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Two starting and ending points

In case of two (or more) starting and two (or more)
end points, the positions of non-intersecting
Brownian motions, are not a MOP ensemble in the
sense that we discussed.

There is an extension using MOPs of mixed type
that applies here.

There is still a RH problem but with jump condition

Y+(x) = Y−(x)




1 0 ∗ ∗
0 1 ∗ ∗
0 0 1 0
0 0 0 1




and a Christoffel-Darboux formula for the
correlation kernel.



Critical separation
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Two tangent ellipses and limiting density at each
time consists of two semicircle laws.

New scaling limits at the point where ellipses meet,
called tacnode.

Delvaux, K, Zhang (2011)

Adler, Ferrari, Van Moerbeke (2012)

Johansson (arXiv)



Random matrix model with external source

Hermitian matrix model with external source

1

Zn

e−nTr(V (M)−AM) dM

Assume n is even and external source is

A = diag(a, . . . , a︸ ︷︷ ︸
n/2 times

,−a, . . . ,−a︸ ︷︷ ︸
n/2 times

), a > 0.

Assume V is an even polynomial

Asymptotic analysis in this case is taken from the paper
P. Bleher, S. Delvaux, and A.B.J. Kuijlaars,
Random matrix model with external source and a vector
equilibrium problem,

Comm. Pure Appl. Math. 64 (2011), 116–160



Reminder: MOP ensemble

Eigenvalues are MOP ensemble with weights

w1(x) = e−n(V (x)−ax), w2(x) = e−n(V (x)+ax)

and ~n = (n/2, n/2).

Eigenvalue correlation kernel is

Kn(x , y) =
1

2πi(x − y)

(
0 w1(y) w2(y)

)
Y −1
+ (y)Y+(x)



1
0
0




where Y is the solution of a RH problem.



Reminder: RH problem

RH-Y1 Y : C \ R → C
3×3 is analytic.

RH-Y2 Y has boundary values for x ∈ R, denoted
by Y±(x), and

Y+(x) = Y−(x)



1 e−n(V (x)−ax) e−n(V (x)+ax)

0 1 0
0 0 1




RH-Y3 As z → ∞,

Y (z) =

(
I +O

(
1

z

))

zn 0 0
0 z−n/2 0
0 0 z−n/2






Simplifying assumptions (for convenience)

n is a multiple of four.

The eigenvalues of M accumulate as n → ∞ on at
most 2 intervals.

We are in a non-critical situation.

By second assumption and symmetry, limiting support
of eigenvalues is either one interval

[−q, q], q > 0

or union of two symmetric intervals

[−q,−p] ∪ [p, q], q > p > 0

The assumption on support is satisfied if

x 7→ V (
√
x) is convex on [0,∞).



First transformation

Define X by

X (z) = Y (z)×







1 0 0

0 1 −e−2naz

0 0 1


 , for Re z > 0,



1 0 0

0 1 0

0 −e2naz 1


 , for Re z < 0.

Jump for x > 0,

X−1
−

(x)X+(x) =



1 0 0
0 1 e−2nax

0 0 1


Y−(x)

−1Y+(x)



1 0 0
0 1 −e2nax

0 0 1






Jump for x > 0 (cont.)

X−1
−

(x)X+(x) =



1 0 0
0 1 e−2nax

0 0 1






1 e−n(V (x)−ax) e−n(V (x)+ax)

0 1 0
0 0 1






1 0 0
0 1 −e2nax

0 0 1




=



1 e−n(V (x)−ax) 0
0 1 0
0 0 1






RH problem for X

RH-X1 X : C \ (R ∪ iR) → C
3×3 is analytic.

RH-X2 X has boundary values for x ∈ R ∪ iR, and

X+(x) = X−(x)



1 e−n(V (x)−ax) 0
0 1 0
0 0 1


 for x > 0,

X+(x) = X−(x)



1 0 e−n(V (x)+ax)

0 1 0
0 0 1


 for x < 0,

X+(z) = X−(z)



1 0 0
0 0 e−2naz

0 −e2naz 1


 for z ∈ iR.

RH-X3 X (z) =
(
I +O

(
1
z

))


zn 0 0
0 z−n/2 0
0 0 z−n/2


 as

z → ∞.



Equilibrium problem

Recall: in RH analysis for orthogonal polynomials
an important role is played by the equilibrium
measure.

This is the probability measure µV on R that
minimizes

∫∫
log

1

|x − y |dµ(x)dµ(y) +
∫

V (x)dµ(x)

The g-function
�
�

�
�g(z) =

∫
log(z − s)dµV (s) is

used to normalize the RH problem at infinity.

For a 3× 3 RH problem we need two equilibrium
measures and two g functions



Vector equilibrium problem

Minimize

∫∫
log

1

|x − y |dµ1(x)dµ1(y)+

∫∫
log

1

|x − y |dµ2(x)dµ2(y)

−
∫∫

log
1

|x − y |dµ1(x)dµ2(y) +

∫
(V (x)− a|x |) dµ1(x)

among all vectors of measures (µ1, µ2) such that

(a) µ1 is a measure on R with total mass 1,

(b) µ2 is a measure on iR with total mass 1/2,

(c) µ2 ≤ σ where σ has constant density

dσ

|dz | =
a

π
, z ∈ iR.



Results 1

Proposition

There is a unique minimizer (µ1, µ2) and it satisfies

(a) The support of µ1 is bounded and consists of a
finite union of intervals on the real line

supp(µ1) =
N⋃

j=1

[aj , bj ].

(b) The support of µ2 is the full imaginary axis and
there exists c ≥ 0 such that

supp(σ − µ2) = (−i∞,−ic] ∪ [ic , i∞).

We assumed at most two intervals: N ≤ 2



Results 2

Theorem

lim
n→∞

1

n
Kn(x , x) =

dµ1

dx
, x ∈ R,

where µ1 is the first component of the minimizer of the
vector equilibrium problem.
We find sine kernel in the bulk and Airy kernel at
regular edge points.



Variational conditions

Notation: Uµ(x) =

∫
log

1

|x − s|dµ(s)
Equilibrium measures are characterized by
variational conditions

2Uµ1(x) = Uµ2(x)− V (x) + a|x |+ ℓ, x ∈ supp(µ1),

2Uµ1(x) ≥ Uµ2(x)− V (x) + a|x |+ ℓ, x ∈ R \ supp(µ1),

for some ℓ, and

2Uµ2(z) = Uµ1(z), z ∈ supp(σ − µ2),

2Uµ2(z) ≤ Uµ1(z), z ∈ iR \ supp(σ − µ2).

Variational conditions can be reformulated in terms
of g-functions

g1(z) =

∫
log(z−s)dµ1(s), g2(z) =

∫
log(z−s)dµ2(s)



Three regular cases

We distinguish three regular, non-critical cases

Case I: N = 2 and c = 0. In this case

supp(µ1) = [−q,−p] ∪ [p, q], supp(σ − µ2) = iR.

Constraint is not active.

Case II: N = 2 and c > 0. In this case

supp(µ1) = [−q,−p]∪[p, q], supp(σ−µ2) = (−i∞,−ic]∪[ic , i∞)

Constraint is active on [−ic , ic].

Case III: N = 1 and c > 0. In this case

supp(µ1) = [−q, q], supp(σ−µ2) = (−i∞,−ic]∪[ic , i∞)

We put p = 0 in case III.



Riemann surface

Define three-sheeted Riemann surface

R = R1 ∪R2 ∪R3

R1 = C \ supp(µ1),

R2 = C \ (supp(µ1) ∪ supp(σ − µ2)) ,

R3 = C \ supp(σ − µ2).

Compact Riemann surface of genus N − 2 or N − 1

Genus = 0 in our cases I and III,

Genus = 1 in our case II.



Riemann surface in Case II
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Meromorphic function

Define

�

�

�



Fj(z) = g ′

j (z) =

∫
dµj(s)

z − s
for z ∈ C \ supp(µj)

Proposition

The function

ξ1(z) = V ′(z)− F1(z), z ∈ R1

has a meromorphic continuation to the full Riemann
surface. On other sheets it is given by

ξ2(z) = ±a + F1(z)− F2(z), z ∈ R2, ±Re z > 0,

ξ3(z) = ∓a + F2(z), z ∈ R3, ±Re z > 0.

The only pole is at the point at infinity on the first
sheet. This is a pole of order degV − 1.



Recall RH problem for X

RH-X1 X : C \ (R ∪ iR) → C
3×3 is analytic.

RH-X2 X has boundary values for x ∈ R ∪ iR, and

X+(x) = X−(x)



1 e−n(V (x)−ax) 0
0 1 0
0 0 1


 for x > 0,

X+(x) = X−(x)



1 0 e−n(V (x)+ax)

0 1 0
0 0 1


 for x < 0,

X+(z) = X−(z)



1 0 0
0 0 e−2naz

0 −e2naz 1


 for z ∈ iR.

RH-X3 X (z) =
(
I +O

(
1
z

))


zn 0 0
0 z−n/2 0
0 0 z−n/2


 as

z → ∞.



Second transformation X 7→ T

We use g-functions to define T

T (z) =



enℓ 0 0
0 1 0
0 0 1


X (z)

×







e−n(g1(z)+ℓ) 0 0

0 en(g1(z)−g2(z)) 0

0 0 eng2(z)


 for Re z > 0,



e−n(g1(z)+ℓ) 0 0

0 eng2(z) 0

0 0 en(g1(z)−g2(z))


 for Re z < 0.

Then T (z) = I +O(1/z) as z → ∞.



Jumps on the real line

The jumps for T on the real axis are

T+ = T−



e−n(g1,+−g1,−) 1 0

0 en(g1,+−g1,−) 0
0 0 1


 on [p, q],

T+ = T−



1 en(g1,++g1,−−g2−V+ax+ℓ) 0
0 1 0
0 0 1


 on R

+ \ [p, q],

T+ = T−



e−n(g1,+−g1,−) 0 1

0 1 0
0 0 en(g1,+−g1,−)


 on [−q,−p],

T+ = T−



1 0 en(g1,++g1,−−g2,+−V−ax+ℓ)

0 1 0
0 0 1


 on R

− \ [−q,−p],



Simplication of jumps

Use
�
�

�
�2ϕ1(z) = V (z)∓ az − 2g1(z) + g2(z)− ℓ

T+ = T−



e2nϕ1,+ 1 0

0 e2nϕ1,− 0
0 0 1


 on [p, q],

T+ = T−



1 e−2nϕ1 0
0 1 0
0 0 1


 on R

+ \ [p, q],

T+ = T−



e2nϕ1,+ 0 1

0 1 0
0 0 e2nϕ1,−


 on [−q,−p],

T+ = T−



1 0 e−2nϕ1

0 1 0
0 0 1


 on R

− \ [−q,−p],



Jumps on the imaginary axis

The jumps for T on the imaginary axis are

T+ = T−



1 0 0
0 0 e−n(g2,+−g2,−+2az)

0 −en(g2,+−g2,−+2az) 1




on iR \ (−ic , ic),

T+ = T−



1 0 0
0 0 1
0 −1 en(g1−g2,+−g2,−)


 on (−ic , ic)

The right lower 2× 2 block is
(

0 e−n(g2,+−g2,−+2az)

−en(g2,+−g2,−+2az) en(g1−g2,+−g2,−)

)

which reduces to above forms. For 3, 3 entry

g1−g2,+−g2,− = −Uµ1+2Uµ2 + variational (in)equalities



Simplication of jumps

Use
�
�

�
�2ϕ2(z) = −g1(z) + 2g2(z)∓ 2az

T+ = T−



1 0 0
0 0 e2nϕ2,−

0 −e2nϕ2,+ 1


 on iR \ (−ic , ic),

T+ = T−



1 0 0
0 0 1
0 −1 e−2nϕ2


 on (−ic , ic)

First jump matrix has factorization (we only show
2× 2 block)

(
0 e2nϕ2,−

−e2nϕ2,+ 1

)
=

(
1 e2nϕ2,−

0 1

)(
1 0

−e2nϕ2,+ 1

)



Third transformation

In the third transformation T 7→ S we open up
lenses around supp(µ1) and supp(σ − µ2).

We use factorizations of the jump matrices for T
on these parts.

The lenses look different in the three cases.



Opening of lenses in case I
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Opening of lenses in case II
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6

�
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�
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Opening of lenses in case III
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Third transformation

We define S in lenses around [−q,−p] ∪ [p, q]

S = T




1 0 0
−e2nϕ1 1 0

0 0 1


 ,

in upper part of lens
around [p, q],

S = T




1 0 0
e2nϕ1 1 0
0 0 1


 ,

in lower part of lens
around [p, q],

S = T




1 0 0
0 1 0

−e2nϕ1 0 1


 ,

in upper part of lens
around [−q,−p],

S = T




1 0 0
0 1 0

e2nϕ1 0 1


 ,

in lower part of lens
around [−q,−p],



Third transformation (cont.)

We define S in lenses around (−i∞,−ic] ∪ [ic , i∞)

S = T



1 0 0
0 1 0
0 e2nϕ2 1


 ,

in left part of lens around
(−i∞,−ic] ∪ [ic , i∞),

S = T



1 0 0
0 1 e2nϕ2

0 0 1


 ,

in right part of lens around
(−i∞,−ic] ∪ [ic , i∞),

and

S = T elsewhere



RH problem for S , part 1

RH-S1 S is analytic on C \ ΣS .

RH-S2 The jumps for S on the real axis are

S+ = S−




0 1 0
−1 0 0
0 0 1


 on [p, q],

S+ = S−




0 0 1
0 1 0
−1 0 0


 on [−q,−p],

S+ = S−



1 e−2nϕ1 0
0 1 0
0 0 1


 on R

+ \ [p, q],

S+ = S−



1 0 e−2nϕ1

0 1 0
0 0 1


 on R

− \ [−q,−p],



RH problem for S , part 2

RH-S2 The jumps for S on the imaginary axis

S+ = S−



1 0 0
0 0 1
0 −1 e−2nϕ2




on (−ic , ic) and,
in case III, outside
the lens around (−q, q)

S+ = S−




1 0 0
0 0 1

−e2n(ϕ1−ϕ2) −1 e−2nϕ2




on (−ic , ic) but inside
the lens around (−q, q)
(only in case III)

All entries in red are exponentially
decaying as n → ∞ !!



RH problem for S , part 3

RH-S2 The jumps for S on the lips of the lenses

S+ = S−




1 0 0
e2nϕ1 1 0
0 0 1


 on lips of lens

around [p, q],

S+ = S−




1 0 0
0 1 0

e2nϕ1 0 1


 on lips of lens

around [−q,−p],

S+ = S−



1 0 0
0 1 0
0 −e2nϕ2 1


 on left lip of lens around

(−i∞,−ic] ∪ [ic , i∞),

S+ = S−



1 0 0
0 1 e2nϕ2

0 0 1


 on right lip of lens around

(−i∞,−ic] ∪ [ic , i∞),

RH-S3 S(z) = I +O(1/z) as z → ∞.



Parametrices

Global parametrix N should satisfy

RH-N1 N is analytic on
C \ ([−q,−p] ∪ [p, q] ∪ [−ic , ic]),

RH-N2 The jumps for N are

N+ = N−




0 1 0
−1 0 0
0 0 1


 on (p, q),

N+ = N−




0 0 1
0 1 0
−1 0 0


 on (−q,−p),

N+ = N−



1 0 0
0 0 1
0 −1 0


 on (−ic , ic).

RH-N3 N(z) = I +O(1/z) as z → ∞



Parametrices

Construction of N is not entirely straightforward.

It can be done with the help of the Riemann
surface.

Local parametrices P around each of the endpoints
±q, ±p (not in case III), ±ic (not in case I) are
constructed with the help of Airy functions



Final transformation

The final transformation S 7→ R is

R(z) =

{
S(z)N(z)−1 away from the branch points,

S(z)P(z)−1 near the branch points.

All jump conditions in the RH problem for R satisfy

R+ = R−(I +O(1/n)), as n → ∞

It follows that

R(z) = I +O
(

1

n(|z |+ 1)

)
as n → ∞,

uniformly for z ∈ C \ ΣR .



Conclusion of proof

Following the transformations in the steepest
descent analysis one may now prove the limiting
mean eigenvalue density

lim
n→∞

1

n
Kn(x , x) = ρ(x) :=

dµ1(x)

dx

in the same as for one matrix model
We also find the local scaling limit for

lim
n→∞

1

nρ(x0)
K̂n

(
x0 +

x

nρ(x0)
, x0 +

y

nρ(x0)

)
=

sin π(x − y)

π(x − y)

whenever ρ(x0) > 0, where

K̂n(x , y) =
e

n
2
(V (y)−ay+g2(y))

e
n
2
(V (x)−ax+g2(x))

Kn(x , y),

is an equivalent kernel, which generates the same
determinantal process as Kn.



Explicit calculations

Recall: meromorphic function on Riemann surface

ξ1(z) = V ′(z)− F1(z), z ∈ R1,

ξ2(z) = ±a + F1(z)− F2(z), z ∈ R2, ± Im z > 0,

ξ3(z) = ∓a + F2(z), z ∈ R3, ± Im z > 0

They are solutions of a cubic equation

ξ3 − V ′(z)ξ2 + p1(z)ξ + p0(z) = 0

with polynomial coefficients (spectral curve).

We can make explicit calculations for low degree V .



Quadratic potential

Suppose V (z) = 1
2
z2

Then spectral curve is (Pastur’s equation)

ξ3 − zξ2 + (1− a2)ξ + a2z = 0.

Always four branch points, so Case II does not
happen

If a > 1 then four real branch points, and we are in
Case I.

If 0 < a < 1 then two branch points on imaginary
axis, and we are in Case III.



Pearcey transition

Transition from Case I to Case III is Pearcey
transition as in the case for non-intersecting
Brownian motions.

Density vanishes at the origin

ρ(x) ∼ |x |1/3

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

1.5



Quartic potential

Suppose V (z) = 1
4
z4 − t

2
z2.

Spectral curve (McLaughlin’s equation)

ξ3 − (z3 − tz)ξ2 + p1(z)ξ + p0(z) = 0.

with

p1(z) = z2 + α, p0(z) = a2z3 + βz

Two undetermined parameters.



Discriminant analysis

Discriminant of spectral curve w.r.t. ξ is a degree
12 polynomial in z.

Branch points are among the zeros of this
polynomial. Other zeros have higher even
multiplicity.

In Case II there should be a 6 fold zero at 0. This
implies α = β = 0.

Zero is an 8 fold zero if α = β = 0 and

−27a4 + (18t − 4t3)a2 − 4 + t2 = 0

The Case II region in t − a plane is bounded by two
branches of this curve.



Phase diagram

–1

1

2

a

–2 –1 1 2 3 4 5

t

Case II: two intervals, genus one



Phase diagram

–1

1

2

a

–2 –1 1 2 3 4 5

t

Case II: two intervals, genus one

Painlevé II transition

Transition from Case II to one of the other cases
gives a change in genus. It is a Painlevé II
transition



Phase diagram

–1

1

2

a

–2 –1 1 2 3 4 5

t

Case I: two intervals, genus zero

Case II: two intervals, genus one

Painlevé II transition

If you move up in phase diagram you go to Case I.



Phase diagram

–1

1

2

a

–2 –1 1 2 3 4 5

t

Case I: two intervals, genus zero

Case II: two intervals, genus one

Case III:
one interval,
genus zero

Painlevé II transition

If you move the left in phase diagram you go to
Case III.



Phase diagram

–1

1

2

a

–2 –1 1 2 3 4 5

t

Case I: two intervals, genus zero

Case II: two intervals, genus one

Case III:
one interval,
genus zero

Pearcey transition

Painlevé II transition

Within the genus zero region there is a transition
from Case I to Case III.

This happens on the curve

54a4 + (72t − t3)a2 − (t4 − 16t2 + 64) = 0

This is a Pearcey transition



Phase diagram
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Painlevé II transition

One special point in the phase diagram

tc = 31/2 and ac = 3−3/4

For these values there is a 10-fold zero of the
discriminant at 0.
New local eigenvalue behavior at 0. Scaling limits
are unknown.



The end

That’s all

Thank you for your attention


