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Two starting and ending points

@ In case of two (or more) starting and two (or more)
end points, the positions of non-intersecting
Brownian motions, are not a MOP ensemble in the
sense that we discussed.

@ There is an extension using MOPs of mixed type
that applies here.

@ There is still a RH problem but with jump condition

1 0 % =%
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0 001

and a Christoffel-Darboux formula for the
correlation kernel.



Critical separation
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@ Two tangent ellipses and limiting density at each
time consists of two semicircle laws.

@ New scaling limits at the point where ellipses meet,
called tacnode.

Delvaux, K, Zhang (2011)
Adler, Ferrari, Van Moerbeke (2012)
Johansson (arXiv)



Random matrix model with external source

o Hermitian matrix model with external source

1
_efnTr(V(M)fAM) dM

Z,

@ Assume n is even and external source is

A =diag(a,...,a,—a,...,—a), a>0.
——— N——— ——

n/2 times n/2 times

@ Assume V is an even polynomial

Asymptotic analysis in this case is taken from the paper
P. Bleher, S. Delvaux, and A.B.J. Kuijlaars,

Random matrix model with external source and a vector
equilibrium problem,

Comm. Pure Appl. Math. 64 (2011), 116-160



Reminder: MOP ensemble

o Eigenvalues are MOP ensemble with weights
wy(x) = e—n(V(x)—ax)7 wo(x) = e n(V(x)+ax)
and i = (n/2, n/2)_

o Eigenvalue correlation kernel is

1

Kn(x,y) = i —y)

1
(0 wm(y) wa(y)) Yil(y)Yi(x) 8

where Y is the solution of a RH problem.



Reminder: RH problem

RH-Y1 Y :C\ R — C*3 is analytic.
RH-Y2 Y has boundary values for x € R, denoted
by Y:t(X), and

1 e—n(V(x)—ax) e—n(V(x)+ax)
Yi(x)=Y_(x) |0 1 0
0 0 1

RH-Y3 As z — o0,
n 0 0

1 V4
Y(z) = ([+ o (-)) 0 z"2 0
z 0 0 z"?



Simplifying assumptions (for convenience)

@ n is a multiple of four.

@ The eigenvalues of M accumulate as n — oo on at
most 2 intervals.

@ We are in a non-critical situation.

By second assumption and symmetry, limiting support
of eigenvalues is either one interval

[—q. q], qg>0

or union of two symmetric intervals

[—g,—p] U [p, q], g>p>0

@ The assumption on support is satisfied if

x— V(y/x) is convex on [0,0).



First transformation

Define X by
([1 0 0
0 1 —e222 |  for Rez >0,
00 1
X(z)=Y(z) x
@=Y@Dx{ o,
0 1 01, for Rez < 0.
0 _e2naz 1

@ Jump for x > 0,

10 O 10 O
XT)Xe(x)=[0 1 e | Y (x)'Y,(x) [0 1 —e?m
00 1 00 1



Jump for x > 0 (cont.)

1 0 0 1 efn(V(x)fax) efn(V(x)Jrax) 1 0 0
0 1 e 2 0 1 0 0 1 —e2m
00 1 0 0 1 00 1



RH problem for X

RH-X1 X :C\ (RUR) — C**3 is analytic.
RH-X2 X has boundary values for x € RU /R, and

1 e n(V(x-a)
X (x)=X_(x)|0 1 0] for x>0,
0 0 1
1 0 e n(V()+ax)
Xi(x)=X_(x)|0 1 0 for x <0,
00
1
Xi(z)=X_(2) |0
0

n

_2”"’2 for z € IR.
2naz
0
0

RH-X3 X(z)=(I+0O(%)) | 0 z—"/2 as
0 0 =z?

Z — Q.



Equilibrium problem

@ Recall: in RH analysis for orthogonal polynomials
an important role is played by the equilibrium
measure.

@ This is the probability measure 11, on R that
minimizes

[ 108 dutidntn) + [ Vidut)

Ix -yl

@ The g-function ( g(z) = [log(z — s)duy(s) ] is
used to normalize the RH problem at infinity.

@ For a 3 x 3 RH problem we need two equilibrium
measures and two g functions



Vector equilibrium problem

Minimize
dul )dua(y / / log

[

- [ [ 1o it + [ (V(x) - aIX\)dul(X)

duz( )dpa(y)

among all vectors of measures (11, 1) such that
(a) u1 is @ measure on R with total mass 1,
(b) uo is @ measure on /R with total mass 1/2,
(c) p2 < o where ¢ has constant density

do a

— == € iR.
dz] ~ 7 2=



Results 1

There is a unique minimizer (1, i) and it satisfies

(a) The support of ;; is bounded and consists of a
finite union of intervals on the real line

supp(/t1) U[aj,b]

(b) The support of y; is the full imaginary axis and
there exists ¢ > 0 such that

supp(o — up) = (—ioco, —ic] U [ic, ico).

@ We assumed at most two intervals: N <2



Results 2

.1 dp
[ _Kn ) = R)
Jim (x, x) ™ X €

where i, is the first component of the minimizer of the
vector equilibrium problem.

We find sine kernel in the bulk and Airy kernel at
regular edge points.




Variational conditions

1
Notation:  U"(x) = /Iog X3 du(s)

@ Equilibrium measures are characterized by
variational conditions
20" (x) = U (x) = V(x) + alx| + £, x € supp(a),
2UM(x) > U (x) — V(x) + alx| + ¢, x &R\ supp(u),

for some ¢, and

2U"(z) = U"(z),  z €supp(o — 1),
20 (z) < UM(z2), z € iR\ supp(o — u2).

@ Variational conditions can be reformulated in terms
of g-functions

a(2) = / log(z—5)dp(s),  gaz) = / l0g(z—5)dpia(s)



Three regular cases

We distinguish three regular, non-critical cases
Case I: N =2 and ¢ = 0. In this case

supp(p1) = [-q,—p] U [p,ql.  supp(o — p2) = iR.

Constraint is not active.
Case ll: N =2 and ¢ > 0. In this case

supp(u1) = [—q, —p]Ulp, q], supp(oc—puz) = (—ioco, —ic]Ulic, ico)

Constraint is active on [—ic, ic].
Case lll: N =1 and ¢ > 0. In this case

supp(a) = [—q, ql, supp(o— i) = (—ioo, —ic]Ulic, ioco)

We put p =0 in case Ill.



Riemann surface

o Define three-sheeted Riemann surface

R =R1URsURs
R1 = C\ supp(n),
Ro = C\ (supp(p1) Usupp(o — i2)) ,
Rs = C\ supp(c — p2).

@ Compact Riemann surface of genus N —2 or N — 1
@ Genus = 0 in our cases | and IllI,
@ Genus = 1 in our case Il.



Riemann surface in Case |l

- S Ra

- 7 - Ro
/

7 -




Meromorphic function

Z—S

Define [Fj(z) =gi(z) = / d;(s) ) for z € C\ supp(1)

Proposition
The function

&a(2)=V'(2) - f(z), zeR

has a meromorphic continuation to the full Riemann
surface. On other sheets it is given by

&(z) =+a+ F(z) — F(z), z€R, +£Rez>0,
&(2) = Fa+ Fa(2), z€R3, *Rez>0.

The only pole is at the point at infinity on the first
sheet. This is a pole of order deg V — 1.




Recall RH problem for X

RH-X1 X :C\ (RUR) — C**3 is analytic.
RH-X2 X has boundary values for x € RU /R, and
e—n(V(x)—ax) 0

_

X (x)=X_(x)|0 1 0] for x>0,
0 0 1
1 0 e n(V()+ax)
Xi(x)=X_(x)|0 1 0 for x <0,
00
1
Xi(z)=X_(2) |0
0

n

_2”"’2 for z € IR.
2naz
0
0

RH-X3 X(z)=(I+0O(%)) | 0 z—"/2 as
0 0 =z?

Z — Q.



Second transformation X — T

We use g-functions to define T

e”™ 0 0
T(z) =10 1 0] X(2)

0 01

([ e—n(gi(2)+0) 0 0
0 en(g(2)-&(2)) 0 for Rez > 0,
0 0 ene2(2)

% e—n(a(2)+0) 0 0

0 ene:(?) 0 for Rez < 0.

\ 0 0 en(g1(z)—g(2))

@ Then T(z)=1+0(1/z) as z — oc.



Jumps on the real line

The jumps for T on the real axis are

e ne+—&1-)
0 n(g1+ &,-)

T+ — T_
T+ - T,
T+ — T,
T+ - T_

1
0
0

0 1

e”(gl +t+81,-—8— V+3X+€) 0
0
1

e (eL+—a,-)
0
0 O e (g1+ g1,-)

O O

0
1
0

e” n(g1,++81,——8&,+—V— ax+£))

on [p,q],

on R™\ [p, q],

on [_q7 _p]7

on R\ [-q,—p],



Simplication of jumps

Use (201(2) = V(2) F az — 2g1(2) + &a(2) — ()

T.

=1T_

on [p,q],

on R™\ [p, q],

on [_q7 _p]7

on R\ [~q,—p],



Jumps on the imaginary axis

The jumps for T on the imaginary axis are

1 0 0
T.=T_1]0 0 e~ (&2, +—g,—+2az)

0 —en(&2+—g,-+2az) 1

10 0 on iR\ (—ic,ic),
T.,=T_10 O 1 on (—ic, ic)

0 —1 e"&i—&+—82,-)

@ The right lower 2 x 2 block is
0 e (&2,+—g2,—+2az)
(_e”(g2,+g2,+232) en(g1g2,+g2,))
which reduces to above forms. For 3,3 entry

g1—& +—8& — = —U"+2U" 4 variational (in)equalities



Simplication of jumps

Use [2902(2) = —81(2) +28(2) F 232]

1 0 0
T,=T_1(0 0 e?2= | on iR\ (—ic, ic),
0 —e?™2+ 1
1 0 0
T, =T7T_10 O 1 on (—ic, ic)
0 —1 e 2

@ First jump matrix has factorization (we only show
2 x 2 block)

0 e2nv2.— 1 e?nee- 1 0
(_62'7%02,+ 1 ) - (O 1 ) (—(5‘2"902’+ 1)



Third transformation

@ In the third transformation 7 — S we open up
lenses around supp(y1) and supp(o — o).

@ We use factorizations of the jump matrices for T
on these parts.

@ The lenses look different in the three cases.



Opening of lenses in case |




Opening of lenses in case |l




Opening of lenses in case |ll

N
— -
T~ i
/




Third transformation

We define S in lenses around [—q, —p]| U [p, q]

L 00 in upper part of lens
S=T e 1 0],
0 01 around |[p, q],
1 00
in lower part of lens
S=T|em 1 0], "
0 0 1) around [pa q]a
L 00 in upper part of lens
S=T 0 101,
e2ne1 01 around [_qa _p]7
S_T (1) (1) 8 in lower part of lens
- Q20 0 1 ’ around [—q, —p],



Third transformation (cont.)

We define S in lenses around (—ioco, —ic] U [ic, ioco)

OO+ OO

0
1

62"502

0

0
0f,
1

0

1 22

0

1

S=T

in left part of lens around
(—ioco, —ic] U [ic, ico),

in right part of lens around
(—ioco, —ic] U [ic, ioco),

elsewhere



RH problem for S, part 1

RH-S1 S is analytic on C\ ¥s.
RH-S2 The jumps for S on the real axis are

0 10
S,=S|-100 on [p, q],
01
01
S,=S_ [0 10 on [—q,—p],
-1 00
1 e 2% 0
S,=5_10 1 0| onR"™\|[p,ql,
0o 0 1
1 0 e
S;=S5 101 0 on R™\ [—q,—p],
00 1



RH problem for S, part 2

RH-S2 The jumps for S on the imaginary axis

1 0 0 on (—ic,ic) and,
5,=5 10 0 1 in case lll, outside
0 —1 e 2w the lens around (—gq, q)
1 0 0 on (—ic,ic) but inside
S, =5_ 0 0 1 the lens around (—gq, q)
—e2nlpi=w2) 1 722 (only in case I1I)

@ All entries in red are exponentially
decaying as n — oo !l



RH problem for S, part 3

RH-S2 The jumps for S on the lips of the lenses

190 on lips of lens
5 = S_ 62”’7‘91 1 0
! 0 0 1 around |[p, q],
100 on lips of lens
S5,=5_ 0 10
! eZn;pl 0 1 around [—q’ —p]7
S. =85S é (1) 8 on left lip of lens around
TNy e q)  (sicc,—idUlie;ioc),
5, =S é 2 e2(r)wz on right lip of lens around
T 00 1 (—ioo, —ic] U [ic, ic0),

RH-S3 S(z) =1+ 0O(1/z) as z — oo.



Parametrices

@ Global parametrix N should satisfy
RH-N1 N is analytic on

C\ ([~9,—pl U [p, q] U [~ic, ic]),

RH-N2 The jumps for N are

0 10
Ny=N_[-1 0 0
01

01

Ny=N_[0 10
~10 0

1 0 0
N,=N_{0 0 1
0 -1 0

RH-N3 N(z) =1+ O(1/z) as z = o0

on (p,q),

on (_q7 _p)7

on (—ic, ic).



Parametrices

o Construction of N is not entirely straightforward.

@ It can be done with the help of the Riemann
surface.

@ Local parametrices P around each of the endpoints
+gq, +p (not in case lll), tic (not in case I) are
constructed with the help of Airy functions



Final transformation

The final transformation S — R is

R(2) S(z)N(z)7t away from the branch points,
Z) =
S(z2)P(2)7! near the branch points.

@ All jump conditions in the RH problem for R satisfy
R, = R_(I+0O(1/n)), as n — 0o

o It follows that

R(Z):H—O(m) as n — 0o,

uniformly for z € C\ Xg.



Conclusion of proof

@ Following the transformations in the steepest
descent analysis one may now prove the limiting
mean eigenvalue density

.1 dpi(x)
I —Kn y — =
Jim —Ka(x, x) = p(x) I
in the same as for one matrix model
@ We also find the local scaling limit for
y ) _sinm(x —y)

1 X
im ——K, | X0+ ———,% +
"% (o) ( * T 00) T o)) T A= y)
whenever p(x;) > 0, where

- 3 (V) -ar+ea(y))
Knlx.¥) = rveo—acraon n(:Y);

~

is an equivalent kernel, which generates the same
determinantal process as K.



Explicit calculations

@ Recall: meromorphic function on Riemann surface

&i(z) = V'(2) — A(2), z € Ry,
&(z) = ta+ Fi(2) — F(2), z€ Ry £Imz>0,
&3(z) = Fa+ Fu(2), z€R3 £Imz >0

@ They are solutions of a cubic equation
&= V'(2)€+ pi(2)€+ po(2) =0

with polynomial coefficients (spectral curve).
@ We can make explicit calculations for low degree V.



Quadratic potential

@ Suppose V(z) = 17°

@ Then spectral curve is (Pastur’s equation)
E—z8+(1-2a)+a%z=0.

@ Always four branch points, so Case Il does not
happen

o If a > 1 then four real branch points, and we are in
Case |I.

@ If 0 < a < 1 then two branch points on imaginary
axis, and we are in Case Ill.



Pearcey transition

@ Transition from Case | to Case |1l is Pearcey
transition as in the case for non-intersecting
Brownian motions.

@ Density vanishes at the origin

1/3

p(x) ~ [x]




Quartic potential

o Suppose V(z)=3z*—1iz

@ Spectral curve (McLaughlin’s equation)

2

& — (21 = 12)€ + p(2)¢ + po(2) = 0.
with
pi(z) = 2% + a, po(z) = a°2® + Bz

@ Two undetermined parameters.



Discriminant analysis

Discriminant of spectral curve w.r.t. ¢ is a degree
12 polynomial in z.

Branch points are among the zeros of this
polynomial. Other zeros have higher even
multiplicity.

In Case |l there should be a 6 fold zero at 0. This
implies a = § = 0.

Zero is an 8 fold zero if o = 5 =0 and

—27a* + (18t —4t*)a®> — 4+ 2 =0

The Case Il region in t — a plane is bounded by two
branches of this curve.



2
a Tt
| | | m Il: two intervals, genus one
-2 -1 1 1 2 3 4 5
] t
-1



27
a Tt
.......... Painlevé Il transition
Case |l: two intervals, genus one
-2 -1 1 1 2 3 4 5
1 t
-1

@ Transition from Case Il to one of the other cases
gives a change in genus. It is a Painlevé Il
transition



2]
aIf Case I: two intervals, genus zero
"""""""""" Painlevé Il transition
Case |lI: two intervals, genus one
-2 -1 ] 1 2 3 4 5
1 t
-1

o If you move up in phase diagram you go to Case |.



~~~~~~~~ § Case I: two intervals, genus zero

a ~~~~~~~
Case Ill: 1 " . ; .
one interval,| Tt Painlevé |l transition

genus zero

| Case |l: two intervals, genus one
-2 -1 1 1 2 3 4 5

—1-

o If you move the left in phase diagram you go to
Case IlI.



2,
“--...._Pearcey| transition
; ~~~~~ 1. Case |: two intervals, genus zero
Case IIl: | ", ] 3 .
one interval,|] T Painlevé 1l transition
genus zero |
] Case Il: two intervals, genus one
-2 -1 1 1 2 3 4 5
] t
-1-

@ Within the genus zero region there is a transition
from Case | to Case lll.
@ This happens on the curve

54a* + (72t — £3)a® — (t* — 16t> + 64) = 0

@ This is a Pearcey transition



2,

“~--..._Pearcey| transition
~~~~~~~~ ] Case I: two intervals, genus zero

a' R I
Case Ill: 1 . . ) .
one interval,7 T Painlevé |l transition
genus zero
| Case |l: two intervals, genus one
-2 -1 | 1 2 3 4 5

1
@ One special point in the phase diagram
t.=3Y2 and a. =33
@ For these values there is a 10-fold zero of the
discriminant at 0.

@ New local eigenvalue behavior at 0. Scaling limits
are unknown.



That's all

Thank you for your attention



