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Introduction

Schubert polynomials were introduced by Lascoux and
Schiitzenberger to represent cohomology classes of Schubert cycles
in flag varieties.

Alain Lascoux Marcel-Paul Schiitzenberger
(1944-2013) (1920-1996)
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Definition

Given 0 € Soo = U,>1 Sn, define 67 € R 1= Z[x1, x2, . . |
inductively by

G = 9,67 for o(i) < o(i+ 1)
G2t ﬁxin_i
i=1

where s; is the elementary transposition i <+ i + 1
and 0; is the corresponding divided difference operator

f— fleon
a,-f;:& feRr

Xi — Xi+1
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Example: n =3

G632 = x2x,

6231 = X1X0 6312 — X12
82 a1
6213 =x 6132 =x1 + x
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Example: n =3

&8l — x12x2

623|1 = X1 63|12 — X12
82 a1
G213 — SB2 = x; + x

6123 =1
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Descents

Define the descent set of a permutation
D(U) = {i€Z>0:O'i>O'i+1} o€ Sy

Then it is obvious from their definition that Schubert polynomials
are symmetric in variables between two descents, and do not
depend on variables after the last descent.
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Descents

Define the descent set of a permutation
D(U) = {i€Z>0:O'i>O'i+1} o€ Sy

Then it is obvious from their definition that Schubert polynomials
are symmetric in variables between two descents, and do not
depend on variables after the last descent.

Important example: Grassmannian permutations. If o has no
descent outside k € Z~q, then G, is a symmetric polynomial in
X1, ..., Xk — in fact, a Schur polynomial.
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the famous Littlewood—Richardson coefficients, for which
numerous combinatorial formulae are known.
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The structure constants
The {&7, 0 € Sx} form a basis of R = one can expand products:

676" = Y ’&”  mpE Sy

O’GSoo
It is well-known that ¢;” € Z>o.
Each (67, D(o) C D) is a subring, i.e.,
P £0 = D(s)C D(x)UD()
For example, within the subring (&7, D(c) C {k}), the c;” are

the famous Littlewood—Richardson coefficients, for which
numerous combinatorial formulae are known.

More generally, we'll be interested in computing c¢;” when we put
various restrictions on D(7) and D(p).
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The generalisations [I1]

motivic Segre ——— Grothendieck

e e

equivariant double
motivic Segre Grothendieck
SSM ‘ Schubert

equivariant double
SSM Schubert
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The generalisations [I1]

higher rank spin
Hall-Littlewood

\

motivic Segre ——— Grothendieck

e e

equivariant double
motivic Segre Grothendieck
SSM ‘ Schubert

equivariant double
SSM Schubert
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Where does exactly solvability come into play?

o My interest is in applying methods from exactly solvable
models (a.k.a. quantum integrable systems), an area of
mathematical physics, to the study of such families of
polynomials.
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Where does exactly solvability come into play?

o My interest is in applying methods from exactly solvable
models (a.k.a. quantum integrable systems), an area of
mathematical physics, to the study of such families of
polynomials.

o Circa 2008-2014, | discovered that many families of
(symmetric/not) polynomials can be expressed as partition
functions of exactly solvable models (Schur, Schur-Q, LLT,
Schubert, Grothendieck, . ..)

o In the case of Schubert/Grothendieck, this is closely related to
the work of [Bergeron and Billey '93, Fomin and Kirillov '94].

o By now, there's a clear picture of a deep connection between
these families of polynomials/rational functions, geometric
representation theory and exact solvability [Nekrasov et al,
Okounkov et al, Riméanyi, Tarasov and Varchenko]
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Permutations and strings

alphabet is some arbitrary

We encode permutations using strings: rorally ordered set

o 1362547/
w 0001 1|22



Exactly solvable models
0®000000

Permutations and strings

We encode permutations using strings:



Exactly solvable models
0®000000

Permutations and strings

We encode permutations using strings:

c 1386|2547
w 0001 1|22

| 7=
A 01021002

There is freedom to add gratuitous nondescents, and to increase
the size.
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Permutations and strings

We encode permutations using strings:

c 1386|2547
w 0001 1|22

| 7=
A 01021002

There is freedom to add gratuitous nondescents, and to increase
the size.

Conversely, given A, o is the inverse of its standardisation.
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Schubert polynomials as an exactly solvable model

We have the following “partition function” identity, given any
string A corresponding to o, with w = sort(\):

\ Yoo .. \
I W n
w1 t

w2

60’

Wn

a sum over labellings of internal eageg, such that each plaquette is

o P11, i < J, each of which on the rth row contributes a x,.
)
;
° L
L
)

where i, j € Z>o U {_} with the convention i/ < _ for all i € Z>o.
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Schubert polynomials as an exactly solvable model

We have the following “partition function” identity, given any
string A corresponding to o, with w = sort(\):

\ \ « .. \
I W n

Wi

w2

60’

Wn

a sum over labellings of internal edges, such that each plaquette is

o P11, i < J, each of which on the rth row contributes a x,.
)
;
° L
L
)

where i, j € Z>o U {_} with the convention i/ < _ for all i € Z>o.
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We represent the string digits as colours:

0 1 2 3 4 5

so that plaquettes look like and |/
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Schubert computation example

We represent the string digits as colours:

0 1 2 3 4 5

so that plaquettes look like and //.
For example, if c =132, A = 010 and
010 0 1 0 01 0
o T T T oF T o ez
67 = "| = }— + I =x1+x
0 0 4 0
14 10 1
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Schubert computation example

We represent the string digits as colours:

0 1 2 3 4 5

so that plaquettes look like and //.
For example, if o =231, A = 100 and
0 0 0 0
W

&7 ="

1
ST T
[
[

0'_
- DR -
1

1¢
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Digression: Generic Pipe Dreams

If one relaxes the constraint on 7 and j in the crossing -, then

one gets what we call Generic Pipe Dreams:

/
v/
//
/
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Digression: Generic Pipe Dreams

If one relaxes the constraint on i and j in the crossing | ” |, then

one gets what we call Generic Pipe Dreams:

/
v/
//
/

These are relevant to the computation of the motivic Segre class
rational functions; in the limit to Grothendieck polynomials, one
recovers either ordinary pipe dreams or bumpless pipe dreams [Lam
Lee Shimozono '18, Weigandt '18].
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The Yang—Baxter equation

Brézin and Zinn-Justin, '66; Yang, '67 1 :
Baxter, '70s ] IS the

The Yang—Baxter equation |
signature of exact solvability.

SO 99

Lemma
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The Yang—Baxter equation

Brézin and Zinn-Justin, '66; Yang, '67

The Yang—Baxter equation [ g 5. + 00iYene 971 s the
signature of exact solvability.

Apply it repeatedly to our partition function (x = x;, ¥ = xj4+1)

Lemma

\ \ e ) \ \ e ) \ \ e )
1 2 n 1 2 ‘n I 2 n
i 41 Wi
Wi _ w/-/ — W
Wil w@Q wiN
Wn Q“n Wn ‘

we obtain, for w; = wj+1 the symmetry under x; <> x;+1, or for
wj < wjt1, the induction formula for Schubert polynomials.
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Structure constants as an exactly solvable model

o This reformulation of Schubert polynomials as partition
function does not obviously help with our goal, which is the
computation of c;”. — Another idea is required to use
exactly solvable methods for that.
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o This reformulation of Schubert polynomials as partition
function does not obviously help with our goal, which is the
computation of c;”. — Another idea is required to use
exactly solvable methods for that.

o In 2008, | proposed to reinterpret Knutson—Tao puzzles as an
exactly solvable model.
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Structure constants as an exactly solvable model

o This reformulation of Schubert polynomials as partition
function does not obviously help with our goal, which is the
computation of c;”. — Another idea is required to use
exactly solvable methods for that.

o In 2008, | proposed to reinterpret Knutson—Tao puzzles as an
exactly solvable model.

A K
AT
Cg P = pu—p
Vo
_—



Exactly solvable models
0000000®

The main theorem of I-1I-I11

For the purposes of this slide, we index & and ¢ with strings rather
than permutations.

puzzle
lattice
model

A v
E cHeY = .
174
v Sch.ubert
lattice

model
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For the purposes of this slide, we index & and ¢ with strings rather
than permutations.

puzzle
lattice
model

A v
E cHeY = .
174
v Sch.ubert
lattice

model
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For the purposes of this slide, we index & and ¢ with strings rather
than permutations.

puzzle
lattice
model

A v
E cHeY = .
174
v Sch.ubert
lattice

model

=&'e"

trivial
puzzle
lattice
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The main theorem of I-1I-I11

For the purposes of this slide, we index & and ¢ with strings rather
than permutations.

puzzle
lattice
model

A v
E cHeY = .
174
v Sch.ubert
lattice

model

[l YBE-like moves

=&'e"

trivial
puzzle
lattice
model
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We say that 7, p € Soo have separated descents if
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Separated descents
We say that 7, p € Soo have separated descents if

min D(T{') Z max D(p) seemingly

gratuitous

m 2 4 5 7]6[3]1 8
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Separated descents
We say that 7, p € Soo have separated descents if

min D(7) > max D(p)

as 2 4 5 T7|6]3|1 8
w1 _ _ _ _ 1 3|4 5
w2 o|1r}2 2. _ _ _

p 4 1 5 6
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Separated descents
We say that 7, p € Soo have separated descents if

min D(7) > max D(p)

m 2 4 5 76|31 8
w1 - - - _|3|4|5 5
w3 0112 2|3 |4|5 5
w2 o142 2|_. _ _ _

P 4 13|11 5|12 6 8
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Separated descents
We say that 7, p € Soo have separated descents if

min D(7) > max D(p)

m 2 4 5 76|31 8
w1 - - - _|3|4|5 5
w3 0112 2|3 |4|5 5
w2 o142 2|_. _ _ _

P 4 13|11 5|12 6 8

We use w; to encode 7, w» to encode p, and w3 to encode o

A=5_4__3.5 uw=2_102___
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Separated descent rule

Theorem (A. Knutson, P. Z-J, '20, III)

Let w and p have separated descents. The coefficient of G, in the
expansion of 6,6, is the number of puzzles made of paths going
SW/SE, such that no triangle is empty, and paths can only cross
at horizontal edges, with the additional constraint:

A A
v v
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Separated descent rule

Theorem (A. Knutson, P. Z-J, '20, III)

Let w and p have separated descents. The coefficient of G, in the
expansion of 6,6, is the number of puzzles made of paths going
SW/SE, such that no triangle is empty, and paths can only cross
at horizontal edges, with the additional constraint:

A A
v

o The size n of the puzzle must be chosen so that 7, p,0 € S,,.
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Separated descent rule

Theorem (A. Knutson, P. Z-J, '20, III)

Let w and p have separated descents. The coefficient of G, in the
expansion of 6,6, is the number of puzzles made of paths going
SW/SE, such that no triangle is empty, and paths can only cross
at horizontal edges, with the additional constraint:

A A
v

o The size n of the puzzle must be chosen so that 7, p,0 € S,,.

o See also [Huang, '21].
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Separated descent example

XXX
I OVAVAVIYN
2YAVAVAN

AVAN,

&
POV S

AVAVAVAVAY

5 4 3 2 1 25

This leads to the following identity:
24576318 543152678 _ 556473218 | (64573218

+ 665374218 + 665472318 + 656384217 + 664385217 + 665284317
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Separated descent example

AVAY AVAVAN

AVAVAVAVAY

5 4 3 2

This leads to the following identity:
2457/6/3(18 5413]15/2678 _ 556/47(3[2/18 | 6/457/3(2/18

| &OI5I371412/18 | 6/5/47|23(18 | 556|38]4[2(17 | 614|38]5]2(17 | 6/5|28/4[3(17
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Almost separated descents

We say that 7, p € Sy, have almost separated descents if the last
two descents of 7 occur at (or before) the first two descents of p:
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two descents of 7 occur at (or before) the first two descents of p:
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Almost separated descents

We say that 7, p € Sy, have almost separated descents if the last
two descents of 7 occur at (or before) the first two descents of p:

T 4/1:3[2 5 6 7
w1 o(1r,2¢{_. _ _ _
W N _ 2|3 4 4
p 50431 6 7
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Almost separated descents

We say that 7, p € Sy, have almost separated descents if the last
two descents of 7 occur at (or before) the first two descents of p:

m 4132 5 6 7
w1 o(1r,2¢{_. _ _ _
w3 o|1]_|3|4 4 4
w2 - | 2]3]4 4 4
p 2 5 31 6 7
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Almost separated descents

We say that 7, p € Sy, have almost separated descents if the last
two descents of 7 occur at (or before) the first two descents of p:

m 4/1:3[2 5 6 7
w1 o122 - -
w3 oj1]-|3]4 4 4
w2 - | 2]3]4 4 4
p 2 5]/4[3|1 6 7

We use w; to encode 7, wy to encode p, and w3 to encode o

A=1.20___ p=4_32_44
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Almost separated descent rule

Theorem (A. Knutson, P. Z-J, 2023, III)

Let m and p have almost separated descents. The coefficient of G,
in the expansion of 6,6, is the number of puzzles made of paths
going E/NE/SE, such that multiple paths of distinct colours can
cross NW/NE edges (i.e., a subset X C {0,...,d}), but at most
one path deviates from the horizontal in any given triangle, with
the further restriction on allowed triangles: (for the bottom row,
use only top halves)

i< X X X X<i7A\i /\
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Almost separated descent example

X
IR

/X
)u‘\v =0 .Iv’.‘lv’A‘"Vl(l

’5
'AV"’

. L . ] ‘
This leads to the following identity: L ,h
G4132567 2543167 _ 6352147 | (5632147

+ 65462137 + 66432157 + 66523147 + 67342156 + 67253146
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Almost separated descent example

A 7

Y

XX A
NN NN

KO
LRLRINA K 0z

XNTED,
'A N IN ’A
W05 VAN

N
KINIKLRAE

4 3

AVI v‘v‘A
AN A”A’é
AV VAV’AV’
SN

This leads to the following identity: 'Afv,:m,)yiv,‘}%

G4/13[2567 5 25(4[3(167 _ 6/35[2(147 | 56/3|2[147

| @Bl46120137 | 6l4I312[157 | 6/5[23]147 | 7I34[2/156 | 7I25/3(146
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exactly solvable model) out of the representation theory of
Yangians (or quantized loop algebras).

o The Schubert model (pipe dreams) is based on Y(ay) where
d = |D(o)l.

o One could reformulate the search for Schubert puzzles as:
finding a Yangian containing )(ay) as a subalgebra, with
various combinatorial constraints coming from the geometry
of root systems.
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exactly solvable model) out of the representation theory of
Yangians (or quantized loop algebras).

o The Schubert model (pipe dreams) is based on Y(ay) where
d = [D(0)l.

o One could reformulate the search for Schubert puzzles as:
finding a Yangian containing )(ay) as a subalgebra, with
various combinatorial constraints coming from the geometry
of root systems.

o For example, the separated descent model is also based on
Y(an) with n = |D(x)] + |D(p)|.
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The representation theory

o In general, one builds solutions of YBE (and from there, an
exactly solvable model) out of the representation theory of
Yangians (or quantized loop algebras).

o The Schubert model (pipe dreams) is based on Y(ay) where
d = |D(0)|.

o One could reformulate the search for Schubert puzzles as:
finding a Yangian containing )(ay) as a subalgebra, with
various combinatorial constraints coming from the geometry
of root systems.

o For example, the separated descent model is also based on
Y(an) with n = |D(r)| +|D(p)].

o The almost separated descent model is based on Y(9,).
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The representation theory

o In general, one builds solutions of YBE (and from there, an
exactly solvable model) out of the representation theory of
Yangians (or quantized loop algebras).

o The Schubert model (pipe dreams) is based on Y(ay) where
d = [D(0)l.

o One could reformulate the search for Schubert puzzles as:
finding a Yangian containing )(a4) as a subalgebra, with
various combinatorial constraints coming from the geometry
of root systems.

o For example, the separated descent model is also based on
Y(a) with n = [D(x)] + |D(p)].

o The almost separated descent model is based on Y(9,).

o For technical reasons, we've (so far) restricted the search to
simply laced Lie algebras.
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™ | |
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3-step to b-step

Let m, p € Soo with #D(m) = #D(p) =3,
common middle descent:
m 2|1 5]4|3 6 7

p 4 5]3|2 6|1 7
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3-step to b-step

Let m, p € Soo with #D(m) = #D(p) =3,
common middle descent:

m 2|1 514|3 6 7
w1 o1 1}2|3 3 3
3

w2 0 0of1]2 2
p 4 5
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3-step to b-step

Let m, p € Soo with #D(m) = #D(p) =3,
common middle descent:

m 2|1 514|3 6 7
w1 o1 1}2|3 3 3
w3 01,23 |4|5 5
w2 0 0j172 2|3 3

P 4 51312 6|1 7
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3-step to b-step

Let m, p € Soo with #D(m) = #D(p) =3,
common middle descent:

™ 2|1 514|3 6 7
w1 o|j1 123 3 3
w3 0|12 (3|4|5 5
w2 0 0j172 2|3 3

P 4 51312 6|1 7

We represent the w3 digits as oriented coloured paths:

R S

0 1 2 3 4 5

We also have unoriented paths made of two colours, e.g., ;
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3-step to b-step

Let m, p € Soo with #D(m) = #D(p) =3,
common middle descent:

™ 2|11 5413 6 7
w1 L T I N T B
w3 IR NI N N N .
w2 RN RSN A B S S

P 4 51312 6|1 7

We represent the w3 digits as oriented coloured paths:

R S

0 1 2 3 4 5

We also have unoriented paths made of two colours, e.g., ;
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3-step to b-step

Let m, p € Soo with #D(m) = #D(p) =3,
common middle descent:

™ 2|11 5413 6 7
w1 L T I N T B
w3 IR NI N N N .
w2 RN RSN A B S S

P 4 51312 6|1 7

We represent the w3 digits as oriented coloured paths:

R S

0 1 2 3 4 5

We also have unoriented paths made of two colours, e.g.,
We use w; to encode 7, wy to encode p, and w3 to encode o:

o bbb oe=t it b
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3-step to 5-step rule

Theorem

Let m,p € S as above, and o € Sy, such that {(c) = () + ¢(p).
The coefficient of &, in the expansion of 6,6, is the number of
puzzles made of oriented colored paths and unoriented bicolored
paths with the following two types of triangles:

A A

and their 180 degree rotations,
where in the first, the three paths can be freely permuted,
and in the second, all colors must be present.
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3-step to 5-step example

VAVAVAVAVA
LRI AR

This leads to the following identity:
2154367 4532617 _ 6732415 | 5734216 | 5742316

+67435216+67532416+67452316+66472315+65672314+65473216
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3-step to 5-step example

AV
A@Z‘Xﬁ%
V‘V%VA
VAN L

NN
A\X\V '.AIIIW. FAVAVAVAVAV. VA

This leads to the following identity:
21514367 45/3126|17 _ 67|3[2415 | 57[342[16 | 57|4[23/16

| &T14I3512]16 | 7I5/3(24]16 | 7145/23]16 | 6/4723]15 | 567|23(14 | 5/47]3]2/16
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Further result. Associativity

Imposing associativity (G*&#)&Y = G*(G+GY) leads to quadratic
constraints for the structure constants c,j\“:

A pV Ao uv _
g ey = E c.7ck =
p o

Is there a natural bijection?


http://www.lpthe.jussieu.fr/~pzinn/assoc
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Is there a natural bijection?

Integrability provides a linear algebraic answer:


http://www.lpthe.jussieu.fr/~pzinn/assoc
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