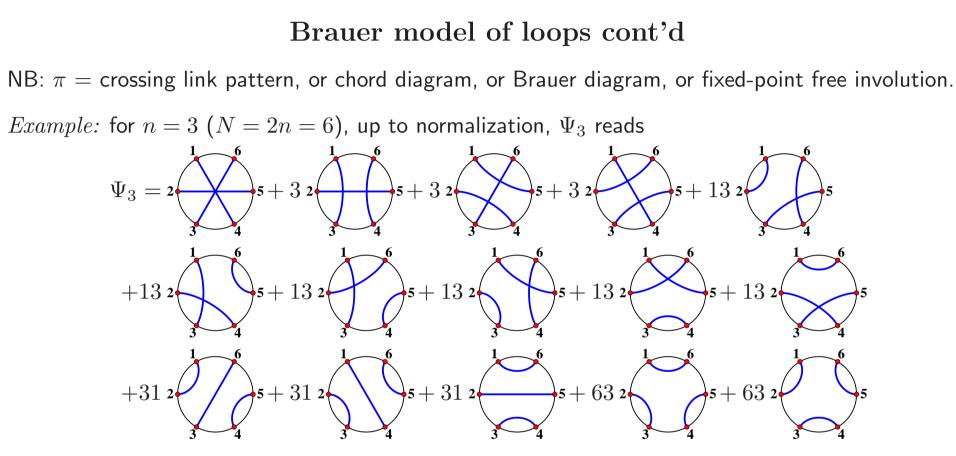

## 01/2010 A. Knutson The Brauer Loop Scheme and Orbital Varieties P. Zinn-Justin Plan of the talk • The Brauer B(1) Loop model: $\diamond$ Definition ◇ Transfer Matrix and Perron–Frobenius eigenvector ♦ Multi-parameter generalization $\diamond q KZ$ equation • The Brauer Loop scheme: $\diamond$ Definition of the scheme (infinite periodic triangular matrices) ♦ Torus action and Equivariant Cohomology ♦ Geometric action of Brauer ♦ Application: degree of the commuting variety • Relation to Orbital Varieties: $\diamond$ Nilpotent orbits of order 2, Orbital Varieties and B-orbits $\diamond$ From the Brauer loop scheme to *B*-orbits ◇ Temperley–Lieb action and Hotta construction ♦ Relation to Schubert varieties References P. Di Francesco, P. Zinn-Justin, Inhomogeneous model of crossing loops..., math-ph/0412031.

A. Knutson, P. Zinn-Justin, A scheme related to the Brauer loop model, math.AG/0503224.


The Brauer B(1) loop model  $\bullet 00000$ 

The Brauer loop scheme

Relation to Orbital Varieties (2)



where  $T_n$  is the **transfer matrix** that adds a row to the semi-infinite cylinder.



**Conjecture** [PZJ '04] (now theorem [AK, PZJ '05]): these numbers are degrees of the irreducible components of the Brauer loop scheme.

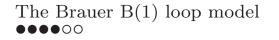
## Inhomogeneous Brauer model of loops [PDF, PZJ '04]

Introduce local probabilities dependent on the column i via a parameter  $z_i$  respecting integrability

of the model (i.e. satisfying Yang-Baxter equation).

$$T_n(t|z_1,\ldots,z_{2n}) = \prod_{i=1}^{2n} \left( a(t-z_i) \bigvee_{i=1}^{2n} + a(a-t+z_i) \bigvee_{i=1}^{2n} + \frac{(t-z_i)(a-t+z_i)}{2} \bigvee_{i=1}^{2n} \right)$$

$$T_n(t; z_1 \dots, z_{2n}) \Psi_n(z_1, \dots, z_{2n}) = \Psi_n(z_1, \dots, z_{2n})$$


\* Polynomiality.

The  $\Psi_{\pi}(z_1, \ldots, z_{2n})$  can be chosen to be coprime polynomials; they are then of total degree 2n(n-1)and of partial degree at most 2(n-1) in each  $z_i$ , with integer coefficients.

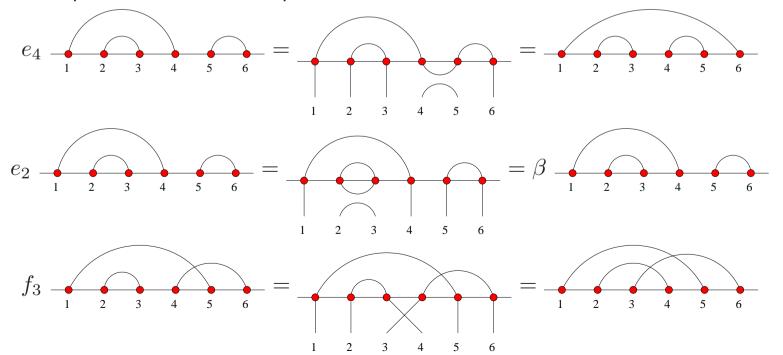
\* Factorization, Recursion relations...  $\rightarrow$  entirely fixed (see next slides)

 $\star$  Sum rule.

$$\sum_{\pi} \Psi_{\pi}(z_1, \dots, z_{2n}) = \Pr\left(\frac{z_i - z_j}{a - (z_i - z_j)^2}\right)_{1 \le i, j \le 2n} \times \prod_{1 \le i < j \le 2n} \frac{a - (z_i - z_j)^2}{z_i - z_j}$$



|i - j| > 1


#### Brauer algebra $B(\beta)$

 $\diamond$  Generators  $e_i$ ,  $f_i$ ,  $i = 1, \dots, N-1$  and relations

$$e_i^2 = \beta e_i$$
  $e_i e_{i\pm 1} e_i = e_i$   $e_i e_j = e_j e_i$   $|i - j| > 1$   
 $f_i^2 = 1$   $(f_i f_{i+1})^3 = 1$   $f_i f_j = f_j f_i$   $|i - j| > 1$ 

 $f_i e_i = e_i f_i = e_i \quad e_i f_i f_{i+1} = e_i e_{i+1} = f_{i+1} f_i e_{i+1} \quad e_{i+1} f_i f_{i+1} = e_{i+1} e_i = f_i f_{i+1} e_i \quad e_i f_j = f_j e_i$ 

♦ Action on link patterns: rewrite link patterns on a line



Rational qKZ equation

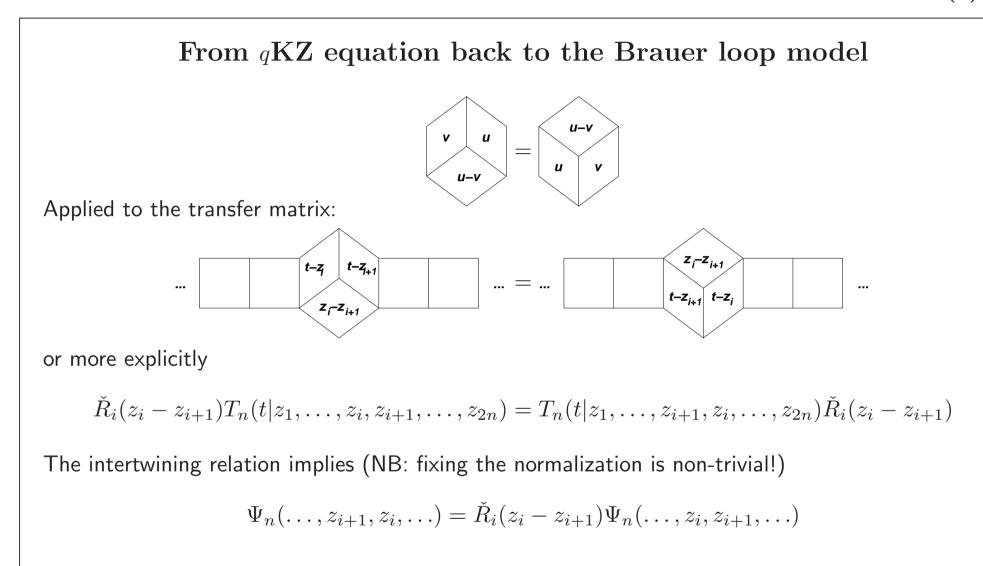
$$\diamond R \text{-matrix: } 1 = \bigcirc, \ e_i = \bigcirc, \ f_i = \bigcirc$$

$$a(a-u) \bigcirc + a u \bigcirc + (1-\beta/2)u(a-u) \bigcirc$$

$$R_i(u) = \frac{\sqrt{(a+u)(a-(1-\beta/2)u)}}{(a+u)\check{R}(u)-\check{R}(u)\check{R}(u+u)\check{R}(u)}$$

Satisfies Yang–Baxter equation:  $\check{R}_i(u)\check{R}_{i+1}(u+v)\check{R}_i(v) = \check{R}_{i+1}(v)\check{R}_i(u+v)\check{R}_{i+1}(u)$  and unitarity equation:  $\check{R}_i(u)\check{R}_i(-u) = 1$ .

Fix  $\epsilon$  and consider the following system of equations:


$$\begin{cases} \check{R}_{i}(z_{i}-z_{i+1})\Psi_{n}^{(\epsilon)}(z_{1},\ldots,z_{N}) = \Psi_{n}^{(\epsilon)}(z_{1},\ldots,z_{i+1},z_{i},\ldots,z_{N}) & i=1,\ldots,N-1\\ \rho\Psi_{n}^{(\epsilon)}(z_{1},\ldots,z_{N}) = \Psi_{n}^{(\epsilon)}(z_{2},\ldots,z_{N},z_{1}+\epsilon) \end{cases}$$

where  $\rho$  is the rotation of link patterns.

In general, no polynomial solutions. But if  $\beta = \frac{2(a-\epsilon)}{2a-\epsilon}$ , there is a solution uniquely fixed by

$$\Psi_{\pi_0}^{(\epsilon)} = \prod_{\substack{1 \le i < j \le 2n \\ j-i < n}} (a + z_i - z_j) \prod_{\substack{1 \le i < j \le 2n \\ j-i > n}} (a + z_j - z_i - \epsilon) \qquad \pi_0$$

Claim: when  $\epsilon = 0$  we recover our eigenvector  $\Psi_n$ .

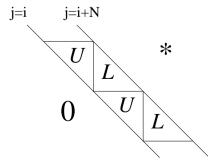


The Brauer loop scheme  $\bullet 0000000000$ 

#### Infinite periodic upper triangular matrices

 $R_{\mathbb{Z}}$  = algebra of upper triangular complex matrices with rows and columns indexed by  $\mathbb{Z}$ .

 $R_{\mathbb{Z} \mod N} =$  subalgebra of matrices with the periodicity


$$A_{ij} = A_{i+N,j+N} \quad \forall i, j \in \mathbb{Z}$$

This subalgebra contains the "shift" matrix S carrying 1s just above the main diagonal,  $S_{ij} = \delta_{i,j-1}$ .  $\mathcal{M}$  is the quotient algebra

$$\mathcal{M} := R_{\mathbb{Z} \bmod N} / \left\langle S^N \right\rangle$$

An element  $M \in \mathcal{M}$  is determined by the entries  $M_{i,j}$  with  $1 \leq i \leq N$ ,  $i \leq j < i + N$ .

Sometimes it is convenient to separate these entries into an upper triangular matrix U and a strict lower triangular matrix L:



#### The affine scheme E

Define in the space  $\mathcal{M}^0$  of matrices with zero diagonals:

$$E := \{ M \in \mathcal{M}^0 : M^2 = 0 \}$$

Explicitly, the equations defining the scheme E read:

$$\sum_{j:i < j < k} M_{i,j} M_{j,k} = 0 \qquad \forall i, k < i + N$$

What are the components of E? what is their dimension?

Experimental answer: to simplify, in what follows we assume N even (N = 2n). Then

1) E is equidimensional:

$$E = \bigcup_{\pi} E_{\pi}$$

with dim  $E_{\pi} = N^2/2$ .

2) The  $E_{\pi}$  are normal.

# The Brauer B(1) loop model

*Example 1*: N = 4. Three components:

\* One cyclic-invariant component:

$$E_1 = \begin{cases} M = \begin{pmatrix} 0 & 0 & m_{13} & m_{14} & & \\ & 0 & 0 & m_{24} & m_{25} & \\ & & 0 & 0 & m_{35} & m_{36} \\ & & & 0 & 0 & m_{46} & m_{47} \end{pmatrix} \end{cases}$$

\* Two components:

$$E_{2} = \left\{ M = \begin{pmatrix} 0 & m_{12} & m_{13} & m_{14} & & \\ & 0 & 0 & m_{24} & m_{25} & & \\ & & 0 & m_{34} & m_{35} & m_{36} & \\ & & & 0 & 0 & m_{46} & m_{47} \end{pmatrix} \qquad \begin{array}{c} m_{12}m_{24} + m_{13}m_{34} = 0 \\ m_{35}m_{56} + m_{34}m_{46} = 0 \\ m_{13}m_{35} - m_{24}m_{46} = 0 \\ \end{array} \right\}$$
$$E_{3} = \rho(E_{2})$$

related to each other by the cycling automorphism  $\rho: M_{i,j} \mapsto M_{i+1,j+1}$ .

NB:  $E_2$ ,  $E_3$  are not complete intersections...

#### Torus action and equivariant cohomology

Action of  $T = (\mathbb{C}^{\star})^{N+1}$  on  $\mathcal{M}$ :

$$M_{i,j} \mapsto e^{a+z_i-z_j} M_{i,j}$$

where  $z_{i+N} = z_i + \epsilon$ .

*Remark*: the action is simply conjugation by  $\operatorname{diag}(e^{z_i})$  ( $\notin \mathcal{M}$  if  $\epsilon \neq 0$ ) and scaling by  $e^a$ .

 $\rightarrow$  Equivariant cohomology  $H_T^*(M_N(\mathbb{C})) \subset \mathbb{C}[a, \epsilon, z_1, \dots, z_N]$  generated by  $[M_{i,j}]_T = a + z_i - z_j$ .

This action preserves E and its components  $E_{\pi}$ .

 $\rightarrow$  Each  $E_{\pi}$  is pushed forward by inclusion to some cohomology class in  $H^*_T(\mathcal{M}^0)$ .

#### Multidegrees

Algebraic formulation: Purely algebraic framework of equivariant cohomology for invariant subschemes

of a (complex) vector space W with a linear action:

**multidegree**  $\operatorname{mdeg}_W X$  of a *T*-invariant scheme  $X \subset W$  defined by

(1) If  $X = W = \{0\}$  then  $m \deg_W X = 1$ .

(2) If X has top-dimensional components  $X_i$  with multiplicity  $m_i$ ,  $\operatorname{mdeg}_W X = \sum_i m_i \operatorname{mdeg}_W X_i$ .

(3) If X is a variety and H is a T-invariant hyperplane in W,

(a) If  $X \not\subset H$ , then  $\operatorname{mdeg}_W X = \operatorname{mdeg}_H(X \cap H)$ .

(b) If  $X \subset H$ , then  $\operatorname{mdeg}_W X = \operatorname{mdeg}_H X \cdot (\operatorname{weight} \text{ of } T \text{ on } W/H)$ .

Remark 1:  $mdeg_W X$  is a homogeneous polynomial, of degree the codimension of X in W. Remark 2: Integral formula:

mdeg 
$$X \propto \int_X d\mu(x) \exp\left(-\pi \sum_i wt(x_i) |x_i|^2\right)$$

Remark 3: here,  $\operatorname{mdeg} X|_{a=1,z_i=0} = \operatorname{deg} X$ .

#### Multidegree of $E_{\pi}$

What is mdeg  $E_{\pi}$ ? (deg  $E_{\pi}$ ?)

Example 1: N = 4.

 $\star$  One component of degree 1:

$$E_{1} = \left\{ M = \begin{pmatrix} 0 & 0 & m_{13} & m_{14} \\ 0 & 0 & m_{24} & m_{25} \\ 0 & 0 & m_{35} & m_{36} \\ 0 & 0 & 0 & m_{46} & m_{47} \end{pmatrix} \right\}$$
  
mdeg  $E_{1} = (a + z_{1} - z_{2})(a + z_{2} - z_{3})(a + z_{3} - z_{4})(a - \epsilon + z_{4} - z_{1})$ 

\* Two components of degree 3:  $(b := a - \epsilon)$ 

$$E_{2} = \left\{ M = \begin{pmatrix} 0 & m_{12} & m_{13} & m_{14} & & \\ & 0 & 0 & m_{24} & m_{25} & & \\ & & 0 & m_{34} & m_{35} & m_{36} & \\ & & & 0 & 0 & m_{46} & m_{47} \end{pmatrix} \qquad \begin{array}{c} m_{12}m_{24} + m_{13}m_{34} = 0 \\ m_{35}m_{56} + m_{34}m_{46} = 0 \\ m_{13}m_{35} - m_{24}m_{46} = 0 \\ \end{array} \right\}$$
$$E_{3} = \rho(E_{2})$$

#### $General\ relation\ scheme\ \leftrightarrow\ statistical\ model$

**Conjecture** [PZJ]: There is a natural way to index irreducible components  $E_{\pi}$  of E with crossing link patterns  $\pi$  of size N = 2n, in such a way that their multidegrees are solutions of rational qKZ equation associated to the Brauer algebra

$$\operatorname{mdeg} E_{\pi} = \Psi_{\pi}^{(\epsilon)}(z_1, \dots, z_{2n})$$

Example: 
$$E_1 \leftrightarrow 2$$
,  $E_2 \leftrightarrow 2$ ,  $E_3 \leftrightarrow 2$ ,  $E_3 \leftrightarrow 2$ ,  $E_3 \leftrightarrow 3$ .

In particular, at  $\epsilon = 0$  and all  $z_i = 0$ , the degrees of the  $E_{\pi}$  are the unnormalized probabilities in the (homogeneous) Brauer loop model.

Proof for  $\epsilon = 0$  in [AK, ZJ '05]; full proof in [AK,ZJ '10].

Corollary: the sum  $\sum_{\pi} \Psi_{\pi}^{(\epsilon)}(z_1, \ldots, z_{2n})$  is the multidegree of E itself.

,  $E_{\pi_0} = \begin{pmatrix} 0 & \cdots & 0 & \star & \cdots & \star \\ 0 & \cdots & 0 & \star & \cdots & \star \\ & \ddots & & \ddots & \ddots & \ddots \end{pmatrix}$ 

#### Definition of the $E_{\pi}$

Note that  $s_i(M) := \sum_{j:i < j < i+N} M_{i,j} M_{j,i+N}$  is well-defined for  $M \in E = \{M^2 = 0\}$ .

Two simple lemmas:

(1) E (and therefore each  $E_{\pi}$ ) is stable by conjugation.

(2)  $s_i(M) = s_i(PMP^{-1})$  for all  $i, M \in E, P$  invertible.

Motivates the following two equivalent definitions:

$$E_{\pi} = \overline{\left\{ M \in E : s_i(M) = s_j(M) \text{ if and only if } j \in \{i, \pi(i)\} \right\}}$$
$$= \overline{\bigcup_{t \text{ diag}} Orb(\pi t)} = \overline{\left\{ P\pi t P^{-1}, t \text{ diag}, P \text{ inv} \right\}} \qquad \pi_{ij} = 1 \text{ iff } j = \pi(i), i < j < i + N$$

Special case: "trivial" component.  $\pi_0 =$ 

$$\operatorname{mdeg} E_{\pi_0} = \prod_{\substack{1 \le i < j \le 2n \\ j-i < n}} (a + z_i - z_j) \prod_{\substack{1 \le i < j \le 2n \\ j-i > n}} (a + z_j - z_i - \epsilon)$$

#### Geometric action of Brauer algebra

\* "Sweeping": Define  $L_i = \{$ invertible matrices with off-diagonal elements at  $(i, i + 1), (i + 1, i)\}$ ,

 $B_i = \{\text{invertible matrices with off-diagonal elements at } (i, i + 1) \} \text{ and } S_i : L_i \times_{B_i} \mathcal{M} \to \mathcal{M}_i$ 

 $(P, M) \to PMP^{-1}$ 

If  $S_{i|L_i \times_{B_i} X}$  generically one-to-one, then

$$\operatorname{mdeg}_{\mathcal{M}_i} S_i(L_i \times_{B_i} X) = -\partial_i \operatorname{mdeg}_{\mathcal{M}_i} X$$

where  $\partial_i = \frac{1}{z_{i+1}-z_i}(\tau_i - 1)$  and  $\tau_i F(z_i, z_{i+1}) = F(z_{i+1}, z_i)$ .

Remark:  $\operatorname{mdeg}_{\mathcal{M}_i} X = (a + z_{i+1} - z_i) \operatorname{mdeg}_{\mathcal{M}} X.$ 

 $\star$  "Cutting": Imposing an additional equation that decreases dimension by 1 amounts to multiplying by the weight of the equation.

#### Geometric action of Brauer algebra cont'd

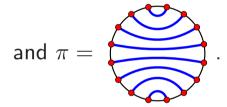
Now consider a component  $E_{\pi}$ . Sweeping with  $L_i$  stays within upper triangular matrices only if

 $M_{i,i+1} = 0$ . Therefore we must distinguish two cases:

\* Assume  $\pi$  has no arch between i and i+1. Then  $E_{\pi} \subset \{M : M_{i,i+1} = 0\}$ . Thus, sweep first. The result is upper triangular but not in  $E \Rightarrow$  impose  $(M^2)_{i+1,i} = 0$ .

One can show that the result is  $E_{\pi} \cup E_{f_i\pi}$ .

$$-(a+b+z_{i+1}-z_i)(a+z_i-z_{i+1})\partial_i\left(\frac{\mathrm{mdeg}\,E_{\pi}}{a+z_i-z_{i+1}}\right) = \mathrm{mdeg}\,E_{f_i\cdot\pi} + \mathrm{mdeg}\,E_{\pi}$$


\* Assume  $\pi$  has an arch between i and i+1. Then cut with  $M_{i,i+1} = 0$ , [throw away the  $L_i$ -invariant pieces and] sweep, then cut with  $(M^2)_{i+1,i} = 0$ . One can show (after some hard work!) that the result is  $\bigcup_{\pi' \neq \pi: e_i \pi' = \pi} E_{\pi'} \cap \{M \in E: s_i(M) = s_{\pi(i)}(M) \forall i\}$ .  $-(a+b+z_{i+1}-z_i)(a+z_i-z_{i+1})\partial_i \operatorname{mdeg} E_{\pi} = (a+b) \sum_{\pi' \neq \pi: e_i \pi' = \pi} \operatorname{mdeg} E_{\pi'}$  Application: (multi)degree of the commuting variety

Define the **commuting variety** to be the scheme

 $C = \{ (X, Y) \in M_n(\mathbb{C})^2 : XY = YX \}$ 

It is a classical difficult problem to compute the degree of C. (previously known up to n = 4 only)

Observation [A. Knutson '03]: there is a Gröbner degeneration from  $C \times V$  to  $E_{\pi}$  where N = 2n



. . .

In particular,  $\deg C = \deg E_{\pi} = 1$ , 3, 31, 1145,

[dG, N] 154881, 77899563, 147226330175, 1053765855157617,

[PZJ] 28736455088578690945, 3000127124463666294963283, 1203831304687539089648950490463,

$$\log \deg C \sim n^2 \times \log 2 \qquad n \to \infty$$

## Orbital varieties

We work with G = GL(N),  $\mathfrak{g} = \mathfrak{gl}(N)$ .  $B = \{$ invertible upper triangular matrices $\}$ ,

 $\mathfrak{b} = \{ upper triangular matrices \}.$ 

We are interested in nilpotent orbits:

$$\mathcal{O} = \{gMg^{-1}, g \in G\} \qquad M^N = 0$$

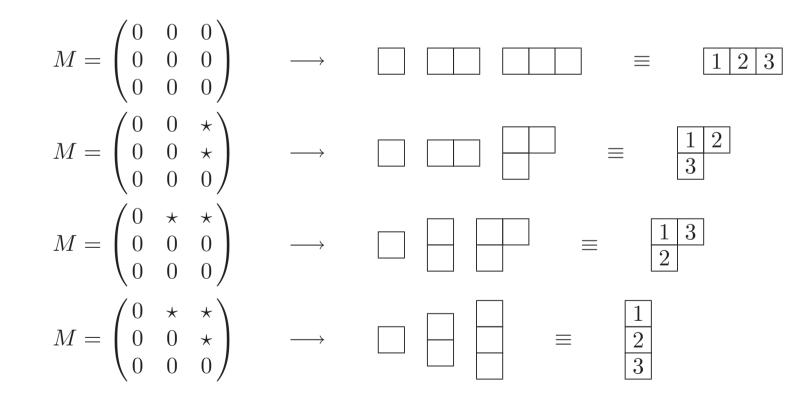
Nilpotent orbits are entirely characterized by the sizes of blocks of the Jordan decomposition of M:

$$M = \begin{pmatrix} 0 & & \\ & 0 & 1 & 0 \\ & 0 & 0 & 1 \\ & 0 & 0 & 0 \end{pmatrix} \longrightarrow \text{Young diagram} : \qquad \square \quad \lambda_1 = 2 \\ & & \lambda_2 = 1 \\ & & \lambda_3 = 1 \end{pmatrix}$$

Nilpotent orbit closures  $\overline{\mathcal{O}}$  are (irreducible) algebraic varieties:

$$\overline{\mathcal{O}} = \{ M : \operatorname{rank} M^i \le \sum_{j > i} \lambda_j \quad i = 1, \dots, k \}$$

To  $\overline{\mathcal{O}}$  one associates its **orbital varieties**  $\{X_{\gamma}\}$  which are the irreducible components of  $\overline{\mathcal{O}} \cap \mathfrak{b}$ .


Relation to Orbital Varieties (20)

#### Orbital varieties cont'd

Orbital varieties are indexed by standard Young tableaux. [Spaltenstein, 1976]

Indeed, to an  $M \in \mathcal{O} \cap \mathfrak{b}$ , one can associate a tableau as the sequence of Young diagrams of successive

restrictions of M to the first n basis vectors. Components are closures of M with a given SYT.



In particular, the number of components of  $\overline{\mathcal{O}} \cap \mathfrak{b}$  is the dimension of the corresponding irrep of  $\mathcal{S}_N$ .

## (extended) Joseph polynomials

There is a natural torus action on  $\overline{\mathcal{O}} \cap \mathfrak{b}$  and each of its components: conjugation by diagonal matrices.

 $M \to DMD^{-1}, \quad D \in (\mathbb{C}^{\star})^N \qquad \Rightarrow \ [M_{ij}] = z_i - z_j$ 

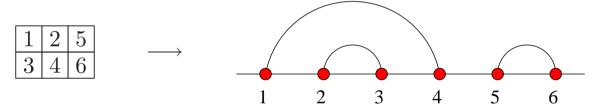
Joseph polynomials = multidegrees of orbital varieties.

Form a basis of an irreducible representation of the symmetric group [Joseph]. Identical to the Springer representation. (also same as KL basis in many cases)

Additional  $\mathbb{C}^*$  action by scaling:  $[M_{ij}] = a + z_i - z_j$ , i < j.


 $\rightarrow$  (extended) Joseph polynomials

 $J_{\gamma}(a, z_1, \dots, z_N) = \operatorname{mdeg}_{\mathfrak{b}} X_{\gamma}$ 


The usual Joseph polynomials are  $J_{\gamma}(0, z_1, \ldots, z_N)$ .



We now specialize to orbits of matrices of maximal rank that square to zero:

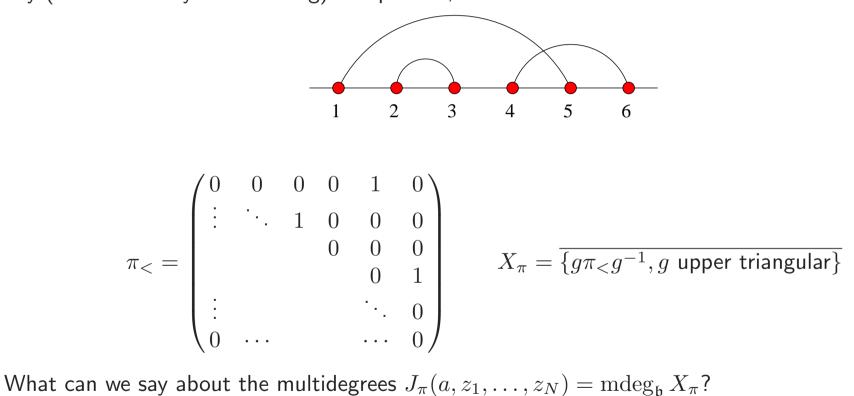


Standard Young tableaux can be more conveniently described as non-crossing link patterns:



Orbital varieties of order 2 can then be described more explicitly as closures of B-orbits of upper

triangles of involutions corresponding to the link pattern:


$$\pi_{<} = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ \vdots & \ddots & 1 & 0 & 0 & 0 \\ & & & 0 & 0 & 0 \\ \vdots & & & & \ddots & 1 \\ 0 & \cdots & & & \cdots & 0 \end{pmatrix}$$

 $X_{\pi} = \overline{\{g\pi_{\leq}g^{-1}, g \text{ upper triangular}\}}$ 

### More upper triangular orbits

In fact, there are more B-orbits than the orbital varieties. To any fixed-point-free involution, i.e. to

any (not necessarily non-crossing) link pattern, is associated a *B*-orbit.



### The Brauer loop scheme as a normal cone

There is a better way to "break into pieces" an orbit closure  $\overline{\mathcal{O}}$ : take its "flat limit" as one scales to zero the strict lower triangular part of the matrix. The result is the **normal cone** of the orbital scheme inside  $\overline{\mathcal{O}}$ .

In the order 2 case we obtain the Brauer loop scheme of E. Indeed, an alternate definition of E ("interpolation" between usual and deformed product) is:

if  $R_N(\mathbb{C})$  is the subspace of upper triangular matrices and

$$R_N(\mathbb{C}[t]) = R_N(\mathbb{C}) \oplus tM_N(\mathbb{C}) \oplus t^2M_N(\mathbb{C}) \oplus \cdots$$

then our algebra is isomorphic to  $R_N(\mathbb{C}[t])/tR_N(\mathbb{C}[t])$ :  $M \mapsto U + tL$ .

In this language, it is more convenient to rewrite the weights in the following (non-cyclic invariant) way:

$$[M_{ij}] = \begin{cases} [U_{ij}] = a + z_i - z_j & i \le j \\ [L_{ij}] = b + z_i - z_j & i > j \end{cases}$$

with  $b = a - \epsilon$ .

From the Brauer loop scheme to Orbital Varieties

Consider the operation:  $E_{\pi} \mapsto E_{\pi} \cap \mathfrak{b}$ . We find easily:  $E_{\pi} \cap \mathfrak{b} = X_{\pi}$  i.e. components of the Brauer

scheme are in one-to-one correspondence with B-orbits.

In the multidegree language this corresponds to  $b \rightarrow \infty$ :

$$\Psi_{\pi}(a,b,z_1,\ldots,z_N) \overset{b\to\infty}{\sim} b^{\#} J_{\pi}(a,z_1,\ldots,z_N)$$

Now, take  $b \to \infty$  limit in the Brauer B( $\beta$ ) qKZ equation. Recall that  $\beta = \frac{2b}{a+b} \Rightarrow$  limit of the degenerate Brauer algebra B(2).

$$e_i^2 = 2e_i \qquad e_i e_{i\pm 1} e_i = e_i \qquad e_i e_j = e_j e_i \quad |i - j| > 1$$

$$f_i^2 = 0 \qquad f_i f_{i+1} f_i = f_{i+1} f_i f_{i+1} \qquad f_i f_j = f_j f_i \quad |i - j| > 1$$

$$f_i e_i = e_i f_i = 0 \qquad f_{i+1} f_i e_{i+1} = f_i f_{i+1} e_i = 0 \qquad e_i f_j = f_j e_i \quad |i - j| > 1$$

$$\check{R}_i(u) = \frac{(a - u) \bigodot + u \bigodot + u(a - u)}{a + u}$$

qKZ equation for Orbital Varieties/*B*-orbits

$$\check{R}_i(z_i - z_{i+1})J(z_1, \dots, z_N) = J(z_1, \dots, z_{i+1}, z_i, \dots, z_N)$$

 $\diamond e_i$  equation:

$$-(a+z_i-z_{i+1})\partial_i J_{\pi} = \sum_{\pi' \neq \pi: e_i \pi' = \pi} J_{\pi'}$$

Related to Hotta's construction of the Joseph polynomials: cut with  $M_{i\,i+1} = 0$  then sweep. Indeed TL(2) is a quotient of the symmetric group! Equivalently the usual generators of the symmetric group  $s_i = 1 - e_i$  are given by  $s_i = -\tau_i + a\partial_i$ .

 $\diamond f_i$  equation: if i and i + 1 are unconnected and the arches starting from i, i + 1 do not cross,

$$-(a+z_i-z_{i+1})\partial_i \frac{J_{\pi}}{a+z_i-z_{i+1}} = J_{f_i\pi}$$

NB:  $f_i \pi$  has one more crossing than  $\pi$ .

Looks very similar to relations between Schubert polynomials. Indeed...

Matrix Schubert varieties and (double) Schubert polynomials

Consider the crossing link patterns  $\pi$  for which  $\pi(i) > n$  for  $i \leq n$ . (N = 2n)

Such patterns are in one-to-one correspondence with  $\sigma \in S_n$ :

The corresponding matrices are contained in the upper right square:  $M = \begin{pmatrix} 0 & p(M) \\ 0 & 0 \end{pmatrix}$ . Also, recall that the matrix Schubert varieties are defined by

$$\tilde{X}_{\sigma} = \{ M \in M(n, \mathbb{C}) : \operatorname{rank} M_{i \times j} \le \operatorname{rank} \sigma_{i \times j} \quad i, j = 1, \dots, n \} = \overline{B_{-}\sigma B_{+}}$$

1

2

**Proposition**:  $p(X_{\pi})$  is the mirror image of matrix Schubert variety  $\tilde{X}_{\sigma}$ ; thus,

$$J_{\pi}(a, z_1, \dots, z_N) = \prod_{1 \le i < j \le n} (a + z_i - z_j) \prod_{n+1 \le i < j \le N} (a + z_i - z_j)$$
$$S_{\sigma}(a + z_n, \dots, a + z_1; z_{n+1}, \dots, z_N)$$

where the  $S_{\sigma}$  are the double Schubert polynomials.

*Remark:* relation to the flag variety G/B:  $(G = GL(n), T = \mathbb{C}^n)$ 

$$H^*(G/B) \simeq H^*_B(G) \simeq H^*_T(G) \stackrel{i^*}{\twoheadleftarrow} H^*_T(\mathfrak{g}) = \mathbb{C}[z_1, \dots, z_n]$$

 $i^*(S_{\sigma}(z_1,\ldots,z_n;0,\ldots,0))$  linear basis of  $H^*(G/B)$ .

### Open problems

 $\star$  Conjectured equations of  $E_{\pi}$ :

(1)  $M^2 = 0$ .

(2)  $s_i(M) = s_{\pi(i)}(M)$  for all *i*.

(3) For any matrix entry (i, j), i < j < i + N, we have  $r_{ij}(M) \leq r_{ij}(\pi)$ , where  $r_{ij}$  denotes the rank of the submatrix south-west of entry (i, j). In polynomial terms, this asserts the vanishing of all minors of size  $r_{ij}(\pi) + 1$  in the submatrix southwest of entry (i, j).

- $\star$  Structure of orbits by conjugation.
- inside  $\mathcal{M}$ ? inside E?

problems: additional coincidences in (2). structure of the poset of rank conditions generalizing (3).