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Introduction

Introduction

Ten years ago, P. Di Francesco, A. Knutson and myself investigated a
mysterious new connection: some quantum integrable systems
effectively performed computations in algebraic geometry (equivariant
cohomology).

My interest has been revived by the recent work of Maulik and
Okounkov on quantum cohomology and quantum groups, which
formalizes the appearance of quantum integrable systems in the
context of geometric representation theory (in a fairly general
setting), and also connects to a number of hot topics, including
N = 1 SUSY gauge theories and the AGT conjecture.

The goal of this talk (and upcoming paper) is to reanalyze and
generalize this connection in view of recent developments.
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Quiver varieties Definition

Quiver varieties

Start with an Ak−1 Nakajima quiver, i.e., a comb-like quiver with arrows
doubled:

w1

v1

w2

v2

w3

v3

w4

v4

w5

v5

The numbers are the dimensions of the vector spaces at each vertex:
dimVi = vi , dimWi = wi . The arrows are linear maps.
Also set N =

∑k−1
i=1 wi , M =

∑k−1
i=1 i wi .

A simpler example:

N/2 N N/2

N
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Quiver varieties Definition

Moment map conditions

We impose that at each white (“unframed”) vertex, the (signed) sum of
length two paths is zero:

? = 0 ? = 0

? − ? + ? = 0

where paths start and end at the marked white vertex.
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Quiver varieties Definition

Quotients

We want to take the quotient by Gv :=
∏k−1

i=1 GL(Vi ).
The naive quotient is

M0 = {arrows subject to m.m. = 0}//Gv = {closed Gv − orbits}

We shall describe it more explicitly in what follows.

There is a “better” quotient (GIT quotient):

M = {arrows subject to m.m. = 0}//χGv = {stable Gv − orbits}

with a map p : M→M0 which is a (symplectic, semi-small) resolution of
singularities (of its image).
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Quiver varieties Definition

Description of M0

M0 is a (singular) affine variety, which can be described in terms of the
natural Gv -invariants [Lusztig]:

Paths from one gray (“framed”) vertex to another (possibly itself).

Traces of closed cycles.

Here, only paths occur:

A =

?

B =

?
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Quiver varieties Definition

Description of M0 cont’d

One has M0(v) ⊂M0(v ′) when v ≤ v ′ (and it stabilizes eventually), so in
what follows we mean M0 := M0(v∞).

Then the only relations satisfied by the invariants come from the moment
map conditions.

For example here A2 − B =

?

and then

B(A2 − B) =

?

6

7

4,8 1,5

2

3

=

?

6

7

8 1

2,4

3,5

+

?

4,6

5,7

8 1

2

3

= 0

So we have an explicit description

M0 = {A,B N × N matrices : B(A2 − B) = (A2 − B)B

= A3 − (AB + BA) = 0}
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Quiver varieties Transverse slice of nilpotent orbits

Combinatorial data

There is a second description of M0 (or for general v , p(M)) in terms of a
transverse slice of a nilpotent orbit closure. [Mirković, Vybornov ’09]

Define two partitions (with N =
∑k−1

i=1 wi parts) out of w and v :

Define the GL(k) weights µ =
∑k−1

i=1 wiωi and

λ =
∑k−1

i=1 wiωi −
∑k−1

i=1 viαi . (lifted from SL(k))

Draw them as box diagrams; they both have M =
∑k−1

i=1 i wi boxes.

m = (m1, . . . ,mN) and ` = (`1, . . . , `N) are the numbers of boxes in
each column of µ and λ.
(which implies

∑N
i=1 mi =

∑N
i=1 `i = M)

NB: if one relaxes the condition that m be ordered, making it a
composition rather than a partition, then m is characterized by
m ∈ {1, . . . , k − 1}N such that #{a : ma = i} = wi .
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Quiver varieties Transverse slice of nilpotent orbits

Combinatorial data: example

w = (2, 1, 3) → 2 + + 3 =

3 3 3 2 1 1m =

v = (1, 0, 2) → 1

2

=

4 3 2 2 2 0` =
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Quiver varieties Transverse slice of nilpotent orbits

Mirković–Vybornov slice

Then M0
∼= Oλ ∩ Tµ, where

Oλ is the orbit of nilpotent operators with Jordan type λ,
(i.e., sizes of Jordan blocks = `i )

Tµ = x + T ′µ,

x is a nilpotent operator with Jordan type µ, which we shall
always choose to be in Jordan form.
T ′µ is a certain linear subspace (each block of Tµ has
“companion form”, i.e., T ′µ consists of the last row of each
block, possibly truncated to its leftmost square sub-block if
its width is larger than its height).

P. Zinn-Justin (LPTHE) Quiver varieties and qKZ 10 / 1



Quiver varieties Transverse slice of nilpotent orbits

Mirković–Vybornov slice: example

m = (2, . . . , 2︸ ︷︷ ︸
N

), so the slice in gl(M = 2N) is

Tµ =



0 1 0 0 · · ·
? ? ? ? · · ·
0 0 0 1 · · ·
? ? ? ? · · ·
...

...
...

...
. . .


∼=

N N{(
0 1
−B −A

)
N

N

}

Assuming v = v∞ and N even, ` = (4, . . . , 4︸ ︷︷ ︸
N/2

) so Oλ = {X 4 = 0}.

Plugging X 4 = 0 into the slice above leads to the same equations as
before.
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Quiver varieties Tensor product varieties

Borel/Cartan subgroups

Suppose the direct sum W :=
⊕k−1

i=1 Wi of spaces at framed vertices has a
basis (e1, . . . , eN), such that ea ∈Wma for some m ∈ {1, . . . , k − 1}N with
#{a : ma = i} = wi .

To each such (ordered) basis is associated a Borel subgroup, with its
unipotent subgroup, Cartan torus and their Lie algebras:

n = gl(W ) ∩ {strict upper triangular matrices}
T = GL(W ) ∩ {diagonal matrices}
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Quiver varieties Tensor product varieties

Tensor product variety: definition

We define
Z0 = M0 ∩ {paths ∈ n}

as well as Z = p−1(Z0). The irreducible components of Z are Lagrangian.

Equivalently, one can embed n in gl(M) by considering matrices that are
proportional to the identity in each Jordan block, and M0 in gl(M) using
the Mirković–Vybornov slice. Then

Z0 = M0 ∩ n

In our example,

Z0 = {A,B N × N strict upper triangular matrices :

B(A2 − B) = (A2 − B)B = A3 − (AB + BA) = 0}
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Quiver varieties Tensor product varieties

Tensor product variety: RT interpretation

Also associated to (m1, . . . ,mN) is a decomposition of the SL(k) weight∑k−1
i=1 wiωi = ωm1 + · · ·+ ωmN

, and the invariant subspace of the tensor
product of corresponding irreps:

(Lωm1
⊗ · · · ⊗ LωmN

)SL(k)

Assume now k |M, so that this space is nonzero. Then it is isomorphic to
Htop(Z0), the top-dimensional Borel–Moore homology of Z0 (which has a
natural basis of irreducible components of Z0).

Remarks:

This space is also encoded in the intersection homology of M0.

More general tensor product varieties can be considered (Borel →
parabolic), which correspond to tensor products of non-fundamental
irreps.
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Quiver varieties Multidegrees

Torus action

Each path is an element of n. T acts (linearly) on n by conjugation; an
extra C× acts by scaling paths according to the rule: X 7→ t |X |X , where
|X | is the length of the path X .

Equivalently, T × C× acts (linearly) on T ′µ ∩ n by conjugation by diagonal
matrices (with repeats for each block) and scaling the entry on last row of
each block with tperimeter−2(column−1).

T × C× leaves Z0, and therefore its irreducible components Z0,α stable.

Considering Z0 = M0 ∩ n
j
↪→ T ′µ ∩ n, we can define their

(T × C×)-equivariant (co)homology class:

Ψα := j∗[Z0,α] ∈ H∗T×C×(T ′µ ∩ n) ∼= Z[~/2, z1, . . . , zN ]

where ~/2 ∼ scaling, zi ∼ ei direction.

Remark: such polynomials are called multidegrees, because they generalize
the notion of degree of projective varieties. (up to normalization, they are
equivariant volumes)
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Quiver varieties Multidegrees

Example: N = 4

With the same example as before in size 4:

Z0 = {A,B 4× 4 strict upper triangular matrices :

B(A2 − B) = (A2 − B)B = A3 − (AB + BA) = 0}

Z0 has 3 irreducible components, and their multidegrees are:

Ψ 1 2
1 2
3 4
3 4

= (~ + z3 − z4)(~ + z1 − z2)(2~ + z3 − z4)(2~ + z1 − z2)

Ψ 1 2
1 3
2 4
3 4

= (2~ + z3 − z4)(2~ + z2 − z3)(2~ + z1 − z2)(3~ + z1 − z4)

Ψ 1 3
1 3
2 4
2 4

= (~ + z2 − z3)(2~ + z2 − z3)(3~ + z1 − z4)(4~ + z1 − z4)
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Quiver varieties Geometric Satake correspondence

Howe duality

We shall think of (Lωm1
⊗ · · · ⊗ LωmN

)SL(k) as a weight space of a GL(N)
irrep. Start with

(
∧

(Ck))⊗N =
∧

(Ck ⊗ CN) =
⊕
λ

L
GL(k)
λ ⊗ L

GL(N)
λ′

where the sum is over partitions λ with at most k rows and N columns.

Inside GL(N) sits the maximal torus (C×)N of diagonal matrices, which

allows to distinguish
∧

(Ck) =
⊕

m≥0 L
GL(k)
ωm . This way, we find

LGL(k)
ωm1

⊗ · · · ⊗ LGL(k)
ωmN

=
⊕
λ

L
GL(k)
λ ⊗ L

GL(N)
λ′ |weight space (m1,...,mN)

In particular, the multiplicity of L
GL(k)
λ is the number of SSYT of shape λ′

with mi times the letter i .
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Quiver varieties Geometric Satake correspondence

Geometric Satake correspondence

The geometric Satake correspondence relates the representation theory of
G to geometric data of G∨.

One builds a certain finite-dimensional subvariety of the affine
Grassmannian Ĝr(G∨) based of G∨ whose intersection homology forms an
irrep of G .

Here G ∼= G∨ = GL(N). In type A, a slice of this subvariety is isomorphic
to M0 [Mirković, Vybornov ’09] (and components of Z0 are slices of
so-called Mirković–Vilonen cycles). By taking appropriate representatives
in Ĝr(G∨) = G∨(C((t)))/G∨(C[[t]]) we shall show this isomorphism
explicitly.
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Quiver varieties Geometric Satake correspondence

Construction

We assume here, as in the example, that mi = m, so that the weight space
(m, . . . ,m) is central.

Consider infinite (N,N)-periodic matrices of the form

U =


1 A B · · ·

1 A B · · ·
1 A B · · ·


where 1’s are at column − row = m.

Intersect U with rank conditions on N ×N blocks obtained as follows:
put the number of `’s (parts of λ′) equal to i (= λi − λi+1, with
λ0 ≡ N) on every block at column − row = i . Then every north-west
block-submatrix of M ∈ U must have rank at most the sum of
numbers in the corresponding region.
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Quiver varieties Geometric Satake correspondence

Construction: example

Set k = 4, m = 2, λ = (N/2,N/2,N/2,N/2),
` = λ′ = (4, . . . , 4︸ ︷︷ ︸

N/2

, 0, . . . , 0︸ ︷︷ ︸
N/2

). Then the numbers are

1 A B

1 A B

1 A B

1 A B

∼

−B2+BA2 BAB

A3−(AB+BA) −B2+A2B

1 ? ? ?

1 ? ?

where each red box means the number N/2.

In particular the north-west submatrix shown has rank at most 2N.

After row manipulations, all remaining entries must be zero.
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Quantum Knizhnik–Zamolodchikov equation Generalities

The meta-theorem

The main point of this talk is to make sense of the following

Theorem

The (Ψα) form a solution of the (level 1) rational quantum
Knizhnik–Zamolodchikov equation.

In the case of wi = Nδi ,1 (“orbital varieties” and “extended Joseph
polynomials”), this was observed in [Di Francesco, ZJ, ’05] and proven in
[Rimányi, Tarasov, Varchenko, ZJ, ’12].
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Quantum Knizhnik–Zamolodchikov equation Generalities

Quantum Knizhnik–Zamolodchikov equation

The quantum Knizhnik–Zamolodchikov equation is a system of holonomic
first order (q-)difference equations equations that appears:

in the study of form factors of integrable models
[Smirnov, ’86]

in the representation theory of quantum affine algebras [Frenkel,
Reshetikhin ’92] and Yangians

in the study of correlation functions of integrable models [Jimbo,
Miwa et al, ’93]

in relation to the representation theory of affine Hecke algebra and
DAHA [Cherednik, Pasquier, ’90s]

in the exact finite size computation of the ground state of integrable
models at roots of unity [Di Francesco, ZJ, ’05] → applications to
combinatorics
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Quantum Knizhnik–Zamolodchikov equation Generalities

Definition of Ψ

Define Ψ = j∗ viewed as an element of H⊗ Z[~/2, z1, . . . , zN ] where

H := (L∗ωm1
⊗ · · · ⊗ L∗ωmN

)SL(k)

More explicitly, if uα is the basis dual to the [Z0,α], then

Ψ =
∑
α

Ψα u
α

In order to emphasize that Z0 depends on a choice of basis (e1, . . . , eN),
and Ψ depends on a choice of (m1, . . . ,mN), we shall also write

Z0 = Ze1,...,eN
0 , Ψ = Ψm1,...,mN , H = Hm1,...,mN
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Quantum Knizhnik–Zamolodchikov equation Exchange relation

Exchange relation

The exchange relation is the “nonaffine” part of the qKZ equation.

Theorem

There exist Ři (z) ∈ L(Hm1,...,mi ,mi+1,...,mN ,Hm1,...,mi+1,mi ,...,mN )⊗ C(z , ~),
i = 1, . . . ,N − 1, which satisfy

Ři (u)Ři+1(u + v)Ři (v) = Ři+1(v)Ři (u + v)Ři+1(u) i = 1, . . . ,N − 2

Ři (u)Ři (−u) = 1 i = 1, . . . ,N − 1

Ři (u)Řj(v) = Ři (v)Řj(u) |i − j | > 1

such that

Ψm1,...,mi+1,mi ,...,mN (z1, . . . , zi+1, zi , . . . , zN)

= Ři (zi − zi+1)Ψm1,...,mi ,mi+1,...,mN (z1, . . . , zi , zi+1, . . . , zN)
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Quantum Knizhnik–Zamolodchikov equation Exchange relation

The R-matrix of [Maulik, Okounkov]

In [MO], the R-matrix is defined as follows:
1 Start with the irreducible components Zα for two different orderings of

the same basis (ei ): Z
...ei ,ei+1...
α and Z

...ei+1,ei ...
α . (note: same torus T )

2 Consider their T -equivariant cohomology classes [Zα] in M.
3 Make a (triangular) change of basis to the stable sets:

[̃Zα] =
∑
β

cβα [Zβ]

4 Then R̃i is the “matrix of change of basis” (as H∗T×C×(·)-module)

˜[Z
...ei+1,ei ...
α ] =

∑
β

(R̃i )
β
α

˜[Z
...ei ,ei+1...
β ]

Step 3 ensures “locality”, but we don’t need it (except for the
consequence that R̃i depends on ~ and z := zi − zi+1 only); so we redefine

[Z...ei+1,ei ...
α ] =

∑
β

(Ri )
β
α[Z

...ei ,ei+1...
β ]
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Quantum Knizhnik–Zamolodchikov equation Exchange relation

Connection to [Maulik, Okounkov]

Now apply M
p→M0

i
↪→ T ′µ: the pushforward p∗[Zα] is either zero or

[Z0,α] (geometric analogue of going from weight space to multiplicity
space). So we still have

i∗[Z
...ei+1,ei ...
0,α ] =

∑
β

(Ri )
β
α i∗[Z

...ei ,ei+1...
0,β ]

i∗[Z0,α] is not quite yet Ψα for two reasons:

(a trivial one) The embedding space is T ′µ and not T ′µ ∩ n (paying
attention that n depends on the ordering of the basis).
(an important one) To compute Ψα, we parameterize the torus T
differently depending on whether we are considering Z

...,ei ,ei+1,...
0,α or

Z
...,ei+1,ei ,...
0,α .

Therefore, introducing the operator τi that switches zi and zi+1:

i∗[Z
...ei ,ei+1...
0,α ] = f Ψ...mi ,mi+1...

α

i∗[Z
...ei+1,ei ...
0,α ] = τi (f Ψ...mi+1,mi ...

α )
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Quantum Knizhnik–Zamolodchikov equation Exchange relation

Connection to [Maulik, Okounkov], end

Finally, changing the normalization of the R-matrix to

Ři :=
f

τi f
Ri

we find
τiΨ

...mi+1,mi ...
α =

∑
β

(Ři )
β
αΨ

...mi ,mi+1...
β

Remarks:

Applying i∗ “loses information”, so that naively the exchange relation
cannot be taken as a definition of the R-matrix; but actually, it does
define it uniquely.

R̃i is local (wrt tensor product), whereas Ri isn’t.

By definition, the Ri satisfy the relations of the corresponding Weyl
group (here, symmetric group SN); taking into account once again
the reparameterization of the torus, we obtain the relations of the
theorem.
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Quantum Knizhnik–Zamolodchikov equation Relation to Vertex Operators

Definition of Vertex Operators

Consider (type I, dual) level 1 vertex operators (VOs) Φ(z), i.e.,
intertwiners

Φν(z) : V ⊗ Lν(z)→ V
where V is an appropriate level 1 representation of the Yangian double

̂DY (sl(k)), and Lν(z) is the evaluation representation of ̂DY (sl(k)) (i.e.,
level 0 and isomorphic to Lν as a sl(k)-module). In level 1, one must have
ν = ωi .

Let |0〉 ∈ V be the highest weight vector of the basic level 1
representation, and 〈0| ∈ V∗ be the lowest weight vector of its dual.

Theorem

Ψ is proportional to the VEV of a product of VOs:

Ψm1,...,mN (z1, . . . , zN) = κ(z1, . . . , zN) 〈0|Φωm1
(z1) . . .ΦωmN

(zN) |0〉
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Quantum Knizhnik–Zamolodchikov equation Relation to Vertex Operators

Remarks

We can be slightly more explicit in the “stable” basis, where locality
is apparent: the indexing set for components of Z / stable sets is of
the form α = (α1, . . . , αN) (where αi is a subset of cardinality mi of
{1, . . . , k}) with a weight constraint, and then we have

Ψ̃α =
∑
β

cβαΨβ = κ(z1, . . . , zN) 〈0|Φ(α1)(z1) . . .Φ(αN)(zN) |0〉

where Φ(αi )(z) : V → V is the expansion of Φωmi
(z) in the standard

basis of Lωi .

This result, just like the previous one, can actually be generalized to
arbitrary v (not necessarily equal to v∞).

I do not know any geometric proof of this result.
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Quantum Knizhnik–Zamolodchikov equation Byproducts

Byproduct 1: fusion and quiver varieties

In the process, we find a beautiful correspondence between two concepts:

On the integrable side, the fusion procedure allows to write

Φω`
(z) = Φ(z − `− 1

2
~)Φ(z − `− 3

2
~) . . .Φ(z +

`− 1

2
~)

where Φ := Φω1 , and embedding Lω`
↪→ L⊗`ω1

is implied.

On the geometric side, the Mirković–Vybornov transverse slice of
nilpotent orbits allows to write an equality of multidegrees w.r.t. the
appropriate torus. The torus (C×)M+1 acts on the whole of gl(M)
with weights of the form ~ + zrow − zcolumn; but the form of x
precisely enforces inside each block ~ + zi ;k − zi ;k+1 = 0, i.e.,
zi ;k = zi + (k − `+1

2 )~, which corresponds to restricting to the
subtorus (C×)N+1.
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Quantum Knizhnik–Zamolodchikov equation Byproducts

Byproduct 2: qKZ equation

VEVs of VOs (of a Yangian) are known to satisfy the (rational quantum,
or difference) Knizhnik–Zamolodchikov equation.

Explicitly, the Ψα satisfy the following system of equations:

The exchange relation:

Ψm1,...,mi+1,mi ,...,mN (z1, . . . , zi+1, zi , . . . , zN)

= Ři (zi − zi+1)Ψm1,...,mi ,mi+1,...,mN (z1, . . . , zi , zi+1, . . . , zN)

The cyclicity condition:

Ψm2,...,mN ,m1(z2, . . . , zN , z1 + (k + 1)~) = εm1ρΨm1,...,mN (z1, . . . , zN)

where ε = (−1)
M
k
−1, and the rotation operator ρ has an explicit

combinatorial definition (promotion), i.e., ρβα = δ
ρ(β)
α .

P. Zinn-Justin (LPTHE) Quiver varieties and qKZ 31 / 1



Conclusion

Conclusion and prospects

We have found that multidegrees of irreducible components of tensor
product quiver varieties are polynomial solutions of the qKZ equation,
though a full geometric proof is lacking. (only the “nonaffine” part of
qKZ is geometric)

In particular, the occurrence of the corresponding ADE Yangian (at
both zero and nonzero level!) is surprising.

Various possible generalizations:

What to do with other untwisted/twisted affine algebras/Yangians? (I

have worked out A
(2)
2 )

Consider quivers not based on GL. Should be related to qKZ in other
types (see [Ponsaing, ZJ ’14]), i.e., integrable models with boundaries.

Is there a similar connection between higher level polynomial solutions
of the qKZ equation (see for example [Fonseca, ZJ ’13]) and
geometry?

Generalizations to K-theory? elliptic cohomology??
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