Fluctuations of Real Random Matrices and Second-Order Freeness

Emily Redelmeier

March 8, 2012

Introduction

Noncommutative probability spaces
Second-order probability spaces
Genus Expansion
The Matrix Models
Cumulants
Matrix Calculations
Example
Cartographic Machinery
Calculations for Gaussian Matrices

Asymptotic Freeness
Freeness
Second-order freeness

Definition

A noncommutative probability space is a unital algebra A with a tracial linear functional $\varphi: A \rightarrow \mathbb{C}$ with $\varphi\left(1_{A}\right)=1$.

Definition

A noncommutative probability space is a unital algebra A with a tracial linear functional $\varphi: A \rightarrow \mathbb{C}$ with $\varphi\left(1_{A}\right)=1$.

Definition

For $A_{1}, \ldots, A_{n} \subseteq A$ subalgebras of noncommutative probability space A, A_{1}, \ldots, A_{n} are free if

$$
\varphi_{1}\left(a_{1}, \ldots, a_{p}\right)=0
$$

when the a_{i} are centred and alternating.

Definition

A noncommutative probability space is a unital algebra A with a tracial linear functional $\varphi: A \rightarrow \mathbb{C}$ with $\varphi\left(1_{A}\right)=1$.

Definition

For $A_{1}, \ldots, A_{n} \subseteq A$ subalgebras of noncommutative probability space A, A_{1}, \ldots, A_{n} are free if

$$
\varphi_{1}\left(a_{1}, \ldots, a_{p}\right)=0
$$

when the a_{i} are centred and alternating.
Definition
Families of matrices are asymptotically free if

$$
\lim _{N \rightarrow \infty} \mathbb{E}\left(\operatorname { t r } \left({\left.\left.\stackrel{\circ}{A_{1, N}} \cdots \AA_{p, N}\right)\right)=0}\right.\right.
$$

when the A_{i} are from cyclically alternating families.

Definition

A second-order probability space is a noncommutative probability space $\left(A, \varphi_{1}\right)$ with a bilinear function $\varphi_{2}: A \times A \rightarrow \mathbb{C}$ such that

Definition

A second-order probability space is a noncommutative probability space $\left(A, \varphi_{1}\right)$ with a bilinear function $\varphi_{2}: A \times A \rightarrow \mathbb{C}$ such that

- φ_{2} is tracial in each argument

Definition

A second-order probability space is a noncommutative probability space $\left(A, \varphi_{1}\right)$ with a bilinear function $\varphi_{2}: A \times A \rightarrow \mathbb{C}$ such that

- φ_{2} is tracial in each argument
- $\varphi_{2}\left(1_{A}, a\right)=\varphi_{2}\left(a, 1_{A}\right)=0$.

Definition

Subalgebras A_{1}, \ldots, A_{n} of a second-order noncommutative probability space $\left(A, \varphi_{1}, \varphi_{2}\right)$ are complex second-order free if they are free and for a_{1}, \ldots, a_{p} and b_{1}, \ldots, b_{q} centred and either cyclically alternating or consisting of a single term, we have

Definition

Subalgebras A_{1}, \ldots, A_{n} of a second-order noncommutative probability space $\left(A, \varphi_{1}, \varphi_{2}\right)$ are complex second-order free if they are free and for a_{1}, \ldots, a_{p} and b_{1}, \ldots, b_{q} centred and either cyclically alternating or consisting of a single term, we have

- when $p \neq q$:

$$
\varphi_{2}\left(a_{1} \cdots a_{p}, b_{1} \cdots b_{q}\right)=0
$$

Definition

Subalgebras A_{1}, \ldots, A_{n} of a second-order noncommutative probability space ($A, \varphi_{1}, \varphi_{2}$) are complex second-order free if they are free and for a_{1}, \ldots, a_{p} and b_{1}, \ldots, b_{q} centred and either cyclically alternating or consisting of a single term, we have

- when $p \neq q$:

$$
\varphi_{2}\left(a_{1} \cdots a_{p}, b_{1} \cdots b_{q}\right)=0
$$

- and when $p=q$:

$$
\varphi_{2}\left(a_{1} \cdots a_{p}, b_{1} \cdots b_{p}\right)=\sum_{k=0}^{p-1} \prod_{i=1}^{p} \varphi_{1}\left(a_{i} b_{k-i}\right) .
$$

Spoke diagrams:

Definition

Families of matrices are asymptotically complex second-order free if they are asymptotically free, have a second-order limit distribution, and for A_{i} and B_{i} in algebras generated by cyclically alternating families, we have

Definition

Families of matrices are asymptotically complex second-order free if they are asymptotically free, have a second-order limit distribution, and for A_{i} and B_{i} in algebras generated by cyclically alternating families, we have

- for $p \neq q$:

$$
\lim _{N \rightarrow \infty} k_{2}\left(\operatorname{Tr}\left(\stackrel{\circ}{A}_{1} \cdots \stackrel{\circ}{A}_{p}\right), \operatorname{Tr}\left(\stackrel{\circ}{B}_{1} \cdots \dot{B}_{q}\right)\right)=0
$$

Definition

Families of matrices are asymptotically complex second-order free if they are asymptotically free, have a second-order limit distribution, and for A_{i} and B_{i} in algebras generated by cyclically alternating families, we have

- for $p \neq q$:

$$
\lim _{N \rightarrow \infty} k_{2}\left(\operatorname{Tr}\left(\stackrel{\circ}{A}_{1} \cdots \AA_{p}\right), \operatorname{Tr}\left(\stackrel{\circ}{B}_{1} \cdots \stackrel{\circ}{B}_{q}\right)\right)=0
$$

- and for $p=q$:

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} k_{2}\left(\operatorname{Tr}\left(\dot{\AA}_{1} \cdots \AA_{p}\right), \operatorname{Tr}\left(\dot{B}_{1} \cdots \dot{B}_{p}\right)\right) \\
= & \sum_{k=0}^{p-1} \prod_{i=1}^{p}\left(\lim _{N \rightarrow \infty}\left(\mathbb{E}\left(\operatorname{tr}\left(A_{i} B_{k-i}\right)\right)-\mathbb{E}\left(\operatorname{tr}\left(A_{i}\right)\right) \mathbb{E}\left(\operatorname{tr}\left(B_{k-i}\right)\right)\right)\right) .
\end{aligned}
$$

Let $X: \Omega \rightarrow M_{M \times N}(\mathbb{R})$ be a random matrix with $X_{i j}=\frac{1}{\sqrt{N}} f_{i j}$, where the $f_{i j}$ are independent $N(0,1)$ random variables.

Let $X: \Omega \rightarrow M_{M \times N}(\mathbb{R})$ be a random matrix with $X_{i j}=\frac{1}{\sqrt{N}} f_{i j}$, where the $f_{i j}$ are independent $N(0,1)$ random variables.

Definition

Real Ginibre matrices are square matrices $Z:=X$ with $M=N$.

Let $X: \Omega \rightarrow M_{M \times N}(\mathbb{R})$ be a random matrix with $X_{i j}=\frac{1}{\sqrt{N}} f_{i j}$, where the $f_{i j}$ are independent $N(0,1)$ random variables.

Definition

Real Ginibre matrices are square matrices $Z:=X$ with $M=N$.

Definition

Gaussian orthogonal ensemble matrices, or GOE matrices, are symmetric matrices $T:=\frac{1}{\sqrt{2}}\left(X+X^{T}\right)$

Let $X: \Omega \rightarrow M_{M \times N}(\mathbb{R})$ be a random matrix with $X_{i j}=\frac{1}{\sqrt{N}} f_{i j}$, where the $f_{i j}$ are independent $N(0,1)$ random variables.

Definition

Real Ginibre matrices are square matrices $Z:=X$ with $M=N$.

Definition

Gaussian orthogonal ensemble matrices, or GOE matrices, are symmetric matrices $T:=\frac{1}{\sqrt{2}}\left(X+X^{T}\right)$
Definition
Real Wishart matrices are matrices $W:=X^{T} D_{k} X$ for some deterministic matrix D_{k}.

There are 5 partitions of 3 elements:

There are 5 partitions of 3 elements:

We define cumulants k_{1}, k_{2}, k_{3} to satisfy:

$$
\begin{array}{r}
\mathbb{E}(X Y Z)=k_{3}(X, Y, Z)+k_{1}(X) k_{2}(Y, Z)+k_{2}(X, Z) k_{1}(Y) \\
+k_{2}(X, Y) k_{1}(Z)+k_{1}(X) k_{1}(Y) k_{1}(Z)
\end{array}
$$

Definition

The nth mixed moment of (classical) random variables X_{1}, \ldots, X_{n} is an n-linear function defined to be the expectation of their product:

$$
a_{n}\left(X_{1}, \ldots, X_{n}\right):=\mathbb{E}\left(X_{1} \cdots X_{n}\right)
$$

Definition

The nth mixed moment of (classical) random variables X_{1}, \ldots, X_{n} is an n-linear function defined to be the expectation of their product:

$$
a_{n}\left(X_{1}, \ldots, X_{n}\right):=\mathbb{E}\left(X_{1} \cdots X_{n}\right) .
$$

Let $\mathcal{P}(n)$ be the set of partitions of n elements.

Definition

The nth mixed moment of (classical) random variables X_{1}, \ldots, X_{n} is an n-linear function defined to be the expectation of their product:

$$
a_{n}\left(X_{1}, \ldots, X_{n}\right):=\mathbb{E}\left(X_{1} \cdots X_{n}\right)
$$

Let $\mathcal{P}(n)$ be the set of partitions of n elements.

Definition

We define the cumulants k_{i} to satisfy the moment-cumulant formula:

$$
a_{n}\left(X_{1}, \ldots, X_{n}\right)=\sum_{\pi \in \mathcal{P}(n)} \prod_{V=\left\{i_{1}, \ldots, i_{r}\right\} \in \pi} k_{r}\left(X_{i_{1}}, \ldots, X_{i_{r}}\right) .
$$

The first four cumulants are:

$$
\begin{gathered}
k_{1}(X)=\mathbb{E}(X) \\
k_{2}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y) \\
k_{3}(X, Y, Z)=\mathbb{E}(X Y Z)-\mathbb{E}(X) \mathbb{E}(Y Z)- \\
\mathbb{E}(X Y) \mathbb{E}(Y)-\mathbb{E}(X Y) \mathbb{E}(Z)+2 \mathbb{E}(X) \mathbb{E}(Y) \mathbb{E}(Z) \\
k_{4}(X, Y, Z, W)=\mathbb{E}(X Y Z W)-\mathbb{E}(X) \mathbb{E}(Y Z W) \\
-\mathbb{E}(X Z W) \mathbb{E}(Y)-\mathbb{E}(X Y W) \mathbb{E}(Z)-\mathbb{E}(X Y Z) \mathbb{E}(W) \\
-\mathbb{E}(X Y) \mathbb{E}(Z W)-\mathbb{E}(X Z) \mathbb{E}(Y W)-\mathbb{E}(X W) \mathbb{E}(Y Z) \\
+2 \mathbb{E}(X Y) \mathbb{E}(Z) \mathbb{E}(W)+2 \mathbb{E}(X Z) \mathbb{E}(Y) \mathbb{E}(W) \\
+2 \mathbb{E}(X W) \mathbb{E}(Y) \mathbb{E}(Z)+2 \mathbb{E}(X) \mathbb{E}(Y Z) \mathbb{E}(W) \\
+2 \mathbb{E}(X) \mathbb{E}(Y W) \mathbb{E}(Z)+2 \mathbb{E}(X) \mathbb{E}(Y) \mathbb{E}(Z W) \\
-6 \mathbb{E}(X) \mathbb{E}(Y) \mathbb{E}(Z) \mathbb{E}(W)
\end{gathered}
$$

Say we wish to calculate

$$
\mathbb{E}\left(\operatorname{tr}\left(X Y_{1} X Y_{2} X^{T} Y_{3} X Y_{4} X^{T} Y_{5}\right) \operatorname{tr}\left(X^{T} Y_{6} X Y_{7} X Y_{8}\right)\right)
$$

Say we wish to calculate

$$
\mathbb{E}\left(\operatorname{tr}\left(X Y_{1} X Y_{2} X^{T} Y_{3} X Y_{4} X^{T} Y_{5}\right) \operatorname{tr}\left(X^{T} Y_{6} X Y_{7} X Y_{8}\right)\right)
$$

The traces of products are a sum over $X_{i_{1} j_{1}} Y_{j_{1} i_{2}}^{(1)} X_{i_{2} j_{2}} Y_{j_{2} j_{3}}^{(2)} X_{j_{3} i_{3}}^{T} Y_{i_{3} i_{4}}^{(3)} X_{i_{4} j_{4}} Y_{j_{4} j_{5}}^{(4)} X_{j_{5} i_{5}}^{T} Y_{i_{5} i_{1}}^{(5)} X_{j_{6} i_{6}}^{T} Y_{i_{6} i_{7}}^{(6)} X_{i_{7} j_{7}} Y_{j_{7} i_{8}}^{(7)} X_{i_{8} j_{8}} Y_{j_{8} j_{6}}^{(8)}$.

We construct the faces:

We use a result called the Wick formula.

We use a result called the Wick formula.
There are three pairings on 4 elements:

We use a result called the Wick formula.
There are three pairings on 4 elements:

If $X_{1}, X_{2}, X_{3}, X_{4}$ are components of a multivariate Gaussian random variable, then

$$
\begin{aligned}
& \mathbb{E}\left(X_{1} X_{2} X_{3} X_{4}\right)=\mathbb{E}\left(X_{1} X_{2}\right) \mathbb{E}\left(X_{3} X_{4}\right)+\mathbb{E}\left(X_{1} X_{3}\right) \mathbb{E}\left(X_{2} X_{4}\right) \\
&+\mathbb{E}\left(X_{1} X_{4}\right) \mathbb{E}\left(X_{2} X_{3}\right) .
\end{aligned}
$$

Let $\mathcal{P}_{2}(n)$ be the set of pairings on n elements.

Let $\mathcal{P}_{2}(n)$ be the set of pairings on n elements.
Theorem
Let $\left\{f_{\lambda}: \lambda \in \Lambda\right\}$, for some index set Λ, be a centred Gaussian family of random variables. Then for $i_{1}, \ldots, i_{n} \in \Lambda$,

$$
\mathbb{E}\left(f_{i_{1}} \cdots f_{i_{n}}\right)=\sum_{\mathcal{P}_{2}(n)} \prod_{\{k, l\} \in \mathcal{P}_{2}(n)} \mathbb{E}\left(f_{i_{k}} f_{i_{l}}\right) .
$$

Let $\mathcal{P}_{2}(n)$ be the set of pairings on n elements.
Theorem
Let $\left\{f_{\lambda}: \lambda \in \Lambda\right\}$, for some index set Λ, be a centred Gaussian family of random variables. Then for $i_{1}, \ldots, i_{n} \in \Lambda$,

$$
\mathbb{E}\left(f_{i_{1}} \cdots f_{i_{n}}\right)=\sum_{\mathcal{P}_{2}(n)} \prod_{\{k, l\} \in \mathcal{P}_{2}(n)} \mathbb{E}\left(f_{i_{k}} f_{i_{l}}\right) .
$$

Here, for a pairing $\pi \in \mathcal{P}_{2}(n)$:
$\prod_{\{k, l\}} \mathbb{E}\left(f_{i_{k j k}} f_{i, j l}\right)= \begin{cases}1, & \text { if } i_{k}=i_{l} \text { and } j_{k}=j_{l} \text { for all }\{k, l\} \in \pi \\ 0, & \text { otherwise }\end{cases}$

Putting indices which must be equal next to each other, we get a surface gluing:

We note that if one term is from X and the other from X^{T}, the edge identification is untwisted:

If both terms are from X or from X^{T}, the edge identification is twisted:

The following vertex appears on the surface:

The following vertex appears on the surface:

If a corner appears upside-down, it is the transpose of that matrix which appears.

The following vertex appears on the surface:

If a corner appears upside-down, it is the transpose of that matrix which appears.

It contributes

$$
\operatorname{Tr}\left(Y_{1} Y_{3}^{T} Y_{6} Y_{5}^{T} Y_{7}^{T}\right)
$$

The same vertex viewed from the opposite side contributes the same value:

$$
\operatorname{Tr}\left(Y_{7} Y_{5} Y_{6}^{\top} Y_{3} Y_{1}^{T}\right)=\operatorname{Tr}\left(Y_{1} Y_{3}^{T} Y_{6} Y_{5}^{T} Y_{7}^{T}\right) .
$$

Each vertex gives us a trace, and hence a factor of N when normalized.

Each vertex gives us a trace, and hence a factor of N when normalized.

Highest order terms are those with the highest Euler characteristic (typically spheres or collections of spheres).

Each vertex gives us a trace, and hence a factor of N when normalized.

Highest order terms are those with the highest Euler characteristic (typically spheres or collections of spheres).

Crossings require handles, so highest order terms typically correspond to noncrossing diagrams with untwisted identifications.

Each vertex gives us a trace, and hence a factor of N when normalized.

Highest order terms are those with the highest Euler characteristic (typically spheres or collections of spheres).

Crossings require handles, so highest order terms typically correspond to noncrossing diagrams with untwisted identifications.

Highest order terms must have a relative orientation of the faces in which none of the edge-identifications are twisted.

The permutation γ encodes face information (cycles enumerate edges in order).

The permutation γ encodes face information (cycles enumerate edges in order).

A pairing π, taken as a permutation, encodes edge information on an orientable surface.

The permutation γ encodes face information (cycles enumerate edges in order).

A pairing π, taken as a permutation, encodes edge information on an orientable surface.

The permutation $\pi^{-1} \gamma^{-1}$ encodes vertex information.

Consider the map:

Consider the map:

The vertex information can be encoded in a permutation

$$
\sigma=(1,2,3,4)(5,6)(7,8)(9,10)(11,12) .
$$

Consider the map:

The vertex information can be encoded in a permutation

$$
\sigma=(1,2,3,4)(5,6)(7,8)(9,10)(11,12)
$$

The edge information can be encoded in another permutation

$$
\alpha=(1,2)(3,5)(4,12)(6,7)(8,9)(10,11) .
$$

The face information is encoded in

$$
\varphi:=\sigma^{-1} \alpha^{-1}=(1)(2,4,11,9,7,5)(3,6,8,10,12) .
$$

This construction works equally well with oriented hypermaps:

This construction works equally well with oriented hypermaps:

$$
\sigma=(1,2,3)(4,5)(6,7)
$$

This construction works equally well with oriented hypermaps:

$$
\begin{aligned}
& \sigma=(1,2,3)(4,5)(6,7) \\
& \alpha=(1,6,5)(2,7,3)(4)
\end{aligned}
$$

This construction works equally well with oriented hypermaps:

$$
\begin{gathered}
\sigma=(1,2,3)(4,5)(6,7) \\
\alpha=(1,6,5)(2,7,3)(4) \\
\varphi=\sigma^{-1} \alpha^{-1}=(1,4,5,7)(2)(3,6)
\end{gathered}
$$

To extend this construction to unoriented surfaces, we construct the orientable two-sheeted covering space (the surface experienced by someone on the surface rather than within it).

To extend this construction to unoriented surfaces, we construct the orientable two-sheeted covering space (the surface experienced by someone on the surface rather than within it).

We do this by constructing a front and back side of each face.

To extend this construction to unoriented surfaces, we construct the orientable two-sheeted covering space (the surface experienced by someone on the surface rather than within it).

We do this by constructing a front and back side of each face.

An untwisted edge-identification connects front to front and back to back, while a twisted edge-identification connects front to back and back to front.

We label the front sides with positive integers and the corresponding back sides with negative integers.

We label the front sides with positive integers and the corresponding back sides with negative integers.

Let $\delta: k \mapsto-k$.

We label the front sides with positive integers and the corresponding back sides with negative integers.

Let $\delta: k \mapsto-k$.

A permutation π describing something in this surface should satisfy $\pi=\delta \pi^{-1} \delta$.

We label the front sides with positive integers and the corresponding back sides with negative integers.

Let $\delta: k \mapsto-k$.

A permutation π describing something in this surface should satisfy $\pi=\delta \pi^{-1} \delta$.

We let $\gamma_{+}=\gamma$, and $\gamma_{-}=\delta \gamma \delta$.

We label the front sides with positive integers and the corresponding back sides with negative integers.

Let $\delta: k \mapsto-k$.

A permutation π describing something in this surface should satisfy $\pi=\delta \pi^{-1} \delta$.

We let $\gamma_{+}=\gamma$, and $\gamma_{-}=\delta \gamma \delta$.

Vertex information is given by $\gamma_{+}^{-1} \pi^{-1} \gamma_{-}$.

In the example,

$$
\pi=(1,-7)(7,-1)(2,-4)(4,-2)(3,-6)(6,-3)(5,8)(-8,-5)
$$

In the example,

$$
\pi=(1,-7)(7,-1)(2,-4)(4,-2)(3,-6)(6,-3)(5,8)(-8,-5)
$$

The vertices are given by the cycles of

$$
(1,-3,6,-5,-7)(7,5,-6,3,-1)(2,-8,-4)(4,8,-2) .
$$

In the example,

$$
\pi=(1,-7)(7,-1)(2,-4)(4,-2)(3,-6)(6,-3)(5,8)(-8,-5)
$$

The vertices are given by the cycles of

$$
(1,-3,6,-5,-7)(7,5,-6,3,-1)(2,-8,-4)(4,8,-2) .
$$

This diagram contributes the term:

$$
N^{-2} \mathbb{E}\left(\operatorname{tr}\left(Y_{1} Y_{3}^{T} Y_{6} Y_{5}^{T} Y_{7}^{T}\right) \operatorname{tr}\left(Y_{2} Y_{8}^{T} Y_{4}^{T}\right)\right)
$$

Let:

- tr $:=\frac{1}{N} \operatorname{Tr}$,
- n_{1}, \ldots, n_{r} positive integers, $n:=n_{1}+\cdots+n_{r}$,
- $A^{(1)}=A, A^{(-1)}=A^{T}$,
- $[n]=\{1, \ldots, n\}$,
- $\varepsilon:[n] \rightarrow\{1,-1\}$,
- $\delta_{\varepsilon}: k \mapsto \varepsilon(k) k$.

For $\gamma=\left(c_{1}, \ldots, c_{n_{1}}\right) \cdots\left(c_{n_{1}+\cdots+n_{r-1}}, \ldots, c_{n}\right) \in S_{n}$, we define: $\operatorname{Tr}_{\gamma}\left(A_{1}, \ldots, A_{n}\right):=\operatorname{Tr}\left(A_{c_{1}} \cdots A_{c_{n_{1}}}\right) \cdots \operatorname{Tr}\left(A_{c_{n_{1}+\cdots+n_{r-1}}} \cdots A_{c_{n}}\right)$.

For $\gamma=\left(c_{1}, \ldots, c_{n_{1}}\right) \cdots\left(c_{n_{1}+\cdots+n_{r-1}}, \ldots, c_{n}\right) \in S_{n}$, we define:

$$
\operatorname{Tr}_{\gamma}\left(A_{1}, \ldots, A_{n}\right):=\operatorname{Tr}\left(A_{c_{1}} \cdots A_{c_{n_{1}}}\right) \cdots \operatorname{Tr}\left(A_{c_{n_{1}+\cdots+n_{r-1}}} \cdots A_{c_{n}}\right) .
$$

Then

$$
\operatorname{Tr}_{\gamma}\left(A_{1}, \ldots, A_{n}\right)=\sum_{1 \leq i_{1}, \ldots, i_{n} \leq N} A_{i_{1} i_{\gamma(1)}} \cdots A_{i_{n} i_{\gamma(n)}}
$$

For example:

$$
\begin{aligned}
& \operatorname{Tr}_{(1,2,3,4,5,6)(7,8,9,10)}\left(A_{1}, \ldots, A_{10}\right) \\
= & \operatorname{Tr}\left(A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}\right) \operatorname{Tr}\left(A_{7} A_{8} A_{9} A_{10}\right) \\
= & \sum_{i_{1}, \ldots, i_{6}=1}^{N} A_{i_{1}, i_{2}}^{(1)} A_{i_{2}, i_{3}}^{(2)} A_{i_{3}, i_{4}}^{(3)} A_{i_{4}, i_{5}}^{(4)} A_{i_{5}, i_{6}}^{(5)} A_{i_{6}, i_{1}}^{(6)} A_{i_{7}, i_{8}}^{(7)} A_{i_{8}, i_{9}}^{(8)} A_{i_{9}, i_{10}}^{(9)} A_{i_{10}, i_{1}}^{(10)}
\end{aligned}
$$

We wish to calculate expressions of the form

$$
\mathbb{E}\left(\operatorname{tr}_{\gamma}\left(X^{(\varepsilon(1))} Y_{1} \ldots X^{(\varepsilon(n))} Y_{n}\right)\right)
$$

We wish to calculate expressions of the form

$$
\begin{array}{r}
\mathbb{E}\left(\operatorname{tr}_{\gamma}\left(X^{(\varepsilon(1))} Y_{1} \ldots X^{(\varepsilon(n))} Y_{n}\right)\right) \\
=\sum_{\substack{1 \leq \iota_{1}^{+}, \ldots, \iota_{n}^{+} \leq M \\
1 \leq \iota_{1}^{-}, \ldots, \iota_{n}^{-} \leq N}} N^{-\#(\gamma)-n} \mathbb{E}\left(Y_{\substack{\iota_{1}^{-\varepsilon(1)} \leq \varepsilon(\gamma(1)) \\
\iota_{\gamma(1)}}}^{(1)} \cdots Y_{\iota_{n}^{-\varepsilon(n)}, \varepsilon(\gamma(n))}^{(n)}\right) \\
\mathbb{E}\left(f_{\iota_{\gamma(n)}^{+}}^{\left(\iota_{1}^{-}\right.} \cdots f_{\iota_{n}^{+} \iota_{n}^{-}}\right)
\end{array}
$$

We wish to calculate expressions of the form

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{tr}_{\gamma}\left(X^{(\varepsilon(1))} Y_{1} \ldots X^{(\varepsilon(n))} Y_{n}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& 1 \leq \iota_{1}^{-}, \ldots, \iota_{n}^{-} \leq N \\
& \mathbb{E}\left(f_{\iota_{1}^{+} \iota_{1}^{-}} \cdots f_{\iota_{n}^{+} \iota_{n}^{-}}\right) \\
& =\sum_{\substack{1<\iota_{1}^{+}, \ldots \iota_{n}^{+}<M}} \sum_{\pi \in \mathcal{P}_{2}(n)} N^{-\#(\gamma)-n} \mathbb{E}\left(Y_{l_{1}^{-\varepsilon(1)} \iota_{\gamma(1)}^{\varepsilon(1)}}^{(1)} \cdots Y_{\iota_{n}^{-\varepsilon(n)} \iota_{\gamma(n)}^{(n)}}^{\substack{\varepsilon(\gamma(n))}}\right) . \\
& \underset{1 \leq \iota_{1}^{-1}, \ldots \iota_{n} \leq M}{\substack{-1 \\
l_{n} \leq N}} \iota_{k}^{ \pm}=\iota_{1}^{ \pm}:\{k, l\} \in \pi
\end{aligned}
$$

Reversing the order of summation,

$$
\begin{aligned}
& \sum_{\pi \in \mathcal{P}_{2}(n)} \sum_{1 \leq \iota_{1}^{+}, \ldots \iota_{n}^{+} \leq M} N^{-\#(\gamma)-n \mathbb{E}\left(Y^{Y^{(1)}} \underset{\iota_{1}^{-\varepsilon(1)} \iota_{\gamma(1)}^{\varepsilon(\gamma(1))}}{ } \cdots Y_{\iota_{n}^{-\varepsilon(n)}{ }_{\iota_{\gamma(n)}^{\varepsilon(\gamma(n))}}^{(n)}}\right) ~} \\
& 1 \leq \iota_{1}^{-}, \ldots, \iota_{n}^{-} \leq N \\
& \iota_{k}^{ \pm}=\iota_{l}^{ \pm}:\{k, l\} \in \pi
\end{aligned}
$$

Reversing the order of summation,

$$
\begin{aligned}
& \sum_{\pi \in \mathcal{P}_{2}(n)} \sum_{\substack{1 \leq \iota_{1}^{+}, \ldots \iota_{n}^{+} \leq M \\
1 \leq \iota_{1}^{-}, \ldots, \iota_{n}^{-} \leq N \\
\iota_{k}^{ \pm}=\iota_{l}^{ \pm}:\{k, l\} \in \pi}} N^{-\#(\gamma)-n} \mathbb{E}(\underbrace{(1)}_{\substack{\iota_{1}^{-\varepsilon(1)} \iota_{\gamma(1)}^{(\varepsilon(\gamma))}}} \cdots Y_{\iota_{n}^{-\varepsilon(n)} \iota_{\gamma(n)}^{(n)}}^{(n)}) \\
= & \sum_{\pi \in \mathcal{P}_{2}(n)} N^{\#\left(\gamma_{-}^{-1} \delta_{\varepsilon} \pi \delta \pi \delta_{\varepsilon} \gamma_{+}\right) / 2-\#(\gamma)-n} \mathbb{E}\left(\operatorname{tr}_{\gamma_{-}^{-1} \delta_{\varepsilon} \pi \delta \pi \delta_{\varepsilon} \gamma_{+} / 2}\left(Y_{1}, \ldots, Y_{n}\right)\right) .
\end{aligned}
$$

Real Ginibre matrices are square matrices $Z:=X$ with $M=N$.

Real Ginibre matrices are square matrices $Z:=X$ with $M=N$.

Thus

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{tr}_{\gamma}\left(Z^{(\varepsilon(1))} Y_{1}, \ldots, Z^{(\varepsilon(n))} Y_{n}\right)\right) \\
= & \sum_{\pi \in\left\{\rho \delta \rho: \rho \in \mathcal{P}_{2}(n)\right\}} N^{\chi\left(\gamma, \delta_{\varepsilon} \pi \delta_{\varepsilon}\right)-\#(\gamma)} \mathbb{E}\left(\operatorname{tr}_{\gamma_{-}^{-1} \delta_{\varepsilon} \pi \delta_{\varepsilon} \gamma_{+} / 2}\left(Y_{1}, \ldots, Y_{n}\right)\right) .
\end{aligned}
$$

Real Ginibre matrices are square matrices $Z:=X$ with $M=N$.

Thus

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{tr}_{\gamma}\left(Z^{(\varepsilon(1))} Y_{1}, \ldots, Z^{(\varepsilon(n))} Y_{n}\right)\right) \\
= & \sum_{\pi \in\left\{\rho \delta \rho: \rho \in \mathcal{P}_{2}(n)\right\}} N^{\chi\left(\gamma, \delta_{\varepsilon} \pi \delta_{\varepsilon}\right)-\#(\gamma)} \mathbb{E}\left(\operatorname{tr}_{\gamma_{-}^{-1} \delta_{\varepsilon} \pi \delta_{\varepsilon} \gamma_{+} / 2}\left(Y_{1}, \ldots, Y_{n}\right)\right) .
\end{aligned}
$$

This is a sum over all gluings compatible with the edge directions given by the transposes.

If we expand out the GOE matrix $T:=\frac{1}{\sqrt{2}}\left(X+X^{T}\right)$, we get

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{tr}_{\gamma}\left(T Y_{1}, \ldots, T Y_{n}\right)\right) \\
& \quad=\sum_{\varepsilon:\{1, \ldots, n\} \rightarrow\{1,-1\}} \frac{1}{2^{n / 2}} \mathbb{E}\left(\operatorname{tr}_{\gamma}\left(X^{(\varepsilon(1))} Y_{1} \ldots X^{(\varepsilon(n))} Y_{n}\right)\right) .
\end{aligned}
$$

If we collect terms, this is equivalent to summing over all edge-identifications.

If we collect terms, this is equivalent to summing over all edge-identifications.

Thus

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{tr}_{\gamma}\left(T Y_{1}, \ldots, T Y_{n}\right)\right) \\
& =\sum_{\pi \in P M(\pm[n]) \cap \mathcal{P}_{2}(\pm[n])} N^{\chi(\gamma, \pi)-\#(\gamma)} \mathbb{E}\left(\operatorname{tr}_{\gamma_{-}^{-1} \pi \gamma_{+} / 2}\left(Y_{1}, \ldots, Y_{n}\right)\right) .
\end{aligned}
$$

With Wishart matrices $W:=X^{T} D_{k} X$, we can collapse the edges corresponding to each matrix to a single edge. We can think of the connecting blocks as (possibly twisted) hyperedges.

With Wishart matrices $W:=X^{T} D_{k} X$, we can collapse the edges corresponding to each matrix to a single edge. We can think of the connecting blocks as (possibly twisted) hyperedges.

With Wishart matrices $W:=X^{T} D_{k} X$, we can collapse the edges corresponding to each matrix to a single edge. We can think of the connecting blocks as (possibly twisted) hyperedges.

Thus:

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{tr}_{\gamma}\left(W_{1} Y_{1}, \cdots, W_{n} Y_{n}\right)\right) \\
& =\sum_{\pi \in P M([n])} N^{\chi(\gamma, \pi)-\#(\gamma)} \operatorname{tr}_{\pi^{-1} / 2}\left(D_{1}, \ldots, D_{n}\right) \\
& \\
&
\end{aligned}
$$

We note that all of the matrix ensembles satisfy

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{tr}_{\gamma}\left(X_{\lambda_{1}}^{(\varepsilon(1))} Y_{1}, \cdots, X_{\lambda_{n}}^{(\varepsilon(n))} Y_{n}\right)\right) \\
= & \sum_{\pi \in P M_{c}(\pm[n])} N \chi\left(\gamma, \delta_{\varepsilon} \pi \delta_{\varepsilon}\right)-2 \#(\gamma) f_{c}(\pi) \mathbb{E}\left(\operatorname{tr}_{\gamma_{-}^{-1} \delta_{\varepsilon} \pi \delta_{\varepsilon} \gamma_{+} / 2}\left(Y_{1}, \ldots, Y_{n}\right)\right)
\end{aligned}
$$

We note that all of the matrix ensembles satisfy

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{tr}_{\gamma}\left(X_{\lambda_{1}}^{(\varepsilon(1))} Y_{1}, \cdots, X_{\lambda_{n}}^{(\varepsilon(n))} Y_{n}\right)\right) \\
= & \sum_{\pi \in P M_{c}(\pm[n])} N \chi\left(\gamma, \delta_{\varepsilon} \pi \delta_{\varepsilon}\right)-2 \#(\gamma) f_{c}(\pi) \mathbb{E}\left(\operatorname{tr}_{\gamma_{-}^{-1} \delta_{\varepsilon} \pi \delta_{\varepsilon} \gamma_{+} / 2}\left(Y_{1}, \ldots, Y_{n}\right)\right)
\end{aligned}
$$

- $P M_{c}(\pm I)$ is a subset of the premaps on $\pm I$,

We note that all of the matrix ensembles satisfy

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{tr}_{\gamma}\left(X_{\lambda_{1}}^{(\varepsilon(1))} Y_{1}, \cdots, X_{\lambda_{n}}^{(\varepsilon(n))} Y_{n}\right)\right) \\
= & \sum_{\pi \in P M_{c}(\pm[n])} N \chi\left(\gamma, \delta_{\varepsilon} \pi \delta_{\varepsilon}\right)-2 \#(\gamma) f_{c}(\pi) \mathbb{E}\left(\operatorname{tr}_{\gamma_{-}^{-1} \delta_{\varepsilon} \pi \delta_{\varepsilon} \gamma_{+} / 2}\left(Y_{1}, \ldots, Y_{n}\right)\right)
\end{aligned}
$$

- $P M_{c}(\pm I)$ is a subset of the premaps on $\pm I$,
- $f_{c}: \bigcup_{I \subseteq \mathbb{N},|I|<\infty} P M_{c}(\pm I) \rightarrow \mathbb{C}$

We note that all of the matrix ensembles satisfy

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{tr}_{\gamma}\left(X_{\lambda_{1}}^{(\varepsilon(1))} Y_{1}, \cdots, X_{\lambda_{n}}^{(\varepsilon(n))} Y_{n}\right)\right) \\
= & \sum_{\pi \in P M_{c}(\pm[n])} N^{\chi\left(\gamma, \delta_{\varepsilon} \pi \delta_{\varepsilon}\right)-2 \#(\gamma)} f_{c}(\pi) \mathbb{E}\left(\operatorname{tr}_{\gamma_{-}^{-1} \delta_{\varepsilon} \pi \delta_{\varepsilon} \gamma_{+} / 2}\left(Y_{1}, \ldots, Y_{n}\right)\right)
\end{aligned}
$$

- $P M_{c}(\pm I)$ is a subset of the premaps on $\pm l$,
- $f_{c}: \bigcup_{I \subseteq \mathbb{N},|I|<\infty} P M_{c}(\pm I) \rightarrow \mathbb{C}$
- for any $J \subseteq I$, the $\pi \in P M_{c}(\pm I)$ which do not connect $\pm J$ and $\pm(I \backslash J)$ are the product of a $\pi_{1} \in P M_{c}(\pm J)$ and $\pi_{2} \in P M_{c}(\pm(I \backslash J))$

We note that all of the matrix ensembles satisfy

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{tr}_{\gamma}\left(X_{\lambda_{1}}^{(\varepsilon(1))} Y_{1}, \cdots, X_{\lambda_{n}}^{(\varepsilon(n))} Y_{n}\right)\right) \\
= & \sum_{\pi \in P M_{c}(\pm[n])} N^{\chi\left(\gamma, \delta_{\varepsilon} \pi \delta_{\varepsilon}\right)-2 \#(\gamma)} f_{c}(\pi) \mathbb{E}\left(\operatorname{tr}_{\gamma_{-}^{-1} \delta_{\varepsilon} \pi \delta_{\varepsilon} \gamma_{+} / 2}\left(Y_{1}, \ldots, Y_{n}\right)\right)
\end{aligned}
$$

- $P M_{c}(\pm I)$ is a subset of the premaps on $\pm l$,
- $f_{c}: \bigcup_{I \subseteq \mathbb{N},|I|<\infty} P M_{c}(\pm I) \rightarrow \mathbb{C}$
- for any $J \subseteq I$, the $\pi \in P M_{c}(\pm I)$ which do not connect $\pm J$ and $\pm(I \backslash J)$ are the product of a $\pi_{1} \in P M_{c}(\pm J)$ and $\pi_{2} \in P M_{c}(\pm(I \backslash J))$
- $\lim _{N \rightarrow \infty} f_{c}(\pi)$ exists

We note that all of the matrix ensembles satisfy

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{tr}_{\gamma}\left(X_{\lambda_{1}}^{(\varepsilon(1))} Y_{1}, \cdots, X_{\lambda_{n}}^{(\varepsilon(n))} Y_{n}\right)\right) \\
= & \sum_{\pi \in P M_{c}(\pm[n])} N^{\chi\left(\gamma, \delta_{\varepsilon} \pi \delta_{\varepsilon}\right)-2 \#(\gamma)} f_{c}(\pi) \mathbb{E}\left(\operatorname{tr}_{\gamma_{-}^{-1} \delta_{\varepsilon} \pi \delta_{\varepsilon} \gamma_{+} / 2}\left(Y_{1}, \ldots, Y_{n}\right)\right)
\end{aligned}
$$

- $P M_{c}(\pm I)$ is a subset of the premaps on $\pm l$,
- $f_{c}: \bigcup_{I \subseteq \mathbb{N},|I|<\infty} P M_{c}(\pm I) \rightarrow \mathbb{C}$
- for any $J \subseteq I$, the $\pi \in P M_{c}(\pm I)$ which do not connect $\pm J$ and $\pm(I \backslash J)$ are the product of a $\pi_{1} \in P M_{c}(\pm J)$ and $\pi_{2} \in P M_{c}(\pm(I \backslash J))$
- $\lim _{N \rightarrow \infty} f_{c}(\pi)$ exists
- if $\pi \in P M_{c}(I)$ does not connect $\pm J$ and $\pm(I \backslash J)$, then $f_{c}(\pi)=f_{c}\left(\left.\pi\right|_{ \pm J}\right) f_{c}\left(\left.\pi\right|_{ \pm(\nearrow \backslash J)}\right)$

It is possible to mix ensembles in an expression.

It is possible to mix ensembles in an expression.

$$
\mathbb{E}\left(\operatorname{tr}\left(Z_{3} W_{2}^{\left(\lambda_{2}\right)}\right) \operatorname{tr}\left(W_{1}^{\left(\lambda_{3}\right)} Z_{3}^{T} Z_{3}^{T}\right) \operatorname{tr}\left(W_{2}^{\left(\lambda_{6}\right)} Z_{3}^{T} W_{2}^{\left(\lambda_{8}\right)} W_{1}^{\left(\lambda_{9}\right)}\right)\right)
$$

It is possible to mix ensembles in an expression.

$$
\mathbb{E}\left(\operatorname{tr}\left(Z_{3} W_{2}^{\left(\lambda_{2}\right)}\right) \operatorname{tr}\left(W_{1}^{\left(\lambda_{3}\right)} Z_{3}^{T} Z_{3}^{T}\right) \operatorname{tr}\left(W_{2}^{\left(\lambda_{6}\right)} Z_{3}^{T} W_{2}^{\left(\lambda_{8}\right)} W_{1}^{\left(\lambda_{9}\right)}\right)\right)
$$

It is possible to mix ensembles in an expression.

$$
\mathbb{E}\left(\operatorname{tr}\left(Z_{3} W_{2}^{\left(\lambda_{2}\right)}\right) \operatorname{tr}\left(W_{1}^{\left(\lambda_{3}\right)} Z_{3}^{T} Z_{3}^{T}\right) \operatorname{tr}\left(W_{2}^{\left(\lambda_{6}\right)} Z_{3}^{T} W_{2}^{\left(\lambda_{8}\right)} W_{1}^{\left(\lambda_{9}\right)}\right)\right)
$$

$$
\gamma=(1,2)(3,4,5)(6,7,8,9)
$$

Introduction

The Matrix Models

$$
\pi_{1}=(3)(-3)(9)(-9)
$$

$$
\begin{gathered}
\pi_{1}=(3)(-3)(9)(-9) \\
\pi_{2}=(2,8,-6)(6,-8,-2)
\end{gathered}
$$

$$
\begin{gathered}
\pi_{1}=(3)(-3)(9)(-9) \\
\pi_{2}=(2,8,-6)(6,-8,-2) \\
\pi_{3}=(1,-7)(-1,7)(4,-5)(-4,5)
\end{gathered}
$$

$$
\begin{array}{r}
\delta_{\varepsilon} \pi \delta_{\varepsilon}=(1,7)(-1,-7)(2,8,-6)(6,-8,-2)(3)(-3)(4,-5) \\
(5,-4)(9)(-9)
\end{array}
$$

$$
\begin{array}{r}
\delta_{\varepsilon} \pi \delta_{\varepsilon}=(1,7)(-1,-7)(2,8,-6)(6,-8,-2)(3)(-3)(4,-5) \\
(5,-4)(9)(-9)
\end{array}
$$

$$
\begin{aligned}
& \gamma_{-}^{-1} \delta_{\varepsilon} \pi \delta_{\varepsilon} \gamma_{+} \\
& =(1,8,9,-7,-2,6)(-6,2,7,-9,-8,-1)(3,-4,5)(-5,4,-3)
\end{aligned}
$$

$$
\begin{array}{r}
\delta_{\varepsilon} \pi \delta_{\varepsilon}=(1,7)(-1,-7)(2,8,-6)(6,-8,-2)(3)(-3)(4,-5) \\
(5,-4)(9)(-9)
\end{array}
$$

$$
\begin{aligned}
& \gamma_{-}^{-1} \delta_{\varepsilon} \pi \delta_{\varepsilon} \gamma_{+} \\
= & (1,8,9,-7,-2,6)(-6,2,7,-9,-8,-1)(3,-4,5)(-5,4,-3)
\end{aligned}
$$

$$
\operatorname{tr}\left(A_{\lambda_{3}}\right) \operatorname{tr}\left(A_{\lambda_{9}}\right) \operatorname{tr}\left(B_{\lambda_{2}} B_{\lambda_{6}}^{\top} B_{\lambda_{8}}\right) N^{-5}
$$

The nth cumulant is the sum over connected surfaces constructed out of the n faces.

The nth cumulant is the sum over connected surfaces constructed out of the n faces.

There is a classification theorem for connected, compact surfaces: any such surface is a sphere, a connected sum of tori, or a connected sum of projective planes.

The nth cumulant is the sum over connected surfaces constructed out of the n faces.

There is a classification theorem for connected, compact surfaces: any such surface is a sphere, a connected sum of tori, or a connected sum of projective planes.

For any cumulant, we have an Euler characteristic expansion:
(sphere terms) $N^{-2 r+2}+($ projective plane terms $) N^{-2 r+1}+$
(torus and Klein bottle terms) $N^{-2 r}+$
(connected sum of 3 projective planes terms) $N^{-2 r-2}+\cdots$.

Let A_{1}, \ldots, A_{r} be in the algebra generated by alternating ensembles of random matrices.

Let A_{1}, \ldots, A_{r} be in the algebra generated by alternating ensembles of random matrices.

If we expand out an expression of the form

$$
\mathbb{E}\left(\operatorname{tr}\left(\left(A_{1}-\mathbb{E}\left(\operatorname{tr}\left(A_{1}\right)\right)\right) \cdots\left(A_{r}-\mathbb{E}\left(\operatorname{tr}\left(A_{r}\right)\right)\right)\right)\right)
$$

we get

$$
\sum_{I \subseteq[r]}(-1)^{|I|} \prod_{i \in I} \mathbb{E}\left(\operatorname{tr}\left(A_{i}\right)\right) \mathbb{E}\left(\operatorname{tr}\left(\prod_{i \notin I} A_{i}\right)\right)
$$

Expressions like this one can be interpreted in terms of the Principle of Inclusion and Exclusion.

Expressions like this one can be interpreted in terms of the Principle of Inclusion and Exclusion.

Diagrams in which any A_{i} is disconnected are excluded.

Expressions like this one can be interpreted in terms of the Principle of Inclusion and Exclusion.

Diagrams in which any A_{i} is disconnected are excluded.

Since diagrams with connected A_{i} require crossings, these vanish asymptotically.

In order to find an appropriate definition of second-order freeness, we want to consider values of

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} k_{2}(\operatorname{Tr}\left(\left(A_{1}-\mathbb{E}\left(\operatorname{tr}\left(A_{1}\right)\right)\right) \cdots\left(A_{p}-\mathbb{E}\left(\operatorname{tr}\left(A_{p}\right)\right)\right)\right), \\
&\left.\operatorname{Tr}\left(\left(B_{1}-\mathbb{E}\left(\operatorname{tr}\left(B_{1}\right)\right)\right) \cdots\left(B_{q}-\mathbb{E}\left(\operatorname{tr}\left(B_{q}\right)\right)\right)\right)\right) .
\end{aligned}
$$

In order to find an appropriate definition of second-order freeness, we want to consider values of

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} k_{2}(\operatorname{Tr}\left(\left(A_{1}-\mathbb{E}\left(\operatorname{tr}\left(A_{1}\right)\right)\right) \cdots\left(A_{p}-\mathbb{E}\left(\operatorname{tr}\left(A_{p}\right)\right)\right)\right), \\
&\left.\operatorname{Tr}\left(\left(B_{1}-\mathbb{E}\left(\operatorname{tr}\left(B_{1}\right)\right)\right) \cdots\left(B_{q}-\mathbb{E}\left(\operatorname{tr}\left(B_{q}\right)\right)\right)\right)\right) .
\end{aligned}
$$

We can apply the Principle of Inclusion and Exclusion to this expression as well, with the same interpretation.

Now the A_{i} can be connected to the B_{i}.

Now the A_{i} can be connected to the B_{i}.

If $p \neq q$, all terms vanish asymptotically.

Now the A_{i} can be connected to the B_{i}.

If $p \neq q$, all terms vanish asymptotically.

If $p=q$, then we must construct a "spoke diagram".

Now the A_{i} can be connected to the B_{i}.

If $p \neq q$, all terms vanish asymptotically.

If $p=q$, then we must construct a "spoke diagram".

In the real case, unlike the complex case, we need to consider spoke diagrams with both relative orientations.

Spoke diagrams for the real case:

On each spoke, we must have a noncrossing diagram on A_{i} and $B_{j}^{(\pm 1)}$.

On each spoke, we must have a noncrossing diagram on A_{i} and $B_{j}^{(\pm 1)}$.

This noncrossing diagram must connect A_{i} and $B_{j}^{(\pm 1)}$.

On each spoke, we must have a noncrossing diagram on A_{i} and $B_{j}^{(\pm 1)}$.

This noncrossing diagram must connect A_{i} and $B_{j}^{(\pm 1)}$.

The contribution of such a spoke is

$$
\mathbb{E}\left(\operatorname{tr}\left(A_{i} B_{j}^{(\pm 1)}\right)\right)-\mathbb{E}\left(\operatorname{tr}\left(A_{i}\right)\right) \mathbb{E}\left(\operatorname{tr}\left(B_{j}^{(\pm 1)}\right)\right)
$$

Definition

Families of matrices are asymptotically real second-order free if they are asymptotically free, have a second-order limit distribution, and for A_{i} and B_{i} in algebras generated by cyclically alternating families

$$
\lim _{N \rightarrow \infty} k_{2}\left(\operatorname{Tr}\left(\circ_{1} \cdots \AA_{p}\right), \operatorname{Tr}\left(\stackrel{\circ}{B}_{1} \cdots \stackrel{\circ}{B}_{q}\right)\right)
$$

vanishes when $p \neq q$, and when $p=q$, is equal to

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} k_{2}\left(\operatorname{Tr}\left(\AA_{1} \cdots \AA_{p}\right), \operatorname{Tr}\left(\AA_{1} \cdots \AA_{p}\right)\right) \\
= & \sum_{k=0}^{p-1} \prod_{i=1}^{p}\left(\lim _{N \rightarrow \infty}\left(\mathbb{E}\left(\operatorname{tr}\left(A_{i} B_{k-i}\right)\right)-\mathbb{E}\left(\operatorname{tr}\left(A_{i}\right)\right) \mathbb{E}\left(\operatorname{tr}\left(B_{k-i}\right)\right)\right)\right) \\
+ & \sum_{k=0}^{p-1} \prod_{i=1}^{p}\left(\lim _{N \rightarrow \infty}\left(\mathbb{E}\left(\operatorname{tr}\left(A_{i} B_{k+i}^{T}\right)\right)-\mathbb{E}\left(\operatorname{tr}\left(A_{i}\right)\right) \mathbb{E}\left(\operatorname{tr}\left(B_{k+i}^{T}\right)\right)\right)\right) .
\end{aligned}
$$

Definition

Subalgebras A_{1}, \ldots, A_{n} of a second-order noncommutative probability space $\left(A, \varphi_{1}, \varphi_{2}\right)$ are real second-order free if they are free and for a_{1}, \ldots, a_{p} and b_{1}, \ldots, b_{q} centred and either cyclically alternating or consisting of a single term

$$
\varphi_{2}\left(a_{1} \cdots a_{p}, b_{1} \cdots b_{q}\right)=0
$$

when $p \neq q$ and

$$
\varphi_{2}\left(a_{1} \cdots a_{p}, b_{1} \cdots b_{p}\right)=\sum_{k=0}^{p-1} \prod_{i=1}^{p} \varphi_{1}\left(a_{i} b_{k-i}\right)+\sum_{k=0}^{p-1} \prod_{i=1}^{p} \varphi_{1}\left(a_{i} b_{k+i}^{t}\right) .
$$

