

|homogeneous = τ2

Ψ

1 2 3 4 5 6

|homogeneous = 2τ Ψ
1 2 3 4 5 6

|homogeneous = τ3 + τ
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Some particular components

[Fonseca + Z-J, ’09, fixing small mistakes] Consider link patterns

of the form πa = , with a arches atop a series of
n − a small arches. Then Ψπa |homogeneous =

∑
paths τ

vertical steps:

(a = 1) (a = 2)

(parity constraint; the first a + 1 steps are frozen horizontally).
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The (a, b, c) case

Now consider link patterns of the form

... a

...b
...c

Then Ψ(a,b,c) = τbc |PP(a, b, c)| where PP(a, b, c) is the set of
lozenge tilings of a a× b × c hexagon, or plane partitions of c × b
with maximal part a. [conjectured by Zuber for FPLs, τ = 1;
proven by DF, Z-J, Zuber, ’03]
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2 1 1 0

1 1 0 0

1 0 0 0

record heights
viewed from top

d
u

a
l

squash
horizontal edges

level
cu

rves,
sh

ifted

fo
llo

w

an
d
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Young diagrams

There is an injective mapping from link patterns to Young diagrams
in a n × n square ∼= subsets of {1, . . . , 2n} of cardinality n:

3 5 6 8

→ → 8
5 6

3

→

...a

...b
...c

→

a+b

c

b a+c
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Polynomiality

For a given Young diagram λ, Ψλ,n(τ) is a polynomial of both n
and τ , of degree |λ| in both.
[at τ = 1, conjectured by Zuber and proven by Caselli,
Krattenthaler, Lass, Nadeau for FPLs; for any τ , proven by
Fonseca + Z-J]

In fact, the leading term in τ is known explicitly in terms of the
subset s:

Ψλ,n
τ→∞∼ τ |λ| det

[(
i − 1

s̄i − j

)]
i ,j=1,...,n

= τ |λ| det

[(
n − i

n − si + j

)]
i ,j=1,...,n
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The leading τ →∞/q → 0 term
The full answer
Gröbner degeneration

As warming up, we shall interpret geometrically the leading
behavior as τ →∞.

Ψλ,n
τ→∞∼ τ |λ| det

[(
i − 1

s̄i − j

)]
i ,j=1,...,n

= τ |λ| det

[(
n − i

n − si + j

)]
i ,j=1,...,n

Occasionally, we shall reintroduce the spectral parameters zi ;
remembering that τ = −q − q−1, this amounts to considering

lim
q→0

Ψλ,n(z1, . . . , z2n; q)
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(a,b,c) and Borel–Weil

|PP(a, b, c)| is also the dimension of the representation b × a of
GL(b + c).

Why this choice among possible permutations of {a, b, c}?
Because if one reintroduces spectral parameters,

Ψ(a,b,c)
q→0∼ (monomial) sb×a(za+b+1, . . . , za+2b+c)

where sλ denotes the Schur polynomial with Young diagram λ
(note the consistency with the symmetry property of Ψ(a,b,c)).
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(a,b,c) and Borel–Weil cont’d

Geometrically, this representation occurs as follows: Consider the
Grassmannian

Gr(b, b + c) = {V ⊂ Cb+c : dimV = b}

This is a projective variety, which has a sheaf O(a) whose space of
global sections has dimension |PP(a, b, c)| (and in fact, carries the
representation b × a of GL(b + c)).
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Gröbner degeneration

Plücker relations and NILPs

Let us translate this into combinatorics.
Explicitly, Gr(b, b + c) can be written in terms of coordinates and
equations. The coordinates are the Plücker coordinates ps indexed
by subsets s of {1, . . . , b + c} of cardinality b. The equations are
certain quadratic relations called Plücker relations.

Example:

Gr(2, 4) = {[p12, p13, p14, p23, p24, p34] : p12p34−p13p24+p14p23 = 0}
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Gröbner degeneration

Plücker relations and NILPs cont’d

The global sections of O(a) are simply homogeneous polynomials
of degree a in the ps .

Each lozenge tiling in PP(a, b, c), or equivalently each a-tuple of
NILPs can be described by the locations of down steps of NILPs;
they form a subsets sα, α = 1, . . . , a, of {1, . . . , b + c} of
cardinality b.

We can therefore associate to each element of PP(a, b, c) a
monomial of degree a:

∏a
α=1 psα .

Theorem: These monomials form a basis of the degree a part of
the projective coordinate ring of Gr(b, b + c) (or equivalently, form
a basis of global sections of OGr(b,b+c)(a)).
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Gröbner degeneration

Plücker relations and NILPs, end

In other words, the Plücker relations allow to express any
monomial of degree a as a linear combination of those of the form
above (NILPs)!

Example: |PP(2, 2, 2)| = 20 =
(6+1

2

)
− 1:

p2
34 ↔ p24p34 ↔ p14p34 ↔ p23p34 ↔

p13p34 ↔ p12p34 ↔ p2
24 ↔ p14p24 ↔ p2

14 ↔

p23p24 ↔ p13p24 ↔ p12p24 ↔ p13p14 ↔

p12p14 ↔ p2
23 ↔ p13p23 ↔ p12p23 ↔ p2

13 ↔

p12p13 ↔ p2
12 ↔ p14p23 ↔ ? ?= − .
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Beyond Grassmannians?

It is natural to ask if such an interpretation of the leading τ →∞
behavior of Ψλ,n works for any λ.

We’re looking for varieties Xλ indexed by partitions λ, and that
possess an invariance under

∏
k GL(|Ak |) (due to the symmetry

property of Ψλ,n).

(and such that if λ = c × b, Xλ ∼= Gr(b, b + c)).
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Schubert varieties

We define Schubert varieties Xλ inside Gr(n, 2n) as follows: Recall
that
Gr(n, 2n) = {[ps , s ⊂ {1, . . . , 2n}, |s| = n] : Plücker relations}.
Also recall that such subsets are in bijection with Young diagrams
inside the n × n square; pointwise ≥ corresponds to inclusion ⊂ of
Young diagrams.

Then
Xλ = {[ps ] ∈ Gr(n, 2n) : ps = 0 unless s ⊂ λ}

It is known that dimXλ = |λ|.
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Grassmannians inside Grassmannians!

Example: if λ = c × b, subsets s ⊂ λ are exactly of the form

{s̃1 + a + b, . . . , s̃b + a + b, a + 2b + c + 1, . . . , 2n}

where s̃ is a subset of {1, . . . , b + c} of cardinality b.

One can check the Plücker relations also agree, so that ps 7→ ps̃
gives the isomorphism X c×b ∼= Gr(b + b + c).

P. Zinn-Justin Razumov–Stroganov correspondences and Schubert varieties



The Razumov–Stroganov correspondence
Quantum Integrability of the loop model

First combinatorial properties
The geometry

The leading τ →∞/q → 0 term
The full answer
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One can check the Plücker relations also agree, so that ps 7→ ps̃
gives the isomorphism X c×b ∼= Gr(b + b + c).

P. Zinn-Justin Razumov–Stroganov correspondences and Schubert varieties



The Razumov–Stroganov correspondence
Quantum Integrability of the loop model

First combinatorial properties
The geometry

The leading τ →∞/q → 0 term
The full answer
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Coherent sheaves on Schubert varieties

Are there coherent sheaves on Xλ such that the leading τ →∞
behavior of Ψλ,n is its number of global sections?

The obvious guess (use O(a) sheaves, i.e., polynomials of degree a
in the projective coordinates) works for our two series of examples,

but fails for e.g. !

(in general; it works exactly for Xλ Gorenstein)

But there are sheaves on Xλ which do not come from its
embedding inside Gr(n, 2n)!
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Divisors of Schubert varieties

Divisors of Xλ are in one-to-one correspondence with (co)homology
classes of subvarieties of codimension 1: they are exactly (integer
linear combinations of) the Schubert varieties with one less box.

Example: α

β
γ

To each such divisor one can associate a sheaf (dual of its ideal
sheaf). Its global sections are rational functions on Xλ with
prescribed order of pole/zero on each divisor Xµ.

The sheaf O(a) corresponds to all integers being equal to a.
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Global sections

Given integers ar ≥ 0 for each corner r of λ, consider reverse plane
partitions, i.e., tableaux which are weakly increasing along rows
and columns, with entries ≥ 0 which are less or equal than the
entries ar at each corner r .

Theorem: a basis of global sections of the sheaf associated to the
integers ar ≥ 0, r corner of λ, is given by associating to each
tableau as above the product of Plücker coordinates associated to
level curves of the tableau [and dividing by the appropriate power
of pλ itself].

(question to audience: reference?)
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Global sections, example

0
2

1

∼ subset (35689)

0 0 0 0 0
0 0 0
0

= 1 0 0 0 0 0
0 0 0
1

= p45689/p35689

. . .

0 0 0 0 0
1 1 2
1

= p56789p35789/p
2
35689

0 0 0 0 0
1 2 2
1

= p56789p36789/p
2
35689
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General linear group action and character

The natural action of GL(2n) on Gr(n, 2n) restricts to an action of∏
k GL(|Ak |) on Xλ. This means global sections of any sheaf on

Xλ carry a representation of
∏

k GL(|Ak |) (up to an overall twist),
and we can compute the character of the space of its global
sections.

Combinatorially, pad reverse partitions with zeros above and
a = maxr ar below; then the character is given (up to an overall
monomial) by ∑

RPP

∏
α
β

zβ−α
c( α )+n

where c( ) = column − row .
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Example of character

For example, for 1

1
(n = 2),

0 0

0

0 1

0

0 0

1

0 1

1

1 1

1
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Example of character

For example, for 1

1
(n = 2),

...
...

0 0

0 0

0 1

1 1
...

...

...
...

0 0

0 1

0 1

1 1
...

...

...
...

0 0

0 0

1 1

1 1
...

...

...
...

0 0

0 1

1 1

1 1
...

...

...
...

0 0

1 1

1 1

1 1
...

...

z1z3 z1z4 z2z3 z2z4 z3z4
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Application

Now given a link pattern and its associated Young diagram, define
a sheaf σλ by choosing integers to be the distance to the diagonal:

0

2

1

By application of the Lindström–Gessel–Viennot formula, we find
that the number of global sections / reverse plane partitions is

det

[(
i − 1

s̄i − j

)]
i ,j=1,...,n

= det

[(
n − i

n − si + j

)]
i ,j=1,...,n
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Application cont’d

The equality of the number of global sections of σλ with the
leading τ →∞ behavior of Ψλ,n is a strong indication that we’re
headed the right way.

Even better, the character of the space of global sections of σλ,
coincides, as expected, with

lim
q→0

Ψλ,n(z1, . . . , z2n; q)
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Remarks

Link patterns (i.e., Young diagrams inside the triangle) are
exactly the cases where all numbers are nonnegative.

For any Young diagram in the n × n square, there is no higher
sheaf cohomology ⇒ we are computing the pushforward to a
point of σλ in K -theory.

Polynomiality in n becomes obvious (pushforward to a point is
always a polynomial of the overall shift of the integers).

Fonseca and Nadeau consider “Ψλ,0” which in our language
would correspond to setting the integers as if the diagonal
passed through the origin. Note that here the higher sheaf
cohomology spaces finally kick in.
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The extra circle action

Note that the variables zi , i = 1, . . . , 2n are the formal parameters
associated to computing the character w.r.t. the Cartan torus
(C×)2n of GL(2n) (or one of its subgroups

∏
k GL(|Ak |)).

In order to reintroduce the parameter q, it is natural to enhance
our geometric setting to incorporate an extra circle C× action.

Idea: replace Xλ with the total space of a vector bundle over Xλ:

CXλ → Xλ

(x , ~v) 7→ x

Then the extra action is scaling of the fiber, i.e.,
(x , ~v) ∈ CXλ 7→ (x , t ~v).
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Digression: Hall–Littlewood polynomials

This extra circle action is standard in geometric representation
theory.

In fact, if we extend the Borel–Weil construction, e.g., on
Gr(b, b + c), by replacing Gr(b, b + c) with its cotangent bundle
T ∗Gr(b, b + c), and then taking the same O(a) sheaf (obtained by
pullback from Gr(b, b + c)), then the corresponding character
would be nothing but the (dual) Hall–Littlewood polynomial (with
Young diagram c × b).
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Cotangent bundle of the Grassmannian

Here we do something different: we consider the cotangent bundle
of the ambient space, that is Gr(n, 2n).

This cotangent bundle has a very simple explicit description:

T ∗Gr(n, 2n) =
{

(V , u) ∈ Gr(n, 2n)× End(C2n) : Im u ⊂ V ⊂ Ker u
}

(justification: the fiber of TGr at V lives in Hom(V ,C2n/V ); so
the dual fiber is Hom(C2n/V ,V ) which is naturally a subspace of
End(C2n) where u|V = 0 ⇔ V ⊂ Ker u and Im u ⊂ V .)
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Gröbner degeneration

Conormal Schubert varieties

We can then define CXλ to be the conormal variety of the
Schubert variety Xλ. (in short: conormal Schubert variety)

That is, CXλ is a subspace of T ∗Gr(n, 2n) defined by the condition

CXλ =
{

(V , u) ∈ T ∗Gr(n, 2n) : V ∈ Xλ
smooth and u ⊥ TVXλ

}
Remark: this isn’t quite a vector bundle because Xλ isn’t
smooth. . .
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We can then define CXλ to be the conormal variety of the
Schubert variety Xλ. (in short: conormal Schubert variety)

That is, CXλ is a subspace of T ∗Gr(n, 2n) defined by the condition

CXλ =
{

(V , u) ∈ T ∗Gr(n, 2n) : V ∈ Xλ
smooth and u ⊥ TVXλ

}
Remark: this isn’t quite a vector bundle because Xλ isn’t
smooth. . .
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K -theoretic pushforward

Theorem (Knutson, Z-J, ’16)

Consider the (pullback of the) same sheaf σλ as before on CXλ.
Then its (localized, equivariant) K-theoretic pushforward to a
point, which is equal to the C× × (C×)2n character of the space of
its global sections, is proportional to Ψλ, with the identification of
the extra scaling action parameter: t = q−2.
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Relation to Okounkov theory

Okounkov et al define the R-matrix geometrically as a matrix of
change of basis in the (localized, equivariant) K -theory ring
K loc
T (T ∗Gr(n, 2n)); here implementing the natural Weyl group

action (S2n) on the ambient space T ∗Gr(n, 2n).

However this matrix depends (nontrivially!) on a choice of basis of
this ring. The choice made here (certain sheaves on conormal
Schubert varieties) produces the R-matrix of the Temperley–Lieb
loop model (which was our starting point).

Okounkov prefers the use of the so-called stable basis, which leads
to the R-matrix of the six-vertex model. However in the
Grassmannian case, the change of basis is very easy (maximal
parabolic Kazhdan–Lusztig polynomials), so that the corresponding
integrable models are easily shown to be equivalent.
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Back to (a, b, c)

Explicitly, in the case λ = (a, b, c), the equations take the form

CXλ = {[ps ], (uij) : quad(ps), bil(ps , uij) = 0}

where the matrix u = (uij) is restricted to be of the form

u =


a + b b + c c + a

a + b 0 B ?
b + c 0 C
c + a 0


(the upper-right block has not been named since its entries never
occur in any equation.)
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(a, b, c) cont’d

The sheaf O(a) simply consists of polynomials in the ps and the
entries of B and C which are of degree a in the ps (note that the
degree in B and C is free, but incurs a weight of t in the
computation of the character = generating/Hilbert series).

As before, one can eliminate the Plücker relations by considering
only

∏a
α=1 psα where the sα are in bijection with lozenge tilings.

The dependence on B and C remains arbitrary, modulo the bilinar
relations bil(ps ,Bij) = 0 and bil ′(ps ,Cij) = 0.
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Example: a = b = c = 1

b = c = 1 means Gr(b, b + c) ∼= P1, i.e., two projective
coordinates p1 and p2 and no Plücker relations.

The bilinear equations read

(
p1 p2

)(B12 B22 C11 C12

B11 B21 −C21 −C22

)
= 0

By combining these equations, we can find

ps(BC )ik = 0, s, i , k = 1, 2

(this is a general fact)
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Coordinates on lozenge tilings

Introduce the following redundant coordinate system on lozenge
tilings:

a

b c

i=1

i=a+b

j=1

j=b+c

k=1

k=a+c

The blue (resp. red, green) lines are constant i (resp. j , k) curves.
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(a, b, c) and Gröbner degeneration

Theorem (Knutson, Z-J, ’16)

There exists a Gröbner degeneration of the space of global sections
of σλ (where λ = (a, b, c)), such that the equations take the
following form:
For each monomial

∏a
α=1 psα and its associated lozenge tiling, the

equations are∏a
α=1 psαBij = 0 for each lozenge at location (i , j).∏a
α=1 psαCjk = 0 for each lozenge at location (j , k).∏a
α=1 psα(BC )ik = 0 for each lozenge at location (i , k).

(this is a slight simplification. . . equations above actually define
toric varieties)
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Gröbner degeneration

Example cont’d: a = b = c = 1

The degenerated bilinear equations read

(
p1 p2

)( 0 B22 C11 0
B11 0 0 −C22

)
= 0

which must be supplemented by the equations

p1(BC )12 = 0, p2(BC )21 = 0

These equations correspond to the two lozenge tilings

B22C11

(BC)12 B11 C22

(BC)21
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(a, b, c) and Gröbner degeneration cont’d

This immediately implies an explicit formula for Ψλ:

Ψ(a,b,c) ∝
∑

lozenge tiling of PP(a,b,c)

∏
lozenges (i , k)

of type BC

(1− t2zi/zk+a+2b+c)

∏
lozenges (i , j)

of type B

(1− t zi/zj+a+b)
∏

lozenges (j , k)
of type C

(1− t zj+a+b/zk+a+2b+c)

In particular, in the homogeneous limit zi = 1, we immediately
recover, noting 1− t2 = (1− t)(1 + t) = −q−1/2(1− t)τ ,

Ψ(a,b,c)|homogeneous = τbc |PP(a, b, c)|
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PDF’s conjecture

The same strategy works for other series of examples. In fact, we
recover this way more than the Razumov–Stroganov
correspondence; we get a proof (for various series of examples) of

Conjecture (Di Francesco, ’06)

For every link pattern π, Ψπ can be decomposed as a sum of
products of the form

Ψπ =
∑

f ∈FPLπ

n(n−1)∏
a=1

(
qαf ,azjf ,a − q−αf ,azif ,a

)
where αf ,a ∈ {1, 2}, and the indexing set FPLπ is the set of FPLs
with connectivity π.

which itself implies positivity of coefficients of Ψπ |homogeneous(τ).
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