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Schubert calculus and quantum integrability

It remains an open problem to provide a (positive, efficient) solution
to Schubert calculus, i.e., to give a combinatorial formula for the
structure constants of the cohomology of general flag varieties.

My interest is in applying methods from quantum integrable systems
(QIS) to solve this problem.

We are also interested in generalizations (equivariance; quantum;
more general cohomology theories, i.e., K -theory or elliptic
cohomology).

Thanks to the work of Nekrasov+Shatashvili,
{Maulik,Aganagic}+Okounkov, Rimányi+Tarasov+Varchenko, etc
(and related work in geometric representation theory), we know how
to describe such cohomology spaces in terms of a QIS.
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The ring structure

The ring structure also appears naturally, as the algebra of
multiplication operators is the Bethe algebra (commutative
subalgebra of the Yang–Baxter algebra) of the QIS.

However, this does not obviously help with the calculation of
structure constants.
→ Another idea is required to use quantum integrable methods for
that.

In 2008, I proposed to reinterpret puzzles, a certain combinatorial
gadget introduced by Knutson and Tao around 2000 for Schubert
calculus in HT (Gr), as an exactly solvable model (QIS).

Was then generalized with A. Knutson to partial flag varieties. (2017)
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Geometric interpretation

Start with a configuration space X , e.g., X = Gr .

Pick an appropriate basis of H∗
( T
loc)

(X ): the Schubert basis

(Sλ = [Xλ])

Take the tensor product of two such classes:

H∗(X × X )
∼=−→ H∗(X )⊗ H∗(X )

↪→ H∗(Y )

[sλ × sµ] 7→ Sλ ⊗ Sµ

7→ Sλ+µ

Restrict to the diagonal: ∆ : X ↪→ X × X

H∗(X × X )
∆∗
−→ H∗(X )

Sλ ⊗ Sµ 7→ Sλ Sµ

Expand in the original basis.
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Case of Grassmannians

Pick

X = T ∗Gr(·, n) =
n⊔

k=0

T ∗Gr(k, n)

T = (C×)n × C× acts on X . We index fixed points with binary strings in
{0, 1}n (with k 0s, n − k 1s). H∗T (·) = Z[~, x1, . . . , xn].

Using the stable envelope construction [Maulik, Okounkov] with a
cocharacter in the positive chamber, we define classes Sλ ∈ H∗T (X ),
λ ∈ {0, 1}n, which form a basis of H∗T ,loc(X ).
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Choice of Y
We choose Y to be T ∗ of the two-step flag variety:

Y = T ∗Gr(·, ·, 2n)

Its (C×)2n × C× fixed points are indexed by strings in {0, 1, 2}2n. We
define analogously the stable basis (Sν)ν∈{0,1,2}2n .

Given λ, µ ∈ {0, 1}n, define

λ+ µ := {λ1 + 1, . . . , λn + 1, µ1, . . . , µn} ∈ {0, 1, 2}2n

(corresponding to two of the three ways that a two-step flag variety is
really one-step)

Note

Sλ+µ|ρ =

{
(#) Sλ|σ Sµ|τ ρ = σ + τ

0 else
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Symplectic reduction

There is a symplectic reduction from Y ⊃ T ∗Gr(k , `,m; 2n) to
T ∗Gr(k ′, `′,m′; n) with

k ′ =
`+ m − k

2
`′ =

k + m − `
2

m′ =
k + `−m

2

by the unipotent group ( 1 ?
0 1 ) and moment map value η = ( · 1

· · ).

When ` = n, `′ = 0 and T ∗Gr(k ′, `′,m′; n) ∼= T ∗Gr(k , n) ⊂ X .
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QIS reformulation

H∗T (Y ) ∼= Z[~]⊗
2n⊗
i=1

Z[xi ]
3 ∼ Hilbert space of spin chain

x1

1

x2

2 2

···

1 1

x2n

0

[ZJ, 2015] Symplectic reduction (of the kind we need) is given by fusion:

· · · ⊗ V (x)⊗ V (x ′ = x + ~)⊗ · · · → · · · ⊗ V̄ (x + ~/2)⊗ · · ·

Here we need xi+n = xi + ~, i = 1, . . . , n.
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Fusion cont’d

Before we can apply fusion, we need to reorder the factors of the tensor

product → R-matrix:
xi xj

.The fusion operator is also given in terms

of the R-matrix:
x x+~

=

x

x+~/2

x+~

Together:

x1

1

0̄

x2

2

0̄

x3

2

2̄

x1+~

1

x2+~

1

x3+~

0

2 2 1 1
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Puzzles
Use dual graphical notations, shift cyclically indices and write in binary:

cλ,µν =

 ∑
edge labellings

with 0,1,10

 λ µ

ν

 ∏
triangles,

lozenges(i ,j)

weight(xi − xj)



Allowed “nonequivariant” (xi = 0 ⇒ HC×(X )) triangles:

0
00

1
11

10
01 × 3

10
1010

0
0 0

1
1 1

10
0 1 × 3

10
10 10
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Final formula

Taking into account the factors, we can write

S̃λS̃µ =
∑
ν

cλ,µν S̃ν

where

S̃λ :=
Sλ

A0
∈ H0

T ,loc(X )

and A0 is the class of the base Gr of T ∗Gr .

S̃λ ∼ Segre Schwartz–MacPherson (SSM) class.

Nonequivariantly,

cλ,µν = (−1)|λ|+|µ|+|ν|χEP(Xλ
o ∩ Xµ

o ∩ X ν̄
o )
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Schubert limit

Take ~→∞:
S̃λ = SλA−1

0 = ~−|λ|Sλ0 + · · ·

where Sλ0 is the corresponding Schubert class, and
|λ| = #{i < j : λi > λj} is the inversion number of λ.

Renormalizing the weights of puzzles by appropriate powers of ~, we find
the following shorter list of puzzle pieces, with simplified weights:

0
00

1
11

10
01 × 3

0
0 0

1
1 1

10
0 1 × 3 1 0

10
−1 = xi − xj
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Schubert limit cont’d. Remarks

One can do the same reasoning in equivariant K -theory, reproducing
the results of [Wheeler, Z-J ’17].

In particular, in nonequivariant K -theory, triangles
10

1010 1 ,
10

10 101

acquire a weight q±1. In the Schubert limit, one of the two triangles
is kept (two dual bases).
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Partial flag varieties

We now consider the case of d-step flag varieties:

X = T ∗Fd , Fd = {0 ≤ V1 ≤ · · · ≤ Vd ≤ Cn}

which are Nakajima quiver varieties of type Ad .
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QIS and root systems
X ↔ model 1 , Y ↔ model 2 .

model 1 dim rep 1 model 2 dim rep 2

d = 1 A1 2

A2 3

d = 2 A2 3

D4 8

d = 3 A3 4

E6 27

d = 4 A4 5

E8 248 + 1

d ≥ 5 Ad d + 1

Kac–Moody? ∞

NB. Can be generalized to any symmetric tensor power of the defining
representation of Ad .
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Puzzles and Schubert limit

One can again formulate the structure constants of H∗T (X ) (or KT (X )) in
the SSM basis in terms of a triangular partition function of model 2

(“puzzle rule”).

One can then take the limit ~→∞ (or q± → 0) to obtain a puzzle rule
for ordinary Schubert calculus in partial flag varieties.

In what follows we focus on the nonequivariant case.

P. Zinn-Justin Schubert puzzles and quantum integrability October 11, 2018 16 / 25



Puzzles and Schubert limit

One can again formulate the structure constants of H∗T (X ) (or KT (X )) in
the SSM basis in terms of a triangular partition function of model 2

(“puzzle rule”).

One can then take the limit ~→∞ (or q± → 0) to obtain a puzzle rule
for ordinary Schubert calculus in partial flag varieties.

In what follows we focus on the nonequivariant case.

P. Zinn-Justin Schubert puzzles and quantum integrability October 11, 2018 16 / 25



Puzzles and Schubert limit

One can again formulate the structure constants of H∗T (X ) (or KT (X )) in
the SSM basis in terms of a triangular partition function of model 2

(“puzzle rule”).

One can then take the limit ~→∞ (or q± → 0) to obtain a puzzle rule
for ordinary Schubert calculus in partial flag varieties.

In what follows we focus on the nonequivariant case.

P. Zinn-Justin Schubert puzzles and quantum integrability October 11, 2018 16 / 25



Nonequivariant puzzles
In general, a (nonequivariant) puzzle is an assignment of labels from a
certain set Ld to each edge of a triangle inside the triangular lattice of the
plane, such that {0, 1, . . . , d} ⊂ Ld , and the boundary edges are labelled
with {0, 1, . . . , d} only.

e.g., for d = 1, L1 = {0, 1, 10}:

01

10

11

1

00

0

110

0

00

0

100

1

11

1

01

10

11

1

00

0

λ µ

ν

01

10

11

1

01

10

11

1

00

0

110

0

00

0

11

1

00

0

100

1

λ µ

ν
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Fugacities

Assign a “fugacity” to each elementary triangle:

In H(Fd≤3),

fug(

b

ca ) = fug(
b

c a ) ∈ {0, 1}

In K (Fd≤3),

fug(

b

ca ), fug(
b

c a ) ∈ {−1, 0, 1}

In H or K (F4), fug(

b

ca ) ∈ Q. . .
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The formula

The output of this construction is Ld and fugacities such that structure
constants of H/K (Fd) are given by

cνλ,µ =
∑

puzzles
sides λ,µ,ν

∏
elementary

triangles

fug(triangle)

In particular, in H(Fd≤3),

cνλ,µ = # {H-admissible puzzles with sides λ, µ, ν}

and in K (Fd≤3),

cνλ,µ = (−1)|λ|+|µ|−|ν|# {K -admissible puzzles with sides λ, µ, ν}
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H(F1) = H(Gr)

L1 = {0, 1, 10}

1

0 10

a

a′

a′ a

H-admissible triangles:

0

00

1

11

10

01 × 3

10

1010 1

increases
inversion
number
by 1

0

0 0

1

1 1

10

0 1 × 3
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K (F1) = K (Gr)

L1 = {0, 1, 10}

1

0 10

a

a′

a′ a

K -admissible triangles:

0

00

1

11

10

01 × 3
10

1010 1

increases
inversion
number
by 1

0

0 0

1

1 1

10

0 1 × 3
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H(F2)

L1 = {0, 1, 2, 10, 20, 21, 2(10), (21)0}
a′ a b

b′

2 1
b

0
a

10

21

a′

b′

2(10)
b′

a′

20
a

(21)0
b

×3 (triality)

H-admissible triangles:

i

ii
i

i i
XY

YX × 3
XY

Y X × 3
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K (F2)

K -admissible triangles: H plus

10

1010 1

20

2020 1

21

2121 1

2(10)

(21)0 11

1

2(10)(21)0 1

(21)0

1 2(10)1

20

(21)010 1

10

20(21)0 1

(21)0

10 201

2(10)

2021 1

21

2(10)20 1

20

212(10) 1

(21)0)

(21)0 (21)02
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H(F3)

c ′ a′ a b c

b′

3

2

1

0

10

32

3(2(10))

2(10)

21 20

3(21)

3(20)

3(10)

31

(21)0

((32)1)0

(32)1

(32)(10)

(32)0

30

3((21)0)

(32)((21)0)

(3(21))(10)

(31)0 (3(21))0

(3(2(10)))0

3(((32)1)0)

c

b

a

a′

b′

c′

b′

b′

a′ a

a

c′

b

a′

b

b

c′

c

a′

c

a

c

b′

c

c

c′

a′

a

b′

b

b

b′ a

a′

c′

H-admissible triangles:

i

ii
i

i i
XY

YX × 3
XY

Y X × 3
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K (F3)
10

1010
20

(21)010
30

(31)010
(32)0

((32)1)010
3(20)

(3(2(10)))010
20

2020
21

2(10)20
30

(32)020
31

(32)(10)20
21

2121
2(10)

2021
31

(32)121
3(10)

(32)021

1
2(10)(21)0

10
20(21)0

30
(3(21))0(21)0

31
(3(21))(10)(21)0

20
212(10)

30
(32)12(10)

30
3030

31
3(10)30

32
3(20)30

3(21)
3((21)0)30

31
3131

3(10)
3031

32
3(21)31

1
3(10)(31)0

10
30(31)0

2
3((21)0)(31)0

32
3(((32)1)0)(31)0

30
313(10)

32
3(2(10))3(10)

32
3232

3(20)
3032

3(21)
3132

3(2(10))
3(10)32

3(((32)1)0)
(31)032

2
3(20)(32)0

20
30(32)0

21
3(10)(32)0

30
323(20)

2
3(21)(32)1

21
31(32)1

2(10)
30(32)1

31
323(21)

3((21)0)
303(21)

1
(32)(10)((32)1)0

10
(32)0((32)1)0

2
(32)((21)0)((32)1)0

1
3(20)(3(21))0

2
3(2(10))(32)(10)

20
31(32)(10)

30
3(21)3((21)0)

3(10)
323(2(10))

(3(21))(10)
13(2(10))

10
3(20)(3(2(10)))0

1
3(2(10))(3(21))(10)

20
3(21)(32)((21)0)

(31)0
323(((32)1)0)

(3(21))0
((32)1)020

3((21)0)
(3(2(10)))020

3((21)0)
(3(21))021

(3(21))(10)
((32)1)021

(31)0
((32)1)0(21)0

3(10)
(3(2(10)))0(21)0

20
(3(21))0((32)1)0

21
(3(21))(10)((32)1)0

21
3((21)0)(3(21))0

31
3(((32)1)0)(3(21))0

31
3(2(10))3((21)0)

3(10)
3(20)3((21)0)

3((21)0)
313(2(10))

20
3((21)0)(3(2(10)))0

30
3(((32)1)0)(3(2(10)))0

21
3(2(10))(32)((21)0)

2(10)
3(20)(32)((21)0)

(32)0
3(21)3(((32)1)0)

(3(21))0
313(((32)1)0)

(3(2(10)))0
303(((32)1)0)

2(10)
(3(2(10)))0((32)1)0

((32)1)0
((32)1)0((32)1)0

3((21)0)
3((21)0)3((21)0)

(32)1
3(2(10))3(((32)1)0)

(32)(10)
3(20)3(((32)1)0)

(3(21))(10)
3(10)3(((32)1)0)

(32)((21)0)
3((21)0)3(((32)1)0)

3(((32)1)0)
3(((32)1)0)3(((32)1)0) 2(10)

(21)0 1
3(10)

(31)0 1
3(20)

(3(21))0 1
(32)(10)

((32)1)0 1
3(2(10))

(3(21))(10) 1
3(20)

(32)0 2
3(21)

(32)1 2
3((21)0)

(31)0 2

3(2(10))
(32)(10) 2

(32)((21)0)
((32)1)0 2

(21)0
10 20

3(21)
(32)((21)0) 20

(21)0
1 2(10)

(31)0
10 30

(32)0
20 30

(32)1
2(10) 30

(3(21))0
(21)0 30

(32)1
21 31

(32)(10)
20 31

(3(21))(10)
(21)0 31

(31)0
1 3(10)

(32)0
21 3(10)

((32)1)0
10 (32)0

(32)0
2 3(20)

(3(21))0
1 3(20)

(3(2(10)))0
10 3(20)

(32)1
2 3(21)

(32)((21)0)
20 3(21)

(21)0
30 (3(21))0

((32)1)0
1 (32)(10)

(31)0
2 3((21)0)

(32)(10)
2 3(2(10))

(21)0
31 (3(21))(10)

((32)1)0
2 (32)((21)0)

(21)0
(21)0 (21)0

3(2(10))
(32)((21)0) 21

3(20)
(32)((21)0) 2(10)

(31)0
(31)0 (31)0

(32)0
(3(21))0 (31)0

(32)1
(3(21))(10) (31)0

((32)1)0
(21)0 (31)0

(32)(10)
2(10) 3(10)

(3(2(10)))0
(21)0 3(10)

(32)0
(32)0 (32)0

(32)1
(32)(10) (32)0

(3(21))0
(31)0 (32)0

(32)((21)0)
2(10) 3(20)

(32)1
(32)1 (32)1

(32)(10)
(32)0 (32)1

(3(21))(10)
(31)0 (32)1

(21)0
(31)0 ((32)1)0

(31)0
(32)0 (3(21))0

((32)1)0
20 (3(21))0

(32)0
(32)1 (32)(10)

(21)0
3(10) (3(2(10)))0

(31)0
(32)1 (3(21))(10)

((32)1)0
21 (3(21))(10)

(32)1
(32)((21)0) (3(21))0

(32)(10)
(32)(10) (32)(10)

(3(2(10)))0
(31)0 (32)(10)

(31)0
(32)(10) (3(2(10)))0

(32)0
(32)((21)0) (3(2(10)))0

((32)1)0
2(10) (3(2(10)))0

(32)(10)
(32)((21)0) (3(21))(10)
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H(F4)

This “simple” structure fails at d = 4:

The required representation of E8 is not minuscule
(248 + 1-dimensional, with a 8 + 1-dimensional zero weight space).

There is no longer a labelling of the weights using multinumbers, such

that H-admissible triangles are of the form

i

ii

XY

YX × 3.

The fugacities are rational, and occasionally negative.

Despite this, based on numerical evidence, we conjecture that
cλ,µν ∈ Z+.
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