02/2005

Combinatorics of the Brauer Loop scheme

P. Zinn-Justin

- The Brauer Loop scheme
- ♦ The deformed matrix algebra; definition of the scheme
- ⋄ Torus action and Equivariant Cohomology
- The O(1) Brauer Loop model
- ♦ Definition
- ⋄ Transfer Matrix and Perron–Frobenius eigenvector
- ♦ Multi-parameter generalization
- Proof of equivalence: Schubert calculus vs Yang-Baxter equation
- Two applications
- P. Di Francesco, P. Zinn-Justin, Inhomogeneous model of crossing loops..., math-ph/0412031.
- A. Knutson, P. Zinn-Justin, A scheme related to the Brauer loop model, math.AG/0503224.

Deformed matrix product

For P, Q two $N \times N$ matrices define the product $P \bullet Q$:

$$(P \bullet Q)_{ik} = \sum_{j: (i \le j \le k) \ cyc} P_{ij}Q_{jk} \qquad i, k = 1, \dots, N$$

where $(i \le j \le k)$ cyc means that i, j, k are in cyclic order: (and $i = k \Rightarrow i = j = k$)

 $(M_N(\mathbb{C}), \bullet, +)$ associative algebra. A matrix is invertible iff its diagonal elements are non-zero.

Alternate definition: ("interpolation" between usual and deformed product)

if $R_N(\mathbb{C})$ is the subspace of upper triangular matrices and

$$R_N(\mathbb{C}[t]) = R_N(\mathbb{C}) \oplus tM_N(\mathbb{C}) \oplus t^2M_N(\mathbb{C}) \oplus \cdots$$

then our algebra is isomorphic to $R_N(\mathbb{C}[t])/tR_N(\mathbb{C}[t])$: $M\mapsto M_{\leq}+tM_{>}$.

The affine scheme E

Define in the space $M_N^0(\mathbb{C})$ of matrices with zero diagonals:

$$E := \{ M \in M_N^0(\mathbb{C}) : M \bullet M = 0 \}$$

Explicitly, the equations defining the scheme E read:

$$\sum_{j:(i\leq j\leq k)\ cyc} M_{ij}M_{jk} = 0 \qquad \forall i,k$$

Q1: what are the components of E? what is their dimension?

Experimental answer: to simplify, in what follows we assume N even (N=2n). Then

1) E is equidimensional:

$$E = \bigcup_{\pi} E_{\pi}$$

with dim $E_{\pi} = N^2/2$.

2) E, and each of its components, are generically reduced.

(examples in two slides...)

Torus action and equivariant cohomology

Action of $T=(\mathbb{C}^{N+1},+)$ on $M_N(\mathbb{C})$:

$$(a, z_1, \dots, z_N) : M_{ij} \mapsto e^{a + z_i - z_j} M_{ij}$$

Equivariant cohomology $H_T^*(M_N(\mathbb{C})) \subset \mathbb{C}[a, z_1, \dots, z_N]$.

Algebraic substitute: **multidegree** $\operatorname{mdeg}_W X$ of a T-invariant scheme $X \subset W$ defined by

- (1) If $X = W = \{0\}$ then $mdeg_W X = 1$.
- (2) If X has top-dimensional components X_i with multiplicity m_i , $\operatorname{mdeg}_W X = \sum_i m_i \operatorname{mdeg}_W X_i$.
- (3) If X is a variety and H is a T-invariant hyperplane in W,
 - (a) If $X \not\subset H$, then $\operatorname{mdeg}_W X = \operatorname{mdeg}_H (X \cap H)$.
 - (b) If $X \subset H$, then $\operatorname{mdeg}_W X = (\operatorname{mdeg}_H X) \cdot [W/H]_T$.

Here $W = M_N^0(\mathbb{C})$, $[M_{ij}]_T = a + z_i - z_j$.

Remark 1: $mdeg_W X$ is a homogeneous polynomial, of degree the codimension of X in W.

Remark 2: $\operatorname{mdeg} X|_{a=1,z_i=0} = \operatorname{deg} X$.

Multidegree of E_{π}

The action of T preserves E and its components E_{π} .

(note that the action is $M \mapsto e^a e^Z \bullet M \bullet e^{-Z}$ where $e^Z = \operatorname{diag}(e^{z_1}, \dots, e^{z_N})$)

Q2: what is $\operatorname{mdeg} E_{\pi}$? $(\operatorname{deg} E_{\pi}$?)

Example 1: N = 4. Three components:

★ One component of degree 1:

$$E_1 = \left\{ M = \begin{pmatrix} 0 & 0 & m_{13} & m_{14} \\ m_{21} & 0 & 0 & m_{24} \\ m_{31} & m_{32} & 0 & 0 \\ 0 & m_{42} & m_{43} & 0 \end{pmatrix} \right\}$$

★ Two components of degree 3:

$$E_{2} = \left\{ M = \begin{pmatrix} 0 & m_{12} & m_{13} & m_{14} \\ m_{21} & 0 & 0 & m_{24} \\ m_{31} & m_{32} & 0 & m_{34} \\ 0 & m_{42} & m_{43} & 0 \end{pmatrix} \right.$$

$$m_{12}m_{24} + m_{13}m_{34} = 0 \\ m_{31}m_{12} + m_{34}m_{42} = 0 \\ m_{13}m_{31} - m_{24}m_{42} = 0 \right\}$$

$$E_{3} = S(E_{2})$$

where S is the cycling automorphism $M_{ij} \mapsto M_{i+1\,j+1}$. $\Rightarrow \deg E = 7$.

Brauer model of loops

Probability that external vertex i is connected to vertex j? (proba: =

$$=$$
 $=$ $=$ 4/9, $=$ 1/9)

 \rightarrow vector $|\Psi_n\rangle$, whose components are indexed by $\mathbf{crossing\ link\ patterns}$, satisfying

$$T_n \left| \Psi_n \right\rangle = \left| \Psi_n \right\rangle$$

where T_n is the **transfer matrix** that adds a row to the semi-infinite cylinder.

Brauer model of loops cont'd

NB: $\pi = \text{crossing link pattern}$, or chord diagram, or Brauer diagram, or fixed-point free involution.

Example: for n=3 (N=2n=6), up to normalization, $|\Psi_3\rangle$ reads

Conjectures [de Gier, Nienhuis oct '04] (now theorem [PDF, PZJ dec '04])

- (1) The components can be chosen to be integers, the smallest being 1.
- (2) Some of the components are degrees of algebraic varieties.
- → What about multidegrees?

Inhomogeneous Brauer model of loops [PDF, PZJ '04]

Introduce local probabilities dependent on the column i via a parameter z_i respecting **integrability** of the model (i.e. satisfying Yang–Baxter equation).

$$T_n(t|z_1,\ldots,z_{2n}) = \prod_{i=1}^{2n} \left((t-z_i) + (1-t+z_i) + \frac{(t-z_i)(1-t+z_i)}{2} \right)$$

$$T_n(t; z_1 \ldots, z_{2n}) |\Psi_n(z_1, \ldots, z_{2n})\rangle = |\Psi_n(z_1, \ldots, z_{2n})\rangle$$

* Polynomiality.

The $\Psi_{\pi}(z_1, \ldots, z_{2n})$ can be chosen to be coprime polynomials; they are then of total degree 2n(n-1) and of partial degree at most 2(n-1) in each z_i , with integer coefficients.

- \star Factorization, Recursion relations... \rightarrow entirely fixed (see next slides)
- \star Sum rule.

$$\sum_{\pi} \Psi_{\pi}(z_1, \dots, z_{2n}) = \operatorname{Pf}\left(\frac{z_i - z_j}{1 - (z_i - z_j)^2}\right)_{1 \le i, j \le 2n} \times \prod_{1 \le i < j \le 2n} \frac{1 - (z_i - z_j)^2}{z_i - z_j}$$

General relation scheme \leftrightarrow statistical model

Conjecture [PZJ]: There is a natural way to index irreducible components E_{π} of E with crossing link patterns π of size N=2n, in such a way that their multidegrees are the homogeneized components of the eigenvector of the inhomogeneous Brauer loop model:

$$\operatorname{mdeg} E_{\pi}|_{a=1} = \Psi_{\pi}(z_1, \dots, z_{2n})$$

In particular, the sum $\sum_{\pi} \Psi_{\pi}(z_1,\ldots,z_{2n})$ is the multidegree of E itself. $(\operatorname{mdeg} E_{\pi} = \Psi_{\pi} \text{ proved in the de Gier-Nienhuis case in [PDF, PZJ '04]; full proof in [AK, PZJ])}$ $\operatorname{Remark}: \text{ when all } z_i = 0 \text{, the lhs is the } \deg E_{\pi} \text{ and the rhs the entry of the homogeneous model}.$

Idea of proof:

- \star Apply **Schubert calculus** type arguments to the E_{π} in order to show that their multidegree satisfies recursion relations (wrt the number of crossings of π).
- \star Use **Yang–Baxter** and related equations to show that the Ψ_{π} satisfy the very same relations.

Definition of the E_{π}

Define $s_i(M) := \sum_{j=1}^{N} M_{ij} M_{ji}$ for $M \in E = \{M \bullet M = 0\}$.

Two simple lemmas:

- (1) E (and therefore each E_{π}) is stable by \bullet -conjugation by any invertible matrix.
- (2) $s_i(M) = s_i(P \bullet M \bullet P^{-1})$ for all $i, M \in E, P$ invertible.

Motivates the following two equivalent definitions:

$$E_{\pi} = \bigcup_{t \text{ diag}} Orb(\pi t) = \overline{\left\{P \bullet \pi t \bullet P^{-1}, t \text{ diag}, P \text{ inv}\right\}} \quad (\pi \equiv \text{the matrix of involution } \pi)$$

$$= \overline{\left\{M \in E : s_i(M) = s_i(M) \text{ if and only if } i \in \{i, \pi(i)\}\right\}}$$

$$=\overline{\left\{\,M\in E: s_i(M)=s_j(M) \text{ if and only if } j\in \{i,\pi(i)\}\,\right\}} \\ 0 \cdots 0 \star \cdots \star \\ \star 0 \cdots 0 \star \cdots \star \\ \vdots \\ \star \cdots \star 0 \cdots 0$$
 Special case: "trivial" component. $\pi_0=\{0,0,0\}, E_{\pi_0}=\{0,0,0\}, E_{\pi_0}=\{0,0,0$

$$\operatorname{mdeg} E_{\pi_0} = \prod_{\substack{1 \le i < j \le 2n \\ j-i < n}} (a + z_i - z_j) \prod_{\substack{1 \le i < j \le 2n \\ j-i > n}} (a + z_j - z_i)$$

Schubert calculus

 \star Define $L_i = \{$ invertible matrices with off-diagonal elements at (i, i+1), $(i+1, i)\}$,

 $B_i = \{ \text{invertible matrices with off-diagonal elements at } (i+1,i) \}$ and

$$-\partial_i: L_i \times_{B_i} M_N(\mathbb{C}) \to M_N(\mathbb{C})$$

$$(P, M) \to PMP^{-1}$$
 (ordinary product)

If $-\partial_{i|L_i \times_{B_i} X}$ generically one-to-one, then

$$\operatorname{mdeg}(-\partial_i)X = -\partial_i\operatorname{mdeg}X$$

where
$$\partial_i = \frac{1}{z_{i+1}-z_i}(\tau_i - 1)$$
 and $\tau_i F(z_i, z_{i+1}) = F(z_{i+1}, z_i)$.

 \star Assume π has no arch between i and i+1. Define $E_{\pi}^{\{i,i+1\}}=\{M\in E_{\pi}:M_{i+1,i}=0\}$. Note

$$\operatorname{mdeg} E_{\pi}^{\{i,i+1\}} = (a + z_{i+1} - z_i)\operatorname{mdeg} E_{\pi}$$

Apply $-\partial_i$ to $E_{\pi}^{\{i,i+1\}}$, then impose $(M \bullet M)_{i+1} = 0$:

$$-(2a + z_{i+1} - z_i)\partial_i \operatorname{mdeg} E_{\pi}^{\{i,i+1\}} = \operatorname{mdeg} E_{\pi}^{\{i,i+1\}} + \operatorname{mdeg} E_{f_i \cdot \pi}^{\{i,i+1\}}$$

Final formula:

$$\operatorname{mdeg} E_{f_i \cdot \pi} = -(a + z_i - z_{i+1})(2a\partial_i + \tau_i) \left(\frac{\operatorname{mdeg} E_{\pi}}{a + z_i - z_{i+1}}\right)$$

Yang-Baxter equation and intertwining relations

Applied to the transfer matrix:

or more explicitly

$$\check{R}_i(z_i - z_{i+1})T_n(t; z_1, \dots, z_i, z_{i+1}, \dots, z_{2n}) = T_n(t; z_1, \dots, z_{i+1}, z_i, \dots, z_{2n})\check{R}_i(z_i - z_{i+1})$$

where

$$\check{R}(u) = \frac{u + (1-u) + \frac{1}{2}u(1-u)}{(1-u/2)(1+u)}$$

The intertwining relation implies (NB: fixing the normalization is non-trivial!)

$$|\Psi_n(\ldots,z_{i+1},z_i,\ldots)\rangle = \check{R}(z_i-z_{i+1}) |\Psi_n(\ldots,z_i,z_{i+1},\ldots)\rangle$$

Recursion relations for the components

$$(1 + \frac{1}{2}(z_{i+1} - z_i))(1 + z_i - z_{i+1}) \tau_i |\Psi_n\rangle = \left((z_i - z_{i+1})\right)$$

$$+ (1 + z_{i+1} - z_i) + \frac{1}{2}(z_i - z_{i+1})(1 + z_{i+1} - z_i) + |\Psi_n\rangle$$

(1) One can show that the only value of Ψ_{π_0} compatible with these equations is

$$\Psi_{\pi_0} = \prod_{\substack{1 \le i < j \le 2n \\ j-i < n}} (1 + z_i - z_j) \prod_{\substack{1 \le i < j \le 2n \\ j-i > n}} (1 + z_j - z_i)$$

(2) If π is such that there is no arch between i and i+1, the previous formula simplifies to

$$(1 + \frac{1}{2}(z_{i+1} - z_i))(1 + z_i - z_{i+1})\Psi_{\pi}(z_1, \dots, z_{i+1}, z_i, \dots, z_{2n})$$

$$= (1 + z_{i+1} - z_i)\Psi_{\pi}(z_1, \dots, z_{2n}) + \frac{1}{2}(z_i - z_{i+1})(1 + z_{i+1} - z_i)\Psi_{f_i \cdot \pi}(z_1, \dots, z_{2n})$$

which is equivalent to the recursion relation for the multidegrees:

$$\Psi_{f_i \cdot \pi} = (1 + z_i - z_{i+1})(2 \,\partial_i - \tau_i) \left(\frac{\Psi_{\pi}}{1 + z_i - z_{i+1}}\right)$$

Application 1: (multi)degree of E and of $\{M^2 = 0\}$

Theorem [AK, PZJ using PDF, PZJ]: the multidegree of E is

$$\operatorname{mdeg} E = \operatorname{Pf} \left(\frac{z_i - z_j}{a^2 - (z_i - z_j)^2} \right)_{1 \le i, j \le 2n} \times \prod_{1 \le i \le j \le 2n} \frac{a^2 - (z_i - z_j)^2}{z_i - z_j}$$

Its degree is

$$\deg E = \det \left[\binom{2i + 2j + 1}{2i} \right]_{0 \le i, j \le n - 1} = 1, 7, 307, \dots$$

When $n \to \infty$, $\log \deg E \sim n^2 \times 2 \log(\pi/2)$.

Remark:

$$mdeg\{ M \in M(N, \mathbb{C}) : M^2 = 0 \} = mdeg\{ M \in M(N, \mathbb{C}) : M \bullet M = 0 \} = 2^n mdeg E$$

Proof [AK, PZJ?]: use localization; or equivalently, the integral formula

$$\operatorname{mdeg}\{ M \in M(N, \mathbb{C}) : M^{2} = 0 \} = \frac{\int_{M^{2}=0} d\mu(M) e^{-\pi \sum_{i,j} |M_{ij}|^{2} (a+z_{i}-z_{j})}}{\int_{M \in M_{n}(\mathbb{C})} d\mu_{0}(M) e^{-\pi \sum_{i,j} |M_{ij}|^{2} (a+z_{i}-z_{j})}}$$

and apply Harish Chandra-Itzkyson-Zuber integral / Duistermaat-Heckman theorem.

(The multidegree is preserved by deformation of the product)

Application 2: (multi)degree of the commuting variety

Define the **commuting variety** to be the scheme

$$C = \{ (X, Y) \in M_n(\mathbb{C})^2 : XY = YX \}$$

It is a classical difficult problem to compute the degree of C. (previously known up to n=4 only)

Observation [A. Knutson '03]: there is a Gröbner degeneration from $C \times V$ to E_{π} where N=2n

In particular, $\deg C = \deg E_{\pi} = 1$, 3, 31, 1145,

[dG, N] 154881, 77899563, 147226330175, 1053765855157617,

. . .

$$\log \deg C \sim n^2 \times \log 2 \qquad n \to \infty$$