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This work originated in the observation [Korepin, PZJ; PZJ,
’00] that the bulk free energy of the six-vertex model depends
on the boundary conditions.

At the same time, a lot of work on dimer models [Jockusch,
Propp, Shor, ’98; ...; Kenyon, Okounkov, ’04] showed the
existence of spatial phase separation and limiting shapes in
these models.

For a long time, only qualitative [PZJ, ’02] or numerical
results [Syljuasen, Zvonarev, ’04; Allison, Reshetikhin, ’05] in
the case of the six-vertex model.

Colomo and Pronko recently managed to compute a certain
correlation function for the six-vertex model with Domain
Wall Boundary Conditions and to describe the arctic curve in
the disordered regime [’07–’09].

Their work can be extended to describe the arctic curve in all
regimes.
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Configurations
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Boltzmann weights

︸ ︷︷ ︸
a = q u − q−1

︸ ︷︷ ︸
b = u − 1

︸ ︷︷ ︸
c = (q − q−1)u1/2
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Phase diagram

Set ∆ = 1
2 (q + q−1) = (a2 + b2 − c2)/(2ab).
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Domain Wall Boundary Conditions
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Inhomogeneous weights

v1 v2 v3 v4 v5

u1

u2

u3

u4

u5

weight= f (ui/vj)
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Izergin’s determinant formula [’87]

The partition function ZN of the six-vertex model with DWBC can
be written as:

ZN(u1, . . . , uN ; v1, . . . , vN) ∝
detφ(ui/vj)

∆(ui )∆(vi )
,

φ(u) =
q − q−1

(u − 1)(qu − q−1)
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Matrix model-like formulation

Write

φ(u) =

∫ +∞

−∞
dρ0(λ)uλ/2

where dρ0(λ) is some measure to rewrite

ZN ∝
∫

dρ0(λ1) · · · dρ0(λN)
det(u

λj/2
i )

∆(ui )

det(v
−λj/2
i )

∆(vi )

→ one-matrix model with “double external field”.
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Bulk free energy

Take the homogeneous limit ui → 1, vi → v :

ZN ∝
∫

dρ(λ1) · · · dρ(λN)∆(λi )
2

where dρ(λ) = v−λ/2dρ0(λ). → usual one-matrix model.
One can compute the large N limit by standard matrix model
techniques. . . [PZJ, ’00]

The ferroelectric regime ∆ > 1 is trivial.

The disordered regime |∆| < 1 corresponds to a one-cut
matrix model with non-polynomial potential
V (λ) = aλ+ b|λ|.
The antiferroelectric regime ∆ < −1 produces a two-cut
solution separated by a Douglas–Kazakov type saturated
region.
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One point boundary correlation function

In the limit where all ui → 1 but one, which is sent to u, we can
first expand the determinant, and then replace it with a contour
integral:

ZN ∝
∫

dρ(λ1) · · · dρ(λN)∆(λj)
N∑

i=1

uλi/2∆(λj)j 6=i

∝
∫

dρ(λ1) · · · dρ(λN)∆(λj)
2

N∑
i=1

(−1)i−1uλi/2∏
1≤j≤N

j 6=i
(λi − λj)

∝
∫

dρ(λ1) · · · dρ(λN)∆(λj)
2

∮
dλ

uλ/2∏N
i=1(λ− λi )
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One point boundary correlation function cont’d

As N →∞, the integral over µ = λ/(2N) is dominated by a
saddle point; the saddle point equation is

log u = ω(µ?)

where ω(µ) is the resolvent of the µi = λi/(2N):

ω(µ) =
1

N

N∑
i=1

1

µ− µi

Therefore, the one point boundary correlation function

lim
N→∞

1

N
u

d

du
log ZN(u, 1, . . . , 1; v , . . . , v) = analytic + ω−1(log u)

is given by the functional inverse of the resolvent.
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From general principles, one expects that with fixed boundary
conditions, the six-vertex model should undergo spatial phase
separation in the thermodynamic limit.

Based on its phase diagram in electric field, one should have:

Ferroelectric and disordered regions for ∆ > −1.

Ferroelectric, disordered and antiferroeletric regions for
∆ < −1.

These different regions can in principle be determined by applying
a variational principle, but it is too complicated to solve in practice.

Here we shall be concerned with the arctic curve, that is the curve
separating the ferroeletric and disordered regions. In the south-east
corner it coincides with the trajectory of the lowest path.
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a = 1
b = 1
c = 1
∆ = 1/2

Coupling from the past
[Propp and Wilson ’96],
implementation by Blum
and Woolever ’97,
Wieland ’07, PZJ ’09.
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a = 1
b = 1
c =
√

2
∆ = 0

Coupling from the past
[Propp and Wilson ’96],
implementation by Blum
and Woolever ’97,
Wieland ’07, PZJ ’09.
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a = 1
b = 1
c =
√

3
∆ = −1/2

Coupling from the past
[Propp and Wilson ’96],
implementation by Blum
and Woolever ’97,
Wieland ’07, PZJ ’09.
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a = 1
b = 1
c = 2
∆ = −1

Coupling from the past
[Propp and Wilson ’96],
implementation by Blum
and Woolever ’97,
Wieland ’07, PZJ ’09.
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a = 1
b = 1
c = 3
∆ = −7/2

Coupling from the past
[Propp and Wilson ’96],
implementation by Blum
and Woolever ’97,
Wieland ’07, PZJ ’09.
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a = 1
b = 1
c = 4
∆ = −7

Coupling from the past
[Propp and Wilson ’96],
implementation by Blum
and Woolever ’97,
Wieland ’07, PZJ ’09.



Introduction The six-vertex model Domain Wall Boundary Conditions Limiting shapes

a = 3
b = 4
c = 5
∆ = 0

Coupling from the past
[Propp and Wilson ’96],
implementation by Blum
and Woolever ’97,
Wieland ’07, PZJ ’09.
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a = 1
b = 3
c = 5
∆ = −15/8

Coupling from the past
[Propp and Wilson ’96],
implementation by Blum
and Woolever ’97,
Wieland ’07, PZJ ’09.
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a = 3
b = 1
c = 5
∆ = −15/8

Coupling from the past
[Propp and Wilson ’96],
implementation by Blum
and Woolever ’97,
Wieland ’07, PZJ ’09.
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P. Colomo and A. Pronko managed to find an integral expression
for the Emptiness Formation Probability in the rectangle
south-east of a given point (r , s).

F
(r ,s)
N ∝

∮
· · ·
∮ s∏

i=1

z−s
i ẑ−r

i dzi ∆(zi )
2 det(hN−j(zi )) det(hs−j(ẑi ))

ẑi = − zi − 1

(t2 − 2∆t)zi + 1

hN(z) ∝ lim
N→∞

1

N
log ZN(u(z), 1, . . . , 1; v , . . . , v)

t = b/a
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By carefully analyzing the critical behavior as N →∞ of this
matrix model-like expression, Colomo and Pronko found the
following parametric form of [one quarter of] the arctic curve in
terms of rescaled coordinates X = r/N and Y = s/N:

X (u) = x1(u) + x2(u)ω−1(u) + x3(u)
d

du
ω−1(u)

Y (u) = y1(u) + y2(u)ω−1(u) + y3(u)
d

du
ω−1(u)

where xi (u), yi (u) are rational functions. |u| = 1 in the disordered
phase, u > 1 in the antiferroelectric phase.
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Set q = − exp(−iπ/α).

In the disordered phase, ω−1(u) is a rational function of uα:

ω−1(u) =
α

2

(
uα + 1

uα − 1
− uα + vα

uα − vα

)
If α is rational, the curve (X ,Y ) is algebraic.

In the antiferroelectric phase, ω−1(log u) is an elliptic
function:

ω−1(u) =
α

2

(
uα + 1

uα − 1
− uα + vα

uα − vα

+ 2
∞∑

n=1

q̃2n

1− q̃2n
(unα − u−nα − (uv−1)nα + (u−1v)nα)

)

where q̃ = exp(iπα), |q̃| < 1.
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a = 1
b = 1
c = 1
∆ = 1/2
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a = 1
b = 3
c = 5
∆ = −15/8
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