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Plan of the talk

• The Brauer B(1) Loop model: ⋄ Definition

⋄ Transfer Matrix and Perron–Frobenius eigenvector

⋄ Multi-parameter generalization

⋄ qKZ equation

• The Brauer Loop scheme: ⋄ Definition of the scheme (infinite periodic triangular matrices)

⋄ Torus action and Equivariant Cohomology

⋄ Geometric action of Brauer

⋄ Application: degree of the commuting variety

• Relation to Orbital Varieties: ⋄ Nilpotent orbits of order 2, Orbital Varieties and B-orbits

⋄ From the Brauer loop scheme to B-orbits

⋄ Temperley–Lieb action and Hotta construction

⋄ Relation to Schubert varieties
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Brauer model of loops

1 2 3 42n ......

1

2

3 4

5

6 1

2

3 4

5

6 1

2

3 4

5

6

1

2

3 4

5

6 1

2

3 4

5

6 1

2

3 4

5

6

1

2

3 4

5

6 1

2

3 4

5

6 1

2

3 4

5

6

1

2

3 4

5

6 1

2

3 4

5

6 1

2

3 4

5

6

1

2

3 4

5

6 1

2

3 4

5

6 1

2

3 4

5

6

Probability that external vertex i is connected to vertex j? (proba: = = 4/9, = 1/9)

→ vector Ψn, whose components are indexed by crossing link patterns, satisfying

TnΨn = Ψn

where Tn is the transfer matrix that adds a row to the semi-infinite cylinder.
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Brauer model of loops cont’d

NB: π = crossing link pattern, or chord diagram, or Brauer diagram, or fixed-point free involution.

Example: for n = 3 (N = 2n = 6), up to normalization, Ψ3 reads

Ψ3 =
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Conjecture [PZJ ’04] (now theorem [AK, PZJ ’05]): these numbers are degrees of the irreducible

components of the Brauer loop scheme.
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Inhomogeneous Brauer model of loops [PDF, PZJ ’04]

Introduce local probabilities dependent on the column i via a parameter zi respecting integrability

of the model (i.e. satisfying Yang–Baxter equation).

Tn(t|z1, . . . , z2n) =
2n
∏

i=1

(

a(t − zi) + a(a − t + zi) +
(t − zi)(a − t + zi)

2

)

Tn(t; z1 . . . , z2n)Ψn(z1, . . . , z2n) = Ψn(z1, . . . , z2n)

⋆ Polynomiality.

The Ψπ(z1, . . . , z2n) can be chosen to be coprime polynomials; they are then of total degree 2n(n−1)

and of partial degree at most 2(n − 1) in each zi, with integer coefficients.

⋆ Factorization, Recursion relations. . .→ entirely fixed (see next slides)

⋆ Sum rule.

∑

π

Ψπ(z1, . . . , z2n) = Pf

(

zi − zj

a − (zi − zj)2

)

1≤i,j≤2n

×
∏

1≤i<j≤2n

a − (zi − zj)
2

zi − zj
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Brauer algebra B(β)

⋄ Generators ei, fi, i = 1, . . . , N − 1 and relations

e2
i = βei eiei±1ei = ei eiej = ejei |i − j| > 1

f2
i = 1 (fifi+1)

3 = 1 fifj = fjfi |i − j| > 1

fiei = eifi = ei eififi+1 = eiei+1 = fi+1fiei+1 ei+1fifi+1 = ei+1ei = fifi+1ei eifj = fjei

|i − j| > 1⋄ Action on link patterns: rewrite link patterns on a line

e4
1 2 3 4 5 6

=

1 2 3 4 5 6

=
1 2 3 4 5 6

e2
1 2 3 4 5 6

=

1 2 3 4 5 6

= β
1 2 3 4 5 6

f3
1 2 3 4 5 6

=

1 2 3 4 5 6

=
1 2 3 4 5 6
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Rational qKZ equation

⋄ R-matrix: 1 = , ei = , fi =

Ři(u) =
a(a − u) + a u + (1 − β/2)u(a − u)

(a + u)(a − (1 − β/2)u)

Satisfies Yang–Baxter equation: Ři(u)Ři+1(u + v)Ři(v) = Ři+1(v)Ři(u + v)Ři+1(u) and unitarity

equation: Ři(u)Ři(−u) = 1.

Fix ǫ and consider the following system of equations:






Ři(zi − zi+1)Ψ
(ǫ)
n (z1, . . . , zN ) = Ψ(ǫ)

n (z1, . . . , zi+1, zi, . . . , zN ) i = 1, . . . , N − 1

ρΨ(ǫ)
n (z1, . . . , zN ) = Ψ(ǫ)

n (z2, . . . , zN , z1 + ǫ)

where ρ is the rotation of link patterns.

In general, no polynomial solutions. But if β = 2(a−ǫ)
2a−ǫ

, there is a solution uniquely fixed by

Ψ(ǫ)
π0

=
∏

1≤i<j≤2n

j−i<n

(a + zi − zj)
∏

1≤i<j≤2n

j−i>n

(a + zj − zi − ǫ) π0 =

Claim: when ǫ = 0 we recover our eigenvector Ψn.
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From qKZ equation back to the Brauer loop model

v u

u−v

=
u−v

u v

Applied to the transfer matrix:

iz −z i+1

... ...
i+1t−zt−zi

=
iz −z i+1

t−z i+1 t−z i

... ...

or more explicitly

Ři(zi − zi+1)Tn(t|z1, . . . , zi, zi+1, . . . , z2n) = Tn(t|z1, . . . , zi+1, zi, . . . , z2n)Ři(zi − zi+1)

The intertwining relation implies (NB: fixing the normalization is non-trivial!)

Ψn(. . . , zi+1, zi, . . .) = Ři(zi − zi+1)Ψn(. . . , zi, zi+1, . . .)
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Infinite periodic upper triangular matrices

RZ = algebra of upper triangular complex matrices with rows and columns indexed by Z.

RZ mod N = subalgebra of matrices with the periodicity

Aij = Ai+N,j+N ∀i, j ∈ Z

This subalgebra contains the “shift” matrix S carrying 1s just above the main diagonal, Sij = δi,j−1.

M is the quotient algebra

M := RZ mod N/
〈

SN
〉

An element M ∈ M is determined by the entries Mi,j with 1 ≤ i ≤ N , i ≤ j < i + N .

Sometimes it is convenient to separate these entries into an upper triangular matrix U and a strict

lower triangular matrix L:

0

*

j=i j=i+N

U

U

L

L
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The affine scheme E

Define in the space M0 of matrices with zero diagonals:

E := {M ∈ M0 : M2 = 0 }

Explicitly, the equations defining the scheme E read:

∑

j:i<j<k

Mi,jMj,k = 0 ∀i, k < i + N

What are the components of E? what is their dimension?

Experimental answer: to simplify, in what follows we assume N even (N = 2n). Then

1) E is equidimensional:

E =
⋃

π

Eπ

with dimEπ = N2/2.

2) The Eπ are normal.
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Example 1: N = 4. Three components:

⋆ One cyclic-invariant component:

E1 =











M =







0 0 m13 m14

0 0 m24 m25

0 0 m35 m36

0 0 m46 m47

















⋆ Two components:

E2 =











M =







0 m12 m13 m14

0 0 m24 m25

0 m34 m35 m36

0 0 m46 m47







m12m24 + m13m34 = 0
m35m56 + m34m46 = 0
m13m35 − m24m46 = 0











E3 = ρ(E2)

related to each other by the cycling automorphism ρ : Mi,j 7→ Mi+1,j+1.

NB: E2, E3 are not complete intersections. . .
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Torus action and equivariant cohomology

Action of T = (C⋆)N+1 on M:

Mi,j 7→ ea + zi − zjMi,j

where zi+N = zi + ǫ.

Remark: the action is simply conjugation by diag(ezi) (6∈ M if ǫ 6= 0) and scaling by ea.

→ Equivariant cohomology H∗
T (MN (C)) ⊂ C[a, ǫ, z1, . . . , zN ] generated by [Mi,j ]T = a + zi − zj .

This action preserves E and its components Eπ.

→ Each Eπ is pushed forward by inclusion to some cohomology class in H∗
T (M0).
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Multidegrees

Algebraic formulation: Purely algebraic framework of equivariant cohomology for invariant subschemes

of a (complex) vector space W with a linear action:

multidegree mdegW X of a T -invariant scheme X ⊂ W defined by

(1) If X = W = {0} then mdegW X = 1.

(2) If X has top-dimensional components Xi with multiplicity mi, mdegW X =
∑

i mi mdegW Xi.

(3) If X is a variety and H is a T -invariant hyperplane in W ,

(a) If X 6⊂ H, then mdegW X = mdegH(X ∩ H).

(b) If X ⊂ H, then mdegW X = mdegH X · (weight of T on W/H).

Remark 1: mdegW X is a homogeneous polynomial, of degree the codimension of X in W .

Remark 2: Integral formula:

mdeg X ∝

∫

X

dµ(x) exp

(

−π
∑

i

wt(xi) |xi|
2

)

Remark 3: here, mdeg X|a=1,zi=0 = deg X.
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Multidegree of Eπ

What is mdeg Eπ? (deg Eπ?)

Example 1: N = 4.

⋆ One component of degree 1:

E1 =











M =







0 0 m13 m14

0 0 m24 m25

0 0 m35 m36

0 0 m46 m47

















mdeg E1 = (a + z1 − z2)(a + z2 − z3)(a + z3 − z4)(a − ǫ + z4 − z1)

⋆ Two components of degree 3: (b := a − ǫ)

E2 =











M =







0 m12 m13 m14

0 0 m24 m25

0 m34 m35 m36

0 0 m46 m47







m12m24 + m13m34 = 0
m35m56 + m34m46 = 0
m13m35 − m24m46 = 0











E3 = ρ(E2)

mdeg E2 = (a + z2 − z3)(b + z4 − z1)(a
2 + 2ab + bz1 − az2 − z1z2 + az3 + z2z3 − bz4 + z1z4 − z3z4)

Example 2: N = 6: (deg Eπ) = (1, 3, 3, 3, 13, 13, 13, 13, 13, 13, 31, 31, 31, 63, 63). deg E = 307.
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General relation scheme ↔ statistical model

Conjecture [PZJ]: There is a natural way to index irreducible components Eπ of E with crossing

link patterns π of size N = 2n, in such a way that their multidegrees are solutions of rational qKZ

equation associated to the Brauer algebra

mdeg Eπ = Ψ(ǫ)
π (z1, . . . , z2n)

Example: E1 ↔

1

2 3

4

, E2 ↔

1

2 3

4

, E3 ↔

1

2 3

4

.

In particular, at ǫ = 0 and all zi = 0, the degrees of the Eπ are the unnormalized probabilities in the

(homogeneous) Brauer loop model.

Proof for ǫ = 0 in [AK, ZJ ’05]; full proof in [AK,ZJ ’10].

Corollary: the sum
∑

π Ψ
(ǫ)
π (z1, . . . , z2n) is the multidegree of E itself.
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Definition of the Eπ

Note that si(M) :=
∑

j:i<j<i+N Mi,jMj,i+N is well-defined for M ∈ E = {M2 = 0}.

Two simple lemmas:

(1) E (and therefore each Eπ) is stable by conjugation.

(2) si(M) = si(PMP−1) for all i, M ∈ E, P invertible.

Motivates the following two equivalent definitions:

Eπ =
{

M ∈ E : si(M) = sj(M) if and only if j ∈ {i, π(i)}
}

=
⋃

t diag

Orb(πt) =
{

PπtP−1, t diag, P inv
}

πij = 1 iff j = π(i), i < j < i + N

Special case: “trivial” component. π0 = , Eπ0
=





0 · · · 0 ⋆ · · · ⋆
0 · · · 0 ⋆ · · · ⋆

. . .
. . .

. . .





mdeg Eπ0
=

∏

1≤i<j≤2n

j−i<n

(a + zi − zj)
∏

1≤i<j≤2n

j−i>n

(a + zj − zi − ǫ)
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Geometric action of Brauer algebra

⋆ “Sweeping”: Define Li = {invertible matrices with off-diagonal elements at (i, i + 1), (i + 1, i)},

Bi = {invertible matrices with off-diagonal elements at (i, i + 1)} and

Si : Li×Bi
M → Mi

(P, M) → PMP−1

If Si|Li×Bi
X generically one-to-one, then

mdegMi
Si(Li ×Bi

X) = −∂imdegMi
X

where ∂i = 1
zi+1−zi

(τi − 1) and τiF (zi, zi+1) = F (zi+1, zi).

Remark: mdegMi
X = (a + zi+1 − zi)mdegM X.

⋆ “Cutting”: Imposing an additional equation that decreases dimension by 1 amounts to multiplying

by the weight of the equation.
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Geometric action of Brauer algebra cont’d

Now consider a component Eπ. Sweeping with Li stays within upper triangular matrices only if

Mi,i+1 = 0. Therefore we must distinguish two cases:

⋆ Assume π has no arch between i and i+1. Then Eπ ⊂ {M : Mi,i+1 = 0}. Thus, sweep first. The

result is upper triangular but not in E ⇒ impose (M2)i+1,i = 0.

One can show that the result is Eπ ∪ Efiπ.

−(a + b + zi+1 − zi)(a + zi − zi+1)∂i

(

mdeg Eπ

a + zi − zi+1

)

= mdeg Efi·π + mdeg Eπ

⋆ Assume π has an arch between i and i+1. Then cut with Mi,i+1 = 0, [throw away the Li-invariant

pieces and] sweep, then cut with (M2)i+1,i = 0. One can show (after some hard work!) that the

result is
⋃

π′ 6=π:eiπ′=π Eπ′ ∩ {M ∈ E : si(M) = sπ(i)(M) ∀i}.

−(a + b + zi+1 − zi)(a + zi − zi+1)∂imdeg Eπ = (a + b)
∑

π′ 6=π:eiπ′=π

mdeg Eπ′
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Application: (multi)degree of the commuting variety

Define the commuting variety to be the scheme

C = { (X, Y ) ∈ Mn(C)2 : XY = Y X }

It is a classical difficult problem to compute the degree of C. (previously known up to n = 4 only)

Observation [A. Knutson ’03]: there is a Gröbner degeneration from C × V to Eπ where N = 2n

and π = .

In particular, deg C = deg Eπ = 1, 3, 31, 1145,

[dG, N] 154881, 77899563, 147226330175, 1053765855157617,

[PZJ] 28736455088578690945, 3000127124463666294963283, 1203831304687539089648950490463,

. . .

log deg C ∼ n2 × log 2 n → ∞
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Orbital varieties

We work with G = GL(N), g = gl(N). B = {invertible upper triangular matrices},

b = {upper triangular matrices}.

We are interested in nilpotent orbits:

O = {gMg−1, g ∈ G} MN = 0

Nilpotent orbits are entirely characterized by the sizes of blocks of the Jordan decomposition of M :

M =











0

0 1 0
0 0 1
0 0 0











−→ Young diagram :
λ1 = 2
λ2 = 1
λ3 = 1

Nilpotent orbit closures O are (irreducible) algebraic varieties:

O = {M : rankM i ≤
∑

j>i

λj i = 1, . . . , k}

To O one associates its orbital varieties {Xγ} which are the irreducible components of O ∩ b.
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Orbital varieties cont’d

Orbital varieties are indexed by standard Young tableaux. [Spaltenstein, 1976]

Indeed, to an M ∈ O∩b, one can associate a tableau as the sequence of Young diagrams of successive

restrictions of M to the first n basis vectors. Components are closures of M with a given SYT.

M =





0 0 0
0 0 0
0 0 0



 −→ ≡ 1 2 3

M =





0 0 ⋆
0 0 ⋆
0 0 0



 −→ ≡ 1 2
3

M =





0 ⋆ ⋆
0 0 0
0 0 0



 −→ ≡ 1 3
2

M =





0 ⋆ ⋆
0 0 ⋆
0 0 0



 −→ ≡
1
2
3

In particular, the number of components of O∩ b is the dimension of the corresponding irrep of SN .
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(extended) Joseph polynomials

There is a natural torus action on O∩b and each of its components: conjugation by diagonal matrices.

M → DMD−1, D ∈ (C⋆)N ⇒ [Mij ] = zi − zj

Joseph polynomials = multidegrees of orbital varieties.

Form a basis of an irreducible representation of the symmetric group [Joseph]. Identical to the

Springer representation. (also same as KL basis in many cases)

Additional C
⋆ action by scaling: [Mij ] = a + zi − zj , i < j.

→ (extended) Joseph polynomials

Jγ(a, z1, . . . , zN ) = mdegb Xγ

The usual Joseph polynomials are Jγ(0, z1, . . . , zN ).
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Orbital varieties of order 2

We now specialize to orbits of matrices of maximal rank that square to zero:

Standard Young tableaux can be more conveniently described as non-crossing link patterns:

1 2 5
3 4 6

−→

1 2 3 4 5 6
Orbital varieties of order 2 can then be described more explicitly as closures of B-orbits of upper

triangles of involutions corresponding to the link pattern:

π< =



















0 0 0 1 0 0
...

. . . 1 0 0 0
0 0 0

0 0
...

. . . 1
0 · · · · · · 0



















Xπ = {gπ<g−1, g upper triangular}
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More upper triangular orbits

In fact, there are more B-orbits than the orbital varieties. To any fixed-point-free involution, i.e. to

any (not necessarily non-crossing) link pattern, is associated a B-orbit.

1 2 3 4 5 6

π< =



















0 0 0 0 1 0
...

. . . 1 0 0 0
0 0 0

0 1
...

. . . 0
0 · · · · · · 0



















Xπ = {gπ<g−1, g upper triangular}

What can we say about the multidegrees Jπ(a, z1, . . . , zN ) = mdegb Xπ?
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The Brauer loop scheme as a normal cone

There is a better way to “break into pieces” an orbit closure O: take its “flat limit” as one scales

to zero the strict lower triangular part of the matrix. The result is the normal cone of the orbital

scheme inside O.

In the order 2 case we obtain the Brauer loop scheme of E. Indeed, an alternate definition of E

(“interpolation” between usual and deformed product) is:

if RN (C) is the subspace of upper triangular matrices and

RN (C[t]) = RN (C) ⊕ tMN (C) ⊕ t2MN (C) ⊕ · · ·

then our algebra is isomorphic to RN (C[t])/tRN (C[t]): M 7→ U + tL.

In this language, it is more convenient to rewrite the weights in the following (non-cyclic invariant)

way:

[Mij ] =

{

[Uij ] = a + zi − zj i ≤ j
[Lij ] = b + zi − zj i > j

with b = a − ǫ.
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From the Brauer loop scheme to Orbital Varieties

Consider the operation: Eπ 7→ Eπ ∩ b. We find easily: Eπ ∩ b = Xπ i.e. components of the Brauer

scheme are in one-to-one correspondence with B-orbits.

In the multidegree language this corresponds to b → ∞:

Ψπ(a, b, z1, . . . , zN )
b→∞
∼ b#Jπ(a, z1, . . . , zN )

Now, take b → ∞ limit in the Brauer B(β) qKZ equation. Recall that β = 2b
a+b

⇒ limit of the

degenerate Brauer algebra B(2).

e2
i = 2ei eiei±1ei = ei eiej = ejei |i − j| > 1

f2
i = 0 fifi+1fi = fi+1fifi+1 fifj = fjfi |i − j| > 1

fiei = eifi = 0 fi+1fiei+1 = fifi+1ei = 0 eifj = fjei |i − j| > 1

Ři(u) =
(a − u) + u + u(a − u)

a + u
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qKZ equation for Orbital Varieties/B-orbits

Ři(zi − zi+1)J(z1, . . . , zN ) = J(z1, . . . , zi+1, zi, . . . , zN )

⋄ ei equation:

−(a + zi − zi+1)∂iJπ =
∑

π′ 6=π:eiπ′=π

Jπ′

Related to Hotta’s construction of the Joseph polynomials: cut with Mi i+1 = 0 then sweep.

Indeed TL(2) is a quotient of the symmetric group! Equivalently the usual generators of the symmetric

group si = 1 − ei are given by si = −τi + a∂i.

⋄ fi equation: if i and i + 1 are unconnected and the arches starting from i, i + 1 do not cross,

−(a + zi − zi+1)∂i

Jπ

a + zi − zi+1
= Jfiπ

NB: fiπ has one more crossing than π.

Looks very similar to relations between Schubert polynomials. Indeed. . .
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Matrix Schubert varieties and (double) Schubert polynomials

Consider the crossing link patterns π for which π(i) > n for i ≤ n. (N = 2n)

Such patterns are in one-to-one correspondence with σ ∈ Sn:

31 2 4

8 7 6 5

The corresponding matrices are contained in the upper right square: M =

(

0 p(M)
0 0

)

.

Also, recall that the matrix Schubert varieties are defined by

X̃σ = {M ∈ M(n, C) : rankMi×j ≤ rankσi×j i, j = 1, . . . , n} = B−σB+

Proposition: p(Xπ) is the mirror image of matrix Schubert variety X̃σ; thus,

Jπ(a, z1, . . . , zN ) =
∏

1≤i<j≤n

(a + zi − zj)
∏

n+1≤i<j≤N

(a + zi − zj)

Sσ(a + zn, . . . , a + z1; zn+1, . . . , zN )

where the Sσ are the double Schubert polynomials.

Remark: relation to the flag variety G/B: (G = GL(n), T = C
n)

H∗(G/B) ≃ H∗
B(G) ≃ H∗

T (G)
i∗

ևH∗
T (g) = C[z1, . . . , zn]

i∗(Sσ(z1, . . . , zn; 0, . . . , 0)) linear basis of H∗(G/B).



The Brauer B(1) loop model
••••••

The Brauer loop scheme
•••••••••••

Relation to Orbital Varieties
••••••••• (28)

Open problems

⋆ Conjectured equations of Eπ:

(1) M2 = 0.

(2) si(M) = sπ(i)(M) for all i.

(3) For any matrix entry (i, j), i < j < i + N , we have rij(M) ≤ rij(π), where rij denotes the

rank of the submatrix south-west of entry (i, j). In polynomial terms, this asserts the vanishing of

all minors of size rij(π) + 1 in the submatrix southwest of entry (i, j).

⋆ Structure of orbits by conjugation.

inside M? inside E?

problems: additional coincidences in (2). structure of the poset of rank conditions generalizing (3).


