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Schur functions Representation theory Basics

The general linear group

[H. Barcelo, A. Ram, Combinatorial representation theory]; [A. Molev,
Gelfand–Tsetlin bases for classical Lie algebras]

Let G = GL(n,C), T be the subgroup of diagonal invertible matrices. Let
g = gl(n,C) be the Lie algebra of G . g = t⊕ n+ ⊕ n−, with t (resp. n+,
n−) generated by hi = Ei ,i , i = 1, . . . , n (resp., ei = Ei ,i+1 and fi = Ei+1,i ,
i = 1, . . . , n − 1).

A partition is a nonincreasing sequence of nonnegative integers
(λ1, . . . , λn), up to addition/removal of an arbitrary number of zeroes at
the end. We represent partitions using Young diagrams:

(4, 2, 1) =

Nonzero entries are called parts. |λ| =
∑

i λi .
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P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule

http://130.203.133.150/viewdoc/summary;jsessionid=A47AE0649B1D2E0840F75C564026B399?doi=10.1.1.170.9620
http://arxiv.org/abs/math/0211289
http://arxiv.org/abs/math/0211289


Schur functions Representation theory Basics

Irreducible representations

We are interested in irreducible polynomial representations of G . We shall
need the following classical

Theorem

Irreducible polynomial representations ρλ of G are indexed by partitions
λ = (λ1, . . . , λn) with at most n parts. They are highest weight
representation, i.e., have a highest weight vector vλ (unique up to
multiplication by a scalar):

ρλ(hi )vλ = λivλ ρλ(ei )vλ = 0

The proof involves explicit construction of ρλ : G → GL(Vλ) out of the
fundamental representation. . .
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Schur functions Representation theory Basics

Examples

The fundamental representation. G acts on V = Cn in the natural

way. λ = (1, 0, . . . , 0) = .

v =


1
0
...
0

 hiv = δi1v

V ⊗ V decomposes into symmetric/skew-symmetric subspaces:

V ⊗ V = V ⊕ V

with v = v ⊗ v , v = v ⊗ (f1v )− (f1v )⊗ v .
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Schur functions Representation theory Basics

Schur–Weyl duality

In general, the natural actions on V⊗r of GL(n) and Sr are commutants of

each other, so that

V⊗r =
⊕

λ=(λ1,...,λn):|λ|=r

Wλ ⊗ Vλ

where Wλ is an irreducible representation of Sr , and Vλ an irreducible
representation of GL(n).
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Schur functions Representation theory Basics

Characters

Define ŝλ : G → C
g 7→ trVλ(ρλ(g))

λ 7→ ŝλ is a map from (Rep(G ),⊕,⊗) to the class functions on G .

A generic matrix is diagonalizable, therefore ŝλ(g) only depends on the
eigenvalues {x1, . . . , xn} of g . Applying ŝλ to an element of T implies

ŝλ(g) = sλ(x1, . . . , xn)

where sλ(x1, . . . , xn) is a symmetric polynomial in the {xi} of degree |λ|,
called Schur polynomial.

λ 7→ sλ extends linearly into an isomorphism of graded rings from
(Rep(G ),⊕,⊗) to Z[x1, . . . , xn]Sn (symmetric polynomials in n variables).
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eigenvalues {x1, . . . , xn} of g . Applying ŝλ to an element of T implies
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Schur functions Representation theory Basics

Examples

The fundamental representation:

s (x1, . . . , xn) = tr diag(x1, . . . , xn) =
n∑

i=1

xi

= p1

V and V :

s (x1, . . . , xn) =
∑

1≤i≤j≤n
xixj

=
1

2
p2

1 +
1

2
p2

s (x1, . . . , xn) =
∑

1≤i<j≤n
xixj

=
1

2
p2

1 −
1

2
p2

Note that
s (x1, . . . , xn) + s (x1, . . . , xn) = (

∑n
i=1 xi )

2 = s (x1, . . . , xn)2, as

expected from the decomposition of the tensor product.
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Schur functions Representation theory Basics

Schur–Weyl II

Consider an element g = diag(x1, . . . , xn) ∈ T and σ ∈ Sr . Then

trV⊗r (gσ) =
∑

λ=(λ1,...,λn), |λ|=r

χ̂λ(σ)sλ(x1, . . . , xn)

where χ̂λ(σ) is the character of the irrep λ of Sr . If σ has αk cycles of
length k, then χ̂λ(σ) = χλ(α).

The left hand side is easily computed to be
∏

k≥1 p
αk
k , where the pk are

the power sums: pk(x1, . . . , xn) =
∑n

i=1 x
k
i .

This formula can be inverted (orthogonality of characters):

sλ(x1, . . . , xn) =
∑

αk≥0,
∑

k αk=|λ|

∏
k≥1

1

kαkαk !
χλ(α)

∏
k≥1

pk(x1, . . . , xn)αk

More combinatorial formula?

P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule



Schur functions Representation theory Basics

Schur–Weyl II

Consider an element g = diag(x1, . . . , xn) ∈ T and σ ∈ Sr . Then

trV⊗r (gσ) =
∑

λ=(λ1,...,λn), |λ|=r

χ̂λ(σ)sλ(x1, . . . , xn)

where χ̂λ(σ) is the character of the irrep λ of Sr . If σ has αk cycles of
length k, then χ̂λ(σ) = χλ(α).

The left hand side is easily computed to be
∏

k≥1 p
αk
k , where the pk are

the power sums: pk(x1, . . . , xn) =
∑n

i=1 x
k
i .

This formula can be inverted (orthogonality of characters):

sλ(x1, . . . , xn) =
∑

αk≥0,
∑

k αk=|λ|

∏
k≥1

1

kαkαk !
χλ(α)

∏
k≥1

pk(x1, . . . , xn)αk

More combinatorial formula?
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Schur functions Representation theory Gelfand–Tsetlin

Weight space decomposition

Elements of T are simultaneously diagonalizable in V , and therefore in

any Vλ. This means every Vλ has a weight space decomposition:

Vλ =
⊕
µ∈Zn

≥0

Vλ;µ Vλ;µ = {v ∈ Vλ : ρλ(hi )v = µiv}

which implies in turn

sλ(x1, . . . , xn) =
∑
µ∈Zn

≥0

Kλ;µ

n∏
i=1

xµii

where Kλ;µ = dimVλ;µ. (when µ is also a partition, which we can always
reduce to, Kλ;µ is called a Kostka number)

P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule



Schur functions Representation theory Gelfand–Tsetlin

Gelfand–Tsetlin induction

Theorem

The decomposition of Vλ, λ = (λ1, . . . , λn) as a representation of
GL(n − 1) ⊂ GL(n) is of the form

Vλ =
⊕

µ=(µ1,...,µn−1)
λi≥µi≥λi+1

Vµ

(in particular it’s multiplicity-free)

λ =

P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule
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Gelfand–Tsetlin induction
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Vλ =
⊕
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µ

horizontal strip
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Schur functions Representation theory Gelfand–Tsetlin

Gelfand–Tsetlin induction cont’d

One can iterate the process: GL(n) ⊃ GL(n − 1) ⊃ · · · ⊃ GL(1), until we
reach irreps of GL(1) which are one-dimensional. This way, we decompose
Vλ into a direct sum of one-dimensional subspaces indexed by
Gelfand–Tsetlin patterns:

λn,1 λn,2 · · · λn,n−1 λn,n≥ ≥ ≥ ≥
≥ ≥ ≥≥ ≥ ≥ ≥
λn−1,1 λn−1,2 · · · λn−1,n−1≥ ≥ ≥

≥ ≥≥ ≥
. . . . .

.

≥ ≥
λ2,1 λ2,2≥
≥ ≥
λ1,1

P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule



Schur functions Representation theory Gelfand–Tsetlin

A combinatorial formula

Assume GL(n − 1) is matrices of the form

(
1 0
0 ?

)
. Then each such

one-dimensional subspace is a weight space, with weight given by
µi = |λi | − |λi−1|, i = 1, . . . , n. (conventionally |λ0| = 0)

Therefore Kλ,µ = #{GT patterns : µi = |λi | − |λi−1|}, which leads to the
following explicit formula for Schur functions:

sλ(x1, . . . , xn) =
∑

GT patterns (λi,j )

n∏
i=1

x
|λi |−|λi−1|
i

Remark: bijection with SSYT. . .

P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule
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Schur functions Representation theory Gelfand–Tsetlin

Stability

From the construction above we conclude that

sλ(x1, . . . , xn) =
∑

µ=(µ1,...,µn−1)
λi≥µi≥λi+1

x
|λ|−|µ|
n sµ(x1, . . . , xn−1)

In particular,

sλ(x1, . . . , xn−1, 0) =

{
0 if λn 6= 0

sλ(x1, . . . , xn−1) if λn = 0

where recall that (λ1, . . . , λn−1, 0) ≡ (λ1, . . . , λn−1).
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Schur functions Representation theory Gelfand–Tsetlin

Schur functions

Consider the ring of symmetric functions R, obtained as the inverse limit
of Rn = Z[x1, . . . , xn]Sn where Rn → Rn−1 by setting xn = 0. (see also
wikipedia)

Due to the stability property above, Schur polynomials (sλ(x1, . . . , xn))n∈N
define an element of R called Schur function and also denoted sλ.

Remark: power sums pk =
∑

i x
k
i are also symmetric functions.

P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule
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Schur functions Representation theory Gelfand–Tsetlin

Skew Schur functions

More generally, given a Young diagram λ with n boxes, decompose Vλ
w.r.t. the action of GL(m), m < n:

sλ(x1, . . . , xn) =
∑
µ

sλ/µ(xm+1, . . . , xn)sµ(x1, . . . , xm)

where the summation is over µ ⊂ λ with m rows. sλ/µ is called a skew
Schur polynomial; it is sum over Gelfand–Tsetlin trapezoids.

By stability as before, one can define a skew Schur function which satisfies
the same relation with no restriction on µ.
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Schur functions Geometry

1 Representation theory

2 Geometry
Cohomology of Grassmannians
Schubert varieties
Equivariant cohomology

3 1D Free fermions

4 2D Lattice models

5 Tilings
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Schur functions Geometry Cohomology of Grassmannians

Grassmannians

[W. Fulton, Young tableaux with applications to representation theory and
geometry]
Let Gr(n, d) be the Grassmannian:

Gr(n, d) = {V ⊂ Cd : dimV = n}

It’s a projective algebraic variety of dimension n(d − n). Its cohomology
ring has rank

(d
n

)
(by localization). There are many explicit descriptions of

it.
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Schur functions Geometry Cohomology of Grassmannians

Cohomology of Grassmannians I

Shortcut: define X = {u ∈ Mat(d , n) : rank(u) = n}.
G = GL(n) ⊃ T = (C×)n acts on it by right multiplication, and

X
p−→ X/G ∼= Gr(n, d).

Then

H∗(Gr(n, d)) ∼= H∗G (X )
ι∗

�−−− H∗G (Mat(d , n))

and

H∗G (Mat(d , n)) ∼= H∗G (·) ∼= H∗T (·)Sn ∼= Sym(T ∗)Sn ∼= Z[x1, . . . , xn]Sn

where deg xi = 2.
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Schur functions Geometry Cohomology of Grassmannians

Cohomology of Grassmannians II

Start from the exact sequence of tautological vector bundles:

0→ V → Cd → Cd/V → 0

This implies
c(z ;V )c(z ;Cd/V ) = 1

where c(z , ·) is the generating series of Chern classes.

Correspondence:
∏n

i=1(1 + xiz) = c(z ;V ), so that

n∏
i=1

1

1 + xiz
= polynomial of deg d − n in z (◦)

This defines the kernel of ι∗.
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Schur functions Geometry Cohomology of Grassmannians

Cohomology of Grassmannians II

Theorem

H∗(Gr(n, d)) = Z[x1, . . . , xn]Sn/(◦).

The s̊λ(x1, . . . , xn), λ ⊂ n × (d − n), form a basis of H∗(Gr(n, d)).

s̊λ(x1, . . . , xn) = 0 if λ 6⊂ n × (d − n).

Note that there are indeed
(d
n

)
such Young diagrams, as they are in

bijection with binary strings of n and d − n (more on that later).

Geometric interpretation of Schur polynomials?
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Schur functions Geometry Schubert varieties

Definition of Schubert varieties

Define the matrix Schubert variety [Knutson, Miller] Sλ = b′−uλ g,
λ ⊂ n × (d − n), where

uλ =
n∑

i=1

Eλn+1−i+i ,i

λ = uλ =



0 0 0

1 0 0

0 0

1 0

0

0

1


and the Schubert variety S̊λ = p(Sλ ∩ X ) = p(B ′−uλ G ).
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Schur functions Geometry Schubert varieties

Cohomology classes of Schubert varieties

Sλ (resp. S̊λ) is an irreducible (closed) subvariety of Mat(d , n) (resp.
Gr(n, d)) of codimension |λ|. Sλ is G -invariant.

By pushforward,
sλ(x1, . . . , xn) = [Sλ]G

and
s̊λ(x1, . . . , xn) = [S̊λ]
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Schur functions Geometry Schubert varieties

Examples

λ = ∅. Sλ = Mat(d , n), S̊λ = Gr(n, d), sλ = 1.

λ = n × (d − n). Sλ =
{(

0
?

)
d−n
n

}
. S̊λ = {Cd}. sλ =

∏n
i=1 x

d−n
i .

λ = . Sλ =
{( a

?

) n
d−n , det a = 0

}
. sλ =

∑n
i=1 xi .
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Schur functions Geometry Equivariant cohomology

Equivariant cohomology

There is another group, namely G ′ = GL(d), which naturally acts on
Gr(n, d). It acts transitively, so let’s restrict to T ′ = (C×)d .
The cohomology ring H∗T ′(Gr(n, d)) is a module over
H∗T ′(·) = Z[y1, . . . , yd ]. Using the same argument as before, we find that
it is a quotient of Z[x1, . . . , xn, y1, . . . , yd ]Sn by

c(z ;V )c(z ;Cd/V ) =
d∏

i=1

(1 + y`z) (◦)

Define the factorial Schur polynomial

sλ(x1, . . . , xn; y1, . . . , yd) = [Sλ]G×T ′

so that s̊λ(x1, . . . , xn; y1, . . . , yd) = [S̊λ]T ′ .
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Schur functions Geometry Equivariant cohomology

Examples

λ = ∅. Sλ = Mat(d , n), S̊λ = Gr(n, d), sλ = 1.

λ = n × (d − n). Sλ =
{(

0
?

)
d−n
n

}
. S̊λ = {Cd}.

sλ =
∏n

i=1

∏d−n
j=1 (xi − yj).

λ = . Sλ =
{( a

?

) n
d−n , det a = 0

}
. sλ =

∑n
i=1 xi −

∑n
j=1 yj .

λ = , n = 2. Sλ =




0 0
a11 a12

a21 a22

? ?
...

...

 , det a = 0


,

sλ = (x1 − y1)(x2 − y1)(x1 + x2 − y2 − y3).
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Schur functions Geometry Equivariant cohomology

Transition

Grassmannian Gr(n, d) first quantized (free) fermions,
Λn(H), dimH = d

d → ∞: BU(n), rep theory of
GL(n)

first quantized (free) fermions,
Λn(H), dimH =∞

d , n →∞: BU(∞), rep theory of
GL(∞)

second quantized (free) fermions,
Fock space F ∼ Λ(H).

Plücker embedding
P(·)

P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule



Schur functions 1D Free fermions

1 Representation theory

2 Geometry

3 1D Free fermions
Operators and Fock space
Current
Relation to Schur functions
Bosonization

4 2D Lattice models

5 Tilings
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Schur functions 1D Free fermions Operators and Fock space

Fermionic operators

References in [HDR].

Fermionic operators ψk , ψ?k , k ∈ Z, with anti-commutation relations
(Clifford algebra):

[ψ?k , ψ`]+ = δk` [ψk , ψ`]+ = [ψ?k , ψ
?
` ]+ = 0

Generating series:

ψ(z) =
∑
k∈Z

ψk z
−k , ψ?(z) =

∑
k∈Z

ψ?k z
k

P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule

http://www.lpthe.jussieu.fr/~pzinn/publi/hdr.pdf


Schur functions 1D Free fermions Operators and Fock space

Fermionic operators

References in [HDR].

Fermionic operators ψk , ψ?k , k ∈ Z, with anti-commutation relations
(Clifford algebra):

[ψ?k , ψ`]+ = δk` [ψk , ψ`]+ = [ψ?k , ψ
?
` ]+ = 0

Generating series:

ψ(z) =
∑
k∈Z

ψk z
−k , ψ?(z) =

∑
k∈Z

ψ?k z
k
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Schur functions 1D Free fermions Operators and Fock space

Fock space

Start from C2 = 〈 , 〉. Then the Fock space F is the subspace of
(C2)⊗Z generated by the (ak) ∈ { , }Z such that ak = (resp. )
sufficient far to the left (resp. right).

ψk and ψ?k act as annihilation/creation operators:

ψk |· · ·
k

· · · 〉 = 0 ψk |· · ·
k

· · · 〉 = (−1)# particles to the right |· · ·
k

· · · 〉

ψ?k |· · ·
k

· · · 〉 = 0 ψ?k |· · ·
k

· · · 〉 = (−1)# particles to the right |· · ·
k

· · · 〉

Example:

ψ?1
−3 −2 −1 0 31 2 4

=

−
−3 −2 −1 0 1 32 4
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Schur functions 1D Free fermions Operators and Fock space

Vacua

Define the vacuum |0〉 as the only state (up to normalization) such that

ψk |0〉 = 0 k > 0, ψ?k |0〉 = 0 k ≤ 0

Explicitly,

|0〉 =

More generally, one can define vacua |`〉, ` ∈ Z (Fermi sea filled up to `) by

|`〉 = S` |0〉

where S is the shift operator S(ak) = (ak−1).
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Schur functions 1D Free fermions Operators and Fock space

Relation to Young diagrams

Given a partition λ = (λ1, . . . , λn), define

|λ〉 = ψ?λ1
ψ?λ2−1 · · ·ψ?λn−n+1 |−n〉

Pictorially, if e.g. λ = (5, 2, 1, 1),

More generally, one can define |λ; `〉 = S` |λ〉.
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P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule



Schur functions 1D Free fermions Operators and Fock space

Relation to Young diagrams

Given a partition λ = (λ1, . . . , λn), define

|λ〉 = ψ?λ1
ψ?λ2−1 · · ·ψ?λn−n+1 |−n〉

Pictorially, if e.g. λ = (5, 2, 1, 1),

More generally, one can define |λ; `〉 = S` |λ〉.
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P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule



Schur functions 1D Free fermions Current

Introduce the normal ordering with respect to the vacuum |0〉:

:ψ?j ψk : = − :ψkψ
?
j : =

{
ψ?j ψk j > 0

−ψkψ
?
j j ≤ 0

The current
j(z) = :ψ?(z)ψ(z) : =

∑
n∈Z

Jnz
−n−1 (1)

with Jn =
∑

r :ψ?r−nψr : forms a ĝl(1) (Heisenberg) Lie algebra:

[Jm, Jn] = mδm,−n

F =
⊕

`∈ZF` where F` is the subspace where J0 =
∑

k :ψ?kψk : has
eigenvalue `, with basis the |λ; `〉.
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Schur functions 1D Free fermions Current

Hamiltonians

The subalgebra generated by the Jk , k > 0, is commutative; a generic
element can be parameterized as

H[t] =
∞∑
k=1

tkJk

where t = (t1, . . . , tk , . . .) is a set of “times”.
H[t] is quadratic in the fermionic fields → free fermion Hamiltonian.

Similarly, we can define H?[t] =
∑∞

k=1 tkJ−k .

Define a scalar product 〈·| ·〉 such that the standard basis is orthonormal.
Then ψk and ψ?k are adjoint of each other; J?k = J−k .
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P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule



Schur functions 1D Free fermions Relation to Schur functions

Alternate definition of sλ

Define
sλ[t] = 〈0| eH[t] |λ〉

Example (λ = )

∅

J1

s [t] = t1

sλ[t] is a polynomial in the infinite set of variables tk :

sλ[t] = e
∑

k≥1 tk
∑n

i=1 z
k
i

∏
1≤i<j≤n

(zi − zj)|zn+λ1−1
1 z

n+λ2−2
2 ...zλnn
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Schur functions 1D Free fermions Relation to Schur functions

More examples

∅

J2
1 , J2

s [t] =
1

2
t2
1 + t2

∅

J1J1 −J2

s [t] =
1

2
t2
1 − t2
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Schur functions 1D Free fermions Relation to Schur functions

Miwa transformation

This suggests the transformation

tk =
1

k
pk =

1

k

n∑
i=1

xki

which implies

eH[t] =
n∏

i=1

eϕ+(x−1
i ) ϕ+(z) =

∑
k≥1

z−k

k
Jk

Similarly we have

eH
?[t] =

n∏
i=1

eϕ−(xi ) ϕ−(z) =
∑
k≥1

zk

k
J−k
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Schur functions 1D Free fermions Relation to Schur functions

Explicit formula

We then compute:

sλ[t] = e
∑

k≥1 tk
∑n

i=1 z
k
i

∏
1≤i<j≤n

(zi − zj)|zn+λ1−1
1 z

n+λ2−2
2 ...zλnn

=
n∏

i ,j=1

1

1− zixj

∏
1≤i<j≤n

(zi − zj)|zn+λ1−1
1 z

n+λ2−2
2 ...zλnn

=

det
1≤i ,j≤n

1

1− xizj∏
i<j(xi − xj)

∣∣
z
n+λ1−1
1 z

n+λ2−2
2 ···zλnn

=
det1≤i ,j≤n(x

λj+n−j
i )∏

i<j(xi − xj)
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Schur functions 1D Free fermions Bosonization

Bosonization

Comparing the previous formula with the direct calculation:

〈0|ψ(z1) · · ·ψ(zn) |λ; n〉 = det(z
−(λj+n−j)
i )

We are led to the identification

ψ(z) = S−1z−J0e−ϕ−(z)eϕ+(z)

= “e−ϕ(z)”

with ϕ(z) = − ∂
∂J0

+ J0 log z + ϕ−(z)− ϕ+(z).

ψ?(z) = S zJ0eϕ−(z)e−ϕ+(z)

= “eϕ(z)”

P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule
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Schur functions 1D Free fermions Bosonization

Schur–Weyl revisited

Admitting for now that sλ[t] = sλ(x1, . . . , xn, . . .) with tk = 1
k

∑
i x

k
i , we

expand the exponential:

sλ[t] =
∑
αk≥0

∏
k≥1

1

αk !
tαk
k 〈0|

∏
k≥1

Jαk
k |λ〉

Comparing with , we conclude

χλ(α) = 〈0|
∏
k≥1

Jαk
k |λ〉

(a form of the Murnaghan–Natayama formula for characters of the
symmetric group)

P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule



Schur functions 1D Free fermions Bosonization

Schur–Weyl revisited

Admitting for now that sλ[t] = sλ(x1, . . . , xn, . . .) with tk = 1
k

∑
i x

k
i , we

expand the exponential:

sλ[t] =
∑
αk≥0

∏
k≥1

1

αk !
tαk
k 〈0|

∏
k≥1

Jαk
k |λ〉

Comparing with , we conclude

χλ(α) = 〈0|
∏
k≥1

Jαk
k |λ〉

(a form of the Murnaghan–Natayama formula for characters of the
symmetric group)
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Schur functions 2D Lattice models

1 Representation theory

2 Geometry

3 1D Free fermions

4 2D Lattice models
Vertex operators as transfer matrices
Non-Intersecting Lattice Paths
Five-vertex model
Variations

5 Tilings
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Schur functions 2D Lattice models Vertex operators as transfer matrices

Vertex operators as transfer matrices

Insert a basis of F0:

sλ[t] =
∑

0=λ0,λ1,...,λn=λ

n∏
i=1

〈λi−1|T (xi ) |λi 〉

with T (x) = eφ+(x−1) = e
∑

k≥1
xk

k
Jk .

Moreover, if one defines sλ/µ[t] = 〈µ| eH[t] |λ〉, then is automatically
satisfied, and one has

sλ/µ[t] =
∑

µ=λ0,λ1,...,λn=λ

n∏
i=1

〈λi−1|T (xi ) |λi 〉

All we need to do is compute 〈µ|T (x) |λ〉 (i.e., skew-Schur function with
a single argument!)
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Schur functions 2D Lattice models Vertex operators as transfer matrices

Digression: particle/hole duality

Let P be the involution which implements left-right reflection and ↔ .

P |λ〉 =
∣∣λ′〉

where λ′ is the conjugate partition of λ.
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P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule



Schur functions 2D Lattice models Vertex operators as transfer matrices

Digression: particle/hole duality

Let P be the involution which implements left-right reflection and ↔ .

P |λ〉 =
∣∣λ′〉

where λ′ is the conjugate partition of λ.
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Digression: particle/hole duality

Let P be the involution which implements left-right reflection and ↔ .

P |λ〉 =
∣∣λ′〉

where λ′ is the conjugate partition of λ.

Noting that PJkP
−1 = (−1)k−1Jk , We conclude that

sλ′/µ′ [t] = 〈µ| eH[−εt] |λ〉

where − is plethystic negation, i.e., removing a variable x , and ε is
ordinary negation, i.e., x → −x :

eH[−εt] =
n∏

i=1

T−1(−xi ) tk =
1

k

∑
i

xki
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Schur functions 2D Lattice models Vertex operators as transfer matrices

. . . back to the one-step transfer matrix

Theorem

〈µ|T−1(−x) |λ〉 =

{
x |λ|−|µ| if λi = µi or λi = µi + 1 ≤ µi+1

0 otherwise

Proof: with the same type of calculation as before,

〈µ|T−1(−x) |λ〉 = e(−1)k−1 xk

k

∑
i z

k
i det(z

n+µj−j
i )|

z
n+λ1−1
1 ...zλnn

= det(z
n+µj−j
i (1 + zix))|

z
n+λ1−1
1 ...zλnn

Compare with Gelfand–Tseytlin . Here we add a vertical strip instead of a
horizontal one.
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Schur functions 2D Lattice models Non-Intersecting Lattice Paths

More on transfer matrices

Graphically, the action of T−1(−x) can be described as

T−1(−x) =

Therefore, dually,

T (x) =
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Schur functions 2D Lattice models Non-Intersecting Lattice Paths

NILPs

Gluing together several transfer matrices produces Non-Intersecting Lattice
Paths:

sλ/µ(x1, . . . , xn)

= 〈µ|T (x1) . . .T (xn) |λ〉

=

µ =

λ =

x1

x2

x3
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Schur functions 2D Lattice models Non-Intersecting Lattice Paths

Example

∅

x2
1

∅

x1x2

∅

x2
2
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Schur functions 2D Lattice models Non-Intersecting Lattice Paths

Lindström–Gessel–Viennot

The (weighted) enumeration of NILPs is given by a determinant:

N(i1, . . . , ik ; j1, . . . , jk) = det
p,q

N(ip; jq)

This is known as the Lindström–Gessel–Viennot formula, which is a special
case of the (fermionic) Wick theorem.

One can apply it to either holes or particles.
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Lindström–Gessel–Viennot example

i1 i2

j1 j2

+ + + −
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Schur functions 2D Lattice models Non-Intersecting Lattice Paths

Lindström–Gessel–Viennot cont’d

Applying LGV to the particles, we find

sλ/µ(x1, . . . , xn) = det hλi−µj−i+j(x1, . . . , xn)

where hk is the (weighted) enumeration of one particle going n steps to
the right ⇒

∑
k≥0 hk(x1, . . . , xn)zk =

∏n
i=1

1
1−zxi . (also, hk = s(k))

Applying it to the holes, we find

sλ/µ(x1, . . . , xn) = det eλ′i−µ
′
j−i+j(x1, . . . , xn)

where ek is the (weighted) enumeration of one hole going k steps to the
left →

∑
k≥0 ek(x1, . . . , xn)zk =

∏n
i=1(1 + zxi ). (also, ek = s(1,...,1))
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Schur functions 2D Lattice models Five-vertex model

Transfer matrices and dualities

The transfer matrix T (x) = eφ+(x−1):

T (x) =

The adjoint transfer matrix T ?(x) = eφ−(x):

T ?(x) =

The dual transfer matrix T (x) = e−φ+(−x−1):

T (x) =

The dual adjoint transfer matrix T
?
(x) = e−φ−(−x):

T
?
(x) =
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Schur functions 2D Lattice models Five-vertex model

Commutation relations

From the Heisenberg algebra relations of the Jk , one deduces:

T (x)T (w) = T (w)T (x)

T (x)T ?(w) =
1

1− wx
T ?(w)T (x) |wx | < 1

T (x)T (w) = T (w)T (x)

T (x)T
?
(w) = (1 + wx)T

?
(w)T (x) |wx | < 1

Bijective interpretation → Fomin’s growth diagrams / local rules. . .
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Schur functions 2D Lattice models Five-vertex model

Building blocks of transfer matrices I

T (x) =

Each building block is of the form: x

There are 5 possible inputs/outputs:

a1 = 0 a2 = 1 b1 = 1 b2 = x c1 = x c2 = 1

This is the five-vertex model, with the free fermionic condition:

a1a2 + b1b2 − c1c2 = 0
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Schur functions 2D Lattice models Five-vertex model

L-matrix

Each building block is encoded into a 4× 4 matrix

L(x) =


0 0 0 0

0 x 1 0

0 x 1 0

0 0 0 1



so that
T (x) = · · · La,−1(x)La,0(x)La,1(x) · · ·

where La,k(x) acts on (C2)a ⊗ (C2)k , and it is understood that sufficiently
far to the left and right, the auxiliary space a is in the empty state.
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Schur functions 2D Lattice models Five-vertex model

Yang–Baxter equation

If we can find a matrix R(x , x ′) such that the “RLL” relation holds:

Ra,b(x , x ′)La,k(x)Lb,k(x ′) = Lb,k(x ′)La,k(x)Ra,b(x , x ′)

then T (x) and T (x ′) commute:

x

x ′

x

x ′

x

x ′

x

x ′

x

x ′

x

x ′

x

x ′

x

x ′

x

x ′

x

x ′ b

a

a

b

We find

R(x , x ′) =


x ′ 0 0 0
0 x − x ′ x ′ 0
0 x 0 0
0 0 0 x


Consistency of “RLL” implies YBE and unitarity for R. . .
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Schur functions 2D Lattice models Five-vertex model

Building blocks of transfer matrices II

T (x) =

Each building block is of the form: x

There are 5 possible inputs/outputs:

a1 = x a2 = 1 b1 = 1 b2 = 0 c1 = x c2 = 1

This is the five-vertex model, with the free fermionic condition:

a1a2 + b1b2 − c1c2 = 0
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P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule



Schur functions 2D Lattice models Five-vertex model

Building blocks of transfer matrices III

T (x)S−1 =

Each building block is of the form: x

There are 5 possible inputs/outputs:

a1 = 1 a2 = 1 b1 = 0 b2 = x c1 = 1 c2 = 1

This is the five-vertex model, with the free fermionic condition:

a1a2 + b1b2 − c1c2 = 0
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Schur functions 2D Lattice models Five-vertex model

L-matrix

Each building block is encoded into a 4× 4 matrix

L(x) =


1 0 0 0

0 x 1 0

0 1 0 0

0 0 0 1



so that
T (x)S−1 = · · · La,−1(x)La,0(x)La,1(x) · · ·

where La,k(x) acts on (C2)a ⊗ (C2)k , and sufficiently far to the left (resp.
right), the auxiliary space a is in the occupied (resp. empty) state.
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Schur functions 2D Lattice models Five-vertex model

Yang–Baxter equation

If we can find a matrix R(x , x ′) such that

Ra,b(x , x ′)La,k(x)Lb,k(x ′) = Lb,k(x ′)La,k(x)Ra,b(x , x ′)

and = , then T (x)S−1 and T (x ′)S−1 commute as before.

We find

R(x , x ′) =


1 0 0 0
0 x − x ′ 1 0
0 1 0 0
0 0 0 1


Note that R(x , x ′) = L(x − x ′) = R(x − x ′), R12(x)R21(−x) = 1,
R12(x)R13(x + y)R23(y) = R23(y)R13(x + y)R12(x), and R(0) is the
permutation of factors of the tensor product.
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Building blocks of transfer matrices IV

T
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P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule



Schur functions 2D Lattice models Five-vertex model

Building blocks of transfer matrices IV

T
?
(x)S−1 =

DWBC

Each building block is of the form: x

There are 5 possible inputs/outputs:

a1 = 1 a2 = 1 b1 = x b2 = 0 c1 = 1 c2 = 1

This is the five-vertex model, with the free fermionic condition:

a1a2 + b1b2 − c1c2 = 0
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Schur functions 2D Lattice models Variations

Building blocks of transfer matrices V

T
?
(w)T (x)S−1 =

Each building block is of the form:
w

x

There are 6 possible inputs/outputs:

a1 = 1 a2 = 1 b1 = w b2 = x c1 = 1 + wx c2 = 1

This is the six-vertex model, with the free fermionic condition:

a1a2 + b1b2 − c1c2 = 0
P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule
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Schur functions 2D Lattice models Variations

Commuting transfer matrices

The transfer matrices T6v (w , x) = T
?
(w)T (x)S−1 satisfy the

commutation relations

T6v (w , x)T6v (w ′, x ′) =
1 + w ′x

1 + wx ′
T6v (w ′, x ′)T6v (w , x)

In particular they commute if w/x = w ′/x ′. (as a consequence of YBE. . . )
In the language of the six-vertex model, w/x is an electric field (or twist).
x is (a function of) the spectral parameter.
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Schur functions 2D Lattice models Variations

Partial DWBC partition function

〈0|T6v (w1, x1) . . .T6v (wn, xn) |λ; n〉

=

∅

λ =

w1, x1

w2, x2

w3, x3

= 〈0|T ?
(w1)T (x1) . . .T

?
(wn)T (xn) |λ〉

=
∏

1≤i<j≤n
(1 + xiwj) sλ(x1, . . . , xn)

This formula was obtained for wi = t/xi in [Brubaker, Bump, Friedberg,
2011; see also Tokuyama, 1988]. It interpolates between t = 0:
〈0|
∏

i T (xi ) |λ〉 and t = −1: 〈0|
∏

i ψ(x−1
i ) |λ; n〉.
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Schur functions 2D Lattice models Variations

Supersymmetric Schur functions

We define the supersymmetric Schur function

sλ[t1, . . . , tk . . . |u1, . . . , uk . . .] = sλ[t1 + u1, . . . , tk − (−1)kuk . . .]

where tk = 1
k

∑
i x

k
i , uk = 1

k

∑
i y

k
i .

In terms of two finite sets of variables (supercharacter of GL(n|m)), we
have:

sλ(x1, . . . , xn|y1, . . . , ym) = 〈0|
n∏

i=1

T (xi )
m∏
i=1

T (yi ) |λ〉
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Schur functions 2D Lattice models Variations

Factorial Schur polynomials

Natural generalization: inhomogeneous statistical model. Define the
inhomogeneous five-vertex transfer matrix:

T (x ; . . . , y−1, y0, y1, . . .)S
−1 = x−y−2 x−y−1 x−y0 x−y1 x−y2 x−y3

with same weights as before , except x → x − yi .

The YBE still implies that
[T (x ; . . . , y−1, y0, y1, . . .),T (x ′; . . . , y−1, y0, y1, . . .)] = 0.

sλ(x1, . . . , xn; y1, . . .) = 〈0|
n∏

i=1

T (xi ; . . . , y−1, y0, y1, . . .) |λ〉

is the factorial Schur polynomial.
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Schur functions 2D Lattice models Variations

More generalizations

Schur’s Q-functions correspond to neutral fermions, i.e., living on a
half-line. . .

k-Schur functions related to the affine Grassmannian. . .

Schubert and Grothendieck polynomials related to the flag variety. . .

Hall–Littlewood polynomials related to Calogero model (nonlocal
interaction) and generalizations (Jack/Macdonald polynomials?)

Cotangent bundle of the Grassmannian. . .
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Schur functions Tilings

1 Representation theory

2 Geometry

3 1D Free fermions

4 2D Lattice models

5 Tilings
Lozenge tilings
Domino tilings
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Schur functions Tilings Lozenge tilings

Lozenge tilings

Tilt in yet another way T (x) and focus on holes:

A weight of x is given to each light pink lozenge.
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Schur functions Tilings Lozenge tilings

Application: plane partitions

〈0|T (x1) . . .T (xn)T ?(y1)T ?(ym) |0〉 =
∏
i ,j

1

1− xiyj

=

x1

x2

x3

x4

y1

y2

y3

y4
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Schur functions Tilings Domino tilings

Domino tilings

Similarly, the free-fermionic six-vertex model is equivalent to domino
tilings:

a1 = 1 a2 = 1 b1 = w b2 = x c1 = 1 + wx c2 = 1

On north and west edges, occupied = small piece, empty = large. the
opposite for south and east edges. One large piece + 2 small pieces = one
domino.
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Schur functions Tilings Domino tilings

Partial DWBC revisited
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Littlewood–Richardson coefficients

The ring of symmetric functions, equipped with its basis of Schur
functions sλ, possesses structure constants:

sλ sµ =
∑
ν

cνλ,µsν

called Littlewood–Richardson coefficients.

We are looking for combinatorial rules to compute them.
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The Littlewood–Richardson rule Various formulations of the rule Littlewood–Richardson coefficients

Representation theory interpretation

In the representation theory of the general linear group G = GL(n),

Vλ ⊗ Vµ =
⊕

ν at most n parts

Ccνλ,µ ⊗ Vν

By Schur–Weyl duality: (r = |ν|, p + q = r)

ResSrSp×SqWν =
⊕

λ,µ:|λ|=p,|µ|=q

Ccνλ,µ ⊗Wλ ⊗Wµ

P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule
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Representation theory interpretation cont’d

An a priori distinct problem: restriction from G = GL(n) to
GL(`)× GL(m), n = `+ m:

Vν =
⊕

λ at most ` parts
µ at most m parts

Ccνλ,µ ⊗ Vλ ⊗ Vµ

At the level of Schur polynomials, this gives the coproduct formula:

sν(x1, . . . , x`, y1, . . . , ym) =
∑
λ,µ

cνλ,µsλ(x1, . . . , x`)sµ(y1, . . . , ym)

By Schur–Weyl duality: (|λ| = p, |µ| = q, p + q = r)

IndSrSp×SqWλ ⊗Wµ =
⊕
ν:|ν|=r

Ccνλ,µ ⊗Wν

We conclude by Frobenius duality that these coefficients are the same
as on the previous slide.

P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule
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Geometric interpretation

If Young diagrams are restricted to be inside a given rectangle n× (d − n),
there is an additional symmetry λ 7→ λ̄:

d − n

n
λ

λ̄
For Schubert varieties, this symmetry is Poincaré duality, i.e.,

[Sλ][Sµ] = δλ,µ̄ |λ|+ |µ| = n(d − n)

This gives an “intersection theory” interpretation of the LR coefficients:

cνλ,µ = cν̄,λ,µ = [Sν̄ ][Sλ][Sµ] |λ|+ |µ|+ |ν̄| = n(d − n)

Remark: equivariant analogues. . . cf [Knutson, Tao].
P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule
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The Littlewood–Richardson rule Various formulations of the rule Littlewood–Richardson coefficients

Binary strings

Young diagrams inside a
rectangle n × (d − n) are in
bijection with finite binary
strings of n and d − n :

Various symmetries:

λ 7→ λ′: conjugation
corresponds as before to
reading right to left plus
hole ↔ particle:

λ 7→ λ̄: complementation
is only reading right to
left:

d − n

n
λ

d − n

n

λ′

d − n

nλ̄
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The Littlewood–Richardson rule Various formulations of the rule Littlewood–Richardson coefficients

Symmetries

Summary of symmetries:

cν,λ,µ = cν,µ,λ

?

cν,λ,µ = cλ,µ,ν

X

cν,λ,µ = cν′,µ′,λ′

X
see however [Thomas, Yong].
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The Littlewood–Richardson rule Various formulations of the rule The original Littlewood–Richardson rule

The original Littlewood–Richardson rule

Given three Young diagrams λ, µ, ν, |λ|+ |µ| = |ν|, a
Littlewood–Richardson tableau is a filling of the boxes of ν/µ with λ1 1’s,
λ2 2’s, . . . , in such a way that

1 The rows are weakly increasing.

2 The columns are strictly increasing.

3 The word obtained by reading the filling from right to left, top to
bottom is such that any initial subword has more i ’s than i + 1’s.

Theorem

cνλ,µ is the number of such tableaux.

P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule
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Example

λ = , µ = , ν = .

cνλ,µ = cν̄,λ,µ = #



1

11

22

3

4

,

1

21

21

3

4

,

1

21

31

2

4
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Example

λ = , µ = , ν = .

cνλ,µ = cν̄,λ,µ = #



µ

ν̄

1

11

22

3

4

,

µ

ν̄

1

21

21

3

4

,

µ

ν̄

1

21

31

2

4
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The Littlewood–Richardson rule Various formulations of the rule The original Littlewood–Richardson rule

Example

λ′ = , µ′ = , ν ′ = .

cν
′

µ′,λ′ = cν̄′,µ′,λ′ = #


1

2

3

1

,

1

2

1

3

,

1

1

2

3


Remark: by conjugating the diagrams, we do not obtain the LR rule for
cνµ,λ.

P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule



The Littlewood–Richardson rule Various formulations of the rule The original Littlewood–Richardson rule

Example

λ′ = , µ′ = , ν ′ = .

cν
′

µ′,λ′ = cν̄′,µ′,λ′ = #


λ′

ν̄′

1

2

3

1

,
λ′

ν̄′

1

2

1

3

,
λ′

ν̄′

1

1

2

3


Remark: by conjugating the diagrams, we do not obtain the LR rule for
cνµ,λ.
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The Littlewood–Richardson rule Various formulations of the rule Honeycombs

Honeycombs

A nondegenerate honeycomb:
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Honeycomb example

0
2

1, 1

2

2

3

3

0, 0, 0

21, 1

2 3

3

4

3

1

2
λ = (3, 2, 1, 1) µ = (3, 1)

ν = (4, 3, 2, 1, 1)

plus two more. . .
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The Littlewood–Richardson rule Various formulations of the rule Puzzles

The three states

Introduce three states , , . Substitute them to the usual two states
according to the rule:

λ : = =

µ : = =

ν or ν̄ : = =

Red particles will be called right-movers, green particles left-movers
(gauche-movers!).
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The Littlewood–Richardson rule Various formulations of the rule Puzzles

Puzzles: boundaries

In a triangle of size d on the triangular lattice, draw the three binary
strings λ, µ, ν on the boundary:

λ = µ =

ν =

P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule



The Littlewood–Richardson rule Various formulations of the rule Puzzles

Puzzles: inside

Fill the inside of the triangle with the following tiles:

so red and green lines are continuous.

On the boundary, (resp. ) are the entering/exiting locations of red
(resp. green) lines.
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Puzzle example I

λ = µ =

ν =
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Puzzle example II

λ = µ =

ν =
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The Littlewood–Richardson rule Various formulations of the rule Puzzles

Puzzle example III

λ = µ =

ν =
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The Littlewood–Richardson rule Relation to tilings and projection method

6 Various formulations of the rule

7 Relation to tilings and projection method
Four-dimensional lattice and tiles
Projection and mosaics
Other projections
Random tiling models

8 Integrability of the square-triangle tiling model
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The Littlewood–Richardson rule Relation to tilings and projection method Four-dimensional lattice and tiles

Let V be the lattice inside Euclidean space R4 obtained as the Cartesian
product of two triangular lattices:

V =

 e1

e2

×
 e3

e4


Define E to be edges of equilateral triangles of either triangular lattice:

E = {[x , x + e], x ∈ V , e ∈ {e1, e2, e2 − e1, e3, e4, e4 − e3}}

Define F to be triangles of either triangular lattice and certain rhombi:

F = V +
{

[0, e1, e2], [0, e2, e2 − e1], [0, e3, e4], [0, e4, e4 − e3],

[0, e1, e4 − e3, e1 + e4 − e3], [0, e4, e2 − e1, e4 + e2 − e1], [0, e2, e3, e2 + e3]
}
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The Littlewood–Richardson rule Relation to tilings and projection method Projection and mosaics

We are interested in surfaces inside (V ,E ,F ) with a certain transversality
condition. For that we need a canonical projection p‖ : R4 → R2:

e1
e2e3 e4

Elements of F , once projected, become tiles:

e1

e4−e3

s1 e4

e2−e1

s2

e2e3

s3

e4
e3 t1 e4 e3

t1
e2e1 t2 e2

e1t2

We define a surface Σ to be a tiling if the map p‖ : Σ→ p‖(Σ) is
one-to-one.

P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule



The Littlewood–Richardson rule Relation to tilings and projection method Projection and mosaics

We are interested in surfaces inside (V ,E ,F ) with a certain transversality
condition. For that we need a canonical projection p‖ : R4 → R2:

e1
e2e3 e4

Elements of F , once projected, become tiles:

e1

e4−e3

s1 e4

e2−e1

s2

e2e3

s3

e4
e3 t1 e4 e3

t1
e2e1 t2 e2

e1t2

We define a surface Σ to be a tiling if the map p‖ : Σ→ p‖(Σ) is
one-to-one.
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The Littlewood–Richardson rule Relation to tilings and projection method Projection and mosaics

Boundary conditions

We require Σ to be connected, with a boundary as follows: Given
λ, µ, ν ⊂ n × (d − n), we translate them into binary strings, convert them
to vectors according to

λ : = → −e1, = → −e3

µ : = → e2, = → e4

ν̄ : = → e1 − e2, = → e3 − e4

and then concatenate them (preserving the cyclic order λ, µ, ν̄). This is
the required sequence of edges at the boundary.

In projection: [puzzle viewer]
Such tilings were introduced essentially independently in [Purbhoo,
Puzzles, Tableaux and Mosaics] and [PZJ, Littlewood–Richardson
coefficients and integrable tilings].

P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule
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to vectors according to

λ : = → −e1, = → −e3

µ : = → e2, = → e4

ν̄ : = → e1 − e2, = → e3 − e4

and then concatenate them (preserving the cyclic order λ, µ, ν̄). This is
the required sequence of edges at the boundary.

In projection: [puzzle viewer]
Such tilings were introduced essentially independently in [Purbhoo,
Puzzles, Tableaux and Mosaics] and [PZJ, Littlewood–Richardson
coefficients and integrable tilings].
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The Littlewood–Richardson rule Relation to tilings and projection method Other projections

Theorem

The number of tilings Σ with boundaries of type λ, µ, ν̄ is cν̄,λ,µ.

As a corollary, we obtain for free all other forms of the
Littlewood–Richardson that were mentioned before! (and bijections
between them)
(to get the content of the tableau simply number the red or green lines)
[puzzle viewer]
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The Littlewood–Richardson rule Relation to tilings and projection method Random tiling models

Random tilings are simple models whose main purpose is to describe
quasi-crystals. They can always be thought as (fluctuating) surfaces
obtained by projection from a higher-dimensional space.
Remark: a general surface in (V ,E ) will project to squares, triangles,
and thin rhombi.

They typically correspond to a high-temperature limit where entropy
considerations dominate – as opposed to deterministic tilings, i.e.,
quasi-periodic tilings, which correspond to a low-temperature limit
where energy dominates. In fact in 2D, no phase transition.

One can still hope for a form of quasi-periodicity, in the sense that
“typical” configurations may have forbidden symmetries. For
example, the square/triangle model can have 12-fold symmetry!

Question: is the square-triangle tiling integrable? [Widom, Kalugin,
de Gier–Nienhuis]
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The Littlewood–Richardson rule Integrability of the square-triangle tiling

6 Various formulations of the rule

7 Relation to tilings and projection method

8 Integrability of the square-triangle tiling model
Squares, triangles and thin rhombi
Transfer matrices
An integrable proof of the LR rule
Inhomogeneities and equivariant puzzles
Solving random tiling models
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The Littlewood–Richardson rule Integrability of the square-triangle tiling Squares, triangles and thin rhombi

More tiles!

To make sense of the (co)product of two Schur functions, we want two
independent NILPs (red and green lines) → introduce extra triangles for
puzzles: [de Gier, Nienhuis; PZJ]

y x z
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The Littlewood–Richardson rule Integrability of the square-triangle tiling Squares, triangles and thin rhombi

Thin rhombi

It amounts to adding thin rhombi to square-triangle tilings:

e2

e4−e3

r1
e3r2

e1−e2

e1

e4

r3

e1

e4−e3

s1 e4

e2−e1

s2

e2e3

s3

e4
e3 t1 e4 e3

t1
e2e1 t2 e2

e1t2
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The Littlewood–Richardson rule Integrability of the square-triangle tiling Squares, triangles and thin rhombi

Yang–Baxter equation

Theorem

If x + y + z = 0, then

(z)
(y)

(x)
= (z)

(y)

(x)

for any fixed boundaries and where tile x (resp. y , z) is only allowed where
marked.

Example:

y

+
x

+ z = 0
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P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule



The Littlewood–Richardson rule Integrability of the square-triangle tiling Squares, triangles and thin rhombi

Yang–Baxter equation

Theorem

If x + y + z = 0, then

(z)
(y)

(x)
= (z)

(y)

(x)

for any fixed boundaries and where tile x (resp. y , z) is only allowed where
marked.

Example:

y

+
x

+ z = 0
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The Littlewood–Richardson rule Integrability of the square-triangle tiling Transfer matrices

Extending puzzles

There are various ways to extend puzzles. A honeycomb-inspired extension:
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Extending puzzles

There are various ways to extend puzzles. A honeycomb-inspired extension:
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The Littlewood–Richardson rule Integrability of the square-triangle tiling Transfer matrices

Extending puzzles cont’d

A red/green line extension to the half-plane:
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Extending puzzles cont’d
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The Littlewood–Richardson rule Integrability of the square-triangle tiling Transfer matrices

Fock space and Transfer matrix

The Fock space G has a natural basis indexed by sequences
(ak) ∈ { , , }Z such that sufficiently far to the left (resp. right),
ak = (resp. ).

The row transfer matrix T evolves the system without the use of extra
pieces, i.e., x = y = z = 0, and such that sufficiently far to the left (resp.
right), green lines move up/one half step to the left (resp. right):

T =
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The Littlewood–Richardson rule Integrability of the square-triangle tiling Transfer matrices

More transfer matrices!

Tr (x) evolves the system with the extra piece x , such that sufficiently far
lines move up/left:

Tr (x) = lim
1

x# red
x x x

Tg (y) evolves the system with the extra piece y , such that sufficiently far
lines move up/right:

Tg (y) = lim
1

y# green
y y

P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule



The Littlewood–Richardson rule Integrability of the square-triangle tiling Transfer matrices

More transfer matrices!

Tr (x) evolves the system with the extra piece x , such that sufficiently far
lines move up/left:

Tr (x) = lim
1

x# red
x x x

Tg (y) evolves the system with the extra piece y , such that sufficiently far
lines move up/right:

Tg (y) = lim
1

y# green
y y
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The Littlewood–Richardson rule Integrability of the square-triangle tiling Transfer matrices

Commutation relations

As a consequence of the Yang–Baxter equation (unzipping argument),

[T ,Tr (x)] = [T ,Tg (y)] = [Tr (x),Tg (y)] = 0

We’re going to expand the equality

〈ν|T k
n∏

i=1

Tr (xi )
m∏
i=1

Tg (yi )
∣∣ · · · · · ·︸ ︷︷ ︸

k

· · ·
〉

= 〈ν|
n∏

i=1

Tr (xi )
m∏
i=1

Tg (yi )T
k
∣∣ · · · · · ·︸ ︷︷ ︸

k

· · ·
〉

where the initial state is the encoding of ν as a binary string made of
{ , }.
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The Littlewood–Richardson rule Integrability of the square-triangle tiling An integrable proof of the LR rule

The left hand side
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The left hand side
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The left hand side
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The left hand side
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The right hand side
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The right hand side
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The right hand side
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The right hand side
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The right hand side
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The right hand side
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The Littlewood–Richardson rule Integrability of the square-triangle tiling Inhomogeneities and equivariant puzzles

Knutson–Tao problem:

sλ(x1, . . . , xk |z1, . . . , zn)sµ(x1, . . . , xk |z1, . . . , zn)

=
∑
ν

cνµ,λ(z1, . . . , zn)sν(x1, . . . , xk |z1, . . . , zn)

Molev–Sagan problem:

sλ(x1, . . . , xk |z1, . . . , zn)sµ(x1, . . . , xk |y1, . . . , yn)

=
∑
ν

eνλ,µ(y1, . . . , yn|z1, . . . , zn)sν(x1, . . . , xk |y1, . . . , yn)

Unifying solution of these two problems in [PZJ,
Littlewood–Richardson coefficients and integrable tilings] using the
third extra tile (z).

P. Zinn-Justin (LPTHE, Université Paris 6) Solvable tilings, Schur functions, Littlewood–Richardson rule

http://www.combinatorics.org/ojs/index.php/eljc/article/view/v16i1r12
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v16i1r12


The Littlewood–Richardson rule Integrability of the square-triangle tiling Inhomogeneities and equivariant puzzles

Knutson–Tao problem:

sλ(x1, . . . , xk |z1, . . . , zn)sµ(x1, . . . , xk |z1, . . . , zn)

=
∑
ν

cνµ,λ(z1, . . . , zn)sν(x1, . . . , xk |z1, . . . , zn)

Molev–Sagan problem:

sλ(x1, . . . , xk |z1, . . . , zn)sµ(x1, . . . , xk |y1, . . . , yn)

=
∑
ν

eνλ,µ(y1, . . . , yn|z1, . . . , zn)sν(x1, . . . , xk |y1, . . . , yn)

Unifying solution of these two problems in [PZJ,
Littlewood–Richardson coefficients and integrable tilings] using the
third extra tile (z).
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Knutson–Tao problem:

sλ(x1, . . . , xk |z1, . . . , zn)sµ(x1, . . . , xk |z1, . . . , zn)

=
∑
ν

cνµ,λ(z1, . . . , zn)sν(x1, . . . , xk |z1, . . . , zn)

Molev–Sagan problem:

sλ(x1, . . . , xk |z1, . . . , zn)sµ(x1, . . . , xk |y1, . . . , yn)

=
∑
ν

eνλ,µ(y1, . . . , yn|z1, . . . , zn)sν(x1, . . . , xk |y1, . . . , yn)

Unifying solution of these two problems in [PZJ,
Littlewood–Richardson coefficients and integrable tilings] using the
third extra tile (z).
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