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The six-vertex model

with domain wall boundary conditions

V. Korepin and P. Zinn-Justin

• Review of the six-vertex model.

• Determinant formula for the partition function with domain

wall boundary conditions.

• Thermodynamic limit: Toda equations. Matrix model solu-

tion.

• Connection with domino tilings (dimers on square lattice).
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The six-vertex model

Z =
∑

arrow configurations

∏

all vertices

e−ε/T

The Boltzmann weights are:

e−ε/T =
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• Periodic Boundary Conditions: (M ×N)

Solution in the transfer matrix formalism (Lieb, Sutherland)

Z = tr T M

1 2 N

T=

T is an operator acting on C
2N

.

Thermodynamic limit (M, N → ∞): Z ∼ λM where λ is the

largest eigenvalue of T .

Exact diagonalization of T via Bethe Ansatz:

|Ψ〉 = B(λ1) . . . B(λn) |0〉

B

|Ψ>

|0>

B

B
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Three phases distinguished by the value of the parameter

∆ =
a2 + b2 − c2

2ab

b/c

a/c

1

1

D

AF

F

F

∆=−

∆=1

∆=1
∆=−1

8

• ∆ > 1: ferroelectric phase.

Frozen phase. Z ∼ max(a, b)MN

• −1 < ∆ < 1: disordered phase.

Critical phase. Introduce the parametrization

a = sin(γ − t) b = sin(γ + t) c = sin(2γ)

Z ∼ e−MN F with

F = −
∫ +∞

−∞
dx

sinh 2(γ + t)x sinh(π − 2γ)x

2x sinhπx cosh 2γx

• ∆ < −1: anti-ferroelectric phase.

Non-critical phase.
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• Domain Wall Boundary Conditions: (N ×N square lattice)

µ µ µ µ

λ

λ

λ

λ
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General inhomogeneous model:

the weight of the vertex at row i, column k is

a = sinh(λi − µk − γ)

b = sinh(λi − µk + γ)

c = sinh(2γ)

Yang–Baxter equation:

µ µ

λ

µµ

λ
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The partition function ZN ({λi}, {µk}) is entirely determined

by the following four properties: (Izergin, Korepin)

a) Z1 = sinh(2γ).

b) ZN ({λi}, {µk}) is a symmetric function of the {λi} and of

the {µk}.

c) ZN ({λi}, {µk}) = e−(N−1)λiPN−1(e
2λi) where PN−1 is a

polynomial of degree N − 1, and similarly for the µk.

d) ZN ({λi}, {µk}) obeys the following recursion relation:

ZN ({λi}, {µk})|λj−µl=γ = sinh(2γ)
∏

1≤k≤N
k 6=l

sinh(λj − µk + γ)

∏

1≤i≤N
i6=j

sinh(λi − µl + γ) ZN−1({λi}i6=j , {µk}k 6=l)
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Proof of b):

R↓↓(µi−µi+1)ZN ({. . . µi, µi+1 . . .}) =

i+1µµ i

=

µ i µi+1

= · · · =

µi µ i+1

= R↑↑(µi − µi+1)ZN ({. . . µi+1, µi . . .})

Proof of d):

Because of property b), we can assume that j = l = 1. Since

λk−µl = γ implies a(λj −µl) = 0, all configurations are of the

form

µ 1

λ 1
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⇒ Determinant formula for ZN ({λi}, {µk}):

ZN ({λi}, {µk}) =

∏

1≤i,k≤N sinh(λi − µk + γ) sinh(λi − µk − γ)
∏

1≤i<j≤N sinh(λi − λj)
∏

1≤k<l≤N sinh(µk − µl)

det
1≤i,k≤N

[

sinh(2γ)

sinh(λi − µk + γ) sinh(λi − µk − γ)

]

Homogeneous limit: λi − µk ≡ t.

ZN (t) =
(sinh(t + γ) sinh(t− γ))N2

(

∏N−1
n=0 n!

)2 det
1≤i,k≤N

[

di+k−2

dti+k−2
φ(t)

]

with

φ(t) ≡ sinh(2γ)

sinh(t + γ) sinh(t− γ)
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• Toda equations

τN = det
1≤i,k≤N

[

di+k−2

dti+k−2
φ(t)

]

Apply Jacobi’s determinant identity
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to τN+1:

τNτ ′′
N − τ ′

N
2 = τN+1τN−1 ∀N ≥ 1

or

(log τN )′′ =
τN+1τN−1

τ2
N

∀N ≥ 1

which is manifestly equivalent to the usual Toda equations:

eϕN = τN/τN−1

ϕ′′
N = eϕN+1−ϕN − eϕN−ϕN−1 ∀N ≥ 2

This is Toda semi-infinite chain.



(10)

• Thermodynamic limit = large N limit

Expected asymptotic behavior:

τN =

(

N−1
∏

n=0

n!

)2

eN2f(t)+···

Assumption: The ZN have a smooth large N limit. Plugging

this into

(log τN )′′ =
τN+1τN−1

τ2
N

∀N ≥ 1

yields an ordinary differential equations for f :

f ′′ = e2f

General solution:

ef(t) =
α

sinh(α(t− t0))

with α real or purely imaginary.
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F. Ferroelectric phase:

a = sinh(t− γ) b = sinh(t + γ) c = sinh(2γ)

with |γ| < t. Dominant configuration:

The solution of the ODE is

ef(t) =
1

sinh(t− |γ|)

so that finally

lim
N→∞

Z
1/N2

N = sinh(t + |γ|) = max(a, b)

which is identical to the PBC result.
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D. Disordered phase:

a = sin(γ − t) b = sin(γ + t) c = sin(2γ)

with |t| < γ, 0 < γ < π/2. Must be an even function of t:

ef(t) =
α

cos(αt)

Use boundary conditions at t = ±γ: cancellation of zeroes

implies α = π
2γ .

lim
N→∞

Z
1/N2

N = sin(γ − t) sin(γ + t)
π/2γ

cos(πt/2γ)

Example: pure entropy (T =∞). t = 0, γ = π/3.

Z
1/N2

N → 3
√

3
4 ≈ 1.30 (Kuperberg). As opposed to PBC:

Z
1/N2

N → 8
3
√

3
≈ 1.54 (Lieb).

Montecarlo simulations.
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Pictures reminiscent of random tilings. Connection?
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• Hänkel matrices, Toda hierarchy, one-matrix model

Let us write

φ(t) =

∫

dλf(λ) etλ

so that

φ(k)(t) =

∫

dλf(λ) λketλ

Then we can rewrite the determinant

τN = det
1≤i,k≤N

[

di+k−2

dti+k−2
φ(t)

]

=

∫

dλ1 . . . dλN

∑

σ∈SN

(−1)σ
N
∏

i=1

[

f(λi)e
tλiλ

σ(i)+i−2
i

]

=
1

N !

∫

dλ1 . . . dλN∆(λi)
2

N
∏

i=1

[

f(λi)e
tλi
]

where ∆(λi) =
∏

i<j(λi − λj). This is the expression in terms

of eigenvalues λi of the one-matrix integral

τN =

∫

dM etr V (M)

with V (x) = tx + log f(x). More generally, if

φ(t1, . . . , tq . . .) =

∫

dλf(λ) e

∑

q≥1
tqλq

then the τN are tau-functions of the whole Toda chain hierarchy

with respect to the times tq. (cf Adler, van Moerbeke)
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• Solution via Matrix Models:

D. Disordered phase: (|t| < γ < π/2)

φ(t) =
sin(2γ)

sin(γ + t) sin(γ − t)
=

∫ +∞

−∞
dλ etλ sinh λ

2 (π − 2γ)

sinh λ
2 π

Key insight from matrix models: λ ∼ N .

Rescaling: µ = γλ/N . Then

τN ∼ cN γ−N2

∫ +∞

−∞
dµ1 . . . dµN∆(µi)

2
N
∏

i=1

[

sinh Nµi(
π
2γ − 1)

sinhNµi
π
2γ

eN t
γ

µi

]

One can simplify:
sinh Nµ( π

2γ
−1)

sinh Nµ π
2γ

∼ e−N |µ|.

τN ∼ cN γ−N2

∫ +∞

−∞
dµ1 . . . dµN∆(µi)

2eN
∑

i
( t

γ
µi−|µi|)

⇒ ef(t) = 1
γ Φ
(

t
γ

)

. To compute Φ one must actually solve the

matrix model.

AF. Anti-ferroelectric phase: (|t| < γ)

φ(t) =
sinh(2γ)

sinh(γ + t) sinh(γ − t)
=

∞
∑

l=−∞
e2tle−2γ|l|

Näıvely, after rescaling: µ = 2γl/N , same as D ⇒ no phase

transition between D and AF!!
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• Resolution of the paradox:

Density of eigenvalues ρ(µ) in the large N limit in phase D:

µ

ρV

In phase AF, |li − lj | ≥ 1 ⇒ the density must satisfy

ρ(µ) ≤ 1

2γ

⇒ Saturation of eigenvalues in the valley.

Solution given in terms of elliptic integrals. . .

• Phase transition D / AF:

Estimate of free energy singularity near γ = 0:

ρ(µ) ∼ 1

π2
log |µ|

⇒ the saturated region has a width ∆µ ∼ exp(−π2/2γ).

More explicitly (γ ∝
√

Tc − T )

Fsing ∝ e−C/
√

Tc−T

Same leading singularity as in PBC.
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• Connection with domino tilings

1

1

1

OR

2a  = =

2

a  =

b  =

=

=

c  = = c  = =

b  = =2

Example with DWBC:

Domain Wall Boundary Conditions←→ Aztec Diamond shape.
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Each vertex of type c1 gives rise to two local domino configu-

rations.

With Domain Wall Boundary Conditions, #c1 = #c2 +N and

therefore #c1 = 1
2#c + N

2 .

#Domino tilings of order N =
∑

6v configurations

2#c1

= 2N/2ZN (a = b = 1, c =
√

2)

The counting of domino tilings (of the Aztec Diamond) is equiv-

alent to the six-vertex model at a = b = 1, c =
√

2 (with

DWBC).

Remark: using the even sub-lattice instead of the odd sub-

lattice, one finds

#Domino tilings of order N = 2−(N+1)/2ZN+1(a = b = 1, c =
√

2)

and therefore (Elkies, Kuperberg, Larsen, Propp)

ZN (a = b = 1, c =
√

2) = 2N2/2
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• (Jockush, Propp, Shor) Fix ε > 0. Then for all sufficiently

large N , all but an ε fraction of the domino tilings of the Aztec

diamond of order N will have a temperate zone whose boundary

stays uniformly within distance εN of the inscribed circle.

• (Cohn, Elkies, Propp) Computation of a certain one point

function P(x, y) in the thermodynamic limit:

P(x, y) =















0 x2 + y2 ≥ 1/2 and y < 1/2
1 x2 + y2 ≥ 1/2 and y > 1/2

1
2 + 1

π arctan

(

2y−1√
1−2(x2+y2)

)

x2 + y2 < 1/2
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Prospects:

• Local free energy (1-point function)? Determinant formula?

Comparison with translationally invariant case?

• Subdominant corrections? Either via connection with ma-

trix models, or using more traditional methods from classical

integrable differential equations.

• Applications to combinatorics (Alternating Sign Matrices,

Self-Complementary Totally Symmetric Plane Partitions . . .)


