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Noncommutative probability spaces
Second-order probability spaces

Definition
A noncommutative probability space is a unital algebra A with a
tracial linear functional ϕ : A→ C with ϕ (1A) = 1.

Definition
For A1, . . . ,An ⊆ A subalgebras of noncommutative probability
space A, A1, . . . ,An are free if

ϕ1 (a1, . . . , ap) = 0

when the ai are centred and alternating.

Definition
Families of matrices are asymptotically free if

lim
N→∞

E
(
tr
(
Å1,N · · · Åp,N

))
= 0

when the Ai are from cyclically alternating families.
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Noncommutative probability spaces
Second-order probability spaces

Definition
A second-order probability space is a noncommutative probability
space (A, ϕ1) with a bilinear function ϕ2 : A× A→ C such that

I ϕ2 is tracial in each argument

I ϕ2 (1A, a) = ϕ2 (a, 1A) = 0.
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Noncommutative probability spaces
Second-order probability spaces

Definition
Subalgebras A1, . . . ,An of a second-order noncommutative
probability space (A, ϕ1, ϕ2) are complex second-order free if they
are free and for a1, . . . , ap and b1, . . . , bq centred and either
cyclically alternating or consisting of a single term, we have

I when p 6= q:
ϕ2 (a1 · · · ap, b1 · · · bq) = 0

I and when p = q:

ϕ2 (a1 · · · ap, b1 · · · bp) =

p−1∑
k=0

p∏
i=1

ϕ1 (aibk−i ) .
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Spoke diagrams:

a2

a3

a1 b3

b2

b1

a2

a3

a1 b3

b2

b1

a2

a3

a1 b3

b2

b1

Emily Redelmeier Second-Order Freeness



Introduction
Genus Expansion

Asymptotic Freeness

Noncommutative probability spaces
Second-order probability spaces

Definition
Families of matrices are asymptotically complex second-order free
if they are asymptotically free, have a second-order limit
distribution, and for Ai and Bi in algebras generated by cyclically
alternating families, we have

I for p 6= q:

lim
N→∞

k2
(
Tr
(
Å1 · · · Åp

)
,Tr

(
B̊1 · · · B̊q

))
= 0

I and for p = q:

lim
N→∞

k2
(
Tr
(
Å1 · · · Åp

)
,Tr

(
B̊1 · · · B̊p

))
=

p−1∑
k=0

p∏
i=1

(
lim

N→∞
(E (tr (AiBk−i ))− E (tr (Ai ))E (tr (Bk−i )))

)
.
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The Matrix Models
Cumulants
Matrix Calculations

Let X : Ω→ MM×N (R) be a random matrix with Xij = 1√
N
fij ,

where the fij are independent N (0, 1) random variables.

Definition
Real Ginibre matrices are square matrices Z := X with M = N.

Definition
Gaussian orthogonal ensemble matrices, or GOE matrices, are
symmetric matrices T := 1√

2

(
X + XT

)
Definition
Real Wishart matrices are matrices W := XTDkX for some
deterministic matrix Dk .
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There are 5 partitions of 3 elements:

We define cumulants k1, k2, k3 to satisfy:

E (XYZ ) = k3 (X ,Y ,Z ) + k1 (X ) k2 (Y ,Z ) + k2 (X ,Z ) k1 (Y )

+ k2 (X ,Y ) k1 (Z ) + k1 (X ) k1 (Y ) k1 (Z ) .
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Cumulants
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Definition
The nth mixed moment of (classical) random variables X1, . . . ,Xn

is an n-linear function defined to be the expectation of their
product:

an (X1, . . . ,Xn) := E (X1 · · ·Xn) .

Let P (n) be the set of partitions of n elements.

Definition
We define the cumulants ki to satisfy the moment-cumulant
formula:

an (X1, . . . ,Xn) =
∑

π∈P(n)

∏
V={i1,...,ir}∈π

kr (Xi1 , . . . ,Xir ) .
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The first four cumulants are:

k1 (X ) = E (X )

k2 (X ,Y ) = E (XY )− E (X )E (Y )

k3 (X ,Y ,Z ) = E (XYZ )− E (X )E (YZ )−
E (XY )E (Y )− E (XY )E (Z ) + 2E (X )E (Y )E (Z )

k4 (X ,Y ,Z ,W ) = E (XYZW )− E (X )E (YZW )

− E (XZW )E (Y )− E (XYW )E (Z )− E (XYZ )E (W )

− E (XY )E (ZW )− E (XZ )E (YW )− E (XW )E (YZ )

+ 2E (XY )E (Z )E (W ) + 2E (XZ )E (Y )E (W )

+ 2E (XW )E (Y )E (Z ) + 2E (X )E (YZ )E (W )

+ 2E (X )E (YW )E (Z ) + 2E (X )E (Y )E (ZW )

− 6E (X )E (Y )E (Z )E (W ) .
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Say we wish to calculate

E
(
tr
(
XY1XY2X

TY3XY4X
TY5

)
tr
(
XTY6XY7XY8

))
.

The traces of products are a sum over

Xi1j1Y
(1)
j1i2

Xi2j2Y
(2)
j2j3

XT
j3i3Y

(3)
i3i4

Xi4j4Y
(4)
j4j5

XT
j5i5Y

(5)
i5i1

XT
j6i6Y

(6)
i6i7

Xi7j7Y
(7)
j7i8

Xi8j8Y
(8)
j8j6

.
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We construct the faces:

Y1

i1

j1
i2

j2

j3

i3

i7

j7
i8

j8

j5

i5

i4
j4

i6
Y2

X

X

Y5

XT

Y3

XT

Y6

Y8X

Y7
X

XT
j6

Y4

X
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We use a result called the Wick formula.

There are three pairings on 4 elements:

If X1,X2,X3,X4 are components of a multivariate Gaussian
random variable, then

E (X1X2X3X4) = E (X1X2)E (X3X4) + E (X1X3)E (X2X4)

+ E (X1X4)E (X2X3) .
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Let P2 (n) be the set of pairings on n elements.

Theorem
Let {fλ : λ ∈ Λ}, for some index set Λ, be a centred Gaussian
family of random variables. Then for i1, . . . , in ∈ Λ,

E (fi1 · · · fin) =
∑
P2(n)

∏
{k,l}∈P2(n)

E (fik fil ) .

Here, for a pairing π ∈ P2 (n):

∏
{k,l}

E (fik jk fil jl ) =

{
1, if ik = il and jk = jl for all {k , l} ∈ π
0, otherwise

.
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Putting indices which must be equal next to each other, we get a
surface gluing:

Y1

i1

j1
i2

j2

j3

i3

i7

j7
i8

j8

j5

i5

i4
j4

i6
Y2

X

X

Y5

XT

Y4

Y3

XT

Y6

Y8X

Y7
X

XT
j6

X
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We note that if one term is from X and the other from XT , the
edge identification is untwisted:

Y1

i1

j1
i2

j2

j3

i3

i7

j7
i8

j8

j5

i5

i4
j4

i6
Y2

X

X

Y5

XT

Y4

XT
Y3

XT

Y6

Y8X

Y7
X

XT
j6
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twisted:

Y1

i1

j1
i2

j2

j3

i3

i7

j7
i8

j8

j5

i5

i4
j4

i6
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X

X

Y5

XT
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Y6

Y8X
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The following vertex appears on the surface:

Y1

Y T
3 Y6

Y T
5

Y T
7

i3
i4

i2

j1
j7 i8

i5

i1

i7

i6

If a corner appears upside-down, it is the transpose of that matrix
which appears.

It contributes
Tr
(
Y1Y

T
3 Y6Y

T
5 Y T

7

)
.
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The same vertex viewed from the opposite side contributes the
same value:

Y7

Y5

Y3

Y T
1

Y T
6

i6

i7

i1

i5
i8 j7

j1

i2

i4

i3

Tr
(
Y7Y5Y

T
6 Y3Y

T
1

)
= Tr

(
Y1Y

T
3 Y6Y

T
5 Y T

7

)
.
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Each vertex gives us a trace, and hence a factor of N when
normalized.

Highest order terms are those with the highest Euler characteristic
(typically spheres or collections of spheres).

Crossings require handles, so highest order terms typically
correspond to noncrossing diagrams with untwisted identifications.

Highest order terms must have a relative orientation of the faces in
which none of the edge-identifications are twisted.
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The permutation γ encodes face information (cycles enumerate
edges in order).

A pairing π, taken as a permutation, encodes edge information on
an orientable surface.

The permutation π−1γ−1 encodes vertex information.
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Consider the map:

3

5

7

6

8 9 10

12

4

11

1

2

The vertex information can be encoded in a permutation

σ = (1, 2, 3, 4) (5, 6) (7, 8) (9, 10) (11, 12) .

The edge information can be encoded in another permutation

α = (1, 2) (3, 5) (4, 12) (6, 7) (8, 9) (10, 11) .
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3

5

7

6

8 9 10

12

4

11

1

2

The face information is encoded in

ϕ := σ−1α−1 = (1) (2, 4, 11, 9, 7, 5) (3, 6, 8, 10, 12) .
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This construction works equally well with oriented hypermaps:

1

3
2

6

45

7

σ = (1, 2, 3) (4, 5) (6, 7)

α = (1, 6, 5) (2, 7, 3) (4)

ϕ = σ−1α−1 = (1, 4, 5, 7) (2) (3, 6)
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To extend this construction to unoriented surfaces, we construct
the orientable two-sheeted covering space (the surface experienced
by someone on the surface rather than within it).

We do this by constructing a front and back side of each face.

An untwisted edge-identification connects front to front and back
to back, while a twisted edge-identification connects front to back
and back to front.
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We label the front sides with positive integers and the
corresponding back sides with negative integers.

Let δ : k 7→ −k .

A permutation π describing something in this surface should satisfy
π = δπ−1δ.

We let γ+ = γ, and γ− = δγδ.

Vertex information is given by γ−1+ π−1γ−.
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In the example,

π = (1,−7) (7,−1) (2,−4) (4,−2) (3,−6) (6,−3) (5, 8) (−8,−5) .

The vertices are given by the cycles of

(1,−3, 6,−5,−7) (7, 5,−6, 3,−1) (2,−8,−4) (4, 8,−2) .

This diagram contributes the term:

N−2E
(
tr
(
Y1Y

T
3 Y6Y

T
5 Y T

7

)
tr
(
Y2Y

T
8 Y T

4

))
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Let:

I tr := 1
NTr,

I n1, . . . , nr positive integers, n := n1 + · · ·+ nr ,

I A(1) = A, A(−1) = AT ,

I [n] = {1, . . . , n},
I ε : [n]→ {1,−1},
I δε : k 7→ ε (k) k.
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For γ = (c1, . . . , cn1) · · ·
(
cn1+···+nr−1 , . . . , cn

)
∈ Sn, we define:

Trγ (A1, . . . ,An) := Tr
(
Ac1 · · ·Acn1

)
· · ·Tr

(
Acn1+···+nr−1

· · ·Acn

)
.

Then

Trγ (A1, . . . ,An) =
∑

1≤i1,...,in≤N
Ai1iγ(1) · · ·Ainiγ(n) .
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For example:

Tr(1,2,3,4,5,6)(7,8,9,10) (A1, . . . ,A10)

= Tr (A1A2A3A4A5A6)Tr (A7A8A9A10)

=
N∑

i1,...,i6=1

A
(1)
i1,i2

A
(2)
i2,i3

A
(3)
i3,i4

A
(4)
i4,i5

A
(5)
i5,i6

A
(6)
i6,i1

A
(7)
i7,i8

A
(8)
i8,i9

A
(9)
i9,i10

A
(10)
i10,i1
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We wish to calculate expressions of the form

E
(
trγ

(
X (ε(1))Y1 · · ·X (ε(n))Yn

))

=
∑

1≤ι+1 ,...,ι+n ≤M
1≤ι−1 ,...,ι

−
n ≤N

N−#(γ)−nE
(
Y

(1)

ι
−ε(1)
1 ι

ε(γ(1))
γ(1)

· · ·Y (n)

ι
−ε(n)
n ι

ε(γ(n))
γ(n)

)

E
(
fι+1 ι

−
1
· · · fι+n ι−n

)

=
∑

1≤ι+1 ,...ι+n ≤M
1≤ι−1 ,...,ι

−
n ≤N

∑
π∈P2(n)

ι±k =ι±l :{k,l}∈π

N−#(γ)−nE
(
Y

(1)

ι
−ε(1)
1 ι

ε(γ(1))
γ(1)

· · ·Y (n)

ι
−ε(n)
n ι

ε(γ(n))
γ(n)

)
.
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n ι
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Reversing the order of summation,∑
π∈P2(n)

∑
1≤ι+1 ,...ι+n ≤M
1≤ι−1 ,...,ι

−
n ≤N

ι±k =ι±l :{k,l}∈π

N−#(γ)−nE
(
Y

(1)

ι
−ε(1)
1 ι

ε(γ(1))
γ(1)

· · ·Y (n)

ι
−ε(n)
n ι

ε(γ(n))
γ(n)

)

=
∑

π∈P2(n)

N#(γ−1
− δεπδπδεγ+)/2−#(γ)−nE

(
trγ−1

− δεπδπδεγ+/2
(Y1, . . . ,Yn)

)
.
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Real Ginibre matrices are square matrices Z := X with M = N.

Thus

E
(
trγ

(
Z (ε(1))Y1, . . . ,Z

(ε(n))Yn

))
=

∑
π∈{ρδρ:ρ∈P2(n)}

Nχ(γ,δεπδε)−#(γ)E
(
trγ−1

− δεπδεγ+/2
(Y1, . . . ,Yn)

)
.

This is a sum over all gluings compatible with the edge directions
given by the transposes.
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If we expand out the GOE matrix T := 1√
2

(
X + XT

)
, we get

E (trγ (TY1, . . . ,TYn))

=
∑

ε:{1,...,n}→{1,−1}

1

2n/2
E
(
trγ

(
X (ε(1))Y1 · · ·X (ε(n))Yn

))
.
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If we collect terms, this is equivalent to summing over all
edge-identifications.

Thus

E (trγ (TY1, . . . ,TYn))

=
∑

π∈PM(±[n])∩P2(±[n])

Nχ(γ,π)−#(γ)E
(
trγ−1

− πγ+/2
(Y1, . . . ,Yn)

)
.
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With Wishart matrices W := XTDkX , we can collapse the edges
corresponding to each matrix to a single edge. We can think of the
connecting blocks as (possibly twisted) hyperedges.

i7
i8

j8 j9

i9

j10j7

X

XT

X
XT

X

X

XTX

XT

j1

i1

i2

j2j3

i3

i4

j4

i5
i6

j6

i10

Y4

D5

Y5

D1

Y1

D2

D3

Y3

j5
XTY2

D4
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With Wishart matrices W := XTDkX , we can collapse the edges
corresponding to each matrix to a single edge. We can think of the
connecting blocks as (possibly twisted) hyperedges.
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Thus:

E (trγ (W1Y1, · · · ,WnYn))

=
∑

π∈PM([n])

Nχ(γ,π)−#(γ)trπ−1/2 (D1, . . . ,Dn)

E
(
trγ−1

− πγ+/2
(Y1, . . . ,Yn)

)
.
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We note that all of the matrix ensembles satisfy

E
(
trγ

(
X

(ε(1))
λ1

Y1, · · · ,X (ε(n))
λn

Yn

))
=

∑
π∈PMc (±[n])

Nχ(γ,δεπδε)−2#(γ)fc (π)E
(
trγ−1

− δεπδεγ+/2
(Y1, . . . ,Yn)

)

I PMc (±I ) is a subset of the premaps on ±I ,
I fc :

⋃
I⊆N,|I |<∞ PMc (±I )→ C

I for any J ⊆ I , the π ∈ PMc (±I ) which do not connect ±J
and ± (I \ J) are the product of a π1 ∈ PMc (±J) and
π2 ∈ PMc (± (I \ J))

I limN→∞ fc (π) exists

I if π ∈ PMc (I ) does not connect ±J and ± (I \ J), then

fc (π) = fc
(
π|±J

)
fc
(
π|±(I\J)

)
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It is possible to mix ensembles in an expression.

E
(
tr
(
Z3W

(λ2)
2

)
tr
(
W

(λ3)
1 ZT

3 ZT
3

)
tr
(
W

(λ6)
2 ZT

3 W
(λ8)
2 W

(λ9)
1

))

W
(λ2)
2 W

(λ9)
1

Z
ZT

ZT

ZTW
(λ3)
1 W

(λ6)
2

W
(λ8)
2

γ = (1, 2) (3, 4, 5) (6, 7, 8, 9)
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W
(λ2)
2 W

(λ9)
1

Z
ZT

ZT

ZTW
(λ3)
1 W

(λ6)
2

W
(λ8)
2

π1 = (3) (−3) (9) (−9)

π2 = (2, 8,−6) (6,−8,−2)

π3 = (1,−7) (−1, 7) (4,−5) (−4, 5)
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δεπδε = (1, 7) (−1,−7) (2, 8,−6) (6,−8,−2) (3) (−3) (4,−5)

(5,−4) (9) (−9)

γ−1− δεπδεγ+

= (1, 8, 9,−7,−2, 6) (−6, 2, 7,−9,−8,−1) (3,−4, 5) (−5, 4,−3)

tr (Aλ3) tr (Aλ9) tr
(
Bλ2B

T
λ6Bλ8

)
N−5
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The nth cumulant is the sum over connected surfaces constructed
out of the n faces.

There is a classification theorem for connected, compact surfaces:
any such surface is a sphere, a connected sum of tori, or a
connected sum of projective planes.

For any cumulant, we have an Euler characteristic expansion:

(sphere terms)N−2r+2 + (projective plane terms)N−2r+1+

(torus and Klein bottle terms)N−2r+

(connected sum of 3 projective planes terms)N−2r−2 + · · · .
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Let A1, . . . ,Ar be in the algebra generated by alternating
ensembles of random matrices.

If we expand out an expression of the form

E (tr ((A1 − E (tr (A1))) · · · (Ar − E (tr (Ar )))))

we get

∑
I⊆[r ]

(−1)|I |
∏
i∈I

E (tr (Ai ))E

(
tr

(∏
i /∈I

Ai

))
.
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Expressions like this one can be interpreted in terms of the
Principle of Inclusion and Exclusion.

Diagrams in which any Ai is disconnected are excluded.

Since diagrams with connected Ai require crossings, these vanish
asymptotically.
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In order to find an appropriate definition of second-order freeness,
we want to consider values of

lim
N→∞

k2 (Tr ((A1 − E (tr (A1))) · · · (Ap − E (tr (Ap)))) ,

Tr ((B1 − E (tr (B1))) · · · (Bq − E (tr (Bq))))) .

We can apply the Principle of Inclusion and Exclusion to this
expression as well, with the same interpretation.
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Now the Ai can be connected to the Bi .

If p 6= q, all terms vanish asymptotically.

If p = q, then we must construct a “spoke diagram”.

In the real case, unlike the complex case, we need to consider
spoke diagrams with both relative orientations.
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Spoke diagrams for the real case:

a2

a3

a1 b3

b2

b1

a2

a3

a1 b3

b2

b1

a2

a3

a1 b3

b2

b1

a2

a3

a1 bt1

bt2

bt3

a2

a3

a1 bt1

bt2

bt3

a2

a3

a1 bt1

bt2

bt1
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On each spoke, we must have a noncrossing diagram on Ai and

B
(±1)
j .

This noncrossing diagram must connect Ai and B
(±1)
j .

The contribution of such a spoke is

E
(
tr
(
AiB

(±1)
j

))
− E (tr (Ai ))E

(
tr
(
B

(±1)
j

))
.
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Definition
Families of matrices are asymptotically real second-order free if
they are asymptotically free, have a second-order limit distribution,
and for Ai and Bi in algebras generated by cyclically alternating
families

lim
N→∞

k2
(
Tr
(
Å1 · · · Åp

)
,Tr

(
B̊1 · · · B̊q

))
vanishes when p 6= q, and when p = q, is equal to

lim
N→∞

k2
(
Tr
(
Å1 · · · Åp

)
,Tr

(
B̊1 · · · B̊p

))
=

p−1∑
k=0

p∏
i=1

(
lim

N→∞
(E (tr (AiBk−i ))− E (tr (Ai ))E (tr (Bk−i )))

)

+

p−1∑
k=0

p∏
i=1

(
lim

N→∞

(
E
(
tr
(
AiB

T
k+i

))
− E (tr (Ai ))E

(
tr
(
BT
k+i

))))
.
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Definition
Subalgebras A1, . . . ,An of a second-order noncommutative
probability space (A, ϕ1, ϕ2) are real second-order free if they are
free and for a1, . . . , ap and b1, . . . , bq centred and either cyclically
alternating or consisting of a single term

ϕ2 (a1 · · · ap, b1 · · · bq) = 0

when p 6= q and

ϕ2 (a1 · · · ap, b1 · · · bp) =

p−1∑
k=0

p∏
i=1

ϕ1 (aibk−i ) +

p−1∑
k=0

p∏
i=1

ϕ1

(
aib

t
k+i

)
.
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