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Random matrices as a probability machine
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Eigenvs of random unitary matrix of size 60 x 60 
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Eigenvalues of random 100 x 100 matrices



Two matrix decompositions

Quite a lot of interest to EV stats in the complex plane in the last 20 yrs.

Two matrix decompositions (‘coordinate systems’):

• G =
G+G†

2
+ i

G−G†

2i
.

If G is complex then G = H1 + iH2 with H1,2 Hermitian; and if G is
real then G = S +A with S symmetric and A asymmetric;

• G = RU where R =
√
G†G and U is unitary (orthogonal).

Correspondingly, one can describe matrix distributions in terms of the
‘real ’ and ‘imaginary’ part of G, or ‘radial’ and ‘angular’ part. Polar
decomposition is natural for rotationally invariant matrix distributions like

p(G) ∝ exp [−Trφ(GG†)]

Of course, there are many other matrix decompositions.



Cartesian picture: Complex Matrices

G = H1 + iαH2, where H1,2 are Hermitian, independent Gaussian (GUE)

If α = 1 then have Ginibre’s ensemble p(G) ∝ exp [−TrGG†]. For large N
have uniform distr of EV in a disk, and EV corr fncs are known in closed
form (Ginibre 1965).

If |α| < 1 then for large N have uniform distr of EV in a ellipse (Girko
1985) and the Ginibre EV correlations. If α → 0 the have weakly
non-Hermitian matrices, crossover from Wigner-Dyson to Ginibre EV
correlations (Fyodorov, Kh, Sommers 1997).

Beyond Gaussian distribution:

• G with i.i.d. entries: Circular Law (Girko 1984, Bai 1997, also Götze
& Tikhomirov 2010, Tao & Vu 2008, 2010), if allow for correlated
pairs symmetric about the main diagonal, 〈GjkGkj〉 = 1− α2, |α| < 1,
then have Elliptic Law (Girko 1985, Naumov 2012)). EV corr fncs are
not known in this case.

• weak non-Hermiticity H1 ∈ GUE, H2 is finite rank, fixed, EV corr fncs
known in closed form (Fyodorov & Kh 1999).



Real Matrices
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Real Matrices

Have the Elliptic Law of distribution of EVs for matrices with pairwise
(Gjk, Gkj) correlations, and the Circular Law for i.i.d.

For Gaussian matrices finer details of EV distribution are available via EV
jpdf (Lehmann & Sommers 1991, and Edelman 1993).

The expected no of real EV is propto
√
N in the limit of large matrix dim N

and real EV have uniform distribution (Edelman, Kostlan, & Shub 1994,
Forrester & Nagao 2007)

Away from the real line have Ginibre correlations (Akemann & Kanzieper
2007, Forrester & Nagao 2007). New EV correlations on the real line
(Forrester & Nagao 2007) and near the real line (Borodin & Sinclair 2009).
Alternative derivation by Sommers 2007 and Sommers & Weiczorek 2008.

Weakly non-Hermitian limit G = S + αA, with α → 0 by Efetov 1997 and
Forrester & Nagao 2009.



Polar decomposition picture: EV density

Consider random matrices in the form G = RU , with R,U independent,
R ≥ 0 and U Haar unitary (orthogonal), equivalently V ΛU (SVD)

Introduced by Fyodorov & Sommers 2003, with finite rank R, in the
context of resonances in open chaotic sys.

Another example, the Feinberg-Zee ensemble pFZ ∝ exp[−N Trφ(G†G)],
with φ polynomial. Can be recast into RU by SVD, G = V ΛU .

For finite-N the mean EV density of RU is known in terms EV of R (Wei &
Fyodorov 2008), the large-N limit performed by Bogomolny 2010.

Single Ring Theorem for G = V ΛU by Guionnet, Krishnapur & Zeitouni
2011, proving Feinberg-Zee 1997 – an analogue of the Circular Law.

Finer details of EV distribution, e.g. corr fnc or distribution of real EVs for
real matrices are difficult (if possible) for general R. Known in several
exactly solvable cases beyond Gaussian G: spherical ensemble
(Forrester & Krishnapur 2008, Forrester & Mays 2010) truncations of Haar
unitaries/orthogonals (Życzkowski & Sommers 2000, Kh, Sommers &
Życzkowski 2010)



Quadratisation of rectangular matrices

Consider X with M rows and N columns, M > N , matrices are ’standing’.

Y and Z are the upper N ×N block and lower (M −N)×N of X. Want a
unitary transformation W ∈ U(M) s.t.

W †X = W †
[

Y
Z

]

=

[

G
0

]

.

W exists, def. up to right multiplication by diag[U, V ], U ∈U(N), U(M−N)

Thus W ∈ U(M)/U(N)× U(M−N) ...

Parameter count:

• X has 2MN real parameters.

• W has M2 −N2 − (M −N)2 = 2MN −N2 real parameters

• G has N2 real parameters.

Call G quadratization of X



Quadratisation of rectangular matrices

Can parametrise cosets by N × (M −N) matrices C:

W̃ =

[

(1N − CC†)1/2 C

−C† (1M−N − C†C)1/2

]

,

Prop. 1 Let M > N . For any X ∈ Mat(M,N) of full rank there exist
unique W̃ as above and G ∈ Mat(N,N) such that

W̃ †X = W̃ †
[

Y
Z

]

=

[

G
0

]

.

The square matrix G is given by G =
(

1N + 1
Y †Z

†Z 1
Y

)1/2
Y .

Prop. 2 If X ∈ Mat(M,N) is Gaussian with density p(X) ∝ e−
β

2
TrX†X

(β = 1 or β = 2 depending on whether X is real or complex) then it
quadratisation G ∈ Mat(N,N) has density

pIndG(G) ∝
(

detG†G
)

β
2
(M−N)

exp

(

−β

2
TrG†G

)



Proof of Prop 2

Here is one based on SVD (works for non-Gaussian weights as well):

Ignoring a set of zero prob., X = Q Σ1/2P †, where Σ1/2 is diag mat of
ordered SVs of X, and Q ∈ U(M)/U(M −N) and P ∈ U(N)/U(1)N . By
computation, dν(X) = dµ(Q)dµ(P )dσ(Σ) , where dµ is Haar and

dσ(Σ) ∝ (detΣ)
β

2
(M−N+1− 2

β
)
e−

β

2
TrΣ

∏

j<k

|sk − sj |β
N
∏

j=1

dsj .

Introduce independent Haar unitary U ∈ U(N) and rewrite SVD as

X = QUU †Σ1/2P † = QUG; G = U †Σ1/2P †.

The pdf of G follows by rolling the argument back from U †Σ1/2P † to G.

Thus, with Q̃ := QU ∈U(M)/U(M−N) and W ∈U(M)/U(M−N)×U(N),

X = Q̃G = W

[

G
0

]

,

as required. �



Polar decomposition revisited

Relation G =
(

1N + 1
Y †Z

†Z 1
Y

)1/2
Y provides a recipe for sampling the

distribution

pIndG(G) ∝
(

detG†G
)

β

2
(M−N)

exp
(

−β
2 TrG

†G
)

Interestingly, by rearranging X = QUU †Σ1/2P † = QUG one obtains
another recipe (G is just Haar unitary times sq. root of Wishart ).

Prop 3 Suppose that U is N ×N Haar unitary (real orthogonal for β = 1)
and X is M ×N Gaussian, independent of U . Then the N ×N matrix

G = U(X†X)1/2

has the distribution pIndG(G).

Proof. Since (X†X)1/2 = PΣ1/2P †, then

G = U †Q†X = U †P †(X†X)1/2 = Ũ †(X†X)1/2.

Ũ † is Haar unitary and independent of X. �



A few comments on quadratisation of random matrices

Quadratisation is well defined: as density of quadratised matrix doesn’t
depend on which rows W nullifies. Thus, can introduce quasi spectrum as
the spectrum of the quadratised matrix.

Distributions other than Gaussian: Consider X ∈ Mat(M,N) with density
pFZ(X) ∝ exp[−Trφ(X†X)]. On applying the procedure of quadratisation,
one obtains the induced Feinberg-Zee ensemble

pIndFZ(G) ∝ (detG†G)
β

2
(M−N) exp[−Trφ(G†G)] .

‘Eigenvalue’ map: Embed Mat(M,N) into Mat(M,M) by augmenting X
with M −N zero column-vectors and write the quadratisation rule in
terms of square matrices albeit with zero blocks:

W †
[

Y 0
Z 0

]

=

[

G 0
0 0

]

; or W †X̃ = G̃

EV map: the zero EV of X̃ stays put, and its multiplicity is conserved,
and, otherwise, the EV of Y are mapped onto those of G.



Quadratising complex Gaussian matrices: EV density

Complex matrices are straightforward, can apply the method of OP.

The EV-corr fnc are R
(N)
n (λ1, . . . , λn) = det(KN (λk, λl)),

KN (λk, λl) =
1

π
e−

1
2
|λk|2− 1

2
|λl|2

M−1
∑

j=M−N

(λkλ̄l)
j

j!
.

For M,N large and M −N = αN the EV density ρN (λ) = KN (λ, λ) is
uniform in the ring rin < |λ| < rout, rin =

√
M −N, rout =

√
M , i.e.

lim
N→∞

ρN (
√
Nz) =

1

π
for all |z| ∈ (

√
α,

√
1 + α).

Close to the circular edges of EV support,

lim
N→∞

ρN ((rout + ξ)eiφ) = lim
N→∞

ρN ((rin − ξ)eiφ) =
1

2π
erfc(

√
2ξ) ,

where erfc(x) := 2√
π

∫∞
x e−t2dt, hence the EV density falls from 1/π to

zero very fast, at a Gaussian rate.



Quadratising complex Gaussian matrices: EV correlations

Not surprisingly in the regime of strong non-rectangularity (M,N → ∞
and M −N = αN ) one recovers the Ginibre correlations both in the bulk
and at the circular edges of the eigenvalue distribution.

In the bulk: Set λk =
√
Nu+ zk. Then for any |u| ∈ (

√
α,

√
α+ 1):

lim
N→∞

R(N)
n (λ1, . . . , λn) = det

[

1

π
exp

(

− |zj|2
2

− |zk|2
2

+ zj z̄k

)

]n

j,k=1

In particular, R2(λ1, λ2) = 1− exp(−|z1 − z2|2).

At the circular edges: Let |u| = 1 and set λk =
√
Mu+ zk. Then:

lim
N→∞

R(N)
n (λ1, . . . , λn) = det

[

1

2π
e−

|zj |
2

2
− |zk|

2

2
+zj z̄k erfc

(zj ū+ z̄ku√
2

)

]

.

The same limiting expression is found around the inner edge
√
M −N of

the eigenvalue density by setting λk =
√
M −Nu− zk.



Almost square matrices: emergence of the hole in the spectrum

Explore a different regime when the rectangularity index L = M −N ≪ N .
This corresponds to the quadratisation of almost square matrices.

At the origin the EV density vanishes algebraically, ρN (λ) ∼ 1
π
|λ|2L
L! as

λ → 0, uniformly in N . Away from the origin, the density reaches its
asymptotic value 1/π very quickly. This plateau extends to a full circle of
radius

√
N .

Also, limN→∞R
(N)
n (λ1, . . . , λn) = det (Korigin(λj , λk))

n
j,k=1 , with

Korigin(λj , λk) =
1

π

1

Γ(L)

∫ λj λ̄k

0
tL−1e−tdt .

The hole prob A(s) is the prob that no EV lies inside the disk |λ| < s:

A(s) =
∏N

j=1
Γ(j+L,s2)
Γ(j+L) with Γ(a, x) :=

∫∞
x e−tta−1dt.

For almost square matrices A(s) = 1− s2(L+1)

(L+1)! +O( s
2(L+2)

(L+2)! ).



Quadratisation of real matrices

Consider real Gaussian matrices X ∈ Mat(M,N), X 7→ G ∈ Mat(N,N)

Gaussian measure on X induces a measure on G with density

pIndG(G) ∝
(

detGTG
)

1
2
(M−N)

exp
(

−1
2 TrG

TG
)

Spectra of G from the induced distribution for N = 128 and a) M = N = 128 (no
hole) and b) M = N + 32. Each picture consists of 128 independent realisations
and the spectra are rescaled by a factor 1/

√
M



Real matrices

Building on the recent advances for the real Ginibre ensemble, the EV
corr fnc are given in Pfaffian form, with the kernel expressed in terms of
skew-OPs {qj}j=1,..., monic polynomials defined by

(q2j, q2k) = (q2j+1, q2k+1) = 0

(q2j, q2k+1) = −(q2j+1, q2k) = rjδjk

with the skew-symmetric inner product (−,−):

(f, g) = (f, g)R + (f, g)C

(f, g)R =
∫∞
−∞

∫∞
−∞ e−

1
2
(x2+y2)|xy|Lsgn(y − x)f(x)g(y)dxdy

(f, g)C = 2i
∫

R2
+
ey

2−x2
erfc(

√
2y)(x2 + y2)L×

[f(x+ iy)g(x− iy)− g(x+ iy)f(x− iy)] dxdy.

Finding skew-OPs is a formidable task. However in the RM set up:

2
∑

N
2
−1

j=0
1
rj
[q2j(w)q2j+1(w

′)− q2j+1(w)q2j(w
′)] =

1
rN

(w − w′)〈det (G− w1N−2) det (G− w′1N−2)〉N−2



2nd moment of the characteristic polynomial

〈det (G− w1N−2) det (G− w′1N−2)〉N−2 can be evaluated in closed from.

Expand the product of determinants in Schur pols, decompose
G = O

√
GTG and then integrate over the orthogonal group. The

remaining integral is over the radial part of G:

〈det (G− wI) det (G− w′I)〉N−2 =
∑N−2

j=0
〈ǫj(GGT )〉N−2

(nj)
(ww′)N−2−j

Here ǫj(GGT ) denotes the j−th elementary symm pol in EVs of GGT and
its average is given by the Selberg-Aomoto integral, leading to

2
∑

N
2
−1

j=0
1
rj
[q2j(w)q2j+1(w

′)− q2j+1(w)q2j(w
′)] =

1
rN

(w − w′) (L+N−2)!√
2π

∑N−2
j=0

(ww′)j

(L+j)! ,

from which q0(w) = 1, q1(w) = w and

q2j(w) = w2j , q2j+1(w) = w2j+1 − (2j + L)w2j−1,

(q2j, q2j+1) = 2
√
2πΓ(L+ 2j + 1) .



Large-N limit for real matrices

Density of complex EVs:

ρCN (x+ iy) =
√

2
πy erfc(

√
2y)ey

2−x2 ∑N−2
j=0

(x2+y2)j+L

(j+L)!

vanishes on the real line. Same distribution in the bulk and at the edges
as for complex matrices, though convergence is not uniform near R.

Expected number of real EVs:

In the leading order the average no of real EV is
√

2
π (
√
N + L−

√
L)

(Mean) Density of real EVs:

limN→∞ ρ
(R)
N (

√
Nx) = 1√

2π
if |x| ∈ (

√
α,

√
α+ 1)

0 if |x| /∈ [
√
α,

√
α+ 1]

Tails of real density EVs:

lim
N→∞

ρRN (
√
L−ξ)= lim

N→∞
ρRN (

√
L+N+ξ)=

1√
2π

[

erfc(
√
2ξ)+

1

2
√
2
e−ξ2 erfc(−ξ)

]

.

Same as in the real Ginibre, also the real Ginibre EV correlations in the
bulk and at the edges!



Conclusions

A quadratisation procedure for rectangular matrices is introduced. When
applied to Gaussian matrices, it leads to modified Ginibre ensemble with a
pre-exponential term (the radial part squared is Wishart/Laguerre). This
ensemble can be solved exactly for EV densities and corr fnc:

• for complex matrices the EV density is unifom in a ring, almost
square matrices describe cross-over from disk to ring;

• for real matrices EV the density of complex EV is uniform in a ring,
and the density of real EV is uniform on two intervals symmetric
about the origin. The expected no of real EVs scales with

√
N ;

• the EV corr functions are same as in the pure Ginibre ensembles

Work in progress (Fischmann’s PHD thesis): applying quadratisation
procedure to non-Gaussian distribution, e.g. rectangular truncations of
Haar unitaries or orthogonals, EV densities are no longer uniform
however recover the Ginibre corr fnc after unfolding the spectrum.



THANK YOU!


	Outline of talk
	Random matrices as a probability machine
	Two matrix decompositions
	Cartesian picture: Complex Matrices 
	Real Matrices
	Real Matrices 
	Polar decomposition picture: EV density
	Quadratisation of rectangular matrices
	Quadratisation of rectangular matrices
	Proof of Prop 2 
	Polar decomposition revisited 
	A few comments on quadratisation of random matrices
	Quadratising complex Gaussian matrices: EV density
	Quadratising complex Gaussian matrices: EV correlations
	Almost square matrices: emergence of the hole in the spectrum
	Quadratisation of real matrices
	Real matrices 
	2nd moment of the characteristic polynomial 
	Large-N limit for real matrices 
	Conclusions
	 

