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Definition of the model
Relation to Markov process on link patterns
Perron–Frobenius eigenvector
Some observations

Consider the following probabilistic model. Fill some
two-dimensional surface with boundary with plaquettes:

with probability p, with probability 1− p. (0 < p < 1)

1 2 3 42n ......

Case of the half-infinite
cylinder geometry (“periodic
boundary conditions”)

Probability law of the connectivity of the external vertices?
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Some observations

The connectivity of the external vertices can be encoded into a
link pattern = a planar pairing of 2n points on a circle.

Example

In size L = 2n = 8,
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Another geometry: the strip (“closed boundary conditions”)
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Definition of the model
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Some observations

Define the matrix T corresponding to the effect of the insertion of
one row (or two rows) of plaquettes on the link patterns:

T |π〉 =
∑

plaquettes

p#(1−p)#

π

=
∑

ρ

Tρπ|ρ〉

Problem reformulated as a stochastic process on link patterns.
In particular, the probabilities Pπ form a vector |P〉 =

∑
π Pπ|π〉

which is the equilibrium distribution of the process:

|P〉 = lim
k→∞

T k |α〉

(independent of the normalized state |α〉)
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Theorem (Perron 1907, Frobenius 1912)

Let A be a matrix with non-negative entries. Then

There is a real eigenvalue ρ of A such that any other
eigenvalue λ satisfies |λ| ≤ ρ.

There is an eigenvector associated to ρ which has
non-negative entries.

Assume furthermore that A is primitive, i.e. the entries of Ak are
positive for some k. Then

There is a real eigenvalue ρ of A such that any other
eigenvalue λ satisfies |λ| < ρ.

The eigenspace associated to ρ is one-dimensional.

The eigenvector associated to ρ can be chosen to have
positive entries, and it is the only eigenvector with
non-negative entries.

P. Zinn-Justin Integrability, combinatorics, Razumov–Stroganov conjecture



The Temperley–Lieb model of loops
Fully Packed Loops and Razumov–Stroganov conjecture

Introduction of inhomogeneities into the loop model

Definition of the model
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Application to T

As any Markov matrix, T possesses the following properties:

Its entries are non-negative.

It has the left eigenvector 〈1| := (1, . . . , 1) with eigenvalue 1,
expressing the conservation of probability: 〈1|T = 〈1|.

Furthermore it also satisfies:

T is primitive since T n has positive entries:

1 2 3 4 5 6 7 8 9 10
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Application to T cont’d

We conclude that T possesses a (right) eigenvector Ψ which is
given up to normalization by the equation T |Ψ〉 = |Ψ〉.
Remark: one could set 〈1|Ψ〉 = 1; however it is convenient to
choose a different normalization for Ψ.
In particular as k →∞, contributions of other eigenvalues decay
exponentially and

T∞ := lim
k→∞

T k =
|Ψ〉〈1|
〈1|Ψ〉

Returning to the vector of probabilities in the original problem, we
find:

|P〉 = T∞|α〉 =
|Ψ〉
〈1|Ψ〉
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Definition of the model
Relation to Markov process on link patterns
Perron–Frobenius eigenvector
Some observations

Conjectures [de Gier, Nienhuis ’01]

Define

An =
1!4!7! · · · (3n − 2)!

n!(n + 1)!(n + 2)! · · · (2n − 1)!
= 1, 2, 7, 42, 429 . . .

Normalize Ψ so that the smallest components, with patterns of the

type
1

2
3 4

5

6

7

8
910

11

12 , are set to 1. Then:

1 All components are Ψ are (positive) integers.

2 The largest components of Ψ correspond to patterns of the

type
1

2
3 4

5

6

7

8
910

11

12 and are equal to An−1.

[PDF, PZJ + Zeilberger ’07 or Razumov, Stroganov, PZJ ’07]

3 The sum of components of Ψ is 〈1|Ψ〉 = An. [PDF, PZJ ’04]

Example
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Some observations

An =
1!4!7! · · · (3n − 2)!

n!(n + 1)!(n + 2)! · · · (2n − 1)!
= 1, 2, 7, 42, 429 . . .

is the number of Alternating Sign Matrices (ASMs) of size n.
[Zeilberger, 1996]

What does this loop model have to do with ASMs? combinatorial
intepretation of each component?
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Definition of FPLs
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Razumov–Stroganov conjecture

A Fully Packed Loop configuration (FPL) on a n × n square grid:

Fact: FPLs are in bijection with ASMs.
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It is natural to group FPLs by connectivity of their endpoints: cf
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Conjecture [Razumov, Stroganov ’01]

Denote by A(π) the number of FPLs with connectivity described
the link pattern π. This is exactly the (unnormalized) probability of
pattern π in the model of loops with the geometry of the cylinder.

In other words |Ψ〉 =
∑

π A(π)|π〉 is the (unnormalized)
equilibrium distribution of the Markov process of loops:

T |Ψ〉 = |Ψ〉

Remark: The RS conjecture implies observations 1 and 3 of de
Gier, Nienhuis.
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A variant of RS

Vertically Symmetric Fully Packed Loop configurations: (VSFPLs)
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A variant of RS

Vertically Symmetric Fully Packed Loop configurations: (VSFPLs)

0 0 0 + 0 0 0
0 0 + – + 0 0
0 + – + – + 0
0 0 + – + 0 0

+ 0 – + – 0 +
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A variant of RS cont’d

Conjecture [Pierce, Rittenberg, de Gier, Nienhuis ’02]: the number
of VSFPLs of size 2n + 1 with connectivity π is the (unnormalized)
probability of pattern π in the model of loops with the strip
geometry of size 2n.

In particular,

AV
2n+1 =

n−1∏
j=0

(3j + 2)
(2j + 1)!(6j + 3)!

(4j + 2)!(4j + 3)!
= 1, 1, 3, 26, 646 . . .

is the normalization of probabilities.
Example
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Consider the probabilistic model (on the cylinder) with probabilities
pi depending on the column i = 1, . . . , 2n, and the corresponding
transfer matrix:

T =
2n∏
i=1

(
pi + (1− pi )

)
Parametrize the probabilities as pi = zi−q t

t−q zi
, q = e2iπ/3.

zi are the spectral parameters.
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Integrability

Yang–Baxter Equation:

t

t ′

t ′

t

t ′

t

t

t ′

=

where
t

t ′
= (t − q t ′) + q2(t − t ′) . YBE implies that

[T (t; z1, . . . , z2n),T (t ′; z1, . . . , z2n)] = 0

Thus, the equilibrium distribution eigenvector given by

T (t; z1, . . . , z2n)|Ψ(z1, . . . , z2n)〉 = |Ψ(z1, . . . , z2n)〉

only depends on the zi . (in particular, independent of p in homog.)
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Polynomiality.
|Ψ(z1, . . . , z2n)〉 can be normalized in such a way that its
components are homogenous polynomials of total degree
n(n − 1) and of partial degree at most n − 1 in each zi .

Factorization and symmetry.
The components possess various linear factors and properties
of symmetry by exchange of variables.
In particular, their sum is a symmetric polynomial of all zi .

Recursion relations.
Components of |Ψ(z1, . . . , z2n)〉 satisfy linear recursion
relations; their sum is entirely determined by these:

∑
π

Ψπ(z1, . . . , z2n) = IKn(q; z1, . . . , z2n) = Schur( ; z1, . . . , z2n)
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