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Introduction

Schubert polynomials were introduced by Lascoux and
Schützenberger to represent cohomology classes of Schubert cycles
in flag varieties.

Alain Lascoux
(1944–2013)

Marcel-Paul Schützenberger
(1920–1996)
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Definition

Given σ ∈ S∞ =
⋃

n≥1 Sn, define Sσ ∈ R := Z[x1, x2, . . .]
inductively by

Sσ = ∂i S
σsi for σ(i) < σ(i + 1)

Sn...21 =
n∏

i=1
xn−ii

where si is the elementary transposition i ↔ i + 1
and ∂i is the corresponding divided difference operator

∂i f :=
f − f |xi↔xi+1

xi − xi+1
f ∈ R
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Example: n = 3

S321 = x2
1x2

S312 = x2
1S231 = x1x2

S132 = x1 + x2S213 = x1

S123 = 1

∂1 ∂2

∂1∂2

∂1 ∂2
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Example: n = 3

S3|2|1 = x2
1x2

S3|12 = x2
1S23|1 = x1x2

S13|2 = x1 + x2S2|13 = x1

S123 = 1

∂1 ∂2

∂1∂2

∂1 ∂2
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Descents

Define the descent set of a permutation

D(σ) := {i ∈ Z>0 : σi > σi+1} σ ∈ S∞

Then it is obvious from their definition that Schubert polynomials
are symmetric in variables between two descents, and do not
depend on variables after the last descent.

Important example: Grassmannian permutations. If σ has no
descent outside k ∈ Z>0, then Sσ is a symmetric polynomial in
x1, . . . , xk – in fact, a Schur polynomial.
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The structure constants
The {Sσ, σ ∈ S∞} form a basis of R ⇒ one can expand products:

SπSρ =
∑
σ∈S∞

cπρσ Sσ π, ρ ∈ S∞

It is well-known that cπρσ ∈ Z≥0.

Each 〈Sσ, D(σ) ⊆ D〉 is a subring, i.e.,

cπρσ 6= 0 ⇒ D(σ) ⊆ D(π) ∪ D(ρ)

For example, within the subring 〈Sσ, D(σ) ⊆ {k}〉, the cπρσ are
the famous Littlewood–Richardson coefficients, for which
numerous combinatorial formulae are known.

More generally, we’ll be interested in computing cπρσ when we put
various restrictions on D(π) and D(ρ).
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The generalisations [II]

Schubert

Grothendieck

double
Schubert

double
Grothendieck

equivariant
motivic Segre

equivariant
SSM

motivic Segre

SSM

higher rank spin
Hall–Littlewood
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Where does exactly solvability come into play?

My interest is in applying methods from exactly solvable
models (a.k.a. quantum integrable systems), an area of
mathematical physics, to the study of such families of
polynomials.
Circa 2008–2014, I discovered that many families of
(symmetric/not) polynomials can be expressed as partition
functions of exactly solvable models (Schur, Schur-Q, LLT,
Schubert, Grothendieck, . . . )
In the case of Schubert/Grothendieck, this is closely related to
the work of [Bergeron and Billey ’93, Fomin and Kirillov ’94].
By now, there’s a clear picture of a deep connection between
these families of polynomials/rational functions, geometric
representation theory and exact solvability [Nekrasov et al,
Okounkov et al, Rimányi, Tarasov and Varchenko]
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Permutations and strings

We encode permutations using strings:

σ 1 3 6 2 5 4 7
ω 0 0 0 1 1 2 2

λ 0 1 0 2 1 0 2

There is freedom to add gratuitous nondescents, and to increase
the size.

Conversely, given λ, σ is the inverse of its standardisation.
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Schubert polynomials as an exactly solvable model
We have the following “partition function” identity, given any
string λ corresponding to σ, with ω = sort(λ):

Sσ =

ωn

...

ω2

ω1
λ1 λ2

. . . λn

a sum over labellings of internal edges, such that each plaquette is

i i
j

j , i < j , each of which on the r th row contributes a xr .

i j
j

i .

where i , j ∈ Z≥0 ∪ { } with the convention i < for all i ∈ Z≥0.
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Schubert computation example

We represent the string digits as colours:

0
· · ·

1
· · ·

2
· · ·

3
· · ·

4
· · ·

5
· · ·

so that plaquettes look like and .
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Schubert computation example

We represent the string digits as colours:

0
· · ·

1
· · ·

2
· · ·

3
· · ·

4
· · ·

5
· · ·

so that plaquettes look like and .

For example, if σ = 132, λ = 010 and

Sσ =

1
0
0

0 1 0

=

1
0
0

0 1 0

+

1
0
0

0 1 0

= x1 + x2
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Schubert computation example

We represent the string digits as colours:

0
· · ·

1
· · ·

2
· · ·

3
· · ·

4
· · ·

5
· · ·

so that plaquettes look like and .

For example, if σ = 231, λ = 100 and

Sσ =

1
0
0

1 0 0

=

1
0
0

1 0 0

= x1x2
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Digression: Generic Pipe Dreams

If one relaxes the constraint on i and j in the crossing i i
j

j , then

one gets what we call Generic Pipe Dreams:

These are relevant to the computation of the motivic Segre class
rational functions; in the limit to Grothendieck polynomials, one
recovers either ordinary pipe dreams or bumpless pipe dreams [Lam
Lee Shimozono ’18, Weigandt ’18].
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The Yang–Baxter equation
The Yang–Baxter equation [ Brézin and Zinn-Justin, ’66; Yang, ’67

Baxter, ’70s ] is the
signature of exact solvability.
Lemma

y

x
x−y =

y

x
x−y

Apply it repeatedly to our partition function (x = xi , y = xi+1)

ωn

ωi+1

ωi

ω1
λ1 λ2

. . . λn

=

λ1 λ2
. . . λn

ωn

ωi+1

ωi

ω1

=

λ1 λ2
. . . λn

ωn

ωi+1

ωi

ω1

we obtain, for ωi = ωi+1 the symmetry under xi ↔ xi+1, or for
ωi < ωi+1, the induction formula for Schubert polynomials.
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Structure constants as an exactly solvable model

This reformulation of Schubert polynomials as partition
function does not obviously help with our goal, which is the
computation of cπρσ . → Another idea is required to use
exactly solvable methods for that.
In 2008, I proposed to reinterpret Knutson–Tao puzzles as an
exactly solvable model.

cπρσ =
λ µ

ν

λ 7→π
µ 7→ρ
ν 7→σ
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This reformulation of Schubert polynomials as partition
function does not obviously help with our goal, which is the
computation of cπρσ . → Another idea is required to use
exactly solvable methods for that.
In 2008, I proposed to reinterpret Knutson–Tao puzzles as an
exactly solvable model.
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The main theorem of I-II-III
For the purposes of this slide, we index S and c with strings rather
than permutations.

ν

µλ∑
ν

cλµν Sν =

puzzle
lattice
model

Schubert
lattice
model

µλ

Sc
hu

be
rt

lat
tic

e
m

od
el

Schubert

lattice

m
odel = SλSµ

trivial
puzzle
lattice
model
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The main theorem of I-II-III
For the purposes of this slide, we index S and c with strings rather
than permutations.

ν

µλ∑
ν

cλµν Sν =

puzzle
lattice
model

Schubert
lattice
model

= YBE-like moves

µλ

Sc
hu

be
rt

lat
tic

e
m

od
el

Schubert

lattice

m
odel = SλSµ

trivial
puzzle
lattice
model
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Separated descents
We say that π, ρ ∈ S∞ have separated descents if

minD(π) ≥ maxD(ρ)

π

2 4 5 7 6 3 1 8
ω1 3 4 5 5

ω2 0 1 2 2
ω3 0 1 2 2 3 4 5 5

ρ

4 3 1 5 2 6 7 8

· · ·

· · ·

We use ω1 to encode π, ω2 to encode ρ, and ω3 to encode σ:

λ = 5 4 3 5 µ = 2 1 0 2
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π 2 4 5 7 6 3 1 8

ω1 3 4 5 5
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· · ·

· · ·

seemingly
gratuitous

We use ω1 to encode π, ω2 to encode ρ, and ω3 to encode σ:

λ = 5 4 3 5 µ = 2 1 0 2



Schubert polynomials Exactly solvable models Puzzles

Separated descents
We say that π, ρ ∈ S∞ have separated descents if

minD(π) ≥ maxD(ρ)

π 2 4 5 7 6 3 1 8
ω1 3 4 5 5

ω2 0 1 2 2

ω3 0 1 2 2 3 4 5 5

ρ 4 3 1 5 2 6 7 8

· · ·

· · ·

We use ω1 to encode π, ω2 to encode ρ, and ω3 to encode σ:

λ = 5 4 3 5 µ = 2 1 0 2



Schubert polynomials Exactly solvable models Puzzles

Separated descents
We say that π, ρ ∈ S∞ have separated descents if

minD(π) ≥ maxD(ρ)

π 2 4 5 7 6 3 1 8
ω1 3 4 5 5

ω2 0 1 2 2
ω3 0 1 2 2 3 4 5 5

ρ 4 3 1 5 2 6 7 8

· · ·

· · ·

We use ω1 to encode π, ω2 to encode ρ, and ω3 to encode σ:

λ = 5 4 3 5 µ = 2 1 0 2



Schubert polynomials Exactly solvable models Puzzles

Separated descents
We say that π, ρ ∈ S∞ have separated descents if

minD(π) ≥ maxD(ρ)

π 2 4 5 7 6 3 1 8
ω1 3 4 5 5

ω2 0 1 2 2
ω3 0 1 2 2 3 4 5 5

ρ 4 3 1 5 2 6 7 8

· · ·

· · ·

We use ω1 to encode π, ω2 to encode ρ, and ω3 to encode σ:

λ = 5 4 3 5 µ = 2 1 0 2



Schubert polynomials Exactly solvable models Puzzles

Separated descent rule

Theorem (A. Knutson, P. Z-J, ’20, III)
Let π and ρ have separated descents. The coefficient of Sσ in the
expansion of SπSρ is the number of puzzles made of paths going
SW/SE, such that no triangle is empty, and paths can only cross
at horizontal edges, with the additional constraint:

ij
j > i

The size n of the puzzle must be chosen so that π, ρ, σ ∈ Sn.
See also [Huang, ’21].
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Separated descent example

25

1
0

2

52

3

102

4

345
5

This leads to the following identity:

S24576318S43152678 = S56473218 + S64573218

+ S65374218 + S65472318 + S56384217 + S64385217 + S65284317



Schubert polynomials Exactly solvable models Puzzles

Separated descent example

25

1
0

2

52

3

102

4

345
5

This leads to the following identity:

S2457|6|3|18S4|3|15|2678 = S56|47|3|2|18 + S6|457|3|2|18

+S6|5|37|4|2|18+S6|5|47|23|18+S56|38|4|2|17+S6|4|38|5|2|17+S6|5|28|4|3|17
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Almost separated descents

We say that π, ρ ∈ S∞ have almost separated descents if the last
two descents of π occur at (or before) the first two descents of ρ:

π

4 1 3 2 5 6 7
ω1 0 1 2

ω2 2 3 4 4 4
ω3 0 1 3 4 4 4

ρ

2 5 4 3 1 6 7

· · ·

· · ·

We use ω1 to encode π, ω2 to encode ρ, and ω3 to encode σ:

λ = 1 2 0 µ = 4 3 2 4 4
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Almost separated descent rule

Theorem (A. Knutson, P. Z-J, 2023, III)
Let π and ρ have almost separated descents. The coefficient of Sσ

in the expansion of SπSρ is the number of puzzles made of paths
going E/NE/SE, such that multiple paths of distinct colours can
cross NW/NE edges (i.e., a subset X ⊆ {0, . . . , d}), but at most
one path deviates from the horizontal in any given triangle, with
the further restriction on allowed triangles: (for the bottom row,
use only top halves)

Xi < X

Y i < Y

i
X < iX

Y < i Y

i
ii

j j
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Almost separated descent example

1
1 4

4

4

4

3

3

2
2

0

0

4

4

This leads to the following identity:

S4132567S2543167 = S6352147 + S5632147

+ S5462137 + S6432157 + S6523147 + S7342156 + S7253146
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Almost separated descent example

1
1 4

4

4

4

3

3

2
2

0

0

4

4

This leads to the following identity:

S4|13|2567S25|4|3|167 = S6|35|2|147 + S56|3|2|147

+ S5|46|2|137 + S6|4|3|2|157 + S6|5|23|147 + S7|34|2|156 + S7|25|3|146
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The representation theory

In general, one builds solutions of YBE (and from there, an
exactly solvable model) out of the representation theory of
Yangians (or quantized loop algebras).
The Schubert model (pipe dreams) is based on Y(ad) where
d = |D(σ)|.
One could reformulate the search for Schubert puzzles as:
finding a Yangian containing Y(ad) as a subalgebra, with
various combinatorial constraints coming from the geometry
of root systems.
For example, the separated descent model is also based on
Y(an) with n = |D(π)|+ |D(ρ)|.
The almost separated descent model is based on Y(dn).
For technical reasons, we’ve (so far) restricted the search to
simply laced Lie algebras.
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3-step to 5-step
Let π, ρ ∈ S∞ with #D(π) = #D(ρ) = 3,
common middle descent:

π

2 1 5 4 3 6 7
ω1

ω2

0 1 1 2 3 3 3

0 0 1 2 2 3 3
ω3 0 1 2 3 4 5 5

ρ

4 5 3 2 6 1 7

We represent the ω3 digits as oriented coloured paths:

0 1 2 3 4 5

We also have unoriented paths made of two colours, e.g., .
We use ω1 to encode π, ω2 to encode ρ, and ω3 to encode σ:

λ = µ =
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3-step to 5-step rule

Theorem
Let π, ρ ∈ S∞ as above, and σ ∈ S∞ such that `(σ) = `(π) + `(ρ).
The coefficient of Sσ in the expansion of SπSρ is the number of
puzzles made of oriented colored paths and unoriented bicolored
paths with the following two types of triangles:

and their 180 degree rotations,
where in the first, the three paths can be freely permuted,
and in the second, all colors must be present.
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3-step to 5-step example

1054235

This leads to the following identity:

S2154367S4532617 = S6732415 + S5734216 + S5742316

+S7435216+S7532416+S7452316+S6472315+S5672314+S5473216
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3-step to 5-step example

1054235

This leads to the following identity:

S2|15|4|367S45|3|26|17 = S67|3|24|15 + S57|34|2|16 + S57|4|23|16

+S7|4|35|2|16+S7|5|3|24|16+S7|45|23|16+S6|47|23|15+S567|23|14+S5|47|3|2|16
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Further result. Associativity

Imposing associativity (SλSµ)Sν = Sλ(SµSν) leads to quadratic
constraints for the structure constants cλµν :

∑
ρ

cλµρ cρνπ =
∑
σ

cλσπ cµνσ
λ µ

ρ

π ν

=
µ

ν

σ
λ

π

Is there a natural bijection?

Integrability provides a linear algebraic answer:
Assoc

http://www.lpthe.jussieu.fr/~pzinn/assoc
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