Fluctuations of Real Random Matrices and Second-Order Freeness

Emily Redelmeier

March 8, 2012

Emily Redelmeier Second-Order Freeness

イロト イヨト イヨト イヨト

Introduction

Noncommutative probability spaces Second-order probability spaces

Genus Expansion

The Matrix Models Cumulants Matrix Calculations Example Cartographic Machinery Calculations for Gaussian Matrices

Asymptotic Freeness

Freeness Second-order freeness

∢ ≣ ≯

イロト イヨト イヨト イヨト

æ

Definition

A noncommutative probability space is a unital algebra A with a tracial linear functional $\varphi : A \to \mathbb{C}$ with $\varphi(1_A) = 1$.

イロン イヨン イヨン イヨン

Definition

A noncommutative probability space is a unital algebra A with a tracial linear functional $\varphi : A \to \mathbb{C}$ with $\varphi(1_A) = 1$.

Definition

For $A_1, \ldots, A_n \subseteq A$ subalgebras of noncommutative probability space A, A_1, \ldots, A_n are *free* if

$$\varphi_1(a_1,\ldots,a_p)=0$$

when the a_i are centred and alternating.

A noncommutative probability space is a unital algebra A with a tracial linear functional $\varphi : A \to \mathbb{C}$ with $\varphi(1_A) = 1$.

Definition

For $A_1, \ldots, A_n \subseteq A$ subalgebras of noncommutative probability space A, A_1, \ldots, A_n are *free* if

$$\varphi_1(a_1,\ldots,a_p)=0$$

when the a_i are centred and alternating.

Definition

Families of matrices are asymptotically free if

$$\lim_{N\to\infty}\mathbb{E}\left(\operatorname{tr}\left(\mathring{A}_{1,N}\cdots\mathring{A}_{p,N}\right)\right)=0$$

when the A_i are from cyclically alternating families.

イロト イヨト イヨト イヨト

æ

Definition

A second-order probability space is a noncommutative probability space (A, φ_1) with a bilinear function $\varphi_2 : A \times A \to \mathbb{C}$ such that

イロト イヨト イヨト イヨト

æ

Definition

A second-order probability space is a noncommutative probability space (A, φ_1) with a bilinear function $\varphi_2 : A \times A \to \mathbb{C}$ such that

• φ_2 is tracial in each argument

イロト イヨト イヨト イヨト

æ

Definition

A second-order probability space is a noncommutative probability space (A, φ_1) with a bilinear function $\varphi_2 : A \times A \to \mathbb{C}$ such that

• φ_2 is tracial in each argument

•
$$\varphi_2(1_A, a) = \varphi_2(a, 1_A) = 0.$$

イロン 不同と 不同と 不同と

Definition

Subalgebras A_1, \ldots, A_n of a second-order noncommutative probability space $(A, \varphi_1, \varphi_2)$ are *complex second-order free* if they are free and for a_1, \ldots, a_p and b_1, \ldots, b_q centred and either cyclically alternating or consisting of a single term, we have

イロン 不同と 不同と 不同と

Definition

Subalgebras A_1, \ldots, A_n of a second-order noncommutative probability space $(A, \varphi_1, \varphi_2)$ are *complex second-order free* if they are free and for a_1, \ldots, a_p and b_1, \ldots, b_q centred and either cyclically alternating or consisting of a single term, we have

• when
$$p \neq q$$
:

$$\varphi_2(a_1\cdots a_p, b_1\cdots b_q)=0$$

・ロン ・回と ・ヨン・

Definition

Subalgebras A_1, \ldots, A_n of a second-order noncommutative probability space $(A, \varphi_1, \varphi_2)$ are *complex second-order free* if they are free and for a_1, \ldots, a_p and b_1, \ldots, b_q centred and either cyclically alternating or consisting of a single term, we have

• when
$$p \neq q$$
:

$$\varphi_2(a_1\cdots a_p, b_1\cdots b_q)=0$$

• and when p = q:

$$\varphi_2(a_1\cdots a_p, b_1\cdots b_p) = \sum_{k=0}^{p-1}\prod_{i=1}^p \varphi_1(a_i b_{k-i}).$$

Noncommutative probability spaces Second-order probability spaces

æ

Spoke diagrams:

Noncommutative probability spaces Second-order probability spaces

イロト イヨト イヨト イヨト

Definition

Families of matrices are asymptotically complex second-order free if they are asymptotically free, have a second-order limit distribution, and for A_i and B_i in algebras generated by cyclically alternating families, we have

<ロ> (日) (日) (日) (日) (日)

Definition

Families of matrices are asymptotically complex second-order free if they are asymptotically free, have a second-order limit distribution, and for A_i and B_i in algebras generated by cyclically alternating families, we have

• for $p \neq q$:

$$\lim_{N\to\infty}k_2\left(\mathrm{Tr}\left(\mathring{A}_1\cdots\mathring{A}_p\right),\mathrm{Tr}\left(\mathring{B}_1\cdots\mathring{B}_q\right)\right)=0$$

Definition

Families of matrices are asymptotically complex second-order free if they are asymptotically free, have a second-order limit distribution, and for A_i and B_i in algebras generated by cyclically alternating families, we have

• for $p \neq q$:

$$\lim_{N\to\infty}k_2\left(\mathrm{Tr}\left(\mathring{A}_1\cdots\mathring{A}_p\right),\mathrm{Tr}\left(\mathring{B}_1\cdots\mathring{B}_q\right)\right)=0$$

• and for p = q:

$$\lim_{N \to \infty} k_2 \left(\operatorname{Tr} \left(\mathring{A}_1 \cdots \mathring{A}_p \right), \operatorname{Tr} \left(\mathring{B}_1 \cdots \mathring{B}_p \right) \right)$$
$$= \sum_{k=0}^{p-1} \prod_{i=1}^p \left(\lim_{N \to \infty} \left(\mathbb{E} \left(\operatorname{tr} \left(A_i B_{k-i} \right) \right) - \mathbb{E} \left(\operatorname{tr} \left(A_i \right) \right) \mathbb{E} \left(\operatorname{tr} \left(B_{k-i} \right) \right) \right) \right).$$

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

< @ ▶ < 注 ▶ < 注 ▶

Definition

Real Ginibre matrices are square matrices Z := X with M = N.

<ロ> (日) (日) (日) (日) (日)

Definition

Real Ginibre matrices are square matrices Z := X with M = N.

Definition

Gaussian orthogonal ensemble matrices, or GOE matrices, are symmetric matrices $T := \frac{1}{\sqrt{2}} \left(X + X^T \right)$

・ロン ・回と ・ヨン・

Definition

Real Ginibre matrices are square matrices Z := X with M = N.

Definition

Gaussian orthogonal ensemble matrices, or GOE matrices, are symmetric matrices $T := \frac{1}{\sqrt{2}} \left(X + X^T \right)$

Definition

Real Wishart matrices are matrices $W := X^T D_k X$ for some deterministic matrix D_k .

・ロト ・回ト ・ヨト ・ヨト

There are 5 partitions of 3 elements:

▲□→ ▲圖→ ▲厘→ ▲厘→

Introduction Genus Expansion Asymptotic Freeness Matrix Calculations

There are 5 partitions of 3 elements:

We define cumulants k_1, k_2, k_3 to satisfy:

 $\mathbb{E}(XYZ) = k_3(X, Y, Z) + k_1(X) k_2(Y, Z) + k_2(X, Z) k_1(Y)$ $+ k_2(X, Y) k_1(Z) + k_1(X) k_1(Y) k_1(Z).$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

2

The *n*th mixed moment of (classical) random variables X_1, \ldots, X_n is an *n*-linear function defined to be the expectation of their product:

$$a_n(X_1,\ldots,X_n):=\mathbb{E}(X_1\cdots X_n).$$

イロト イヨト イヨト イヨト

The *n*th mixed moment of (classical) random variables X_1, \ldots, X_n is an *n*-linear function defined to be the expectation of their product:

$$a_n(X_1,\ldots,X_n) := \mathbb{E}(X_1\cdots X_n).$$

Let $\mathcal{P}(n)$ be the set of partitions of *n* elements.

イロン 不同と 不同と 不同と

The *n*th mixed moment of (classical) random variables X_1, \ldots, X_n is an *n*-linear function defined to be the expectation of their product:

$$a_n(X_1,\ldots,X_n) := \mathbb{E}(X_1\cdots X_n).$$

Let $\mathcal{P}(n)$ be the set of partitions of *n* elements.

Definition

We define the *cumulants* k_i to satisfy the *moment-cumulant formula*:

$$a_n(X_1,\ldots,X_n)=\sum_{\pi\in\mathcal{P}(n)}\prod_{V=\{i_1,\ldots,i_r\}\in\pi}k_r(X_{i_1},\ldots,X_{i_r}).$$

イロト イヨト イヨト イヨト

□ > 《 E > 《 E > _ E

 $k_{4}(X, Y, Z, W) = \mathbb{E}(XYZW) - \mathbb{E}(X)\mathbb{E}(YZW)$ - $\mathbb{E}(XZW)\mathbb{E}(Y) - \mathbb{E}(XYW)\mathbb{E}(Z) - \mathbb{E}(XYZ)\mathbb{E}(W)$ - $\mathbb{E}(XY)\mathbb{E}(ZW) - \mathbb{E}(XZ)\mathbb{E}(YW) - \mathbb{E}(XW)\mathbb{E}(YZ)$ + $2\mathbb{E}(XY)\mathbb{E}(Z)\mathbb{E}(W) + 2\mathbb{E}(XZ)\mathbb{E}(Y)\mathbb{E}(W)$ + $2\mathbb{E}(XW)\mathbb{E}(Y)\mathbb{E}(Z) + 2\mathbb{E}(X)\mathbb{E}(YZ)\mathbb{E}(W)$ + $2\mathbb{E}(X)\mathbb{E}(YW)\mathbb{E}(Z) + 2\mathbb{E}(X)\mathbb{E}(Y)\mathbb{E}(ZW)$ - $6\mathbb{E}(X)\mathbb{E}(Y)\mathbb{E}(Z)\mathbb{E}(W).$

 $k_{3}(X, Y, Z) = \mathbb{E}(XYZ) - \mathbb{E}(X)\mathbb{E}(YZ) - \mathbb{E}(XY)\mathbb{E}(Y) - \mathbb{E}(XY)\mathbb{E}(Z) + 2\mathbb{E}(X)\mathbb{E}(Y)\mathbb{E}(Z)$

$$k_{1}(X) = \mathbb{E}(X)$$
$$k_{2}(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

The first four cumulants are:

Introduction The Matrix Models Genus Expansion Cumulants Asymptotic Freeness Matrix Calculations

Say we wish to calculate

$$\mathbb{E}\left(\operatorname{tr}\left(XY_{1}XY_{2}X^{T}Y_{3}XY_{4}X^{T}Y_{5}\right)\operatorname{tr}\left(X^{T}Y_{6}XY_{7}XY_{8}\right)\right).$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Say we wish to calculate

$$\mathbb{E}\left(\operatorname{tr}\left(XY_{1}XY_{2}X^{T}Y_{3}XY_{4}X^{T}Y_{5}\right)\operatorname{tr}\left(X^{T}Y_{6}XY_{7}XY_{8}\right)\right).$$

The traces of products are a sum over

$$X_{i_1j_1}Y_{j_1j_2}^{(1)}X_{i_2j_2}Y_{j_2j_3}^{(2)}X_{j_3i_3}^{T}Y_{i_3i_4}^{(3)}X_{i_4j_4}Y_{j_4j_5}^{(4)}X_{j_5i_5}^{T}Y_{j_5i_1}^{(5)}X_{j_6i_6}^{T}Y_{i_6i_7}^{(6)}X_{i_7j_7}Y_{j_7i_8}^{(7)}X_{i_8j_8}Y_{j_8j_6}^{(8)}$$

・ロン ・四と ・ヨン ・ヨン

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

 $Y_{6}_{i_6}$

 $Y_7 i_8$

x

▲□→ ▲圖→ ▲厘→ ▲厘→

æ

We construct the faces:

We use a result called the Wick formula.

▲□→ ▲圖→ ▲厘→ ▲厘→

Э.

We use a result called the Wick formula. There are three pairings on 4 elements:

イロン イヨン イヨン イヨン

We use a result called the Wick formula. There are three pairings on 4 elements:

If X_1, X_2, X_3, X_4 are components of a multivariate Gaussian random variable, then

$$\mathbb{E}\left(X_1X_2X_3X_4\right) = \mathbb{E}\left(X_1X_2\right)\mathbb{E}\left(X_3X_4\right) + \mathbb{E}\left(X_1X_3\right)\mathbb{E}\left(X_2X_4\right) \\ + \mathbb{E}\left(X_1X_4\right)\mathbb{E}\left(X_2X_3\right).$$

<ロ> <同> <同> <同> < 同>

_∢ ≣ ≯

Introduction Genus Expansion Asymptotic Freeness Matrix Calculations

Let $\mathcal{P}_2(n)$ be the set of pairings on *n* elements.

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

Let $\mathcal{P}_2(n)$ be the set of pairings on *n* elements.

Theorem

Let $\{f_{\lambda} : \lambda \in \Lambda\}$, for some index set Λ , be a centred Gaussian family of random variables. Then for $i_1, \ldots, i_n \in \Lambda$,

$$\mathbb{E}(f_{i_1}\cdots f_{i_n})=\sum_{\mathcal{P}_2(n)}\prod_{\{k,l\}\in\mathcal{P}_2(n)}\mathbb{E}(f_{i_k}f_{i_l}).$$

・ロン ・回と ・ヨン・

2

Let $\mathcal{P}_2(n)$ be the set of pairings on *n* elements.

Theorem

Let $\{f_{\lambda} : \lambda \in \Lambda\}$, for some index set Λ , be a centred Gaussian family of random variables. Then for $i_1, \ldots, i_n \in \Lambda$,

$$\mathbb{E}\left(f_{i_1}\cdots f_{i_n}\right) = \sum_{\mathcal{P}_2(n)} \prod_{\{k,l\}\in\mathcal{P}_2(n)} \mathbb{E}\left(f_{i_k}f_{i_l}\right).$$

Here, for a pairing $\pi \in \mathcal{P}_{2}(n)$:

$$\prod_{\{k,l\}} \mathbb{E} \left(f_{i_k j_k} f_{i_l j_l} \right) = \begin{cases} 1, & \text{if } i_k = i_l \text{ and } j_k = j_l \text{ for all } \{k, l\} \in \pi \\ 0, & \text{otherwise} \end{cases}$$

.

イロト イヨト イヨト イヨト

Putting indices which must be equal next to each other, we get a surface gluing:

・ロン ・回 と ・ ヨン ・ ヨン

We note that if one term is from X and the other from X^T , the edge identification is untwisted:

・ロト ・回ト ・ヨト

< ∃⇒
Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

If both terms are from X or from X^{T} , the edge identification is twisted:

-

The following vertex appears on the surface:

・ロン ・回 と ・ ヨン ・ ヨン

The following vertex appears on the surface:

If a corner appears upside-down, it is the transpose of that matrix which appears.

Image: A math a math

The following vertex appears on the surface:

If a corner appears upside-down, it is the transpose of that matrix which appears.

It contributes

$$\operatorname{Tr}\left(Y_{1}Y_{3}^{T}Y_{6}Y_{5}^{T}Y_{7}^{T}\right)$$

< 1[™] >

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

The same vertex viewed from the opposite side contributes the same value:

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

Each vertex gives us a trace, and hence a factor of \boldsymbol{N} when normalized.

Э

Each vertex gives us a trace, and hence a factor of N when normalized.

Highest order terms are those with the highest Euler characteristic (typically spheres or collections of spheres).

イロト イヨト イヨト イヨト

Each vertex gives us a trace, and hence a factor of N when normalized.

Highest order terms are those with the highest Euler characteristic (typically spheres or collections of spheres).

Crossings require handles, so highest order terms typically correspond to noncrossing diagrams with untwisted identifications.

Each vertex gives us a trace, and hence a factor of N when normalized.

Highest order terms are those with the highest Euler characteristic (typically spheres or collections of spheres).

Crossings require handles, so highest order terms typically correspond to noncrossing diagrams with untwisted identifications.

Highest order terms must have a relative orientation of the faces in which none of the edge-identifications are twisted.

The permutation γ encodes face information (cycles enumerate edges in order).

・ロン ・回 と ・ ヨン ・ ヨン

The permutation γ encodes face information (cycles enumerate edges in order).

A pairing π , taken as a permutation, encodes edge information on an orientable surface.

イロト イヨト イヨト イヨト

The permutation γ encodes face information (cycles enumerate edges in order).

A pairing π , taken as a permutation, encodes edge information on an orientable surface.

The permutation $\pi^{-1}\gamma^{-1}$ encodes vertex information.

イロン イヨン イヨン イヨン

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

Consider the map:

▲口> ▲圖> ▲注> ▲注>

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

Consider the map:

The vertex information can be encoded in a permutation

$$\sigma = (1, 2, 3, 4) (5, 6) (7, 8) (9, 10) (11, 12).$$

・ロト ・回ト ・ヨト ・ヨト

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

Consider the map:

The vertex information can be encoded in a permutation

$$\sigma = (1, 2, 3, 4) (5, 6) (7, 8) (9, 10) (11, 12).$$

The edge information can be encoded in another permutation

$$\alpha = (1,2) (3,5) (4,12) (6,7) (8,9) (10,11)$$
.

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

The face information is encoded in

$$\varphi := \sigma^{-1} \alpha^{-1} = (1) (2, 4, 11, 9, 7, 5) (3, 6, 8, 10, 12).$$

▲口> ▲圖> ▲注> ▲注>

This construction works equally well with oriented hypermaps:

・ロン ・四と ・ヨン ・ヨン

This construction works equally well with oriented hypermaps:

$\sigma = (1, 2, 3) (4, 5) (6, 7)$

イロン イヨン イヨン イヨン

This construction works equally well with oriented hypermaps:

$$\sigma = (1, 2, 3) (4, 5) (6, 7)$$

 $\alpha = (1, 6, 5) \, (2, 7, 3) \, (4)$

イロン イヨン イヨン イヨン

This construction works equally well with oriented hypermaps:

$$\sigma = (1, 2, 3) (4, 5) (6, 7)$$

 $\alpha = (1, 6, 5) (2, 7, 3) (4)$

$$\varphi = \sigma^{-1} \alpha^{-1} = (1, 4, 5, 7) (2) (3, 6)$$

イロン イヨン イヨン イヨン

To extend this construction to unoriented surfaces, we construct the orientable two-sheeted covering space (the surface experienced by someone *on* the surface rather than *within* it).

イロト イヨト イヨト イヨト

To extend this construction to unoriented surfaces, we construct the orientable two-sheeted covering space (the surface experienced by someone *on* the surface rather than *within* it).

We do this by constructing a front and back side of each face.

・ 同 ト ・ ヨ ト ・ ヨ ト

To extend this construction to unoriented surfaces, we construct the orientable two-sheeted covering space (the surface experienced by someone *on* the surface rather than *within* it).

We do this by constructing a front and back side of each face.

An untwisted edge-identification connects front to front and back to back, while a twisted edge-identification connects front to back and back to front.

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

・ロト・(四ト・(川下・(日下・(日下)

We label the front sides with positive integers and the corresponding back sides with negative integers.

イロン イヨン イヨン イヨン

We label the front sides with positive integers and the corresponding back sides with negative integers.

Let $\delta: k \mapsto -k$.

イロト イヨト イヨト イヨト

We label the front sides with positive integers and the corresponding back sides with negative integers.

Let $\delta: k \mapsto -k$.

A permutation π describing something in this surface should satisfy $\pi=\delta\pi^{-1}\delta.$

イロト イヨト イヨト イヨト

We label the front sides with positive integers and the corresponding back sides with negative integers.

Let $\delta: k \mapsto -k$.

A permutation π describing something in this surface should satisfy $\pi = \delta \pi^{-1} \delta$.

We let $\gamma_+ = \gamma$, and $\gamma_- = \delta \gamma \delta$.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

We label the front sides with positive integers and the corresponding back sides with negative integers.

Let $\delta: k \mapsto -k$.

A permutation π describing something in this surface should satisfy $\pi = \delta \pi^{-1} \delta$.

We let $\gamma_+ = \gamma$, and $\gamma_- = \delta \gamma \delta$.

Vertex information is given by $\gamma_{+}^{-1}\pi^{-1}\gamma_{-}$.

・ロン ・回 と ・ ヨン ・ ヨン

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

In the example,

$$\pi = (1, -7)(7, -1)(2, -4)(4, -2)(3, -6)(6, -3)(5, 8)(-8, -5).$$

・ロン ・四と ・日と ・日と

In the example,

$$\pi = (1, -7)(7, -1)(2, -4)(4, -2)(3, -6)(6, -3)(5, 8)(-8, -5).$$

The vertices are given by the cycles of

$$(1, -3, 6, -5, -7)$$
 $(7, 5, -6, 3, -1)$ $(2, -8, -4)$ $(4, 8, -2)$.

◆□ > ◆□ > ◆豆 > ◆豆 >

In the example,

$$\pi = (1, -7)(7, -1)(2, -4)(4, -2)(3, -6)(6, -3)(5, 8)(-8, -5).$$

The vertices are given by the cycles of

$$(1, -3, 6, -5, -7)$$
 $(7, 5, -6, 3, -1)$ $(2, -8, -4)$ $(4, 8, -2)$.

This diagram contributes the term:

$$N^{-2}\mathbb{E}\left(\operatorname{tr}\left(Y_{1}Y_{3}^{T}Y_{6}Y_{5}^{T}Y_{7}^{T}\right)\operatorname{tr}\left(Y_{2}Y_{8}^{T}Y_{4}^{T}\right)\right)$$

イロン イヨン イヨン イヨン

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

Let:

- tr := $\frac{1}{N}$ Tr,
- n_1, \ldots, n_r positive integers, $n := n_1 + \cdots + n_r$,

•
$$A^{(1)} = A, A^{(-1)} = A^T,$$

$$\blacktriangleright [n] = \{1, \ldots, n\},\$$

►
$$\varepsilon$$
 : $[n] \rightarrow \{1, -1\}$,

•
$$\delta_{\varepsilon}: k \mapsto \varepsilon(k) k.$$

(日) (回) (E) (E) (E)

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

For
$$\gamma = (c_1, \ldots, c_{n_1}) \cdots (c_{n_1 + \cdots + n_{r-1}}, \ldots, c_n) \in S_n$$
, we define:
 $\operatorname{Tr}_{\gamma} (A_1, \ldots, A_n) := \operatorname{Tr} (A_{c_1} \cdots A_{c_{n_1}}) \cdots \operatorname{Tr} (A_{c_{n_1 + \cdots + n_{r-1}}} \cdots A_{c_n}).$

◆□ > ◆□ > ◆臣 > ◆臣 > 臣 の < @

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

For
$$\gamma = (c_1, \ldots, c_{n_1}) \cdots (c_{n_1 + \cdots + n_{r-1}}, \ldots, c_n) \in S_n$$
, we define:
 $\operatorname{Tr}_{\gamma}(A_1, \ldots, A_n) := \operatorname{Tr}(A_{c_1} \cdots A_{c_{n_1}}) \cdots \operatorname{Tr}(A_{c_{n_1} + \cdots + n_{r-1}} \cdots A_{c_n}).$

Then

$$\operatorname{Tr}_{\gamma}(A_1,\ldots,A_n) = \sum_{1 \leq i_1,\ldots,i_n \leq N} A_{i_1 i_{\gamma(1)}} \cdots A_{i_n i_{\gamma(n)}}.$$

<□> <□> <□> <=> <=> <=> <=> <=> <=> <<</p>
For example:

$$\begin{aligned} &\operatorname{Tr}_{(1,2,3,4,5,6)(7,8,9,10)}\left(A_{1},\ldots,A_{10}\right) \\ &= &\operatorname{Tr}\left(A_{1}A_{2}A_{3}A_{4}A_{5}A_{6}\right)\operatorname{Tr}\left(A_{7}A_{8}A_{9}A_{10}\right) \\ &= &\sum_{i_{1},\ldots,i_{6}=1}^{N}A_{i_{1},i_{2}}^{(1)}A_{i_{2},i_{3}}^{(2)}A_{i_{3},i_{4}}^{(3)}A_{i_{4},i_{5}}^{(4)}A_{i_{5},i_{6}}^{(5)}A_{i_{6},i_{1}}^{(6)}A_{i_{7},i_{8}}^{(7)}A_{i_{8},i_{9}}^{(8)}A_{i_{9},i_{10}}^{(9)}A_{i_{10},i_{1}}^{(10)} \end{aligned}$$

・ロン ・四と ・ヨン ・ヨ

We wish to calculate expressions of the form

 $\mathbb{E}\left(\operatorname{tr}_{\gamma}\left(X^{(\varepsilon(1))}Y_{1}\cdots X^{(\varepsilon(n))}Y_{n}\right)\right)$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

3

Introduction Genus Expansion Asymptotic Freeness Matrix Calculations

We wish to calculate expressions of the form

$$\mathbb{E}\left(\operatorname{tr}_{\gamma}\left(X^{(\varepsilon(1))}Y_{1}\cdots X^{(\varepsilon(n))}Y_{n}\right)\right)$$

$$= \sum_{\substack{1 \le \iota_1^+, \dots, \iota_n^+ \le M \\ 1 \le \iota_1^-, \dots, \iota_n^- \le N}} N^{-\#(\gamma) - n} \mathbb{E} \left(Y_{\iota_1^{-\varepsilon(1)} \iota_{\gamma(1)}^{\varepsilon(\gamma(1))}}^{(1)} \cdots Y_{\iota_n^{-\varepsilon(n)} \iota_{\gamma(n)}^{\varepsilon(\gamma(n))}}^{(n)} \right) \\ \mathbb{E} \left(f_{\iota_1^+ \iota_1^-} \cdots f_{\iota_n^+ \iota_n^-} \right)$$

Introduction Genus Expansion Asymptotic Freeness Matrix Calculations

We wish to calculate expressions of the form

$$\mathbb{E}\left(\operatorname{tr}_{\gamma}\left(X^{(\varepsilon(1))}Y_{1}\cdots X^{(\varepsilon(n))}Y_{n}\right)\right)$$

$$= \sum_{\substack{1 \le \iota_{1}^{+}, \dots, \iota_{n}^{+} \le M \\ 1 \le \iota_{1}^{-}, \dots, \iota_{n}^{-} \le N}} N^{-\#(\gamma)-n} \mathbb{E} \left(Y_{\iota_{1}^{-\varepsilon(1)} \iota_{\gamma(1)}^{\varepsilon(\gamma(1))}}^{(1)} \cdots Y_{\iota_{n}^{-\varepsilon(n)} \iota_{\gamma(n)}^{\varepsilon(\gamma(n))}}^{(n)} \right)$$
$$= \sum_{\substack{1 \le \iota_{1}^{+}, \dots, \iota_{n}^{+} \le M \\ 1 \le \iota_{1}^{-}, \dots, \iota_{n}^{-} \le N}} \sum_{\substack{\pi \in \mathcal{P}_{2}(n) \\ 1 \le \iota_{1}^{-}, \dots, \iota_{n}^{-\varepsilon(n)} \le N}} N^{-\#(\gamma)-n} \mathbb{E} \left(Y_{\iota_{1}^{-\varepsilon(1)} \iota_{\gamma(1)}^{\varepsilon(\gamma(1))}}^{(1)} \cdots Y_{\iota_{n}^{-\varepsilon(n)} \iota_{\gamma(n)}^{\varepsilon(\gamma(n))}}^{(n)} \right)$$

٠

æ

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Reversing the order of summation,

$$\sum_{\pi \in \mathcal{P}_{2}(n)} \sum_{\substack{1 \leq \iota_{1}^{+}, \dots, \iota_{n}^{+} \leq M \\ 1 \leq \iota_{1}^{-}, \dots, \iota_{n}^{-} \leq N \\ \iota_{k}^{\pm} = \iota_{l}^{\pm} : \{k, l\} \in \pi}} N^{-\#(\gamma) - n} \mathbb{E} \left(Y_{\iota_{1}^{-\varepsilon(1)} \iota_{\gamma(1)}^{\varepsilon(\gamma(1))}}^{(1)} \cdots Y_{\iota_{n}^{-\varepsilon(n)} \iota_{\gamma(n)}^{\varepsilon(\gamma(n))}}^{(n)} \right)$$

< □ > < □ > < □ > < □ > < □ > .

2

Reversing the order of summation,

$$\sum_{\pi \in \mathcal{P}_{2}(n)} \sum_{\substack{1 \leq \iota_{1}^{+}, \ldots, \iota_{n}^{+} \leq M \\ 1 \leq \iota_{1}^{-}, \ldots, \iota_{n}^{-} \leq N \\ \iota_{k}^{\pm} = \iota_{I}^{\pm} : \{k, l\} \in \pi}} N^{-\#(\gamma) - n} \mathbb{E}\left(Y_{\iota_{1}^{-\varepsilon(1)}\iota_{\gamma(1)}^{\varepsilon(\gamma(1))}}^{(1)} \cdots Y_{\iota_{n}^{-\varepsilon(n)}\iota_{\gamma(n)}^{\varepsilon(\gamma(n))}}^{(n)}\right)$$

$$=\sum_{\pi\in\mathcal{P}_2(n)}N^{\#\left(\gamma_-^{-1}\delta_{\varepsilon}\pi\delta\pi\delta_{\varepsilon}\gamma_+\right)/2-\#(\gamma)-n}\mathbb{E}\left(\operatorname{tr}_{\gamma_-^{-1}\delta_{\varepsilon}\pi\delta\pi\delta_{\varepsilon}\gamma_+/2}\left(Y_1,\ldots,Y_n\right)\right).$$

< □ > < □ > < □ > < □ > < □ > .

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

Real Ginibre matrices are square matrices Z := X with M = N.

Real Ginibre matrices are square matrices Z := X with M = N.

Thus

$$\mathbb{E}\left(\operatorname{tr}_{\gamma}\left(Z^{(\varepsilon(1))}Y_{1},\ldots,Z^{(\varepsilon(n))}Y_{n}\right)\right)$$

= $\sum_{\pi\in\{\rho\delta\rho:\rho\in\mathcal{P}_{2}(n)\}}N^{\chi(\gamma,\delta_{\varepsilon}\pi\delta_{\varepsilon})-\#(\gamma)}\mathbb{E}\left(\operatorname{tr}_{\gamma_{-}^{-1}\delta_{\varepsilon}\pi\delta_{\varepsilon}\gamma_{+}/2}(Y_{1},\ldots,Y_{n})\right).$

▲□→ ▲圖→ ▲厘→ ▲厘→

Real Ginibre matrices are square matrices Z := X with M = N.

Thus

$$\mathbb{E}\left(\operatorname{tr}_{\gamma}\left(Z^{(\varepsilon(1))}Y_{1},\ldots,Z^{(\varepsilon(n))}Y_{n}\right)\right)$$

= $\sum_{\pi\in\{\rho\delta\rho:\rho\in\mathcal{P}_{2}(n)\}}N^{\chi(\gamma,\delta_{\varepsilon}\pi\delta_{\varepsilon})-\#(\gamma)}\mathbb{E}\left(\operatorname{tr}_{\gamma_{-}^{-1}\delta_{\varepsilon}\pi\delta_{\varepsilon}\gamma_{+}/2}(Y_{1},\ldots,Y_{n})\right).$

This is a sum over all gluings compatible with the edge directions given by the transposes.

(日) (四) (三) (三) (三)

If we expand out the GOE matrix $T:=rac{1}{\sqrt{2}}\left(X+X^{T}
ight)$, we get

$$\mathbb{E}\left(\operatorname{tr}_{\gamma}\left(TY_{1},\ldots,TY_{n}\right)\right) = \sum_{\varepsilon:\{1,\ldots,n\}\to\{1,-1\}} \frac{1}{2^{n/2}} \mathbb{E}\left(\operatorname{tr}_{\gamma}\left(X^{(\varepsilon(1))}Y_{1}\cdots X^{(\varepsilon(n))}Y_{n}\right)\right).$$

・ロト ・回 ト ・ヨト ・ヨト

If we collect terms, this is equivalent to summing over all edge-identifications.

・ロト ・回ト ・ヨト ・ヨト

If we collect terms, this is equivalent to summing over all edge-identifications.

Thus

$$\mathbb{E}\left(\operatorname{tr}_{\gamma}\left(TY_{1},\ldots,TY_{n}\right)\right) = \sum_{\pi \in PM(\pm[n]) \cap \mathcal{P}_{2}(\pm[n])} N^{\chi(\gamma,\pi)-\#(\gamma)} \mathbb{E}\left(\operatorname{tr}_{\gamma_{-}^{-1}\pi\gamma_{+}/2}\left(Y_{1},\ldots,Y_{n}\right)\right).$$

・ロ・ ・ 日・ ・ 日・ ・ 日・

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

With Wishart matrices $W := X^T D_k X$, we can collapse the edges corresponding to each matrix to a single edge. We can think of the connecting blocks as (possibly twisted) hyperedges.

With Wishart matrices $W := X^T D_k X$, we can collapse the edges corresponding to each matrix to a single edge. We can think of the connecting blocks as (possibly twisted) hyperedges.

・ロト ・回ト ・ヨト

With Wishart matrices $W := X^T D_k X$, we can collapse the edges corresponding to each matrix to a single edge. We can think of the connecting blocks as (possibly twisted) hyperedges.

▲ □ ► < □</p>

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

Thus:

$$\mathbb{E} \left(\operatorname{tr}_{\gamma} \left(W_{1} Y_{1}, \cdots, W_{n} Y_{n} \right) \right) \\= \sum_{\pi \in PM([n])} N^{\chi(\gamma, \pi) - \#(\gamma)} \operatorname{tr}_{\pi^{-1}/2} \left(D_{1}, \dots, D_{n} \right) \\\mathbb{E} \left(\operatorname{tr}_{\gamma_{-}^{-1} \pi \gamma_{+}/2} \left(Y_{1}, \dots, Y_{n} \right) \right).$$

<□> <□> <□> <=> <=> <=> <=> <=> <=> <<</p>

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

$$\mathbb{E}\left(\operatorname{tr}_{\gamma}\left(X_{\lambda_{1}}^{(\varepsilon(1))}Y_{1},\cdots,X_{\lambda_{n}}^{(\varepsilon(n))}Y_{n}\right)\right)$$

= $\sum_{\pi\in PM_{c}(\pm[n])}N^{\chi(\gamma,\delta_{\varepsilon}\pi\delta_{\varepsilon})-2\#(\gamma)}f_{c}(\pi)\mathbb{E}\left(\operatorname{tr}_{\gamma_{-}^{-1}\delta_{\varepsilon}\pi\delta_{\varepsilon}\gamma_{+}/2}(Y_{1},\ldots,Y_{n})\right)$

・ロト ・回ト ・ヨト ・ヨト

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

$$\mathbb{E}\left(\operatorname{tr}_{\gamma}\left(X_{\lambda_{1}}^{(\varepsilon(1))}Y_{1},\cdots,X_{\lambda_{n}}^{(\varepsilon(n))}Y_{n}\right)\right)$$

= $\sum_{\pi\in PM_{c}(\pm[n])}N^{\chi(\gamma,\delta_{\varepsilon}\pi\delta_{\varepsilon})-2\#(\gamma)}f_{c}(\pi)\mathbb{E}\left(\operatorname{tr}_{\gamma_{-}^{-1}\delta_{\varepsilon}\pi\delta_{\varepsilon}\gamma_{+}/2}(Y_{1},\ldots,Y_{n})\right)$

• $PM_c(\pm I)$ is a subset of the premaps on $\pm I$,

回 と く ヨ と く ヨ と

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

$$\mathbb{E}\left(\operatorname{tr}_{\gamma}\left(X_{\lambda_{1}}^{(\varepsilon(1))}Y_{1},\cdots,X_{\lambda_{n}}^{(\varepsilon(n))}Y_{n}\right)\right)$$

= $\sum_{\pi\in PM_{c}(\pm[n])}N^{\chi(\gamma,\delta_{\varepsilon}\pi\delta_{\varepsilon})-2\#(\gamma)}f_{c}(\pi)\mathbb{E}\left(\operatorname{tr}_{\gamma_{-}^{-1}\delta_{\varepsilon}\pi\delta_{\varepsilon}\gamma_{+}/2}(Y_{1},\ldots,Y_{n})\right)$

▶ $PM_c(\pm I)$ is a subset of the premaps on $\pm I$, ▶ $f_c: \bigcup_{I \subseteq \mathbb{N}, |I| < \infty} PM_c(\pm I) \rightarrow \mathbb{C}$

□ > 《 E > 《 E >

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

$$\mathbb{E}\left(\operatorname{tr}_{\gamma}\left(X_{\lambda_{1}}^{(\varepsilon(1))}Y_{1},\cdots,X_{\lambda_{n}}^{(\varepsilon(n))}Y_{n}\right)\right)$$
$$=\sum_{\pi\in PM_{c}(\pm[n])}N^{\chi(\gamma,\delta_{\varepsilon}\pi\delta_{\varepsilon})-2\#(\gamma)}f_{c}(\pi)\mathbb{E}\left(\operatorname{tr}_{\gamma_{-}^{-1}\delta_{\varepsilon}\pi\delta_{\varepsilon}\gamma_{+}/2}\left(Y_{1},\ldots,Y_{n}\right)\right)$$

- $PM_c(\pm I)$ is a subset of the premaps on $\pm I$,
- $f_{c}: \bigcup_{I\subseteq \mathbb{N}, |I|<\infty} PM_{c}(\pm I) \to \mathbb{C}$
- ▶ for any $J \subseteq I$, the $\pi \in PM_c(\pm I)$ which do not connect $\pm J$ and $\pm (I \setminus J)$ are the product of a $\pi_1 \in PM_c(\pm J)$ and $\pi_2 \in PM_c(\pm (I \setminus J))$

同 と く ヨ と く ヨ と …

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

$$\mathbb{E}\left(\operatorname{tr}_{\gamma}\left(X_{\lambda_{1}}^{(\varepsilon(1))}Y_{1},\cdots,X_{\lambda_{n}}^{(\varepsilon(n))}Y_{n}\right)\right)$$
$$=\sum_{\pi\in PM_{c}(\pm[n])}N^{\chi(\gamma,\delta_{\varepsilon}\pi\delta_{\varepsilon})-2\#(\gamma)}f_{c}(\pi)\mathbb{E}\left(\operatorname{tr}_{\gamma_{-}^{-1}\delta_{\varepsilon}\pi\delta_{\varepsilon}\gamma_{+}/2}\left(Y_{1},\ldots,Y_{n}\right)\right)$$

- $PM_c(\pm I)$ is a subset of the premaps on $\pm I$,
- $f_{c}: \bigcup_{I\subseteq\mathbb{N}, |I|<\infty} PM_{c}(\pm I) \to \mathbb{C}$
- ▶ for any $J \subseteq I$, the $\pi \in PM_c(\pm I)$ which do not connect $\pm J$ and $\pm (I \setminus J)$ are the product of a $\pi_1 \in PM_c(\pm J)$ and $\pi_2 \in PM_c(\pm (I \setminus J))$
- $\lim_{N\to\infty} f_c(\pi)$ exists

同 と く ヨ と く ヨ と …

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

$$\mathbb{E}\left(\operatorname{tr}_{\gamma}\left(X_{\lambda_{1}}^{(\varepsilon(1))}Y_{1},\cdots,X_{\lambda_{n}}^{(\varepsilon(n))}Y_{n}\right)\right)$$
$$=\sum_{\pi\in PM_{c}(\pm[n])}N^{\chi(\gamma,\delta_{\varepsilon}\pi\delta_{\varepsilon})-2\#(\gamma)}f_{c}(\pi)\mathbb{E}\left(\operatorname{tr}_{\gamma_{-}^{-1}\delta_{\varepsilon}\pi\delta_{\varepsilon}\gamma_{+}/2}(Y_{1},\ldots,Y_{n})\right)$$

- $PM_c(\pm I)$ is a subset of the premaps on $\pm I$,
- $f_{c}: \bigcup_{I\subseteq \mathbb{N}, |I|<\infty} PM_{c}(\pm I) \to \mathbb{C}$
- ▶ for any $J \subseteq I$, the $\pi \in PM_c(\pm I)$ which do not connect $\pm J$ and $\pm (I \setminus J)$ are the product of a $\pi_1 \in PM_c(\pm J)$ and $\pi_2 \in PM_c(\pm (I \setminus J))$
- $\lim_{N\to\infty} f_c(\pi)$ exists
- ▶ if $\pi \in PM_c(I)$ does not connect $\pm J$ and $\pm (I \setminus J)$, then $f_c(\pi) = f_c(\pi|_{\pm J}) f_c(\pi|_{\pm (I \setminus J)})$

It is possible to mix ensembles in an expression.

<ロ> <同> <同> < 同> < 同> < 同> :

It is possible to mix ensembles in an expression.

$$\mathbb{E}\left(\operatorname{tr}\left(Z_{3}W_{2}^{(\lambda_{2})}\right)\operatorname{tr}\left(W_{1}^{(\lambda_{3})}Z_{3}^{\mathsf{T}}Z_{3}^{\mathsf{T}}\right)\operatorname{tr}\left(W_{2}^{(\lambda_{6})}Z_{3}^{\mathsf{T}}W_{2}^{(\lambda_{8})}W_{1}^{(\lambda_{9})}\right)\right)$$

<ロ> <同> <同> < 同> < 同> < 同> :

It is possible to mix ensembles in an expression.

$$\mathbb{E}\left(\operatorname{tr}\left(Z_{3}W_{2}^{(\lambda_{2})}\right)\operatorname{tr}\left(W_{1}^{(\lambda_{3})}Z_{3}^{\mathsf{T}}Z_{3}^{\mathsf{T}}\right)\operatorname{tr}\left(W_{2}^{(\lambda_{6})}Z_{3}^{\mathsf{T}}W_{2}^{(\lambda_{8})}W_{1}^{(\lambda_{9})}\right)\right)$$

・ロト ・回ト ・ヨト ・ヨト

It is possible to mix ensembles in an expression.

$$\mathbb{E}\left(\operatorname{tr}\left(Z_{3}W_{2}^{(\lambda_{2})}\right)\operatorname{tr}\left(W_{1}^{(\lambda_{3})}Z_{3}^{\mathsf{T}}Z_{3}^{\mathsf{T}}\right)\operatorname{tr}\left(W_{2}^{(\lambda_{6})}Z_{3}^{\mathsf{T}}W_{2}^{(\lambda_{8})}W_{1}^{(\lambda_{9})}\right)\right)$$

 $\gamma = (1,2)(3,4,5)(6,7,8,9)$

イロト イヨト イヨト イヨト

 $\pi_1 = (3)(-3)(9)(-9)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\pi_1 = (3) (-3) (9) (-9)$$

$$\pi_2 = (2, 8, -6) (6, -8, -2)$$

 $\pi_1 = (3)(-3)(9)(-9)$

$$\pi_2 = (2, 8, -6) (6, -8, -2)$$

$$\pi_3 = (1, -7)(-1, 7)(4, -5)(-4, 5)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

$$\gamma_{-}^{-1}\delta_{\varepsilon}\pi\delta_{\varepsilon}\gamma_{+} = (1, 8, 9, -7, -2, 6)(-6, 2, 7, -9, -8, -1)(3, -4, 5)(-5, 4, -3)$$

・ロト・(四ト・(川下・(日下・(日下)

Introduction	The Matrix Models
Genus Expansion	Cumulants
Asymptotic Freeness	Matrix Calculations

$$\delta_{arepsilon}\pi\delta_{arepsilon} = (1,7)(-1,-7)(2,8,-6)(6,-8,-2)(3)(-3)(4,-5)
onumber \ (5,-4)(9)(-9)$$

$$\gamma_{-}^{-1}\delta_{\varepsilon}\pi\delta_{\varepsilon}\gamma_{+} = (1, 8, 9, -7, -2, 6)(-6, 2, 7, -9, -8, -1)(3, -4, 5)(-5, 4, -3)$$

$$\operatorname{tr}(A_{\lambda_3})\operatorname{tr}(A_{\lambda_9})\operatorname{tr}\left(B_{\lambda_2}B_{\lambda_6}^{\mathsf{T}}B_{\lambda_8}\right)N^{-5}$$

・ロト・(日下・(日下・(日下・(日下)))

The nth cumulant is the sum over connected surfaces constructed out of the n faces.

▲□→ ▲圖→ ▲厘→ ▲厘→

The nth cumulant is the sum over connected surfaces constructed out of the n faces.

There is a classification theorem for connected, compact surfaces: any such surface is a sphere, a connected sum of tori, or a connected sum of projective planes.

Image: A matrix and a matrix

The nth cumulant is the sum over connected surfaces constructed out of the n faces.

There is a classification theorem for connected, compact surfaces: any such surface is a sphere, a connected sum of tori, or a connected sum of projective planes.

For any cumulant, we have an Euler characteristic expansion:

(sphere terms) N^{-2r+2} + (projective plane terms) N^{-2r+1} + (torus and Klein bottle terms) N^{-2r} + (connected sum of 3 projective planes terms) N^{-2r-2} +....

・ロット (四) (日) (日)
Let A_1, \ldots, A_r be in the algebra generated by alternating ensembles of random matrices.

Let A_1, \ldots, A_r be in the algebra generated by alternating ensembles of random matrices.

If we expand out an expression of the form

$$\mathbb{E}\left(\operatorname{tr}\left(\left(A_{1}-\mathbb{E}\left(\operatorname{tr}\left(A_{1}
ight)
ight)\cdots\left(A_{r}-\mathbb{E}\left(\operatorname{tr}\left(A_{r}
ight)
ight)
ight)
ight)
ight)$$

we get

$$\sum_{I\subseteq [r]} (-1)^{|I|} \prod_{i\in I} \mathbb{E} (\operatorname{tr} (A_i)) \mathbb{E} \left(\operatorname{tr} \left(\prod_{i\notin I} A_i \right) \right).$$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Expressions like this one can be interpreted in terms of the Principle of Inclusion and Exclusion.

Expressions like this one can be interpreted in terms of the Principle of Inclusion and Exclusion.

Diagrams in which any A_i is disconnected are excluded.

- 4 回 2 - 4 □ 2 - 4 □

Expressions like this one can be interpreted in terms of the Principle of Inclusion and Exclusion.

Diagrams in which any A_i is disconnected are excluded.

Since diagrams with connected A_i require crossings, these vanish asymptotically.

- (目) - (日) - (日)

In order to find an appropriate definition of second-order freeness, we want to consider values of

$$\lim_{N \to \infty} k_2 \left(\operatorname{Tr} \left((A_1 - \mathbb{E} \left(\operatorname{tr} \left(A_1 \right) \right) \cdots (A_p - \mathbb{E} \left(\operatorname{tr} \left(A_p \right) \right) \right) \right),$$
$$\operatorname{Tr} \left((B_1 - \mathbb{E} \left(\operatorname{tr} \left(B_1 \right) \right) \cdots (B_q - \mathbb{E} \left(\operatorname{tr} \left(B_q \right) \right) \right) \right).$$

・ロト ・回ト ・ヨト ・ヨト

In order to find an appropriate definition of second-order freeness, we want to consider values of

$$\lim_{N \to \infty} k_2 \left(\operatorname{Tr} \left((A_1 - \mathbb{E} \left(\operatorname{tr} (A_1) \right) \right) \cdots (A_p - \mathbb{E} \left(\operatorname{tr} (A_p) \right) \right) \right),$$
$$\operatorname{Tr} \left((B_1 - \mathbb{E} \left(\operatorname{tr} (B_1) \right) \right) \cdots (B_q - \mathbb{E} \left(\operatorname{tr} (B_q) \right)) \right).$$

We can apply the Principle of Inclusion and Exclusion to this expression as well, with the same interpretation.

- 4 同 ト 4 臣 ト 4 臣 ト

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

If $p \neq q$, all terms vanish asymptotically.

・ロト ・回ト ・ヨト ・ヨト

If $p \neq q$, all terms vanish asymptotically.

If p = q, then we must construct a "spoke diagram".

・ロン ・回 と ・ ヨ と ・ ヨ と

If $p \neq q$, all terms vanish asymptotically.

If p = q, then we must construct a "spoke diagram".

In the real case, unlike the complex case, we need to consider spoke diagrams with both relative orientations.

Introduction Genus Expansion Asymptotic Freeness

Freeness Second-order freeness

Spoke diagrams for the real case:

<ロ> (四) (四) (三) (三) (三)

On each spoke, we must have a noncrossing diagram on A_i and $B_j^{(\pm 1)}$.

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

On each spoke, we must have a noncrossing diagram on A_i and $B_j^{(\pm 1)}$.

This noncrossing diagram must connect A_i and $B_j^{(\pm 1)}$.

イロト イヨト イヨト イヨト

On each spoke, we must have a noncrossing diagram on A_i and $B_j^{(\pm 1)}$.

This noncrossing diagram must connect A_i and $B_j^{(\pm 1)}$.

The contribution of such a spoke is

$$\mathbb{E}\left(\operatorname{tr}\left(A_{i}B_{j}^{(\pm1)}
ight)
ight)-\mathbb{E}\left(\operatorname{tr}\left(A_{i}
ight)
ight)\mathbb{E}\left(\operatorname{tr}\left(B_{j}^{(\pm1)}
ight)
ight)$$

<ロ> (四) (四) (注) (注) (三)

Introduction Genus Expansion Asymptotic Freeness

Freeness Second-order freeness

Definition

Families of matrices are asymptotically real second-order free if they are asymptotically free, have a second-order limit distribution, and for A_i and B_i in algebras generated by cyclically alternating families

$$\lim_{N\to\infty}k_2\left(\mathrm{Tr}\left(\mathring{A}_1\cdots\mathring{A}_p\right),\mathrm{Tr}\left(\mathring{B}_1\cdots\mathring{B}_q\right)\right)$$

vanishes when $p \neq q$, and when p = q, is equal to

$$\lim_{N \to \infty} k_2 \left(\operatorname{Tr} \left(\mathring{A}_1 \cdots \mathring{A}_p \right), \operatorname{Tr} \left(\mathring{B}_1 \cdots \mathring{B}_p \right) \right)$$
$$= \sum_{k=0}^{p-1} \prod_{i=1}^p \left(\lim_{N \to \infty} \left(\mathbb{E} \left(\operatorname{tr} \left(A_i B_{k-i} \right) \right) - \mathbb{E} \left(\operatorname{tr} \left(A_i \right) \right) \mathbb{E} \left(\operatorname{tr} \left(B_{k-i} \right) \right) \right) \right)$$
$$+ \sum_{k=0}^{p-1} \prod_{i=1}^p \left(\lim_{N \to \infty} \left(\mathbb{E} \left(\operatorname{tr} \left(A_i B_{k+i}^T \right) \right) - \mathbb{E} \left(\operatorname{tr} \left(A_i \right) \right) \mathbb{E} \left(\operatorname{tr} \left(B_{k+i}^T \right) \right) \right) \right)$$

A (1) > A (1) > A

Definition

Subalgebras A_1, \ldots, A_n of a second-order noncommutative probability space $(A, \varphi_1, \varphi_2)$ are *real second-order free* if they are free and for a_1, \ldots, a_p and b_1, \ldots, b_q centred and either cyclically alternating or consisting of a single term

$$\varphi_2(a_1\cdots a_p,b_1\cdots b_q)=0$$

when $p \neq q$ and

$$\varphi_2(a_1\cdots a_p, b_1\cdots b_p) = \sum_{k=0}^{p-1}\prod_{i=1}^p \varphi_1(a_i b_{k-i}) + \sum_{k=0}^{p-1}\prod_{i=1}^p \varphi_1(a_i b_{k+i}^t).$$

イロン イヨン イヨン イヨン

2