Asymptotic Analysis of Random Matrices and Orthogonal Polynomials

Arno Kuijlaars

University of Leuven, Belgium
Les Houches, 5-9 March 2012

- In case of two (or more) starting and two (or more) end points, the positions of non-intersecting Brownian motions, are not a MOP ensemble in the sense that we discussed.
- There is an extension using MOPs of mixed type that applies here.
- There is still a RH problem but with jump condition

$$
Y_{+}(x)=Y_{-}(x)\left(\begin{array}{cccc}
1 & 0 & * & * \\
0 & 1 & * & * \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and a Christoffel-Darboux formula for the correlation kernel.

Critical separation

- Two tangent ellipses and limiting density at each time consists of two semicircle laws.
- New scaling limits at the point where ellipses meet, called tacnode.

Delvaux, K, Zhang (2011)
Adler, Ferrari, Van Moerbeke (2012)
Johansson (arXiv)

- Hermitian matrix model with external source

$$
\frac{1}{Z_{n}} e^{-n \operatorname{Tr}(V(M)-A M)} d M
$$

- Assume n is even and external source is

$$
A=\operatorname{diag}(\underbrace{a, \ldots, a}_{n / 2 \text { times }}, \underbrace{-a, \ldots,-a}_{n / 2 \text { times }}), \quad a>0 .
$$

- Assume V is an even polynomial

Asymptotic analysis in this case is taken from the paper
P. Bleher, S. Delvaux, and A.B.J. Kuijlaars,

Random matrix model with external source and a vector equilibrium problem,
Comm. Pure Appl. Math. 64 (2011), 116-160

- Eigenvalues are MOP ensemble with weights

$$
\begin{aligned}
& \quad w_{1}(x)=e^{-n(V(x)-a x)}, \quad w_{2}(x)=e^{-n(V(x)+a x)} \\
& \text { and } \vec{n}=(n / 2, n / 2) \text {. }
\end{aligned}
$$

- Eigenvalue correlation kernel is

$$
K_{n}(x, y)=\frac{1}{2 \pi i(x-y)}\left(\begin{array}{lll}
0 & w_{1}(y) & \left.w_{2}(y)\right) Y_{+}^{-1}(y) Y_{+}(x)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), ~
\end{array}\right.
$$

where Y is the solution of a RH problem.

RH-Y1 $Y: \mathbb{C} \backslash \mathbb{R} \rightarrow \mathbb{C}^{3 \times 3}$ is analytic.
RH-Y2 Y has boundary values for $x \in \mathbb{R}$, denoted by $Y_{ \pm}(x)$, and

$$
Y_{+}(x)=Y_{-}(x)\left(\begin{array}{ccc}
1 & e^{-n(V(x)-a x)} & e^{-n(V(x)+a x)} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

RH-Y3 As $z \rightarrow \infty$,

$$
Y(z)=\left(I+\mathcal{O}\left(\frac{1}{z}\right)\right)\left(\begin{array}{ccc}
z^{n} & 0 & 0 \\
0 & z^{-n / 2} & 0 \\
0 & 0 & z^{-n / 2}
\end{array}\right)
$$

Simplifying assumptions (for convenience)

- n is a multiple of four.
- The eigenvalues of M accumulate as $n \rightarrow \infty$ on at most 2 intervals.
- We are in a non-critical situation.

By second assumption and symmetry, limiting support of eigenvalues is either one interval

$$
[-q, q], \quad q>0
$$

or union of two symmetric intervals

$$
[-q,-p] \cup[p, q], \quad q>p>0
$$

- The assumption on support is satisfied if

$$
x \mapsto V(\sqrt{x}) \quad \text { is convex on }[0, \infty)
$$

Define X by

$$
X(z)=Y(z) \times \begin{cases}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -e^{-2 \operatorname{naz}} \\
0 & 0 & 1
\end{array}\right), & \text { for } \operatorname{Re} z>0 \\
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -e^{2 n a z} & 1
\end{array}\right), & \text { for } \operatorname{Re} z<0\end{cases}
$$

- Jump for $x>0$,

$$
X_{-}^{-1}(x) X_{+}(x)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & e^{-2 \operatorname{nax}} \\
0 & 0 & 1
\end{array}\right) Y_{-}(x)^{-1} Y_{+}(x)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -e^{2 n a x} \\
0 & 0 & 1
\end{array}\right)
$$

Jump for $x>0$ (cont.)

$$
X_{-}^{-1}(x) X_{+}(x)=
$$

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & e^{-2 \operatorname{nax}} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & e^{-n(V(x)-a x)} & e^{-n(V(x)+a x)} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -e^{2 \operatorname{nax}} \\
0 & 0 & 1
\end{array}\right)
$$

$$
=\left(\begin{array}{ccc}
1 & e^{-n(V(x)-a x)} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

RH problem for X

$\mathrm{RH}-\mathrm{X} 1 \quad X: \mathbb{C} \backslash(\mathbb{R} \cup i \mathbb{R}) \rightarrow \mathbb{C}^{3 \times 3}$ is analytic.
RH-X2 X has boundary values for $x \in \mathbb{R} \cup i \mathbb{R}$, and

$$
\begin{aligned}
& X_{+}(x)=X_{-}(x)\left(\begin{array}{ccc}
1 & e^{-n(V(x)-a x)} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { for } x>0, \\
& X_{+}(x)=X_{-}(x)\left(\begin{array}{ccc}
1 & 0 & e^{-n(V(x)+a x)} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { for } x<0, \\
& X_{+}(z)=X_{-}(z)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & e^{-2 n a z} \\
0 & -e^{2 n a z} & 1
\end{array}\right) \text { for } z \in i \mathbb{R} . \\
& \text { RH-X3 } X(z)=\left(I+\mathcal{O}\left(\frac{1}{z}\right)\right)\left(\begin{array}{ccc}
z^{n} & 0 & 0 \\
0 & z^{-n / 2} & 0 \\
0 & 0 & z^{-n / 2}
\end{array}\right) \text { as }
\end{aligned}
$$

$$
z \rightarrow \infty .
$$

Equilibrium problem

- Recall: in RH analysis for orthogonal polynomials an important role is played by the equilibrium measure.
- This is the probability measure μ_{V} on \mathbb{R} that minimizes

$$
\iint \log \frac{1}{|x-y|} d \mu(x) d \mu(y)+\int V(x) d \mu(x)
$$

- The g-function $g(z)=\int \log (z-s) d \mu_{V}(s)$ is used to normalize the RH problem at infinity.
- For a 3×3 RH problem we need two equilibrium measures and two g functions

Vector equilibrium problem

Minimize

$$
\begin{aligned}
& \iint \log \frac{1}{|x-y|} d \mu_{1}(x) d \mu_{1}(y)+\iint \log \frac{1}{|x-y|} d \mu_{2}(x) d \mu_{2}(y) \\
& -\iint \log \frac{1}{|x-y|} d \mu_{1}(x) d \mu_{2}(y)+\int(V(x)-a|x|) d \mu_{1}(x)
\end{aligned}
$$

among all vectors of measures $\left(\mu_{1}, \mu_{2}\right)$ such that (a) μ_{1} is a measure on \mathbb{R} with total mass 1 ,
(b) μ_{2} is a measure on $i \mathbb{R}$ with total mass $1 / 2$,
(c) $\mu_{2} \leq \sigma$ where σ has constant density

$$
\frac{d \sigma}{|d z|}=\frac{a}{\pi}, \quad z \in i \mathbb{R}
$$

Proposition

There is a unique minimizer $\left(\mu_{1}, \mu_{2}\right)$ and it satisfies
(a) The support of μ_{1} is bounded and consists of a finite union of intervals on the real line

$$
\operatorname{supp}\left(\mu_{1}\right)=\bigcup_{j=1}^{N}\left[a_{j}, b_{j}\right]
$$

(b) The support of μ_{2} is the full imaginary axis and there exists $c \geq 0$ such that

$$
\operatorname{supp}\left(\sigma-\mu_{2}\right)=(-i \infty,-i c] \cup[i c, i \infty) .
$$

- We assumed at most two intervals: $N \leq 2$

Theorem

$$
\lim _{n \rightarrow \infty} \frac{1}{n} K_{n}(x, x)=\frac{d \mu_{1}}{d x}, \quad x \in \mathbb{R}
$$

where μ_{1} is the first component of the minimizer of the vector equilibrium problem.
We find sine kernel in the bulk and Airy kernel at regular edge points.

Variational conditions

Notation: $\quad U^{\mu}(x)=\int \log \frac{1}{|x-s|} d \mu(s)$

- Equilibrium measures are characterized by variational conditions

$$
\begin{array}{ll}
2 U^{\mu_{1}}(x)=U^{\mu_{2}}(x)-V(x)+a|x|+\ell, & x \in \operatorname{supp}\left(\mu_{1}\right), \\
2 U^{\mu_{1}}(x) \geq U^{\mu_{2}}(x)-V(x)+a|x|+\ell, & x \in \mathbb{R} \backslash \operatorname{supp}\left(\mu_{1}\right),
\end{array}
$$

for some ℓ, and

$$
\begin{array}{ll}
2 U^{\mu_{2}}(z)=U^{\mu_{1}}(z), & z \in \operatorname{supp}\left(\sigma-\mu_{2}\right), \\
2 U^{\mu_{2}}(z) \leq U^{\mu_{1}}(z), & z \in i \mathbb{R} \backslash \operatorname{supp}\left(\sigma-\mu_{2}\right) .
\end{array}
$$

- Variational conditions can be reformulated in terms of g-functions

$$
g_{1}(z)=\int \log (z-s) d \mu_{1}(s), \quad g_{2}(z)=\int \log (z-s) d \mu_{2}(s)
$$

We distinguish three regular, non-critical cases
Case I: $N=2$ and $c=0$. In this case

$$
\operatorname{supp}\left(\mu_{1}\right)=[-q,-p] \cup[p, q], \quad \operatorname{supp}\left(\sigma-\mu_{2}\right)=i \mathbb{R} .
$$

Constraint is not active.
Case II: $N=2$ and $c>0$. In this case
$\operatorname{supp}\left(\mu_{1}\right)=[-q,-p] \cup[p, q], \quad \operatorname{supp}\left(\sigma-\mu_{2}\right)=(-i \infty,-i c] \cup[i c, i \infty)$
Constraint is active on [-ic, ic].
Case III: $N=1$ and $c>0$. In this case

$$
\operatorname{supp}\left(\mu_{1}\right)=[-q, q], \quad \operatorname{supp}\left(\sigma-\mu_{2}\right)=(-i \infty,-i c] \cup[i c, i \infty)
$$

We put $p=0$ in case III.

- Define three-sheeted Riemann surface

$$
\begin{aligned}
\mathcal{R} & =\mathcal{R}_{1} \cup \mathcal{R}_{2} \cup \mathcal{R}_{3} \\
\mathcal{R}_{1} & =\overline{\mathbb{C}} \backslash \operatorname{supp}\left(\mu_{1}\right) \\
\mathcal{R}_{2} & =\mathbb{C} \backslash\left(\operatorname{supp}\left(\mu_{1}\right) \cup \operatorname{supp}\left(\sigma-\mu_{2}\right)\right) \\
\mathcal{R}_{3} & =\mathbb{C} \backslash \operatorname{supp}\left(\sigma-\mu_{2}\right)
\end{aligned}
$$

- Compact Riemann surface of genus $N-2$ or $N-1$
- Genus $=0$ in our cases I and III,
- Genus = 1 in our case II.

Meromorphic function

Define $F_{j}(z)=g_{j}^{\prime}(z)=\int \frac{d \mu_{j}(s)}{z-s}$ for $z \in \mathbb{C} \backslash \operatorname{supp}\left(\mu_{j}\right)$
Proposition
The function

$$
\xi_{1}(z)=V^{\prime}(z)-F_{1}(z), \quad z \in \mathcal{R}_{1}
$$

has a meromorphic continuation to the full Riemann surface. On other sheets it is given by

$$
\begin{array}{lll}
\xi_{2}(z)= \pm a+F_{1}(z)-F_{2}(z), & z \in \mathcal{R}_{2}, & \pm \operatorname{Re} z>0 \\
\xi_{3}(z)=\mp a+F_{2}(z), & z \in \mathcal{R}_{3}, & \pm \operatorname{Re} z>0 .
\end{array}
$$

The only pole is at the point at infinity on the first sheet. This is a pole of order $\operatorname{deg} V-1$.

RH-X1 $X: \mathbb{C} \backslash(\mathbb{R} \cup i \mathbb{R}) \rightarrow \mathbb{C}^{3 \times 3}$ is analytic.
RH-X2 X has boundary values for $x \in \mathbb{R} \cup i \mathbb{R}$, and

$$
\begin{aligned}
& X_{+}(x)=X_{-}(x)\left(\begin{array}{ccc}
1 & e^{-n(V(x)-a x)} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { for } x>0, \\
& X_{+}(x)=X_{-}(x)\left(\begin{array}{ccc}
1 & 0 & e^{-n(V(x)+a x)} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { for } x<0, \\
& X_{+}(z)=X_{-}(z)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & e^{-2 n a z} \\
0 & -e^{2 n a z} & 1
\end{array}\right) \text { for } z \in i \mathbb{R} . \\
& \text { RH-X3 } X(z)=\left(I+\mathcal{O}\left(\frac{1}{z}\right)\right)\left(\begin{array}{ccc}
z^{n} & 0 & 0 \\
0 & z^{-n / 2} & 0 \\
0 & 0 & z^{-n / 2}
\end{array}\right) \text { as } \\
& z \rightarrow \infty .
\end{aligned}
$$

Second transformation $X \mapsto T$

We use g-functions to define T

$$
\begin{aligned}
& T(z)=\left(\begin{array}{ccc}
e^{n \ell} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) X(z) \\
& \times\left\{\begin{array}{c}
\left(\begin{array}{ccc}
e^{-n\left(g_{1}(z)+\ell\right)} & 0 & 0 \\
0 & e^{n\left(g_{1}(z)-g_{2}(z)\right)} & 0 \\
0 & 0 & e^{n g_{2}(z)}
\end{array}\right) \quad \text { for } \operatorname{Re} z>0, \\
\left(\begin{array}{ccc}
e^{-n\left(g_{1}(z)+\ell\right)} & 0 & 0 \\
0 & e^{n g_{2}(z)} & 0 \\
0 & 0 & e^{n\left(g_{1}(z)-g_{2}(z)\right)}
\end{array}\right) \quad \text { for } \operatorname{Re} z<0 \text {. }
\end{array}\right.
\end{aligned}
$$

- Then $T(z)=I+\mathcal{O}(1 / z)$ as $z \rightarrow \infty$.

Jumps on the real line

The jumps for T on the real axis are

$$
\begin{aligned}
& T_{+}=T_{-}\left(\begin{array}{ccc}
e^{-n\left(g_{1,+}-g_{1,-}\right)} & 1 & 0 \\
0 & e^{n\left(g_{1,+}-g_{1,-}\right)} & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { on }[p, q] \text {, } \\
& T_{+}=T_{-}\left(\begin{array}{ccc}
1 & e^{n\left(g_{1,+}+g_{1,-}-g_{2}-V+a x+\ell\right)} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { on } \mathbb{R}^{+} \backslash[p, q], \\
& T_{+}=T_{-}\left(\begin{array}{ccc}
e^{-n\left(g_{1,+}-g_{1,-}\right)} & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & e^{n\left(g_{1,+}-g_{1,-}\right)}
\end{array}\right) \quad \text { on }[-q,-p], \\
& T_{+}=T_{-}\left(\begin{array}{ccc}
1 & 0 & e^{n\left(g_{1,+}+g_{1,-}-g_{2,+}-V-a x+\ell\right)} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { on } \mathbb{R}^{-} \backslash[-q,-p],
\end{aligned}
$$

Simplication of jumps

Use $2 \varphi_{1}(z)=V(z) \mp a z-2 g_{1}(z)+g_{2}(z)-\ell$

$$
\begin{array}{ll}
T_{+}=T_{-}\left(\begin{array}{ccc}
e^{2 n \varphi_{1,+}} & 1 & 0 \\
0 & e^{2 n \varphi_{1,-}} & 0 \\
0 & 0 & 1
\end{array}\right) & \text { on }[p, q], \\
T_{+}=T_{-}\left(\begin{array}{ccc}
1 & e^{-2 n \varphi_{1}} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \text { on } \mathbb{R}^{+} \backslash[p, q], \\
T_{+}=T_{-}\left(\begin{array}{ccc}
e^{2 n \varphi_{1,+}} & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & e^{2 n \varphi_{1,-}}
\end{array}\right) & \text { on }[-q,-p], \\
T_{+}=T_{-}\left(\begin{array}{ccc}
1 & 0 & e^{-2 n \varphi_{1}} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \text { on } \mathbb{R}^{-} \backslash[-q,-p],
\end{array}
$$

Jumps on the imaginary axis

The jumps for T on the imaginary axis are

$$
\begin{aligned}
& T_{+}=T_{-}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & e^{-n\left(g_{2,+}-g_{2,-}+2 a z\right)} \\
0 & -e^{n\left(g_{2,+}-g_{2,-}+2 a z\right)} & 1
\end{array}\right) \\
& T_{+}=T_{-}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & e^{n\left(g_{1}-g_{2,+}-g_{2,-}\right)}
\end{array}\right) \\
& \text { on } i \mathbb{R} \backslash(-i c, i c), \\
& \text { on }(-i c, i c)
\end{aligned}
$$

- The right lower 2×2 block is

$$
\left(\begin{array}{cc}
0 & e^{-n\left(g_{2,+}-g_{2,-}+2 a z\right)} \\
-e^{n\left(g_{2,+}-g_{2,-}+2 a z\right)} & e^{n\left(g_{1}-g_{2,+}-g_{2,-}\right)}
\end{array}\right)
$$

which reduces to above forms. For 3,3 entry

$$
g_{1}-g_{2,+}-g_{2,-}=-U^{\mu_{1}}+2 U^{\mu_{2}} \quad+\text { variational (in)equalities }
$$

Simplication of jumps

Use $2 \varphi_{2}(z)=-g_{1}(z)+2 g_{2}(z) \mp 2 a z$

$$
\begin{aligned}
& T_{+}=T_{-}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & e^{2 n \varphi_{2,-}} \\
0 & -e^{2 n \varphi_{2,+}} & 1
\end{array}\right) \text { on } i \mathbb{R} \backslash(-i c, i c), \\
& T_{+}=T_{-}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & e^{-2 n \varphi_{2}}
\end{array}\right) \quad \text { on }(-i c, i c)
\end{aligned}
$$

- First jump matrix has factorization (we only show 2×2 block)

$$
\left(\begin{array}{cc}
0 & e^{2 n \varphi_{2,-}} \\
-e^{2 n \varphi_{2,+}} & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & e^{2 n \varphi_{2,-}} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-e^{2 n \varphi_{2,+}} & 1
\end{array}\right)
$$

- In the third transformation $T \mapsto S$ we open up lenses around $\operatorname{supp}\left(\mu_{1}\right)$ and $\operatorname{supp}\left(\sigma-\mu_{2}\right)$.
- We use factorizations of the jump matrices for T on these parts.
- The lenses look different in the three cases.

Opening of lenses in case I

Opening of lenses in case II

Opening of lenses in case III

We define S in lenses around $[-q,-p] \cup[p, q]$

$$
\begin{array}{ll}
S=T\left(\begin{array}{ccc}
1 & 0 & 0 \\
-e^{2 n \varphi_{1}} & 1 & 0 \\
0 & 0 & 1
\end{array}\right), & \begin{array}{l}
\text { in upper part of lens } \\
\text { around }[p, q],
\end{array} \\
S=T\left(\begin{array}{ccc}
1 & 0 & 0 \\
e^{2 n \varphi_{1}} & 1 & 0 \\
0 & 0 & 1
\end{array}\right), & \begin{array}{l}
\text { in lower part of lens } \\
\text { around }[p, q],
\end{array} \\
S=T\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-e^{2 n \varphi_{1}} & 0 & 1
\end{array}\right), & \begin{array}{l}
\text { in upper part of lens } \\
\text { around }[-q,-p],
\end{array} \\
S=T\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
e^{2 n \varphi_{1}} & 0 & 1
\end{array}\right), & \text { in lower part of lens } \\
\text { around }[-q,-p],
\end{array}
$$

Third transformation (cont.)

We define S in lenses around $(-i \infty,-i c] \cup[i c, i \infty)$

$$
\begin{array}{ll}
S=T\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & e^{2 n \varphi_{2}} & 1
\end{array}\right), & \begin{array}{l}
\text { in left part of lens around } \\
(-i \infty,-i c] \cup[i c, i \infty),
\end{array} \\
S=T\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & e^{2 n \varphi_{2}} \\
0 & 0 & 1
\end{array}\right), \begin{array}{l}
\text { in right part of lens arounc } \\
(-i \infty,-i c] \cup[i c, i \infty),
\end{array}
\end{array}
$$

and

$$
S=T \quad \text { elsewhere }
$$

RH-S1 S is analytic on $\mathbb{C} \backslash \Sigma_{S}$.
RH-S2 The jumps for S on the real axis are

$$
\begin{array}{ll}
S_{+}=S_{-}\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) & \text { on }[p, q], \\
S_{+}=S_{-}\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right) & \text { on }[-q,-p], \\
S_{+}=S_{-}\left(\begin{array}{ccc}
1 & e^{-2 n \varphi_{1}} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \text { on } \mathbb{R}^{+} \backslash[p, q], \\
S_{+}=S_{-}\left(\begin{array}{cccc}
1 & 0 & e^{-2 n \varphi_{1}} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \text { on } \mathbb{R}^{-} \backslash[-q,-p],
\end{array}
$$

RH problem for S, part 2

RH-S2 The jumps for S on the imaginary axis

$$
\begin{aligned}
& S_{+}=S_{-}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & e^{-2 n \varphi_{2}}
\end{array}\right) \\
& S_{+}=S_{-}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
-e^{2 n\left(\varphi_{1}-\varphi_{2}\right)} & -1 & e^{-2 n \varphi_{2}}
\end{array}\right)
\end{aligned}
$$

on (-ic, ic) and, in case III, outside the lens around $(-q, q)$ on ($-i c, i c$) but inside the lens around $(-q, q)$ (only in case III)

- All entries in red are exponentially decaying as $n \rightarrow \infty$!!

RH-S2 The jumps for S on the lips of the lenses

$$
\begin{aligned}
& S_{+}=S_{-}\left(\begin{array}{ccc}
1 & 0 & 0 \\
e^{2 n \varphi_{1}} & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \begin{array}{l}
\text { on lips of lens } \\
\text { around }[p, q],
\end{array} \\
& S_{+}=S_{-}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
e^{2 n \varphi_{1}} & 0 & 1
\end{array}\right) \quad \begin{array}{l}
\text { on lips of lens } \\
\text { around }[-q,-p],
\end{array} \\
& S_{+}=S_{-}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -e^{2 n \varphi_{2}} & 1
\end{array}\right) \begin{array}{l}
\text { on left lip of lens around } \\
(-i \infty,-i c] \cup[i c, i \infty),
\end{array} \\
& S_{+}=S_{-}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & e^{2 n \varphi_{2}} \\
0 & 0 & 1
\end{array}\right) \quad \begin{array}{l}
\text { on right lip of lens arounc } \\
(-i \infty,-i c] \cup[i c, i \infty),
\end{array} \\
& \text { RH-S3 S(z)=I+O(1/z) as z } \rightarrow \infty .
\end{aligned}
$$

- Global parametrix N should satisfy RH-N1 N is analytic on

$$
\mathbb{C} \backslash([-q,-p] \cup[p, q] \cup[-i c, i c])
$$

RH-N2 The jumps for N are

$$
\begin{array}{ll}
N_{+}=N_{-}\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) & \text { on }(p, q), \\
N_{+}=N_{-}\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right) & \text { on }(-q,-p) \\
N_{+}=N_{-}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right) \quad \text { on }(-i c, i c) .
\end{array}
$$

RH-N3 $N(z)=I+\mathcal{O}(1 / z)$ as $z \rightarrow \infty$

- Construction of N is not entirely straightforward.
- It can be done with the help of the Riemann surface.
- Local parametrices P around each of the endpoints $\pm q, \pm p$ (not in case III), \pm ic (not in case I) are constructed with the help of Airy functions

The final transformation $S \mapsto R$ is
$R(z)=\left\{\begin{array}{l}S(z) N(z)^{-1} \\ S(z) P(z)^{-1}\end{array}\right.$ away from the branch points, near the branch points.

- All jump conditions in the RH problem for R satisfy

$$
R_{+}=R_{-}(I+\mathcal{O}(1 / n)), \quad \text { as } n \rightarrow \infty
$$

- It follows that

$$
R(z)=I+\mathcal{O}\left(\frac{1}{n(|z|+1)}\right) \quad \text { as } n \rightarrow \infty
$$

uniformly for $z \in \mathbb{C} \backslash \Sigma_{R}$.

Conclusion of proof

- Following the transformations in the steepest descent analysis one may now prove the limiting mean eigenvalue density

$$
\lim _{n \rightarrow \infty} \frac{1}{n} K_{n}(x, x)=\rho(x):=\frac{d \mu_{1}(x)}{d x}
$$

in the same as for one matrix model

- We also find the local scaling limit for

$$
\lim _{n \rightarrow \infty} \frac{1}{n \rho\left(x_{0}\right)} \widehat{K}_{n}\left(x_{0}+\frac{x}{n \rho\left(x_{0}\right)}, x_{0}+\frac{y}{n \rho\left(x_{0}\right)}\right)=\frac{\sin \pi(x-y)}{\pi(x-y)}
$$

whenever $\rho\left(x_{0}\right)>0$, where

$$
\widehat{K}_{n}(x, y)=\frac{e^{\frac{n}{2}\left(V(y)-a y+g_{2}(y)\right)}}{e^{\frac{n}{2}\left(V(x)-a x+g_{2}(x)\right)}} K_{n}(x, y)
$$

is an equivalent kernel, which generates the same determinantal process as K_{n}.

Explicit calculations

- Recall: meromorphic function on Riemann surface

$$
\begin{array}{ll}
\xi_{1}(z)=V^{\prime}(z)-F_{1}(z), & z \in \mathcal{R}_{1}, \\
\xi_{2}(z)= \pm a+F_{1}(z)-F_{2}(z), & z \in \mathcal{R}_{2}, \pm \operatorname{Im} z>0, \\
\xi_{3}(z)=\mp a+F_{2}(z), & z \in \mathcal{R}_{3}, \pm \operatorname{Im} z>0
\end{array}
$$

- They are solutions of a cubic equation

$$
\xi^{3}-V^{\prime}(z) \xi^{2}+p_{1}(z) \xi+p_{0}(z)=0
$$

with polynomial coefficients (spectral curve).

- We can make explicit calculations for low degree V.

Quadratic potential

- Suppose $V(z)=\frac{1}{2} z^{2}$
- Then spectral curve is (Pastur's equation)

$$
\xi^{3}-z \xi^{2}+\left(1-a^{2}\right) \xi+a^{2} z=0 .
$$

- Always four branch points, so Case II does not happen
- If $a>1$ then four real branch points, and we are in Case I.
- If $0<a<1$ then two branch points on imaginary axis, and we are in Case III.
- Transition from Case I to Case III is Pearcey transition as in the case for non-intersecting Brownian motions.
- Density vanishes at the origin

$$
\rho(x) \sim|x|^{1 / 3}
$$

Quartic potential

- Suppose $V(z)=\frac{1}{4} z^{4}-\frac{t}{2} z^{2}$.
- Spectral curve (McLaughlin's equation)

$$
\xi^{3}-\left(z^{3}-t z\right) \xi^{2}+p_{1}(z) \xi+p_{0}(z)=0 .
$$

with

$$
p_{1}(z)=z^{2}+\alpha, \quad p_{0}(z)=a^{2} z^{3}+\beta z
$$

- Two undetermined parameters.

Discriminant analysis

- Discriminant of spectral curve w.r.t. ξ is a degree 12 polynomial in z.
- Branch points are among the zeros of this polynomial. Other zeros have higher even multiplicity.
- In Case II there should be a 6 fold zero at 0 . This implies $\alpha=\beta=0$.
- Zero is an 8 fold zero if $\alpha=\beta=0$ and

$$
-27 a^{4}+\left(18 t-4 t^{3}\right) a^{2}-4+t^{2}=0
$$

- The Case II region in t - a plane is bounded by two branches of this curve.

Phase diagram

- Transition from Case II to one of the other cases gives a change in genus. It is a Painlevé II transition

- If you move up in phase diagram you go to Case I.

- If you move the left in phase diagram you go to Case III.

- Within the genus zero region there is a transition from Case I to Case III.
- This happens on the curve

$$
54 a^{4}+\left(72 t-t^{3}\right) a^{2}-\left(t^{4}-16 t^{2}+64\right)=0
$$

- This is a Pearcey transition

- One special point in the phase diagram

$$
t_{c}=3^{1 / 2} \quad \text { and } \quad a_{c}=3^{-3 / 4}
$$

- For these values there is a 10 -fold zero of the discriminant at 0 .
- New local eigenvalue behavior at 0 . Scaling limits are unknown.

That's all

Thank you for your attention

