Schubert puzzles as exactly solvable models

P. Zinn-Justin

The University of Melbourne

- A. Knutson, P. Zinn-Justin, Schubert puzzles and integrability I: invariant trilinear forms, arXiv:1706.10019
- A. Knutson, P. Zinn-Justin, Schubert puzzles and integrability II: multiplying motivic Segre classes, arXiv:2102.00563
- A. Knutson, P. Zinn-Justin, Schubert puzzles and integrability III: separated descents, arXiv:2306.13855
- P. Zinn-Justin, The CotangentSchubert Macaulay2 package

Introduction

Schubert polynomials were introduced by Lascoux and Schützenberger to represent cohomology classes of Schubert cycles in flag varieties.

Alain Lascoux (1944-2013)

Marcel-Paul Schützenberger (1920-1996)

Definition

Given $\sigma \in \mathcal{S}_{\infty}=\bigcup_{n \geq 1} \mathcal{S}_{n}$, define $\mathfrak{S}^{\sigma} \in R:=\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ inductively by

$$
\begin{aligned}
\mathfrak{S}^{\sigma} & =\partial_{i} \mathfrak{S}^{\sigma \mathfrak{S}_{i}} \quad \text { for } \sigma(i)<\sigma(i+1) \\
\mathfrak{S}^{n \ldots 21} & =\prod_{i=1}^{n} x_{i}^{n-i}
\end{aligned}
$$

where s_{i} is the elementary transposition $i \leftrightarrow i+1$ and ∂_{i} is the corresponding divided difference operator

$$
\partial_{i} f:=\frac{f-\left.f\right|_{x_{i} \leftrightarrow x_{i+1}}}{x_{i}-x_{i+1}} \quad f \in R
$$

Example: $n=3$

Example: $n=3$

Descents

Define the descent set of a permutation

$$
D(\sigma):=\left\{i \in \mathbb{Z}_{>0}: \sigma_{i}>\sigma_{i+1}\right\} \quad \sigma \in \mathcal{S}_{\infty}
$$

Then it is obvious from their definition that Schubert polynomials are symmetric in variables between two descents, and do not depend on variables after the last descent.

Important example: Grassmannian permutations. If σ has no descent outside $k \in \mathbb{Z}_{>0}$, then \mathfrak{S}_{σ} is a symmetric polynomial in $x_{1}, \ldots, x_{k}-$ in fact, a Schur polynomial.

Descents

Define the descent set of a permutation

$$
D(\sigma):=\left\{i \in \mathbb{Z}_{>0}: \sigma_{i}>\sigma_{i+1}\right\} \quad \sigma \in \mathcal{S}_{\infty}
$$

Then it is obvious from their definition that Schubert polynomials are symmetric in variables between two descents, and do not depend on variables after the last descent.

Important example: Grassmannian permutations. If σ has no descent outside $k \in \mathbb{Z}_{>0}$, then \mathfrak{S}_{σ} is a symmetric polynomial in x_{1}, \ldots, x_{k} - in fact, a Schur polynomial.

The structure constants

The $\left\{\mathfrak{S}^{\sigma}, \sigma \in \mathcal{S}_{\infty}\right\}$ form a basis of $R \Rightarrow$ one can expand products:

$$
\mathfrak{S}^{\pi} \mathfrak{S}^{\rho}=\sum_{\sigma \in \mathcal{S}_{\infty}} c_{\sigma}^{\pi \rho} \mathfrak{S}^{\sigma} \quad \pi, \rho \in \mathcal{S}_{\infty}
$$

It is well-known that $c_{\sigma}^{\pi \rho} \in \mathbb{Z}_{\geq 0}$
Each $\left\langle\widetilde{S}^{\sigma}, \quad D^{\prime}(\sigma) \subseteq \mathcal{D}\right\rangle$ is a subring, i.e.,

$$
c_{\sigma}^{\pi \rho} \neq 0 \quad \Rightarrow \quad D(\sigma) \subseteq D(\pi) \cup D(\rho)
$$

For example, within the subring $\left\langle\mathfrak{S}^{\sigma}, D(\sigma) \subseteq\{k\}\right\rangle$, the $c_{\sigma}^{\pi \rho}$ are the famous Littlewood-Richardson coefficients, for which
numerous combinatorial formulae are known.
More generally, we'll be interested in computing $c_{\sigma}^{\pi \rho}$ when we put various restrictions on $D(\pi)$ and $D(\rho)$.

The structure constants

The $\left\{\mathfrak{S}^{\sigma}, \sigma \in \mathcal{S}_{\infty}\right\}$ form a basis of $R \Rightarrow$ one can expand products:

$$
\mathfrak{S}^{\pi} \mathfrak{S}^{\rho}=\sum_{\sigma \in \mathcal{S}_{\infty}} c_{\sigma}^{\pi \rho} \mathfrak{S}^{\sigma} \quad \pi, \rho \in \mathcal{S}_{\infty}
$$

It is well-known that $c_{\sigma}^{\pi \rho} \in \mathbb{Z}_{\geq 0}$.
Each $\left\langle\mathfrak{S}^{\sigma}, D(\sigma) \subseteq \mathcal{D}\right\rangle$ is a subring, i.e.,

For example, within the subring $\left\langle\mathbb{S}^{\sigma}, D(\sigma) \subseteq\{k\}\right\rangle$, the $c_{\sigma}^{\pi \rho}$ are the famous Littlewood-Richardson coefficients, for which numerous combinatorial formulae are known.

More generally, we'll be interested in computing $c_{\sigma}^{\pi \rho}$ when we put various restrictions on $D(\pi)$ and $D(\rho)$.

The structure constants

The $\left\{\mathfrak{S}^{\sigma}, \sigma \in \mathcal{S}_{\infty}\right\}$ form a basis of $R \Rightarrow$ one can expand products:

$$
\mathfrak{S}^{\pi} \mathfrak{S}^{\rho}=\sum_{\sigma \in \mathcal{S}_{\infty}} c_{\sigma}^{\pi \rho} \mathfrak{S}^{\sigma} \quad \pi, \rho \in \mathcal{S}_{\infty}
$$

It is well-known that $c_{\sigma}^{\pi \rho} \in \mathbb{Z}_{\geq 0}$.
Each $\left\langle\mathfrak{S}^{\sigma}, D(\sigma) \subseteq \mathcal{D}\right\rangle$ is a subring, i.e.,

$$
c_{\sigma}^{\pi \rho} \neq 0 \quad \Rightarrow \quad D(\sigma) \subseteq D(\pi) \cup D(\rho)
$$

For example, within the subring $\left\langle\mathfrak{S}^{\sigma}, D(\sigma) \subseteq\{k\}\right\rangle$, the $c_{\sigma}^{\pi \rho}$ are the famous Littlewood-Richardson coefficients, for which
numerous combinatorial formulae are known.
More generally, we'll be interested in computing $c_{\sigma}^{\pi \rho}$ when we put
various restrictions on $D(\pi)$ and $D(\rho)$.

The structure constants

The $\left\{\mathfrak{S}^{\sigma}, \sigma \in \mathcal{S}_{\infty}\right\}$ form a basis of $R \Rightarrow$ one can expand products:

$$
\mathfrak{S}^{\pi} \mathfrak{S}^{\rho}=\sum_{\sigma \in \mathcal{S}_{\infty}} c_{\sigma}^{\pi \rho} \mathfrak{S}^{\sigma} \quad \pi, \rho \in \mathcal{S}_{\infty}
$$

It is well-known that $c_{\sigma}^{\pi \rho} \in \mathbb{Z}_{\geq 0}$.
Each $\left\langle\mathfrak{S}^{\sigma}, D(\sigma) \subseteq \mathcal{D}\right\rangle$ is a subring, i.e.,

$$
c_{\sigma}^{\pi \rho} \neq 0 \quad \Rightarrow \quad D(\sigma) \subseteq D(\pi) \cup D(\rho)
$$

For example, within the subring $\left\langle\mathfrak{S}^{\sigma}, D(\sigma) \subseteq\{k\}\right\rangle$, the $c_{\sigma}^{\pi \rho}$ are the famous Littlewood-Richardson coefficients, for which numerous combinatorial formulae are known.

More generally, we'll be interested in computing $C_{\sigma}^{\pi \rho}$ when we put

The structure constants

The $\left\{\mathfrak{S}^{\sigma}, \sigma \in \mathcal{S}_{\infty}\right\}$ form a basis of $R \Rightarrow$ one can expand products:

$$
\mathfrak{S}^{\pi} \mathfrak{S}^{\rho}=\sum_{\sigma \in \mathcal{S}_{\infty}} c_{\sigma}^{\pi \rho} \mathfrak{S}^{\sigma} \quad \pi, \rho \in \mathcal{S}_{\infty}
$$

It is well-known that $c_{\sigma}^{\pi \rho} \in \mathbb{Z}_{\geq 0}$.
Each $\left\langle\mathfrak{S}^{\sigma}, D(\sigma) \subseteq \mathcal{D}\right\rangle$ is a subring, i.e.,

$$
c_{\sigma}^{\pi \rho} \neq 0 \quad \Rightarrow \quad D(\sigma) \subseteq D(\pi) \cup D(\rho)
$$

For example, within the subring $\left\langle\mathfrak{S}^{\sigma}, D(\sigma) \subseteq\{k\}\right\rangle$, the $c_{\sigma}^{\pi \rho}$ are the famous Littlewood-Richardson coefficients, for which numerous combinatorial formulae are known.

More generally, we'll be interested in computing $c_{\sigma}^{\pi \rho}$ when we put various restrictions on $D(\pi)$ and $D(\rho)$.

The generalisations [II]

Schubert

The generalisations [II]

Grothendieck

Schubert

The generalisations [II]

The generalisations [II]

The generalisations [II]

The generalisations [II]

Where does exactly solvability come into play?

- My interest is in applying methods from exactly solvable models (a.k.a. quantum integrable systems), an area of mathematical physics, to the study of such families of polynomials.

> Circa 2008-2014, I discovered that many families of (symmetric/not) polynomials can be expressed as partition functions of exactly solvable models (Schur, Schur-Q, LLT, Schubert, Grothendieck, ...)
> - In the case of Schubert/Grothendieck, this is closely related to the work of [Bergeron and Billey '93, Fomin and Kirillov '94] By now, there's a clear picture of a deep connection between these families of polynomials/rational functions, geometric representation theory and exact solvability [Nekrasov et al, Okounkov et al, Rimányi, Tarasov and Varchenko]

Where does exactly solvability come into play?

- My interest is in applying methods from exactly solvable models (a.k.a. quantum integrable systems), an area of mathematical physics, to the study of such families of polynomials.
- Circa 2008-2014, I discovered that many families of (symmetric/not) polynomials can be expressed as partition functions of exactly solvable models (Schur, Schur-Q, LLT, Schubert, Grothendieck, ...)
In the case of Schubert/Grothendieck, this is closely related to the work of [Bergeron and Billey '93, Fomin and Kirillov '94] By now, there's a clear picture of a deen connection between these families of polynomials/rational functions, geometric representation theory and exact solvability [Nekrasov et al, Okounkov et al, Rimányi, Tarasov and Varchenko]

Where does exactly solvability come into play?

- My interest is in applying methods from exactly solvable models (a.k.a. quantum integrable systems), an area of mathematical physics, to the study of such families of polynomials.
- Circa 2008-2014, I discovered that many families of (symmetric/not) polynomials can be expressed as partition functions of exactly solvable models (Schur, Schur-Q, LLT, Schubert, Grothendieck, ...)
- In the case of Schubert/Grothendieck, this is closely related to the work of [Bergeron and Billey '93, Fomin and Kirillov '94].
these families of polynomials/rational functions, geometric representation theory and exact solvability [Nekrasov et al, Okounkov et al, Rimányi, Tarasov and Varchenko]

Where does exactly solvability come into play?

- My interest is in applying methods from exactly solvable models (a.k.a. quantum integrable systems), an area of mathematical physics, to the study of such families of polynomials.
- Circa 2008-2014, I discovered that many families of (symmetric/not) polynomials can be expressed as partition functions of exactly solvable models (Schur, Schur-Q, LLT, Schubert, Grothendieck, ...)
- In the case of Schubert/Grothendieck, this is closely related to the work of [Bergeron and Billey '93, Fomin and Kirillov '94].
- By now, there's a clear picture of a deep connection between these families of polynomials/rational functions, geometric representation theory and exact solvability [Nekrasov et al, Okounkov et al, Rimányi, Tarasov and Varchenko]

Permutations and strings

We encode permutations using strings:

There is freedom to add gratuitous nondescents, and to increase the size.

Permutations and strings

We encode permutations using strings:
alphabet is some arbitrary totally ordered set

σ	1	3	6	2	5	4	7
ω	0	0	0	1	1	2	2

There is freedom to add gratuitous nondescents, and to increase the size.

Permutations and strings

We encode permutations using strings:

There is freedom to add gratuitous nondescents, and to increase the size.

Permutations and strings

We encode permutations using strings:

There is freedom to add gratuitous nondescents, and to increase the size.

Conversely, given λ, σ is the inverse of its standardisation.

Permutations and strings

We encode permutations using strings:

There is freedom to add gratuitous nondescents, and to increase the size.

Conversely, given λ, σ is the inverse of its standardisation.

Schubert polynomials as an exactly solvable model

We have the following "partition function" identity, given any string λ corresponding to σ, with $\omega=\operatorname{sort}(\lambda)$:

a sum over labellings of internal edges, such that each plaquette is

- $\stackrel{H}{j}_{j}^{j}, i<j$, each of which on the $r^{\text {th }}$ row contributes a x_{r}.
-

where $i, j \in \mathbb{Z}_{\geq 0} \cup\left\{{ }_{-}\right\}$with the convention $i<_{-}$for all $i \in \mathbb{Z}_{\geq 0}$.

Schubert polynomials as an exactly solvable model

We have the following "partition function" identity, given any string λ corresponding to σ, with $\omega=\operatorname{sort}(\lambda)$:

a sum over labellings of internal edges, such that each plaquette is

- $\stackrel{H}{j}_{j}^{j}, i<j$, each of which on the $r^{\text {th }}$ row contributes a x_{r}.
-

where $i, j \in \mathbb{Z}_{\geq 0} \cup\left\{{ }_{-}\right\}$with the convention $i<_{-}$for all $i \in \mathbb{Z}_{\geq 0}$.

Schubert computation example

We represent the string digits as colours:

so that plaquettes look like $\square \square$ and \square.

Schubert computation example

We represent the string digits as colours:

so that plaquettes look like $\square \square$ and \square.
For example, if $\sigma=132, \lambda=010$ and

Schubert computation example

We represent the string digits as colours:

so that plaquettes look like $\square \square$ and \square.
For example, if $\sigma=231, \lambda=100$ and

Digression: Generic Pipe Dreams

If one relaxes the constraint on i and j in the crossing
 one gets what we call Generic Pipe Dreams:

These are relevant to the computation of the motivic Segre class rational functions; in the limit to Grothendieck polynomials, one recovers either ordinary pipe dreams or bumpless pipe dreams [Lam Lee Shimozono '18, Weigandt '18]

Digression: Generic Pipe Dreams

If one relaxes the constraint on i and j in the crossing
 one gets what we call Generic Pipe Dreams:

These are relevant to the computation of the motivic Segre class rational functions; in the limit to Grothendieck polynomials, one recovers either ordinary pipe dreams or bumpless pipe dreams [Lam Lee Shimozono '18, Weigandt '18].

The Yang-Baxter equation

 signature of exact solvability.

Lemma

Apply it repeatedly to our partition function $\left(x=x_{i}, y=x_{i+1}\right)$

we obtain, for $\omega_{i}=\omega_{i+1}$ the symmetry under $x_{i} \leftrightarrow x_{i+1}$, or for $\omega_{i}<\omega_{i+1}$, the induction formula for Schubert polynomials.

The Yang-Baxter equation

The Yang-Baxter equation [$\begin{aligned} & \text { Brézin and Zinn-Justin, '66; Yang, '67 } \\ & \text { Baxter, }{ }^{\prime} \text {] } 70 \text {] }\end{aligned}$ signature of exact solvability.

Lemma

Apply it repeatedly to our partition function $\left(x=x_{i}, y=x_{i+1}\right)$

we obtain, for $\omega_{i}=\omega_{i+1}$ the symmetry under $x_{i} \leftrightarrow x_{i+1}$, or for $\omega_{i}<\omega_{i+1}$, the induction formula for Schubert polynomials.

Structure constants as an exactly solvable model

- This reformulation of Schubert polynomials as partition function does not obviously help with our goal, which is the computation of $c_{\sigma}^{\pi \rho}$. \rightarrow Another idea is required to use exactly solvable methods for that.
exactly solvable model.

Structure constants as an exactly solvable model

- This reformulation of Schubert polynomials as partition function does not obviously help with our goal, which is the computation of $c_{\sigma}^{\pi \rho}$. \rightarrow Another idea is required to use exactly solvable methods for that.
- In 2008, I proposed to reinterpret Knutson-Tao puzzles as an exactly solvable model.

Structure constants as an exactly solvable model

- This reformulation of Schubert polynomials as partition function does not obviously help with our goal, which is the computation of $c_{\sigma}^{\pi \rho}$. \rightarrow Another idea is required to use exactly solvable methods for that.
- In 2008, I proposed to reinterpret Knutson-Tao puzzles as an exactly solvable model.

The main theorem of I-II-III

For the purposes of this slide, we index \mathfrak{S} and c with strings rather than permutations.

The main theorem of I-II-III

For the purposes of this slide, we index \mathfrak{S} and c with strings rather than permutations.

The main theorem of I-II-III

For the purposes of this slide, we index \mathfrak{S} and c with strings rather than permutations.

The main theorem of I-II-III

For the purposes of this slide, we index \mathfrak{S} and c with strings rather than permutations.

Separated descents

We say that $\pi, \rho \in \mathcal{S}_{\infty}$ have separated descents if

$$
\min D(\pi) \geq \max D(\rho)
$$

π

$$
\rho \quad \cdots \quad|\quad| \quad \mid
$$

Separated descents

We say that $\pi, \rho \in \mathcal{S}_{\infty}$ have separated descents if

$$
\min D(\pi) \geq \max D(\rho)
$$

$$
\begin{array}{lllll|l|l|l}
\pi & 2 & 4 & 5 & 7 & 6 & 3 & 1
\end{array}
$$

ρ
$4|3| 15 \mid 2$
$6 \quad 7$
8

Separated descents

We say that $\pi, \rho \in \mathcal{S}_{\infty}$ have separated descents if

$$
\min D(\pi) \geq \max D(\rho)
$$

π	2	4	5	7	6	3	1	8
ω_{1}	-	-	-	-	3	4	5	5
ω_{2}	0	1	2	2	-	-	-	-
ρ	4	3	1	5	2	6	7	8

Separated descents

We say that $\pi, \rho \in \mathcal{S}_{\infty}$ have separated descents if

$$
\min D(\pi) \geq \max D(\rho)
$$

π	2	4	5	7	6	3	1	8
ω_{1}	-	-	-	-	3	4	5	5
ω_{3}	0	1	2	2	3	4	5	5
ω_{2}	0	1	2	2	-	-	-	-
ρ	4	3	1	5	2	6	7	8

Separated descents

We say that $\pi, \rho \in \mathcal{S}_{\infty}$ have separated descents if

$$
\min D(\pi) \geq \max D(\rho)
$$

π	2	4	5	7	6	3	1	8
ω_{1}	-	-	-	-	3	4	5	5
ω_{3}	0	1	2	2	3	4	5	5
ω_{2}	0	1	2	2	-	-	-	-
ρ	4	3	1	5	2	6	7	8

We use ω_{1} to encode π, ω_{2} to encode ρ, and ω_{3} to encode σ :

$$
\lambda=5 _4 _3 _5 \quad \mu=2 _102
$$

Separated descent rule

Theorem (A. Knutson, P. Z-J, '20, III)

Let π and ρ have separated descents. The coefficient of \mathfrak{S}_{σ} in the expansion of $\mathfrak{S}_{\pi} \mathfrak{S}_{\rho}$ is the number of puzzles made of paths going SW/SE, such that no triangle is empty, and paths can only cross at horizontal edges, with the additional constraint:

$$
j>i
$$

Separated descent rule

Theorem (A. Knutson, P. Z-J, '20, III)

Let π and ρ have separated descents. The coefficient of \mathfrak{S}_{σ} in the expansion of $\mathfrak{S}_{\pi} \mathfrak{S}_{\rho}$ is the number of puzzles made of paths going SW/SE, such that no triangle is empty, and paths can only cross at horizontal edges, with the additional constraint:

$$
j>i
$$

- The size n of the puzzle must be chosen so that $\pi, \rho, \sigma \in \mathcal{S}_{n}$.

Separated descent rule

Theorem (A. Knutson, P. Z-J, '20, III)

Let π and ρ have separated descents. The coefficient of \mathfrak{S}_{σ} in the expansion of $\mathfrak{S}_{\pi} \mathfrak{S}_{\rho}$ is the number of puzzles made of paths going SW/SE, such that no triangle is empty, and paths can only cross at horizontal edges, with the additional constraint:

$$
j>i
$$

- The size n of the puzzle must be chosen so that $\pi, \rho, \sigma \in \mathcal{S}_{n}$.
- See also [Huang, '21].

Separated descent example

This leads to the following identity:

$$
\begin{aligned}
& \mathfrak{S}^{24576318} \mathfrak{S}^{43152678}=\mathfrak{S}^{56473218}+\mathfrak{S}^{64573218} \\
& +\mathfrak{S}^{65374218}+\mathfrak{S}^{65472318}+\mathfrak{S}^{56384217}+\mathfrak{S}^{64385217}+\mathfrak{S}^{65284317}
\end{aligned}
$$

Separated descent example

This leads to the following identity:

$$
\begin{aligned}
& \mathfrak{S}^{2457|6| 3 \mid 18} \mathfrak{S}^{4|3| 15 \mid 2678}=\mathfrak{S}^{56|47| 3|2| 18}+\mathfrak{S}^{6|457| 3|2| 18} \\
+ & \mathfrak{S}^{6|5| 37|4| 2 \mid 18}+\mathfrak{S}^{6|5| 47|23| 18}+\mathfrak{S}^{56|38| 4|2| 17}+\mathfrak{S}^{6|4| 38|5| 2 \mid 17}+\mathfrak{S}^{6|5| 28|4| 3 \mid 17}
\end{aligned}
$$

Almost separated descents

We say that $\pi, \rho \in \mathcal{S}_{\infty}$ have almost separated descents if the last two descents of π occur at (or before) the first two descents of ρ :

Almost separated descents

We say that $\pi, \rho \in \mathcal{S}_{\infty}$ have almost separated descents if the last two descents of π occur at (or before) the first two descents of ρ :

$$
\begin{array}{ll|l:l|llll}
\pi & 4 & 1 & 3 & 2 & 5 & 6 & 7 \\
\rho & 2 & 5 & 4 & 3 & 1 & 6 & 7
\end{array}
$$

Almost separated descents

We say that $\pi, \rho \in \mathcal{S}_{\infty}$ have almost separated descents if the last two descents of π occur at (or before) the first two descents of ρ :

$$
\begin{array}{cc|c|c|cccc}
\pi & 4 & 1 & 3 & 2 & 5 & 6 & 7 \\
\omega_{1} & 0 & 1 & 2 & - & - & - & - \\
\omega_{2} & - & - & 2 & 3 & 4 & 4 & 4 \\
\rho & 2 & 5 & 4 & 3 & 1 & 6 & 7
\end{array}
$$

Almost separated descents

We say that $\pi, \rho \in \mathcal{S}_{\infty}$ have almost separated descents if the last two descents of π occur at (or before) the first two descents of ρ :

$$
\begin{array}{cc|c:c|cccc}
\pi & 4 & 1 & 3 & 2 & 5 & 6 & 7 \\
\omega_{1} & 0 & 1 & 2 & - & - & - & - \\
\omega_{3} & 0 & 1 & - & 3 & 4 & 4 & 4 \\
\omega_{2} & - & - & 2 & 3 & 4 & 4 & 4 \\
\rho & 2 & 5 & 4 & 3 & 1 & 6 & 7
\end{array}
$$

Almost separated descents

We say that $\pi, \rho \in \mathcal{S}_{\infty}$ have almost separated descents if the last two descents of π occur at (or before) the first two descents of ρ :

$$
\begin{array}{cc|c|c|cccc}
\pi & 4 & 1 & 3 & 2 & 5 & 6 & 7 \\
\omega_{1} & 0 & 1 & 2 & - & - & - & - \\
\omega_{3} & 0 & 1 & - & 3 & 4 & 4 & 4 \\
\omega_{2} & - & - & 2 & 3 & 4 & 4 & 4 \\
\rho & 2 & 5 & 4 & 3 & 1 & 6 & 7
\end{array}
$$

We use ω_{1} to encode π, ω_{2} to encode ρ, and ω_{3} to encode σ :

$$
\lambda=1 _20 _\quad \mu=4 _32 _44
$$

Almost separated descent rule

Theorem (A. Knutson, P. Z-J, 2023, III)

Let π and ρ have almost separated descents. The coefficient of \mathfrak{S}_{σ} in the expansion of $\mathfrak{S}_{\pi} \mathfrak{S}_{\rho}$ is the number of puzzles made of paths going $E / N E / S E$, such that multiple paths of distinct colours can cross $N W / N E$ edges (i.e., a subset $X \subseteq\{0, \ldots, d\}$), but at most one path deviates from the horizontal in any given triangle, with the further restriction on allowed triangles: (for the bottom row, use only top halves)

Almost separated descent example

This leads to the following identity:

$$
\begin{aligned}
\mathfrak{S}^{4132567} \mathfrak{S}^{2543167} & =\mathfrak{S}^{6352147}+\mathfrak{S}^{5632147} \\
+\mathfrak{S}^{5462137} & +\mathfrak{S}^{6432157}+\mathfrak{S}^{6523147}+\mathfrak{S}^{7342156}+\mathfrak{S}^{7253146}
\end{aligned}
$$

Almost separated descent example

This leads to the following identity:

$$
\begin{aligned}
& \mathfrak{S}^{4|13| 2567} \mathfrak{S}^{25|4| 3 \mid 167}=\mathfrak{S}^{6|35| 2 \mid 147}+\mathfrak{S}^{56|3| 2 \mid 147} \\
+ & \mathfrak{S}^{5|46| 2 \mid 137}+\mathfrak{S}^{6|4| 3|2| 157}+\mathfrak{S}^{6|5| 23 \mid 147}+\mathfrak{S}^{7|34| 2 \mid 156}+\mathfrak{S}^{7|25| 3 \mid 146}
\end{aligned}
$$

The representation theory

- In general, one builds solutions of YBE (and from there, an exactly solvable model) out of the representation theory of Yangians (or quantized loop algebras).
- The Schubert model (pipe dreams) is based on $\mathcal{V}\left(\mathfrak{a}_{d}\right)$ where $d=|D(\sigma)|$
One could reformulate the search for Schubert puzzles as: finding a Yangian containing $\mathcal{Y}\left(\mathfrak{a}_{d}\right)$ as a subalgebra, with various combinatorial constraints coming from the geometry of root systems.
- For example, the separated descent model is also based on $\mathcal{Y}\left(\mathfrak{a}_{n}\right)$ with $n=|D(\pi)|+|D(\rho)|$
- The almost separated descent model is based on $\mathcal{V}\left(\partial_{n}\right)$
- For technical reasons, we've (so far) restricted the search to simply laced Lie algebras.

The representation theory

- In general, one builds solutions of YBE (and from there, an exactly solvable model) out of the representation theory of Yangians (or quantized loop algebras).
- The Schubert model (pipe dreams) is based on $\mathcal{Y}\left(\mathfrak{a}_{d}\right)$ where $d=|D(\sigma)|$.
One could reformulate the search for Schubert puzzles as: finding a Yangian containing $\mathcal{Y}\left(\mathfrak{a}_{d}\right)$ as a subalgebra, with various combinatorial constraints coming from the geometry of root systems
- For example, the separated descent model is also based on $\mathcal{Y}\left(\mathfrak{a}_{n}\right)$ with $n=|D(\pi)|+|D(\rho)|$
The almost separated descent model is based on $\mathcal{Y}\left(\mathfrak{D}_{n}\right)$ For technical reasons, we've (so far) restricted the search to simply laced Lie algebras.

The representation theory

- In general, one builds solutions of YBE (and from there, an exactly solvable model) out of the representation theory of Yangians (or quantized loop algebras).
- The Schubert model (pipe dreams) is based on $\mathcal{Y}\left(\mathfrak{a}_{d}\right)$ where $d=|D(\sigma)|$.
- One could reformulate the search for Schubert puzzles as: finding a Yangian containing $\mathcal{Y}\left(\mathfrak{a}_{d}\right)$ as a subalgebra, with various combinatorial constraints coming from the geometry of root systems.

The representation theory

- In general, one builds solutions of YBE (and from there, an exactly solvable model) out of the representation theory of Yangians (or quantized loop algebras).
- The Schubert model (pipe dreams) is based on $\mathcal{Y}\left(\mathfrak{a}_{d}\right)$ where $d=|D(\sigma)|$.
- One could reformulate the search for Schubert puzzles as: finding a Yangian containing $\mathcal{Y}\left(\mathfrak{a}_{d}\right)$ as a subalgebra, with various combinatorial constraints coming from the geometry of root systems.
- For example, the separated descent model is also based on $\mathcal{Y}\left(\mathfrak{a}_{n}\right)$ with $n=|D(\pi)|+|D(\rho)|$.
The almost separated descent model is based on $\mathcal{Y}\left(\mathfrak{D}_{n}\right)$ For technical reasons, we've (so far) restricted the search to simply laced Lie algebras.

The representation theory

- In general, one builds solutions of YBE (and from there, an exactly solvable model) out of the representation theory of Yangians (or quantized loop algebras).
- The Schubert model (pipe dreams) is based on $\mathcal{Y}\left(\mathfrak{a}_{d}\right)$ where $d=|D(\sigma)|$.
- One could reformulate the search for Schubert puzzles as: finding a Yangian containing $\mathcal{Y}\left(\mathfrak{a}_{d}\right)$ as a subalgebra, with various combinatorial constraints coming from the geometry of root systems.
- For example, the separated descent model is also based on $\mathcal{Y}\left(\mathfrak{a}_{n}\right)$ with $n=|D(\pi)|+|D(\rho)|$.
- The almost separated descent model is based on $\mathcal{Y}\left(\mathfrak{d}_{n}\right)$.

The representation theory

- In general, one builds solutions of YBE (and from there, an exactly solvable model) out of the representation theory of Yangians (or quantized loop algebras).
- The Schubert model (pipe dreams) is based on $\mathcal{Y}\left(\mathfrak{a}_{d}\right)$ where $d=|D(\sigma)|$.
- One could reformulate the search for Schubert puzzles as: finding a Yangian containing $\mathcal{Y}\left(\mathfrak{a}_{d}\right)$ as a subalgebra, with various combinatorial constraints coming from the geometry of root systems.
- For example, the separated descent model is also based on $\mathcal{Y}\left(\mathfrak{a}_{n}\right)$ with $n=|D(\pi)|+|D(\rho)|$.
- The almost separated descent model is based on $\mathcal{Y}\left(\mathfrak{d}_{n}\right)$.
- For technical reasons, we've (so far) restricted the search to simply laced Lie algebras.

3-step to 5-step

Let $\pi, \rho \in \mathcal{S}_{\infty}$ with $\# D(\pi)=\# D(\rho)=3$, common middle descent: π

ρ

3-step to 5-step

Let $\pi, \rho \in \mathcal{S}_{\infty}$ with $\# D(\pi)=\# D(\rho)=3$,
common middle descent:

$$
\begin{array}{ll|ll|l|lll}
\pi & 2 & 1 & 5 & 4 & 3 & 6 & 7
\end{array}
$$

ρ	4	5	3	2	6	1	7

3-step to 5-step

Let $\pi, \rho \in \mathcal{S}_{\infty}$ with $\# D(\pi)=\# D(\rho)=3$,
common middle descent:

$$
\begin{array}{cc|cc|c|ccc}
\pi & 2 & 1 & 5 & 4 & 3 & 6 & 7 \\
\omega_{1} & 0 & 1 & 1 & 2 & 3 & 3 & 3 \\
\omega_{2} & 0 & 0 & 1 & 2 & 2 & 3 & 3 \\
\rho & 4 & 5 & 3 & 2 & 6 & 1 & 7
\end{array}
$$

3-step to 5-step

Let $\pi, \rho \in \mathcal{S}_{\infty}$ with $\# D(\pi)=\# D(\rho)=3$,
common middle descent:

π	2	1	5	4	3	6	7
ω_{1}	0	1	1	2	3	3	3
ω_{3}	0	1	2	3	4	5	5
ω_{2}	0	0	1	2	2	3	3
ρ	4	5	3	2	6	1	7

3-step to 5-step

Let $\pi, \rho \in \mathcal{S}_{\infty}$ with $\# D(\pi)=\# D(\rho)=3$, common middle descent:

π	2	1	5	4	3	6	7
ω_{1}	0	1	1	2	3	3	3
ω_{3}	0	1	2	3	4	5	5
ω_{2}	0	0	1	2	2	3	3
ρ	4	5	3	2	6	1	7

We represent the ω_{3} digits as oriented coloured paths:

We also have unoriented paths made of two colours, e.g.,

3-step to 5-step

Let $\pi, \rho \in \mathcal{S}_{\infty}$ with $\# D(\pi)=\# D(\rho)=3$, common middle descent:

π	2	1	5	4	3	6	
ω_{1}	+	+	+	!	1	1	
ω_{3}	\uparrow	+	+	t	1	1	
ω_{2}	1	$\stackrel{1}{1}$	\vdots	+	\dagger	1	
ρ	4	5	3	2	6	1	

We represent the ω_{3} digits as oriented coloured paths:

We also have unoriented paths made of two colours, e.g.,

3-step to 5-step

Let $\pi, \rho \in \mathcal{S}_{\infty}$ with $\# D(\pi)=\# D(\rho)=3$, common middle descent:

π	2	1	5	4	3	6	7
ω_{1}	\uparrow	\uparrow	\uparrow	$\stackrel{\text { \% }}{1}$	$\stackrel{\square}{6}$	$\stackrel{3}{1}$	$\stackrel{1}{6}$
ω_{3}	\wedge	\uparrow	\uparrow	1	1	1	\uparrow
ω_{2}	\%	\vdots	!	\uparrow	1	1	1
ρ	4	5	3	2	6	1	7

We represent the ω_{3} digits as oriented coloured paths:

We also have unoriented paths made of two colours, e.g., We use ω_{1} to encode π, ω_{2} to encode ρ, and ω_{3} to encode σ :

$$
\lambda=+|1|+1 \mid \mu=t+1+1+t
$$

3-step to 5-step rule

Theorem

Let $\pi, \rho \in \mathcal{S}_{\infty}$ as above, and $\sigma \in \mathcal{S}_{\infty}$ such that $\ell(\sigma)=\ell(\pi)+\ell(\rho)$. The coefficient of \mathfrak{S}_{σ} in the expansion of $\mathfrak{S}_{\pi} \mathfrak{S}_{\rho}$ is the number of puzzles made of oriented colored paths and unoriented bicolored paths with the following two types of triangles:

and their 180 degree rotations, where in the first, the three paths can be freely permuted, and in the second, all colors must be present.

3-step to 5-step example

This leads to the following identity:

$$
\begin{aligned}
& \mathfrak{S}^{2154367} \mathfrak{S}^{4532617}=\mathfrak{S}^{6732415}+\mathfrak{S}^{5734216}+\mathfrak{S}^{5742316} \\
& \quad+\mathfrak{S}^{7435216}+\mathfrak{S}^{7532416}+\mathfrak{S}^{7452316}+\mathfrak{S}^{6472315}+\mathfrak{S}^{5672314}+\mathfrak{S}^{5473216}
\end{aligned}
$$

3-step to 5-step example

This leads to the following identity:

$$
\begin{aligned}
& \mathfrak{S}^{2|15| 4 \mid 367} \mathfrak{S}^{45|3| 26 \mid 17}=\mathfrak{S}^{67|3| 24 \mid 15}+\mathfrak{S}^{57|34| 2 \mid 16}+\mathfrak{S}^{57|4| 23 \mid 16} \\
& +\mathfrak{S}^{7|4| 35|2| 16}+\mathfrak{S}^{7|5| 3|24| 16}+\mathfrak{S}^{7|45| 23 \mid 16}+\mathfrak{S}^{6|47| 23 \mid 15}+\mathfrak{S}^{567|23| 14}+\mathfrak{S}^{5|47| 3|2| 16}
\end{aligned}
$$

Further result. Associativity

Imposing associativity $\left(\mathfrak{S}^{\lambda} \mathfrak{S}^{\mu}\right) \mathfrak{S}^{\nu}=\mathfrak{S}^{\lambda}\left(\mathfrak{S}^{\mu} \mathfrak{S}^{\nu}\right)$ leads to quadratic constraints for the structure constants $c_{\nu}^{\lambda \mu}$:
$\sum_{\rho} c_{\rho}^{\lambda \mu} c_{\pi}^{\rho \nu}=\sum_{\sigma} c_{\pi}^{\lambda \sigma} c_{\sigma}^{\mu \nu}$

Is there a natural bijection?
Integrability provides a linear algebraic answer:

Further result. Associativity

Imposing associativity $\left(\mathfrak{S}^{\lambda} \mathfrak{S}^{\mu}\right) \mathfrak{S}^{\nu}=\mathfrak{S}^{\lambda}\left(\mathfrak{S}^{\mu} \mathfrak{S}^{\nu}\right)$ leads to quadratic constraints for the structure constants $c_{\nu}^{\lambda \mu}$:

$$
\sum_{\rho} c_{\rho}^{\lambda \mu} c_{\pi}^{\rho \nu}=\sum_{\sigma} c_{\pi}^{\lambda \sigma} c_{\sigma}^{\mu \nu}
$$

Is there a natural bijection?
Integrability provides a linear algebraic answer:

