Schubert puzzles and quantum integrability

P. Zinn-Justin

School of Mathematics and Statistics, the University of Melbourne

October 11, 2018

Australian Government

Joint work with A. Knutson

- It remains an open problem to provide a (positive, efficient) solution to Schubert calculus, i.e., to give a combinatorial formula for the structure constants of the cohomology of general flag varieties.
- My interest is in applying methods from quantum integrable systems (QIS) to solve this problem.
- We are also interested in generalizations (equivariance; quantum; more general cohomology theories, i.e., *K*-theory or elliptic cohomology).
- Thanks to the work of Nekrasov+Shatashvili, {Maulik,Aganagic}+Okounkov, Rimányi+Tarasov+Varchenko, etc (and related work in geometric representation theory), we know how to describe such cohomology spaces in terms of a QIS.

イロト 不得下 イヨト イヨト

- It remains an open problem to provide a (positive, efficient) solution to Schubert calculus, i.e., to give a combinatorial formula for the structure constants of the cohomology of general flag varieties.
- My interest is in applying methods from quantum integrable systems (QIS) to solve this problem.
- We are also interested in generalizations (equivariance; quantum; more general cohomology theories, i.e., *K*-theory or elliptic cohomology).
- Thanks to the work of Nekrasov+Shatashvili, {Maulik,Aganagic}+Okounkov, Rimányi+Tarasov+Varchenko, etc (and related work in geometric representation theory), we know how to describe such cohomology spaces in terms of a QIS.

- 4 同 6 4 日 6 4 日 6

- It remains an open problem to provide a (positive, efficient) solution to Schubert calculus, i.e., to give a combinatorial formula for the structure constants of the cohomology of general flag varieties.
- My interest is in applying methods from quantum integrable systems (QIS) to solve this problem.
- We are also interested in generalizations (equivariance; quantum; more general cohomology theories, i.e., *K*-theory or elliptic cohomology).

 Thanks to the work of Nekrasov+Shatashvili, {Maulik,Aganagic}+Okounkov, Rimányi+Tarasov+Varchenko, etc (and related work in geometric representation theory), we know how to describe such cohomology spaces in terms of a QIS.

- 4 目 ト - 4 日 ト

- It remains an open problem to provide a (positive, efficient) solution to Schubert calculus, i.e., to give a combinatorial formula for the structure constants of the cohomology of general flag varieties.
- My interest is in applying methods from quantum integrable systems (QIS) to solve this problem.
- We are also interested in generalizations (equivariance; quantum; more general cohomology theories, i.e., *K*-theory or elliptic cohomology).
- Thanks to the work of Nekrasov+Shatashvili, {Maulik,Aganagic}+Okounkov, Rimányi+Tarasov+Varchenko, etc (and related work in geometric representation theory), we know how to describe such cohomology spaces in terms of a QIS.

- The ring structure also appears naturally, as the algebra of multiplication operators is the Bethe algebra (commutative subalgebra of the Yang-Baxter algebra) of the QIS.
- However, this does not obviously help with the calculation of structure constants.

 \rightarrow Another idea is required to use quantum integrable methods for that.

- In 2008, I proposed to reinterpret puzzles, a certain combinatorial gadget introduced by Knutson and Tao around 2000 for Schubert calculus in $H_T(Gr)$, as an exactly solvable model (QIS).
- Was then generalized with A. Knutson to partial flag varieties. (2017)

A (10) N (10)

- The ring structure also appears naturally, as the algebra of multiplication operators is the Bethe algebra (commutative subalgebra of the Yang-Baxter algebra) of the QIS.
- However, this does not obviously help with the calculation of structure constants.

 \rightarrow Another idea is required to use quantum integrable methods for that.

- In 2008, I proposed to reinterpret puzzles, a certain combinatorial gadget introduced by Knutson and Tao around 2000 for Schubert calculus in $H_T(Gr)$, as an exactly solvable model (QIS).
- Was then generalized with A. Knutson to partial flag varieties. (2017)

< 回 > < 三 > < 三 >

- The ring structure also appears naturally, as the algebra of multiplication operators is the Bethe algebra (commutative subalgebra of the Yang-Baxter algebra) of the QIS.
- However, this does not obviously help with the calculation of structure constants.

 \rightarrow Another idea is required to use quantum integrable methods for that.

- In 2008, I proposed to reinterpret puzzles, a certain combinatorial gadget introduced by Knutson and Tao around 2000 for Schubert calculus in $H_T(Gr)$, as an exactly solvable model (QIS).
- Was then generalized with A. Knutson to partial flag varieties. (2017)

・ 同 ト ・ ヨ ト ・ ヨ ト

- The ring structure also appears naturally, as the algebra of multiplication operators is the Bethe algebra (commutative subalgebra of the Yang-Baxter algebra) of the QIS.
- However, this does not obviously help with the calculation of structure constants.

 \rightarrow Another idea is required to use quantum integrable methods for that.

- In 2008, I proposed to reinterpret puzzles, a certain combinatorial gadget introduced by Knutson and Tao around 2000 for Schubert calculus in $H_T(Gr)$, as an exactly solvable model (QIS).
- Was then generalized with A. Knutson to partial flag varieties. (2017)

- Start with a configuration space X, e.g., X = Gr.
- Pick an appropriate basis of $H^*_{\binom{T}{loc}}(X)$: the Schubert basis $(S^{\lambda} = [X^{\lambda}])$
- Take the tensor product of two such classes:

$$egin{array}{ccc} H^*(X imes X)&\stackrel{\cong}{\longrightarrow}& H^*(X)\otimes H^*(X)\ [s^\lambda imes s^\mu]&\mapsto& S^\lambda\otimes S^\mu \end{array}$$

• Restrict to the diagonal: $\Delta: X \hookrightarrow X \times X$

$$egin{array}{ccc} H^*(X imes X) & \stackrel{\Delta^*}{\longrightarrow} & H^*(X)\ S^\lambda\otimes S^\mu & \mapsto & S^\lambda\,S^\mu \end{array}$$

- Start with a configuration space X, e.g., $X = \bigotimes T^*Gr$.
- Pick an appropriate basis of $H^*_{\binom{T}{loc}}(X)$: the Schubert basis $(S^{\lambda} = [X^{\lambda}])$
- Take the tensor product of two such classes:

$$egin{array}{ccc} H^*(X imes X)&\stackrel{\cong}{\longrightarrow}& H^*(X)\otimes H^*(X)\ [s^\lambda imes s^\mu]&\mapsto& S^\lambda\otimes S^\mu \end{array}$$

• Restrict to the diagonal: $\Delta : X \hookrightarrow X \times X$

$$egin{array}{ccc} H^*(X imes X) & \stackrel{\Delta^*}{\longrightarrow} & H^*(X)\ S^\lambda\otimes S^\mu & \mapsto & S^\lambda\,S^\mu \end{array}$$

- Start with a configuration space X, e.g., $X = \bigotimes T^*Gr$.
- Pick an appropriate basis of $H^*_{\binom{T}{loc}}(X)$: the Schubert stable basis (S^{λ}) .
- Take the tensor product of two such classes:

$$egin{array}{ccc} H^*(X imes X) & \stackrel{\cong}{\longrightarrow} & H^*(X)\otimes H^*(X)\ [s^\lambda imes s^\mu] & \mapsto & S^\lambda\otimes S^\mu \end{array}$$

• Restrict to the diagonal: $\Delta: X \hookrightarrow X imes X$

$$\begin{array}{cccc} H^*(X \times X) & \stackrel{\Delta^*}{\longrightarrow} & H^*(X) \\ S^{\lambda} \otimes S^{\mu} & \mapsto & S^{\lambda} S^{\mu} \end{array}$$

- Start with a configuration space X, e.g., $X = \bigotimes T^*Gr$.
- Pick an appropriate basis of $H^*_{\binom{T}{loc}}(X)$: the Schubert stable basis (S^{λ}) .
- Take the tensor product of two such classes:

$$egin{array}{rcl} H^*(X imes X)&\stackrel{\cong}{\longrightarrow}& H^*(X)\otimes H^*(X)&\hookrightarrow& H^*(Y)\ [s^\lambda imes s^\mu]&\mapsto& S^\lambda imes S^\mu&\mapsto& S^{\lambda+\mu} \end{array}$$

• Restrict to the diagonal: $\Delta: X \hookrightarrow X imes X$

$$egin{array}{ccc} H^*(X imes X) & \stackrel{\Delta^*}{\longrightarrow} & H^*(X)\ S^\lambda\otimes S^\mu & \mapsto & S^\lambda S^\mu \end{array}$$

- Start with a configuration space X, e.g., $X = \bigotimes T^*Gr$.
- Pick an appropriate basis of $H^*_{\binom{T}{loc}}(X)$: the Schubert stable basis (S^{λ}) .
- Take the tensor product of two such classes:

$$egin{array}{rcl} H^*(X imes X)&\stackrel{\cong}{\longrightarrow}& H^*(X)\otimes H^*(X)&\hookrightarrow& H^*(Y)\ [s^\lambda imes s^\mu]&\mapsto& S^\lambda\otimes S^\mu&\mapsto& S^{\lambda+\mu} \end{array}$$

• Restrict to the diagonal Symplectic reduction: $X \cong \mu^{-1}(\eta)/U$

$$\begin{array}{cccc} H^*(Y) & \stackrel{i^*}{\longrightarrow} & H^*(\mu^{-1}(\eta)) & \stackrel{p_*}{\longrightarrow} & H^*(X) \\ S^{\lambda+\mu} & \longmapsto & (\#) \; S^{\lambda} \, S^{\mu} \end{array}$$

Case of Grassmannians

Pick

$$X = T^*Gr(\cdot, n) = \bigsqcup_{k=0}^n T^*Gr(k, n)$$

 $T = (\mathbb{C}^{\times})^n \times \mathbb{C}^{\times}$ acts on X. We index fixed points with binary strings in $\{0,1\}^n$ (with k 0s, n-k 1s). $H_T^*(\cdot) = \mathbb{Z}[\hbar, x_1, \dots, x_n]$.

Using the stable envelope construction [Maulik, Okounkov] with a cocharacter in the positive chamber, we define classes $S^{\lambda} \in H^*_{T}(X)$, $\lambda \in \{0,1\}^n$, which form a basis of $H^*_{T,loc}(X)$.

Case of Grassmannians

Pick

$$X = T^*Gr(\cdot, n) = \bigsqcup_{k=0}^n T^*Gr(k, n)$$

 $T = (\mathbb{C}^{\times})^n \times \mathbb{C}^{\times}$ acts on X. We index fixed points with binary strings in $\{0,1\}^n$ (with k 0s, n-k 1s). $H_T^*(\cdot) = \mathbb{Z}[\hbar, x_1, \dots, x_n]$.

Using the stable envelope construction [Maulik, Okounkov] with a cocharacter in the positive chamber, we define classes $S^{\lambda} \in H^*_{T}(X)$, $\lambda \in \{0,1\}^n$, which form a basis of $H^*_{T,loc}(X)$.

Choice of Y

We choose Y to be T^* of the two-step flag variety:

$$Y = T^* Gr(\cdot, \cdot, 2n)$$

Its $(\mathbb{C}^{\times})^{2n} \times \mathbb{C}^{\times}$ fixed points are indexed by strings in $\{0, 1, 2\}^{2n}$. We define analogously the stable basis $(S^{\nu})_{\nu \in \{0,1,2\}^{2n}}$.

Given $\lambda, \mu \in \{0, 1\}^n$, define

$$\lambda + \mu := \{\lambda_1 + 1, \dots, \lambda_n + 1, \mu_1, \dots, \mu_n\} \in \{0, 1, 2\}^{2n}$$

(corresponding to two of the three ways that a two-step flag variety is really one-step)

Note

$$S_{\lambda+\mu}|_{\rho} = \begin{cases} (\#) \ S^{\lambda}|_{\sigma} \ S^{\mu}|_{\tau} & \rho = \sigma + \tau \\ 0 & \text{else} \end{cases}$$

Choice of Y

We choose Y to be T^* of the two-step flag variety:

$$Y = T^* Gr(\cdot, \cdot, 2n)$$

Its $(\mathbb{C}^{\times})^{2n} \times \mathbb{C}^{\times}$ fixed points are indexed by strings in $\{0, 1, 2\}^{2n}$. We define analogously the stable basis $(S^{\nu})_{\nu \in \{0,1,2\}^{2n}}$.

Given $\lambda, \mu \in \{0, 1\}^n$, define

$$\lambda + \mu := \{\lambda_1 + 1, \dots, \lambda_n + 1, \mu_1, \dots, \mu_n\} \in \{0, 1, 2\}^{2n}$$

(corresponding to two of the three ways that a two-step flag variety is really one-step)

Note

$$S_{\lambda+\mu}|_{\rho} = \begin{cases} (\#) \ S^{\lambda}|_{\sigma} \ S^{\mu}|_{\tau} & \rho = \sigma + \tau \\ 0 & \text{else} \end{cases}$$

Choice of Y

We choose Y to be T^* of the two-step flag variety:

$$Y = T^* Gr(\cdot, \cdot, 2n)$$

Its $(\mathbb{C}^{\times})^{2n} \times \mathbb{C}^{\times}$ fixed points are indexed by strings in $\{0, 1, 2\}^{2n}$. We define analogously the stable basis $(S^{\nu})_{\nu \in \{0,1,2\}^{2n}}$.

Given $\lambda, \mu \in \{0, 1\}^n$, define

$$\lambda + \mu := \{\lambda_1 + 1, \dots, \lambda_n + 1, \mu_1, \dots, \mu_n\} \in \{0, 1, 2\}^{2n}$$

(corresponding to two of the three ways that a two-step flag variety is really one-step)

Note

$$S_{\lambda+\mu}|_{
ho} = egin{cases} (\#) \; S^{\lambda}|_{\sigma} \; S^{\mu}|_{ au} &
ho = \sigma + au \ 0 & ext{else} \end{cases}$$

Symplectic reduction

There is a symplectic reduction from $Y \supset T^*Gr(k, \ell, m; 2n)$ to $T^*Gr(k', \ell', m'; n)$ with

$$k' = \frac{\ell + m - k}{2}$$
 $\ell' = \frac{k + m - \ell}{2}$ $m' = \frac{k + \ell - m}{2}$

by the unipotent group $\begin{pmatrix} 1 & \star \\ 0 & 1 \end{pmatrix}$ and moment map value $\eta = \begin{pmatrix} 1 & \star \\ 0 & 1 \end{pmatrix}$.

When $\ell = n$, $\ell' = 0$ and $T^*Gr(k', \ell', m'; n) \cong T^*Gr(k, n) \subset X$.

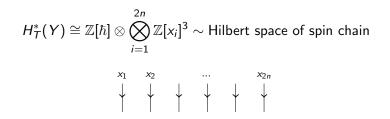
Symplectic reduction

There is a symplectic reduction from $Y \supset T^*Gr(k, \ell, m; 2n)$ to $T^*Gr(k', \ell', m'; n)$ with

$$k' = \frac{\ell + m - k}{2}$$
 $\ell' = \frac{k + m - \ell}{2}$ $m' = \frac{k + \ell - m}{2}$

by the unipotent group $\begin{pmatrix} 1 & \star \\ 0 & 1 \end{pmatrix}$ and moment map value $\eta = \begin{pmatrix} 1 & \star \\ 1 & \cdot \end{pmatrix}$.

When $\ell = n$, $\ell' = 0$ and $T^*Gr(k', \ell', m'; n) \cong T^*Gr(k, n) \subset X$.



[ZJ, 2015] Symplectic reduction (of the kind we need) is given by fusion:

$$\cdots \otimes V(x) \otimes V(x' = x + \hbar) \otimes \cdots \rightarrow \cdots \otimes \overline{V}(x + \hbar/2) \otimes \cdots$$

Here we need $x_{i+n} = x_i + \hbar$, $i = 1, \ldots, n$.

$$H_T^*(Y) \cong \mathbb{Z}[\hbar] \otimes \bigotimes_{i=1}^{2n} \mathbb{Z}[x_i]^3 \sim \text{Hilbert space of spin chain}$$
$$\begin{array}{c} x_1 & x_2 & \dots & x_{2n} \\ \downarrow_1 & \downarrow_2 & \downarrow_2 & \downarrow_1 & \downarrow_1 & \downarrow_0 \end{array}$$

[ZJ, 2015] Symplectic reduction (of the kind we need) is given by fusion:

$$\cdots \otimes V(x) \otimes V(x' = x + \hbar) \otimes \cdots \rightarrow \cdots \otimes \overline{V}(x + \hbar/2) \otimes \cdots$$

Here we need $x_{i+n} = x_i + \hbar$, $i = 1, \ldots, n$.

A (10) F (10)

$$\begin{split} H_T^*(Y) &\cong \mathbb{Z}[\hbar] \otimes \bigotimes_{i=1}^{2n} \mathbb{Z}[x_i]^3 \sim \text{Hilbert space of spin chain} \\ & \stackrel{x_1 \quad x_2 \quad \dots \quad x_{2n}}{\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow} \end{split}$$

[ZJ, 2015] Symplectic reduction (of the kind we need) is given by fusion:

$$\cdots \otimes V(x) \otimes V(x' = x + \hbar) \otimes \cdots \rightarrow \cdots \otimes \bar{V}(x + \hbar/2) \otimes \cdots$$

Here we need $x_{i+n} = x_i + \hbar$, $i = 1, \ldots, n$.

3

(日) (周) (三) (三)

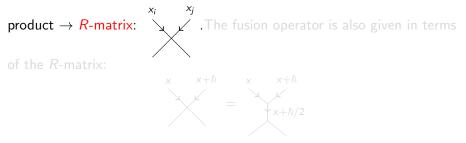
$$\begin{split} H_T^*(Y) &\cong \mathbb{Z}[\hbar] \otimes \bigotimes_{i=1}^{2n} \mathbb{Z}[x_i]^3 \sim \text{Hilbert space of spin chain} \\ & \stackrel{x_1 \quad x_2 \quad \dots \quad x_{2n}}{\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow} \end{split}$$

[ZJ, 2015] Symplectic reduction (of the kind we need) is given by fusion:

$$\cdots \otimes V(x) \otimes V(x' = x + \hbar) \otimes \cdots \rightarrow \cdots \otimes \overline{V}(x + \hbar/2) \otimes \cdots$$

Here we need $x_{i+n} = x_i + \hbar$, $i = 1, \ldots, n$.

Before we can apply fusion, we need to reorder the factors of the tensor



Together:

Before we can apply fusion, we need to reorder the factors of the tensor

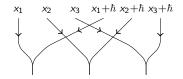
product $\rightarrow R$ -matrix: of the *R*-matrix: $x \qquad x+\hbar \qquad x \qquad x+\hbar$ $x \qquad x+\hbar \qquad x \qquad x+\hbar$ $x \qquad x+\hbar \qquad x \qquad x+\hbar$ $x \qquad x+\hbar \qquad x \qquad x+\hbar$

Together:

Before we can apply fusion, we need to reorder the factors of the tensor

 $x+\hbar/2$

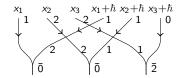
Together:



Before we can apply fusion, we need to reorder the factors of the tensor

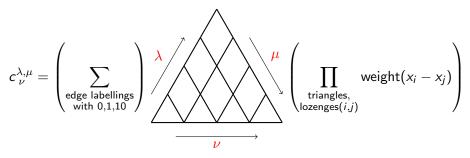
product \rightarrow *R*-matrix: of the *R*-matrix: $x + \hbar + x + \hbar$. The fusion operator is also given in terms

 $x+\hbar/2$

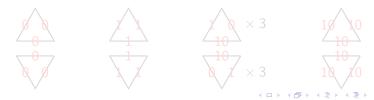


Puzzles

Use dual graphical notations, shift cyclically indices and write in binary:



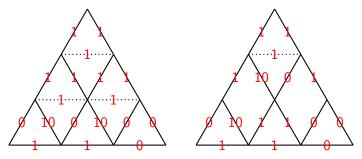
Allowed "nonequivariant" $(x_i = 0 \Rightarrow H_{\mathbb{C}^{\times}}(X))$ triangles:



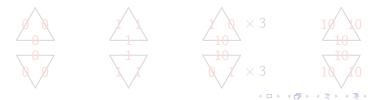
Schubert puzzles and quantum integrability

Puzzles

Use dual graphical notations, shift cyclically indices and write in binary:



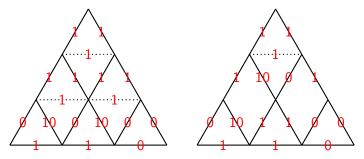
Allowed "nonequivariant" $(x_i=0 \Rightarrow H_{\mathbb{C}^{ imes}}(X))$ triangles:



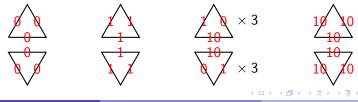
Schubert puzzles and quantum integrability

Puzzles

Use dual graphical notations, shift cyclically indices and write in binary:



Allowed "nonequivariant" $(x_i = 0 \Rightarrow H_{\mathbb{C}^{\times}}(X))$ triangles:



Schubert puzzles and quantum integrabili

Final formula

Taking into account the factors, we can write

$$ilde{S}^\lambda ilde{S}^\mu = \sum_
u c^{\lambda,\mu}_{\,\,
u} ilde{S}^
u$$

where

$$ilde{S}^{\lambda} := rac{S^{\lambda}}{A_0} \ \in H^0_{T, \mathit{loc}}(X)$$

and A_0 is the class of the base Gr of T^*Gr .

 $ilde{S}^\lambda\sim$ Segre Schwartz–MacPherson (SSM) class.

Nonequivariantly,

$$c_{\nu}^{\lambda,\mu} = (-1)^{|\lambda|+|\mu|+|\nu|} \chi_{\mathsf{EP}}(X_o^{\lambda} \cap X_o^{\mu} \cap X_o^{\bar{\nu}})$$

< 同 ト く ヨ ト く ヨ ト

Final formula

Taking into account the factors, we can write

$$ilde{S}^\lambda ilde{S}^\mu = \sum_
u c^{\lambda,\mu}_{\,\,
u} ilde{S}^
u$$

where

$$ilde{S}^{\lambda} := rac{S^{\lambda}}{A_0} \ \in H^0_{T, \mathit{loc}}(X)$$

and A_0 is the class of the base Gr of T^*Gr .

 $ilde{S}^\lambda\sim$ Segre Schwartz–MacPherson (SSM) class.

Nonequivariantly,

$$c_
u^{\lambda,\mu} = (-1)^{|\lambda|+|\mu|+|
u|} \chi_{\mathsf{EP}}(X_o^\lambda \cap X_o^\mu \cap X_o^{ar{
u}})$$

Schubert limit

Take $\hbar \rightarrow \infty$:

$$\tilde{S}^{\lambda} = S^{\lambda} A_0^{-1} = \hbar^{-|\lambda|} S_0^{\lambda} + \cdots$$

where S_0^{λ} is the corresponding Schubert class, and $|\lambda| = \#\{i < j : \lambda_i > \lambda_j\}$ is the inversion number of λ .

Renormalizing the weights of puzzles by appropriate powers of \hbar , we find the following shorter list of puzzle pieces, with simplified weights:

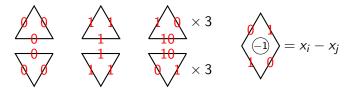
Schubert limit

Take $\hbar \rightarrow \infty$:

$$\tilde{S}^{\lambda} = S^{\lambda} A_0^{-1} = \hbar^{-|\lambda|} S_0^{\lambda} + \cdots$$

where S_0^{λ} is the corresponding Schubert class, and $|\lambda| = \#\{i < j : \lambda_i > \lambda_j\}$ is the inversion number of λ .

Renormalizing the weights of puzzles by appropriate powers of \hbar , we find the following shorter list of puzzle pieces, with simplified weights:



Schubert limit cont'd. Remarks

• One can do the same reasoning in equivariant *K*-theory, reproducing the results of [Wheeler, Z-J '17].

• In particular, in nonequivariant K-theory, triangles 10^{10}_{11} , 10^{10}_{11}

acquire a weight $q^{\pm 1}$. In the Schubert limit, one of the two triangles is kept (two dual bases).

Schubert limit cont'd. Remarks

- One can do the same reasoning in equivariant *K*-theory, reproducing the results of [Wheeler, Z-J '17].
- In particular, in nonequivariant *K*-theory, triangles 10^{1}_{10} , $10^{1}_$

Partial flag varieties

We now consider the case of *d*-step flag varieties:

$$X = T^* \mathcal{F}_d, \qquad \mathcal{F}_d = \{ 0 \le V_1 \le \cdots \le V_d \le \mathbb{C}^n \}$$

which are Nakajima quiver varieties of type A_d .

QIS and root systems $X \leftrightarrow \text{model} \bullet, Y \leftrightarrow \text{model} \bullet$.

	model 🕚	dim rep 🕚	model 2	dim rep 🞱
d = 1	A_1	2		
<i>d</i> = 2	A ₂	3		
<i>d</i> = 3	A ₃	4		
d = 4	A ₄	5		
$d \ge 5$	A _d	d+1		

NB. Can be generalized to any symmetric tensor power of the defining representation of A_d.

P. Zinn-Justin

QIS and root systems $X \leftrightarrow \text{model} \bullet, Y \leftrightarrow \text{model} \bullet$.

	model 🕚	dim rep 🕚	model 2	dim rep 🞱
d = 1	A_1	2	A ₂	
<i>d</i> = 2	A_2	3	D_4	
<i>d</i> = 3	A ₃	4	E_6	
<i>d</i> = 4	A ₄	5	E ₈	
$d \ge 5$	A _d	d+1	Kac–Moody?	

NB. Can be generalized to any symmetric tensor power of the defining representation of A_d.

P. Zinn-Justin

QIS and root systems $X \leftrightarrow \text{model} \bullet, Y \leftrightarrow \text{model} \bullet$.

	model 🕚	dim rep 🕚	model 2	dim rep 🛛
d = 1	A_1	2	A ₂	3
<i>d</i> = 2	A_2	3	D_4	8
<i>d</i> = 3	A ₃	4	E_6	27
d = 4	A ₄	5	E ₈	248 + 1
$d \ge 5$	A _d	d+1	Kac–Moody?	∞

NB. Can be generalized to any symmetric tensor power of the defining representation of A_d.

P. Zinn-Justin

October 11, 2018 15 / 25

QIS and root systems $X \leftrightarrow \text{model} \ \textbf{0}, Y \leftrightarrow \text{model} \ \textbf{0}$.

	model 🕚	dim rep 🕚	model 2	dim rep 🝳
d = 1	A_1	2	A_2	3
<i>d</i> = 2	A ₂	3	D_4	8
<i>d</i> = 3	A ₃	4	E_6	27
d = 4	A ₄	5	E ₈	248 + 1
$d \ge 5$	A _d	d+1	Kac–Moody?	∞

NB. Can be generalized to any symmetric tensor power of the defining representation of A_d .

P. Zinn-Justin

One can again formulate the structure constants of $H^*_T(X)$ (or $K_T(X)$) in the SSM basis in terms of a triangular partition function of model @ ("puzzle rule").

One can then take the limit $\hbar \to \infty$ (or $q^{\pm} \to 0$) to obtain a puzzle rule for ordinary Schubert calculus in partial flag varieties.

In what follows we focus on the nonequivariant case.

One can again formulate the structure constants of $H^*_T(X)$ (or $K_T(X)$) in the SSM basis in terms of a triangular partition function of model @ ("puzzle rule").

One can then take the limit $\hbar \to \infty$ (or $q^{\pm} \to 0$) to obtain a puzzle rule for ordinary Schubert calculus in partial flag varieties.

In what follows we focus on the nonequivariant case.

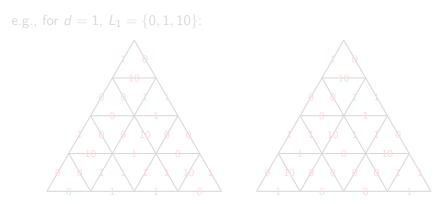
One can again formulate the structure constants of $H^*_T(X)$ (or $K_T(X)$) in the SSM basis in terms of a triangular partition function of model @ ("puzzle rule").

One can then take the limit $\hbar \to \infty$ (or $q^{\pm} \to 0$) to obtain a puzzle rule for ordinary Schubert calculus in partial flag varieties.

In what follows we focus on the nonequivariant case.

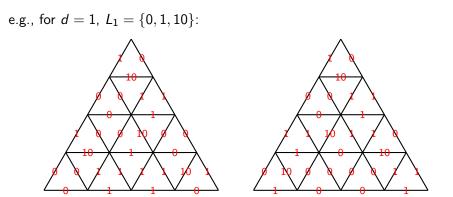
Nonequivariant puzzles

In general, a (nonequivariant) puzzle is an assignment of labels from a certain set L_d to each edge of a triangle inside the triangular lattice of the plane, such that $\{0, 1, \ldots, d\} \subset L_d$, and the boundary edges are labelled with $\{0, 1, \ldots, d\}$ only.



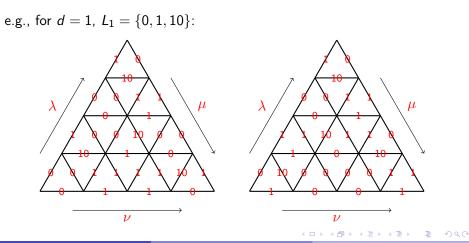
Nonequivariant puzzles

In general, a (nonequivariant) puzzle is an assignment of labels from a certain set L_d to each edge of a triangle inside the triangular lattice of the plane, such that $\{0, 1, \ldots, d\} \subset L_d$, and the boundary edges are labelled with $\{0, 1, \ldots, d\}$ only.



Nonequivariant puzzles

In general, a (nonequivariant) puzzle is an assignment of labels from a certain set L_d to each edge of a triangle inside the triangular lattice of the plane, such that $\{0, 1, \ldots, d\} \subset L_d$, and the boundary edges are labelled with $\{0, 1, \ldots, d\}$ only.



Schubert puzzles and quantum integrabilit

Fugacities

Assign a "fugacity" to each elementary triangle:

• In $H(\mathcal{F}_{d\leq 3})$,

$$\mathsf{fug}(\checkmark) = \mathsf{fug}(\checkmark) \in \{0,1\}$$

• In $K(\mathcal{F}_{d\leq 3})$,

$$\mathsf{fug}(\checkmark, \mathsf{fug}(\checkmark, \mathsf{fug}(\land, \mathsf{fug})) \in \{-1, 0, 1\}$$

• In *H* or
$$K(\mathcal{F}_4)$$
, fug($\mathcal{F}_6 = \mathbb{Q}$...

- 34

・ 同 ト ・ ヨ ト ・ ヨ ト

The formula

The output of this construction is L_d and fugacities such that structure constants of $H/K(\mathcal{F}_d)$ are given by

$$c_{\lambda,\mu}^{
u} = \sum_{ ext{puzzles} elementary} ext{fug(triangle)}$$

sides λ, μ, ν triangles

In particular, in $H(\mathcal{F}_{d\leq 3})$,

 $c_{\lambda,\mu}^{\nu} = \# \{ H \text{-admissible puzzles with sides } \lambda, \mu, \nu \}$

and in $K(\mathcal{F}_{d\leq 3})$,

 $c_{\lambda,\mu}^
u=(-1)^{|\lambda|+|\mu|-|
u|}\#\left\{ extsf{K-admissible puzzles with sides }\lambda,\mu,
u
ight\}$

- 本間 と えき と えき とうき

The formula

The output of this construction is L_d and fugacities such that structure constants of $H/K(\mathcal{F}_d)$ are given by

$$c_{\lambda,\mu}^{\nu} = \sum_{\substack{\text{puzzles}\\\text{sides }\lambda,\mu,\nu}} \prod_{\substack{\text{elementary}\\\text{triangles}}} \mathsf{fug}(\mathsf{triangle})$$

In particular, in $H(\mathcal{F}_{d\leq 3})$,

 $c^{
u}_{\lambda,\mu} = \# \left\{ H \text{-admissible puzzles with sides } \lambda, \mu, \nu
ight\}$

and in $K(\mathcal{F}_{d\leq 3})$,

 $c_{\lambda,\mu}^
u=(-1)^{|\lambda|+|\mu|-|
u|}\#\left\{ extsf{K-admissible puzzles with sides }\lambda,\mu,
u
ight\}$

- 4 周 ト - 4 日 ト - 1 日

The formula

The output of this construction is L_d and fugacities such that structure constants of $H/K(\mathcal{F}_d)$ are given by

$$c_{\lambda,\mu}^{\nu} = \sum_{\substack{\text{puzzles}\\\text{sides }\lambda,\mu,\nu}} \prod_{\substack{\text{elementary}\\\text{triangles}}} \mathsf{fug(triangle)}$$

In particular, in $H(\mathcal{F}_{d\leq 3})$,

 $c^{
u}_{\lambda,\mu} = \# \{H\text{-admissible puzzles with sides } \lambda, \mu, \nu\}$

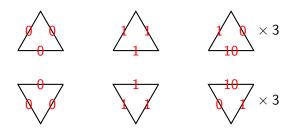
and in $K(\mathcal{F}_{d\leq 3})$,

 $c_{\lambda,\mu}^{
u}=(-1)^{|\lambda|+|\mu|-|
u|}\#\left\{ extsf{K-admissible puzzles with sides }\lambda,\mu,
u
ight\}$

 $H(\mathcal{F}_1) = H(Gr)$

 $L_1 = \{0, 1, 10\}$

H-admissible triangles:



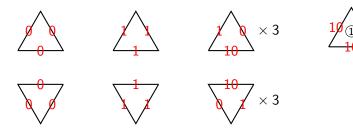
< (T) > <

20 / 25

 $K(\mathcal{F}_1) = K(Gr)$

 $L_1 = \{0, 1, 10\}$

K-admissible triangles:



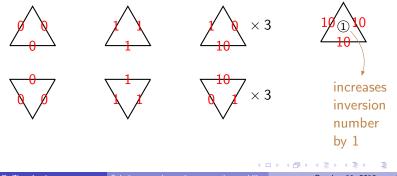
< (T) > <

20 / 25

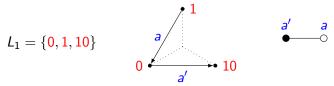
 $K(\mathcal{F}_1) = K(Gr)$

 $L_1 = \{0, 1, 10\}$

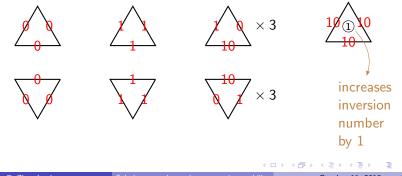
K-admissible triangles:



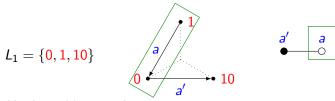
 $K(\mathcal{F}_1) = K(Gr)$



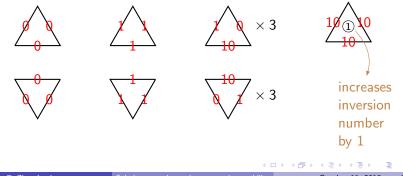
K-admissible triangles:



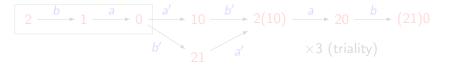
 $K(\mathcal{F}_1) = K(Gr)$



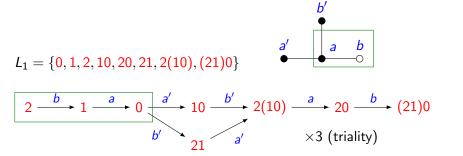
K-admissible triangles:



 $L_1 = \{0, 1, 2, 10, 20, 21, 2(10), (21)0\}$

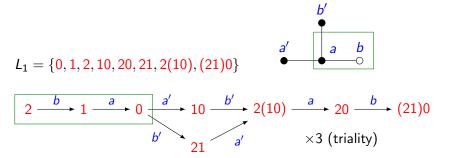


H-admissible triangles:



H-admissible triangles:

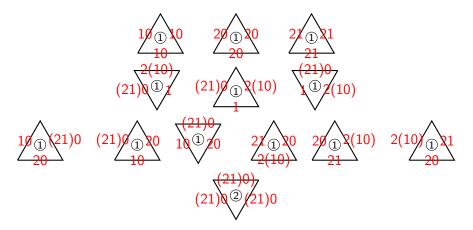
A 🖓 h



H-admissible triangles:

 $K(\mathcal{F}_2)$

K-admissible triangles: H plus



3

< 🗇 🕨 <

 $H(\mathcal{F}_3)$ *b*′ a b С а 3((21)0) 32 10 3(2(10)) 3(20) (32)((21)0) 30 2(10) 3(21) 3(10) (32)0 (3(21))(10) 0 1 21 20 31 (32)(10)(31)0 (3(21))0 a' 1 (3(2(10)))0 2 (21)0 (32)1 ((32)1)0 3(((32)1)0) 3

H-admissible triangles:

Schubert puzzles and quantum integrabilit

 $K(\mathcal{F}_3)$ $1 \underbrace{100} 1 \underbrace{100} 1$ $((32)1) \underbrace{(32)1} \underbrace{$ (3(2(10))) (3(21))(19 (2(10)) (32)((21)9 (21) (((32)1)9 (22) ((32)1)9 (32)((21)9) ((32)((21(3(21))(21)(3(21))(21)(3(21))(21)(3(21))(21)(3(21))(3(21(3(21)) (3(21)) (3(21)) (3(21)) (3(21)) (3(21)) (3(21)) (3(21)) (3(21)) (3(21)) (3(21)) (3(2(10)) $((32)_{1})_{1}$ $((32)_{1})_{1}$ $((32)_{1})_{2}$ ((32 $\begin{array}{c} 3(((32)1)0) & (21)0) & (21)0 & (21)0 & (21)0 & (31)0 & (3(21)0) & (3(2$ $\begin{array}{c} (32)(10) \\ (32)(210) \\ (32)(210) \\ (32)(210) \\ (32)(21) \\$ (3(21))(10,31)(0,(21),31)(0,(21 $\begin{array}{c} ((221) \\ (221) \\ (22) \\ (21) \\ (21) \\ (21) \\ (21) \\$ $\binom{(\frac{32}{2})}{(\frac{32}{2})} 0$ $\binom{(\frac{32}{2})}{(\frac{32}{2})} \binom{(\frac{32}{2})}{(\frac{32}{2})} \binom{(\frac{32}{2})}{(\frac{32}{2})}} \binom{(\frac{32}{2}$ P. Zinn-Justin October 11, 2018 24 / 25

- The required representation of *E*₈ is not minuscule (248 + 1-dimensional, with a 8 + 1-dimensional zero weight space).
- There is no longer a labelling of the weights using multinumbers, such that *H*-admissible triangles are of the form \times × 3.
- ullet The fugacities are rational, and occasionally negative. $\ensuremath{\textcircled{\sc op}}$
- Despite this, based on numerical evidence, we conjecture that $c_{\ \nu}^{\lambda,\mu}\in\mathbb{Z}_+.$

- The required representation of *E*₈ is not minuscule (248 + 1-dimensional, with a 8 + 1-dimensional zero weight space).
- There is no longer a labelling of the weights using multinumbers, such that *H*-admissible triangles are of the form $\times \times 3$.
- The fugacities are rational, and occasionally negative. 😔
- Despite this, based on numerical evidence, we conjecture that $c_{\ \nu}^{\lambda,\mu}\in\mathbb{Z}_+.$

- The required representation of *E*₈ is not minuscule (248 + 1-dimensional, with a 8 + 1-dimensional zero weight space).
- There is no longer a labelling of the weights using multinumbers, such that *H*-admissible triangles are of the form 4×3 .
- ullet The fugacities are rational, and occasionally negative. $\ensuremath{\mathfrak{B}}$
- Despite this, based on numerical evidence, we conjecture that $c_{\ \nu}^{\lambda,\mu}\in\mathbb{Z}_+.$

- The required representation of *E*₈ is not minuscule (248 + 1-dimensional, with a 8 + 1-dimensional zero weight space).
- There is no longer a labelling of the weights using multinumbers, such that *H*-admissible triangles are of the form $\times \times 3$.
- ullet The fugacities are rational, and occasionally negative. $\ensuremath{\mathfrak{S}}$
- Despite this, based on numerical evidence, we conjecture that $c_{\ \nu}^{\lambda,\mu}\in\mathbb{Z}_+.$