Schubert puzzles as exactly solvable models

The University of Melbourne

- A. Knutson, P. Zinn-Justin, Schubert puzzles and integrability I: invariant trilinear forms, arXiv:1706.10019
- A. Knutson, P. Zinn-Justin, Schubert puzzles and integrability II: multiplying motivic Segre classes, arXiv:2102.00563
- A. Knutson, P. Zinn-Justin, Schubert puzzles and integrability III: separated descents, arXiv:2306.13855
- P. Zinn-Justin, The CotangentSchubert Macaulay2 package

Introduction

Schubert polynomials were introduced by Lascoux and Schützenberger to represent cohomology classes of Schubert cycles in flag varieties.

Alain Lascoux (1944–2013)

Marcel-Paul Schützenberger (1920–1996)

Definition

Given
$$\sigma \in S_{\infty} = \bigcup_{n \ge 1} S_n$$
, define $\mathfrak{S}^{\sigma} \in R := \mathbb{Z}[x_1, x_2, \ldots]$
inductively by

$$\mathfrak{S}^{\sigma} = \partial_i \mathfrak{S}^{\sigma s_i}$$
 for $\sigma(i) < \sigma(i+1)$
 $\mathfrak{S}^{n\dots 21} = \prod_{i=1}^n x_i^{n-i}$

where s_i is the elementary transposition $i \leftrightarrow i + 1$ and ∂_i is the corresponding divided difference operator

$$\partial_i f := rac{f - f|_{x_i \leftrightarrow x_{i+1}}}{x_i - x_{i+1}} \qquad f \in R$$

・ロト・日本・山本・山本・山本・山本・山本・山本・山本

Example: n = 3

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Schubert polynomials

Exactly solvable models

Puzzles 00000000000

Example: n = 3

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

Define the descent set of a permutation

$$D(\sigma) := \{i \in \mathbb{Z}_{>0} : \sigma_i > \sigma_{i+1}\} \qquad \sigma \in \mathcal{S}_{\infty}$$

Then it is obvious from their definition that Schubert polynomials are symmetric in variables between two descents, and do not depend on variables after the last descent.

Important example: Grassmannian permutations. If σ has no descent outside $k \in \mathbb{Z}_{>0}$, then \mathfrak{S}_{σ} is a symmetric polynomial in x_1, \ldots, x_k – in fact, a Schur polynomial.

Define the descent set of a permutation

$$D(\sigma) := \{i \in \mathbb{Z}_{>0} : \sigma_i > \sigma_{i+1}\} \qquad \sigma \in \mathcal{S}_{\infty}$$

Then it is obvious from their definition that Schubert polynomials are symmetric in variables between two descents, and do not depend on variables after the last descent.

Important example: Grassmannian permutations. If σ has no descent outside $k \in \mathbb{Z}_{>0}$, then \mathfrak{S}_{σ} is a symmetric polynomial in x_1, \ldots, x_k – in fact, a Schur polynomial.

The $\{\mathfrak{S}^{\sigma}, \sigma \in \mathcal{S}_{\infty}\}$ form a basis of $R \Rightarrow$ one can expand products:

$$\mathfrak{S}^{\pi}\mathfrak{S}^{
ho} = \sum_{\sigma\in\mathcal{S}_{\infty}} c_{\sigma}^{\pi
ho}\mathfrak{S}^{\sigma} \qquad \pi,
ho\in\mathcal{S}_{\infty}$$

It is well-known that $c_{\sigma}^{\pi\rho} \in \mathbb{Z}_{\geq 0}$.

Each $\langle \mathfrak{S}^{\sigma}, D(\sigma) \subseteq \mathcal{D} \rangle$ is a subring, i.e.,

 $c^{\pi
ho}_{\sigma}
eq 0 \quad \Rightarrow \quad D(\sigma)\subseteq D(\pi)\cup D(
ho)$

For example, within the subring $\langle \mathfrak{S}^{\sigma}, D(\sigma) \subseteq \{k\} \rangle$, the $c_{\sigma}^{\pi\rho}$ are the famous Littlewood–Richardson coefficients, for which numerous combinatorial formulae are known.

The $\{\mathfrak{S}^{\sigma}, \sigma \in \mathcal{S}_{\infty}\}$ form a basis of $R \Rightarrow$ one can expand products:

$$\mathfrak{S}^{\pi}\mathfrak{S}^{
ho} = \sum_{\sigma\in\mathcal{S}_{\infty}} c^{\pi
ho}_{\sigma}\mathfrak{S}^{\sigma} \qquad \pi,
ho\in\mathcal{S}_{\infty}$$

It is well-known that $c^{\pi
ho}_{\sigma}\in\mathbb{Z}_{\geq0}.$

Each $\langle \mathfrak{S}^{\sigma}, D(\sigma) \subseteq \mathcal{D} \rangle$ is a subring, i.e., $c_{\sigma}^{\pi \rho} \neq 0 \quad \Rightarrow \quad D(\sigma) \subseteq D(\pi) \cup D$

For example, within the subring $\langle \mathfrak{S}^{\sigma}, D(\sigma) \subseteq \{k\} \rangle$, the $c_{\sigma}^{\pi\rho}$ are the famous Littlewood–Richardson coefficients, for which numerous combinatorial formulae are known.

The $\{\mathfrak{S}^{\sigma}, \sigma \in \mathcal{S}_{\infty}\}$ form a basis of $R \Rightarrow$ one can expand products:

$$\mathfrak{S}^{\pi}\mathfrak{S}^{
ho} = \sum_{\sigma\in\mathcal{S}_{\infty}} c^{\pi
ho}_{\sigma}\mathfrak{S}^{\sigma} \qquad \pi,
ho\in\mathcal{S}_{\infty}$$

It is well-known that $c^{\pi
ho}_{\sigma}\in\mathbb{Z}_{\geq0}.$

Each $\langle \mathfrak{S}^{\sigma}, D(\sigma) \subseteq \mathcal{D} \rangle$ is a subring, i.e., $c_{\sigma}^{\pi \rho} \neq 0 \quad \Rightarrow \quad D(\sigma) \subseteq D(\pi) \cup D(\rho)$

For example, within the subring $\langle \mathfrak{S}^{\sigma}, D(\sigma) \subseteq \{k\} \rangle$, the $c_{\sigma}^{\pi\rho}$ are the famous Littlewood–Richardson coefficients, for which numerous combinatorial formulae are known.

The $\{\mathfrak{S}^{\sigma}, \sigma \in \mathcal{S}_{\infty}\}$ form a basis of $R \Rightarrow$ one can expand products:

$$\mathfrak{S}^{\pi}\mathfrak{S}^{
ho} = \sum_{\sigma\in\mathcal{S}_{\infty}} c^{\pi
ho}_{\sigma}\mathfrak{S}^{\sigma} \qquad \pi,
ho\in\mathcal{S}_{\infty}$$

It is well-known that $c^{\pi
ho}_{\sigma}\in\mathbb{Z}_{\geq0}.$

Each $\langle \mathfrak{S}^{\sigma}, \ \mathcal{D}(\sigma) \subseteq \mathcal{D}
angle$ is a subring, i.e.,

$$c^{\pi
ho}_{\sigma}
eq \mathsf{0} \quad \Rightarrow \quad D(\sigma)\subseteq D(\pi)\cup D(
ho)$$

For example, within the subring $\langle \mathfrak{S}^{\sigma}, D(\sigma) \subseteq \{k\} \rangle$, the $c_{\sigma}^{\pi\rho}$ are the famous Littlewood–Richardson coefficients, for which numerous combinatorial formulae are known.

The $\{\mathfrak{S}^{\sigma}, \sigma \in \mathcal{S}_{\infty}\}$ form a basis of $R \Rightarrow$ one can expand products:

$$\mathfrak{S}^{\pi}\mathfrak{S}^{
ho} = \sum_{\sigma\in\mathcal{S}_{\infty}} c^{\pi
ho}_{\sigma}\mathfrak{S}^{\sigma} \qquad \pi,
ho\in\mathcal{S}_{\infty}$$

It is well-known that $c^{\pi\rho}_{\sigma} \in \mathbb{Z}_{\geq 0}$.

Each $\langle \mathfrak{S}^{\sigma}, D(\sigma) \subseteq \mathcal{D} \rangle$ is a subring, i.e.,

$$c^{\pi
ho}_{\sigma}
eq \mathsf{0} \quad \Rightarrow \quad D(\sigma)\subseteq D(\pi)\cup D(
ho)$$

For example, within the subring $\langle \mathfrak{S}^{\sigma}, D(\sigma) \subseteq \{k\} \rangle$, the $c_{\sigma}^{\pi\rho}$ are the famous Littlewood–Richardson coefficients, for which numerous combinatorial formulae are known.

Puzzles 00000000000

The generalisations [II]

Schubert

Puzzles 00000000000

Puzzles 00000000000

Puzzles 00000000000

Schubert polynomials

Exactly solvable models

Puzzles 00000000000

The generalisations [II]

9QQ

- My interest is in applying methods from exactly solvable models (a.k.a. quantum integrable systems), an area of mathematical physics, to the study of such families of polynomials.
- Circa 2008–2014, I discovered that many families of (symmetric/not) polynomials can be expressed as partition functions of exactly solvable models (Schur, Schur-Q, LLT, Schubert, Grothendieck, ...)
- In the case of Schubert/Grothendieck, this is closely related to the work of [Bergeron and Billey '93, Fomin and Kirillov '94].
- By now, there's a clear picture of a deep connection between these families of polynomials/rational functions, geometric representation theory and exact solvability [Nekrasov et al, Okounkov et al, Rimányi, Tarasov and Varchenko]

- My interest is in applying methods from exactly solvable models (a.k.a. quantum integrable systems), an area of mathematical physics, to the study of such families of polynomials.
- Circa 2008–2014, I discovered that many families of (symmetric/not) polynomials can be expressed as partition functions of exactly solvable models (Schur, Schur-Q, LLT, Schubert, Grothendieck, ...)
- In the case of Schubert/Grothendieck, this is closely related to the work of [Bergeron and Billey '93, Fomin and Kirillov '94].
- By now, there's a clear picture of a deep connection between these families of polynomials/rational functions, geometric representation theory and exact solvability [Nekrasov et al, Okounkov et al, Rimányi, Tarasov and Varchenko]

- My interest is in applying methods from exactly solvable models (a.k.a. quantum integrable systems), an area of mathematical physics, to the study of such families of polynomials.
- Circa 2008–2014, I discovered that many families of (symmetric/not) polynomials can be expressed as partition functions of exactly solvable models (Schur, Schur-Q, LLT, Schubert, Grothendieck, ...)
- In the case of Schubert/Grothendieck, this is closely related to the work of [Bergeron and Billey '93, Fomin and Kirillov '94].
- By now, there's a clear picture of a deep connection between these families of polynomials/rational functions, geometric representation theory and exact solvability [Nekrasov et al, Okounkov et al, Rimányi, Tarasov and Varchenko]

- My interest is in applying methods from exactly solvable models (a.k.a. quantum integrable systems), an area of mathematical physics, to the study of such families of polynomials.
- Circa 2008–2014, I discovered that many families of (symmetric/not) polynomials can be expressed as partition functions of exactly solvable models (Schur, Schur-Q, LLT, Schubert, Grothendieck, ...)
- In the case of Schubert/Grothendieck, this is closely related to the work of [Bergeron and Billey '93, Fomin and Kirillov '94].
- By now, there's a clear picture of a deep connection between these families of polynomials/rational functions, geometric representation theory and exact solvability [Nekrasov et al, Okounkov et al, Rimányi, Tarasov and Varchenko]

Permutations and strings

We encode permutations using strings:

There is freedom to add gratuitous nondescents, and to increase the size.

Schubert polynomials

Exactly solvable models

Puzzles 00000000000

Permutations and strings

There is freedom to add gratuitous nondescents, and to increase the size.

Permutations and strings

We encode permutations using strings:

There is freedom to add gratuitous nondescents, and to increase the size.

Permutations and strings

We encode permutations using strings:

There is freedom to add gratuitous nondescents, and to increase the size.

Permutations and strings

We encode permutations using strings:

There is freedom to add gratuitous nondescents, and to increase the size.

Schubert polynomials as an exactly solvable model

We have the following "partition function" identity, given any string λ corresponding to σ , with $\omega = sort(\lambda)$:

a sum over labellings of internal edges, such that each plaquette is

i, *i* < *j*, each of which on the *r*th row contributes a *x_r*. *i*. *i*.

where $i, j \in \mathbb{Z}_{\geq 0} \cup \{ _ \}$ with the convention $i <_{\Box \neg}$ for all $i \in \mathbb{Z}_{\geq 0}$.

Schubert polynomials as an exactly solvable model

We have the following "partition function" identity, given any string λ corresponding to σ , with $\omega = sort(\lambda)$:

a sum over labellings of internal edges, such that each plaquette is

where $i, j \in \mathbb{Z}_{\geq 0} \cup \{ _ \}$ with the convention $i \leq_{_\neg}$ for all $i \in \mathbb{Z}_{\geq 0}$.

. . .

Schubert computation example

We represent the string digits as colours:

so

Puzzles 00000000000

. . .

Schubert computation example

We represent the string digits as colours:

For example, if $\sigma=$ 132, $\lambda=$ 010 and

. . .

Schubert computation example

We represent the string digits as colours:

For example, if $\sigma=231,~\lambda=100$ and

Puzzles 00000000000

Digression: Generic Pipe Dreams

If one relaxes the constraint on i and j in the crossing

one gets what we call Generic Pipe Dreams:

These are relevant to the computation of the motivic Segre class rational functions; in the limit to Grothendieck polynomials, one recovers either ordinary pipe dreams or bumpless pipe dreams [Lam Lee Shimozono '18, Weigandt '18].

Puzzles 00000000000

Digression: Generic Pipe Dreams

If one relaxes the constraint on i and j in the crossing $\frac{1}{2}$

one gets what we call Generic Pipe Dreams:

These are relevant to the computation of the motivic Segre class rational functions; in the limit to Grothendieck polynomials, one recovers either ordinary pipe dreams or bumpless pipe dreams [Lam Lee Shimozono '18, Weigandt '18].

The Yang–Baxter equation

The Yang–Baxter equation $\left[\begin{smallmatrix}Brézin \mbox{ and }Zinn-Justin, '66; Yang, '67 \\ Baxter, '70s \end{smallmatrix}\right]$ is the signature of exact solvability.

Lemma

$$\begin{array}{c} x \\ y \\ y \\ \end{array} = \begin{array}{c} y \\ y \\ \end{array}$$

Apply it repeatedly to our partition function $(x = x_i, y = x_{i+1})$

we obtain, for $\omega_i = \omega_{i+1}$ the symmetry under $x_i \leftrightarrow x_{i+1}$, or for $\omega_i < \omega_{i+1}$, the induction formula for Schubert polynomials.

The Yang–Baxter equation

The Yang–Baxter equation $\left[\begin{smallmatrix}Brézin \mbox{ and }Zinn-Justin, '66; \mbox{ Yang, '67} \end{smallmatrix}\right]$ is the signature of exact solvability.

Lemma

Apply it repeatedly to our partition function $(x = x_i, y = x_{i+1})$

we obtain, for $\omega_i = \omega_{i+1}$ the symmetry under $x_i \leftrightarrow x_{i+1}$, or for $\omega_i < \omega_{i+1}$, the induction formula for Schubert polynomials.

~ n a (~
Structure constants as an exactly solvable model

- This reformulation of Schubert polynomials as partition function does not obviously help with our goal, which is the computation of $c_{\sigma}^{\pi\rho}$. \rightarrow Another idea is required to use exactly solvable methods for that.
- In 2008, I proposed to reinterpret Knutson–Tao puzzles as an exactly solvable model.

Structure constants as an exactly solvable model

- This reformulation of Schubert polynomials as partition function does not obviously help with our goal, which is the computation of $c_{\sigma}^{\pi\rho}$. \rightarrow Another idea is required to use exactly solvable methods for that.
- In 2008, I proposed to reinterpret Knutson–Tao puzzles as an exactly solvable model.

Structure constants as an exactly solvable model

- This reformulation of Schubert polynomials as partition function does not obviously help with our goal, which is the computation of $c_{\sigma}^{\pi\rho}$. \rightarrow Another idea is required to use exactly solvable methods for that.
- In 2008, I proposed to reinterpret Knutson–Tao puzzles as an exactly solvable model.

Puzzles 00000000000

The main theorem of I-II-III

Puzzles 00000000000

The main theorem of I-II-III

Puzzles 00000000000

The main theorem of I-II-III

Puzzles 00000000000

The main theorem of I-II-III

Puzzles occococococo

Separated descents

We say that $\pi, \rho \in \mathcal{S}_\infty$ have separated descents if

 $\min D(\pi) \geq \max D(\rho)$

Exactly solvable models

Puzzles • 0000000000

Separated descents

We say that $\pi, \rho \in \mathcal{S}_{\infty}$ have separated descents if

・ロット 日 ・ エット キョット 日 うろの

Exactly solvable models

Puzzles occococococo

Separated descents

We say that $\pi, \rho \in \mathcal{S}_\infty$ have separated descents if

 $\min D(\pi) \geq \max D(\rho)$

π	2	4	5	7	6	3	1	8
ω_1	-	-	-	-	3	4	5	5
ω_2	0	1	2	2	_	_	_	_
ρ	4	3	1	5	2	6	7	8

Exactly solvable models

Puzzles •00000000000

Separated descents

We say that $\pi, \rho \in \mathcal{S}_\infty$ have separated descents if

 $\min D(\pi) \geq \max D(\rho)$

π	2	4	5	7	6	3	1	8
ω_1	_	_	_	_	3	4	5	5
ω_3	0	1	2	2	3	4	5	5
ω_2	0	1	2	2	_	_	_	_
ρ	4	3	1	5	2	6	7	8

Puzzles occococococo

Separated descents

We say that $\pi,\rho\in\mathcal{S}_\infty$ have separated descents if

 $\min D(\pi) \geq \max D(\rho)$

π	2	4	5	7	6	3	1	8
ω_1	_	_	_	_	3	4	5	5
ω_3	0	1	2	2	3	4	5	5
ω_2	0	1	2	2	_	_	_	_
ho	4	3	1	5	2	6	7	8

We use ω_1 to encode π , ω_2 to encode ρ , and ω_3 to encode σ :

$$\lambda = 5_{-}4_{-}3_{-}5$$
 $\mu = 2_{-}102_{-}$

Separated descent rule

Theorem (A. Knutson, P. Z-J, '20, III)

Let π and ρ have separated descents. The coefficient of \mathfrak{S}_{σ} in the expansion of $\mathfrak{S}_{\pi}\mathfrak{S}_{\rho}$ is the number of puzzles made of paths going SW/SE, such that no triangle is empty, and paths can only cross at horizontal edges, with the additional constraint:

The size n of the puzzle must be chosen so that π, ρ, σ ∈ S_n.
 See also [Huang, '21].

Separated descent rule

Theorem (A. Knutson, P. Z-J, '20, III)

Let π and ρ have separated descents. The coefficient of \mathfrak{S}_{σ} in the expansion of $\mathfrak{S}_{\pi}\mathfrak{S}_{\rho}$ is the number of puzzles made of paths going SW/SE, such that no triangle is empty, and paths can only cross at horizontal edges, with the additional constraint:

The size *n* of the puzzle must be chosen so that π, ρ, σ ∈ S_n.
See also [Huang, '21].

Separated descent rule

Theorem (A. Knutson, P. Z-J, '20, III)

Let π and ρ have separated descents. The coefficient of \mathfrak{S}_{σ} in the expansion of $\mathfrak{S}_{\pi}\mathfrak{S}_{\rho}$ is the number of puzzles made of paths going SW/SE, such that no triangle is empty, and paths can only cross at horizontal edges, with the additional constraint:

- The size *n* of the puzzle must be chosen so that $\pi, \rho, \sigma \in S_n$.
- See also [Huang, '21].

Puzzles

Separated descent example

This leads to the following identity:

$$\begin{split} \mathfrak{S}^{24576318}\mathfrak{S}^{43152678} &= \mathfrak{S}^{56473218} + \mathfrak{S}^{64573218} \\ &+ \mathfrak{S}^{65374218} + \mathfrak{S}^{65472318} + \mathfrak{S}^{56384217} + \mathfrak{S}^{64385217} + \mathfrak{S}^{65284317} \end{split}$$

Puzzles 00000000000

Separated descent example

This leads to the following identity:

$$\begin{split} &\mathfrak{S}^{2457|6|3|18}\mathfrak{S}^{4|3|15|2678} = \mathfrak{S}^{56|47|3|2|18} + \mathfrak{S}^{6|457|3|2|18} \\ &+ \mathfrak{S}^{6|5|37|4|2|18} + \mathfrak{S}^{6|5|47|23|18} + \mathfrak{S}^{56|38|4|2|17} + \mathfrak{S}^{6|4|38|5|2|17} + \mathfrak{S}^{6|5|28|4|3|17} \end{split}$$

We say that $\pi, \rho \in S_{\infty}$ have almost separated descents if the last two descents of π occur at (or before) the first two descents of ρ :

$$\pi$$
 ... $|$ $|$ $|$ $|$ ρ $|$ $|$ $|$ $|$...

We say that $\pi, \rho \in S_{\infty}$ have almost separated descents if the last two descents of π occur at (or before) the first two descents of ρ :

$$\pi$$
 4 | 1 | 3 | 2 5 6 7
 ho 2 5 | 4 | 3 | 1 6 7

◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ◆日 ▶

We say that $\pi, \rho \in S_{\infty}$ have almost separated descents if the last two descents of π occur at (or before) the first two descents of ρ :

We say that $\pi, \rho \in S_{\infty}$ have almost separated descents if the last two descents of π occur at (or before) the first two descents of ρ :

π	4	1	3	2	5	6	7
ω_1	0	1	2	_	_	_	_
ω_3	0	1	_	3	4	4	4
ω_2	_	_	2	3	4	4	4
ρ	2	5	4	3	1	6	7

We say that $\pi, \rho \in S_{\infty}$ have almost separated descents if the last two descents of π occur at (or before) the first two descents of ρ :

π	4	1	3	2	5	6	7
ω_1	0	1	2	_	_	_	_
ω_3	0	1	_	3	4	4	4
ω_2	_	_	2	3	4	4	4
ho	2	5	4	3	1	6	7

We use ω_1 to encode π , ω_2 to encode ρ , and ω_3 to encode σ :

 $\lambda = 1_2 0_{---} \qquad \mu = 4_3 2_4 4$

Almost separated descent rule

Theorem (A. Knutson, P. Z-J, 2023, III)

Let π and ρ have almost separated descents. The coefficient of \mathfrak{S}_{σ} in the expansion of $\mathfrak{S}_{\pi}\mathfrak{S}_{\rho}$ is the number of puzzles made of paths going E/NE/SE, such that multiple paths of distinct colours can cross NW/NE edges (i.e., a subset $X \subseteq \{0, \ldots, d\}$), but at most one path deviates from the horizontal in any given triangle, with the further restriction on allowed triangles: (for the bottom row, use only top halves)

Puzzles 00000000000

Almost separated descent example

This leads to the following identity:

$$\begin{split} \mathfrak{S}^{4132567}\mathfrak{S}^{2543167} &= \mathfrak{S}^{6352147} + \mathfrak{S}^{5632147} \\ &+ \mathfrak{S}^{5462137} + \mathfrak{S}^{6432157} + \mathfrak{S}^{6523147} + \mathfrak{S}^{7342156} + \mathfrak{S}^{7253146} \end{split}$$

This leads to the following identity:

 $\mathfrak{S}^{4|13|2567}\mathfrak{S}^{25|4|3|167} = \mathfrak{S}^{6|35|2|147} + \mathfrak{S}^{56|3|2|147} + \mathfrak{S}^{5|46|2|137} + \mathfrak{S}^{6|4|3|2|157} + \mathfrak{S}^{6|5|23|147} + \mathfrak{S}^{7|34|2|156} + \mathfrak{S}^{7|25|3|146}$

Exactly solvable models

Puzzles 00000000000

Almost separated descent example

- In general, one builds solutions of YBE (and from there, an exactly solvable model) out of the representation theory of Yangians (or quantized loop algebras).
- The Schubert model (pipe dreams) is based on $\mathcal{Y}(\mathfrak{a}_d)$ where $d = |D(\sigma)|$.
- One could reformulate the search for Schubert puzzles as: finding a Yangian containing $\mathcal{Y}(\mathfrak{a}_d)$ as a subalgebra, with various combinatorial constraints coming from the geometry of root systems.
- For example, the separated descent model is also based on $\mathcal{Y}(\mathfrak{a}_n)$ with $n = |D(\pi)| + |D(\rho)|$.
- The almost separated descent model is based on $\mathcal{Y}(\mathfrak{d}_n)$.
- For technical reasons, we've (so far) restricted the search to simply laced Lie algebras.

- In general, one builds solutions of YBE (and from there, an exactly solvable model) out of the representation theory of Yangians (or quantized loop algebras).
- The Schubert model (pipe dreams) is based on $\mathcal{Y}(\mathfrak{a}_d)$ where $d = |D(\sigma)|$.
- One could reformulate the search for Schubert puzzles as: finding a Yangian containing $\mathcal{Y}(\mathfrak{a}_d)$ as a subalgebra, with various combinatorial constraints coming from the geometry of root systems.
- For example, the separated descent model is also based on $\mathcal{Y}(\mathfrak{a}_n)$ with $n = |D(\pi)| + |D(\rho)|$.
- The almost separated descent model is based on $\mathcal{Y}(\mathfrak{d}_n)$.
- For technical reasons, we've (so far) restricted the search to simply laced Lie algebras.

- In general, one builds solutions of YBE (and from there, an exactly solvable model) out of the representation theory of Yangians (or quantized loop algebras).
- The Schubert model (pipe dreams) is based on $\mathcal{Y}(\mathfrak{a}_d)$ where $d = |D(\sigma)|$.
- One could reformulate the search for Schubert puzzles as: finding a Yangian containing $\mathcal{Y}(\mathfrak{a}_d)$ as a subalgebra, with various combinatorial constraints coming from the geometry of root systems.
- For example, the separated descent model is also based on $\mathcal{Y}(\mathfrak{a}_n)$ with $n = |D(\pi)| + |D(\rho)|$.
- The almost separated descent model is based on $\mathcal{Y}(\mathfrak{d}_n)$.
- For technical reasons, we've (so far) restricted the search to simply laced Lie algebras.

- In general, one builds solutions of YBE (and from there, an exactly solvable model) out of the representation theory of Yangians (or quantized loop algebras).
- The Schubert model (pipe dreams) is based on $\mathcal{Y}(\mathfrak{a}_d)$ where $d = |D(\sigma)|$.
- One could reformulate the search for Schubert puzzles as: finding a Yangian containing $\mathcal{Y}(\mathfrak{a}_d)$ as a subalgebra, with various combinatorial constraints coming from the geometry of root systems.
- For example, the separated descent model is also based on $\mathcal{Y}(\mathfrak{a}_n)$ with $n = |D(\pi)| + |D(\rho)|$.
- The almost separated descent model is based on $\mathcal{Y}(\mathfrak{d}_n)$.
- For technical reasons, we've (so far) restricted the search to simply laced Lie algebras.

- In general, one builds solutions of YBE (and from there, an exactly solvable model) out of the representation theory of Yangians (or quantized loop algebras).
- The Schubert model (pipe dreams) is based on $\mathcal{Y}(\mathfrak{a}_d)$ where $d = |D(\sigma)|$.
- One could reformulate the search for Schubert puzzles as: finding a Yangian containing $\mathcal{Y}(\mathfrak{a}_d)$ as a subalgebra, with various combinatorial constraints coming from the geometry of root systems.
- For example, the separated descent model is also based on $\mathcal{Y}(\mathfrak{a}_n)$ with $n = |D(\pi)| + |D(\rho)|$.
- The almost separated descent model is based on $\mathcal{Y}(\mathfrak{d}_n)$.
- For technical reasons, we've (so far) restricted the search to simply laced Lie algebras.

- In general, one builds solutions of YBE (and from there, an exactly solvable model) out of the representation theory of Yangians (or quantized loop algebras).
- The Schubert model (pipe dreams) is based on $\mathcal{Y}(\mathfrak{a}_d)$ where $d = |D(\sigma)|$.
- One could reformulate the search for Schubert puzzles as: finding a Yangian containing $\mathcal{Y}(\mathfrak{a}_d)$ as a subalgebra, with various combinatorial constraints coming from the geometry of root systems.
- For example, the separated descent model is also based on $\mathcal{Y}(\mathfrak{a}_n)$ with $n = |D(\pi)| + |D(\rho)|$.
- The almost separated descent model is based on $\mathcal{Y}(\mathfrak{d}_n)$.
- For technical reasons, we've (so far) restricted the search to simply laced Lie algebras.

3-step to 5-step

Let $\pi, \rho \in S_{\infty}$ with $\#D(\pi) = \#D(\rho) = 3$, common middle descent:

 ρ

$$\pi$$
 | |

3-step to 5-step

Let
$$\pi, \rho \in S_{\infty}$$
 with $\#D(\pi) = \#D(\rho) = 3$,
common middle descent:

$$\pi$$
 2 | 1 5 | 4 | 3 6 7

$$\rho \qquad 4 \quad 5 \quad | \quad 3 \quad | \quad 2 \quad 6 \quad | \quad 1 \quad 7$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Puzzles 0000000000000

3-step to 5-step

Let
$$\pi, \rho \in S_{\infty}$$
 with $\#D(\pi) = \#D(\rho) = 3$, common middle descent:

Puzzles 0000000000000

3-step to 5-step

Let
$$\pi, \rho \in S_{\infty}$$
 with $\#D(\pi) = \#D(\rho) = 3$, common middle descent:

Puzzles 0000000000000

3-step to 5-step

Let
$$\pi, \rho \in S_{\infty}$$
 with $\#D(\pi) = \#D(\rho) = 3$, common middle descent:

π	2	1	5	4	3	6	7
ω_1	0	1	1	2	3	3	3
ω_3	0	1	2	3	4	5	5
ω_2	0	0	1	2	2	3	3
ho	4	5	3	2	6	1	7

We represent the ω_3 digits as oriented coloured paths:

▲ ▲ ▲ ▲ ▲ ▲ ▲ 0 1 2 3 4 5

We also have unoriented paths made of two colours, e.g.,

・ロト・日本・日本・日本・日本・日本
Puzzles 0000000000000

3-step to 5-step

Let $\pi, \rho \in \mathcal{S}_{\infty}$ with $\#D(\pi) = \#D(\rho) = 3$, common middle descent:

We also have unoriented paths made of two colours, e.g.,

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ◆ ○ ◆ ○ ◆

Puzzles 0000000000000

3-step to 5-step

Let $\pi, \rho \in \mathcal{S}_{\infty}$ with $\#D(\pi) = \#D(\rho) = 3$, common middle descent:

We also have unoriented paths made of two colours, e.g., \bullet . We use ω_1 to encode π , ω_2 to encode ρ , and ω_3 to encode σ :

3-step to 5-step rule

Theorem

Let $\pi, \rho \in S_{\infty}$ as above, and $\sigma \in S_{\infty}$ such that $\ell(\sigma) = \ell(\pi) + \ell(\rho)$. The coefficient of \mathfrak{S}_{σ} in the expansion of $\mathfrak{S}_{\pi}\mathfrak{S}_{\rho}$ is the number of puzzles made of oriented colored paths and unoriented bicolored paths with the following two types of triangles:

and their 180 degree rotations, where in the first, the three paths can be freely permuted, and in the second, all colors must be present.

Puzzles 00000000000

3-step to 5-step example

This leads to the following identity:

$$\begin{split} \mathfrak{S}^{2154367}\mathfrak{S}^{4532617} &= \mathfrak{S}^{6732415} + \mathfrak{S}^{5734216} + \mathfrak{S}^{5742316} \\ &+ \mathfrak{S}^{7435216} + \mathfrak{S}^{7532416} + \mathfrak{S}^{7452316} + \mathfrak{S}^{6472315} + \mathfrak{S}^{5672314} + \mathfrak{S}^{5473216} \end{split}$$

Puzzles

3-step to 5-step example

This leads to the following identity:

$$\begin{split} \mathfrak{S}^{2|15|4|367}\mathfrak{S}^{45|3|26|17} &= \mathfrak{S}^{67|3|24|15} + \mathfrak{S}^{57|34|2|16} + \mathfrak{S}^{57|4|23|16} \\ &+ \mathfrak{S}^{7|4|35|2|16} + \mathfrak{S}^{7|5|3|24|16} + \mathfrak{S}^{7|45|23|16} + \mathfrak{S}^{6|47|23|15} + \mathfrak{S}^{567|23|14} + \mathfrak{S}^{5|47|3|2|16} \end{split}$$

Further result. Associativity

Imposing associativity $(\mathfrak{S}^{\lambda}\mathfrak{S}^{\mu})\mathfrak{S}^{\nu} = \mathfrak{S}^{\lambda}(\mathfrak{S}^{\mu}\mathfrak{S}^{\nu})$ leads to quadratic constraints for the structure constants $c_{\nu}^{\lambda\mu}$:

Is there a natural bijection?

Integrability provides a linear algebraic answer:

Further result. Associativity

Imposing associativity $(\mathfrak{S}^{\lambda}\mathfrak{S}^{\mu})\mathfrak{S}^{\nu} = \mathfrak{S}^{\lambda}(\mathfrak{S}^{\mu}\mathfrak{S}^{\nu})$ leads to quadratic constraints for the structure constants $c_{\nu}^{\lambda\mu}$:

Is there a natural bijection?

Integrability provides a linear algebraic answer:

Assoc