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Multiple orthogonal polynomials

@ Given weight functions wy, ..., w, on the real line
and ii = (ny,...,n,) € N. Notation || =n;+---+n,

@ The type Il multiple orthogonal polynomial (MOP)
is a monic polynomial P; of degree |r| such that

(
/P~( )x¥w (x) dx = 0, k=0,1,...,n —1,

/Pﬁ(x)ka2(x) dx =0, k=0,1,...,n—1,

/Pﬁ(X)XkWr(X) dx =0, k=0,1,...,n —1,
\

@ These are |r| conditions for the |ii| free coefficients
of P;. In typical cases there is existence and
uniqueness, but not always.



Type | multiple orthogonality

o Type | multlple orthogonal Polynomials are r
polynomials Aﬂ , Aﬂ A(r , of degrees

degAg)Snj—l, Jj=1...,r
@ They are such that the linear form
Qs(x) = AP (x)wr(x) + -+ + AL (x)w (x)
satisfies
/kuﬁ(x)dx:o, k=0,1,...,|A — 2,
/XkQﬁ(X)dle, k = |n| — 1.



Block Hankel matrix

Moments ;LJ(-i) = [ xw;(x)dx

n x m Hankel matrix for ith weight

iy — (,0)
Hym = (uj+k_2>j—1 nk=1,..m

7777777777

Block Hankel matrix

Hi= | - HO) =i

Conditions for type | MOPs give linear system with
matrix H.

Conditions for type Il MOP give linear system with
matrix H..

Both type of MOPs exist if and only if

det Hz # 0.



Riemann-Hilbert problem (case r = 2)

In the RH problem we look for a 3 x 3 matrix valued
function Y(z) satisfying
RH-Y1 Y :C\ R — C*<3 is analytic.
RH-Y2 Y has boundary values for x € R, denoted
by Y.(x), and

1 wm(x) wa(x)
Yix)=Y_(x)[0 1 0 , for x € R.
0 0 1

RH-Y3 As z — o0,

1 zmtnz 0
Y(z) = (1 Lo (_)) 0 ™ 0
z 0 0 z ™



Solution in terms of type || MOPs

Theorem ( Van Assche, Geronimo, K (2001))

RH problem has a unique solution if and only if the
type Il MOP P; uniquely exists.
In that case the first row of Y is given by

) o [P L[ Pl

2ni f_o Ss—2z 2mi f_ S—Z

@ Other rows are filled using P;_z and P;_g (if they
exist).



Inverse of Y

@ The type | MOPs are in the inverse of Y.
7 Qals)
0 S—2Z
27riAE71)(Z) k%
27TI.AE72)(Z) k%

ds * x

Y z) =

where Q5 = AV wy + AP w,

@ Other columns contain type | MOPs with
multi-indices 11 + €, and 71 + é.



Biorthogonal ensembles

o Probability density function on R"” of the form

Zidet[f(xj)]u ;- det [gi09)]7

@ Normalization constant

Z, - / det [fi(x)]7,_ - det [g:()]] s da -+~ dxy # 0

o By Andréief (1883) identity

Z, = n! det M,, M, = [/ fi(x)gj(x) dX]
—00 ij=1

o Corollary: detM, #0



Correlation kernel

o Biorthogonal ensemble is a determinantal point
process with correlation kernel

Kalxoy) = 5257 (M) £(x)g ().

i=1 j=1

@ Representation as determinant

det Mn

aly) - a(ly) 0

@ Perform elementary row and column
transformations to transform M, to the identity
matrix /,



Correlation kernel (cont.)

o After transformation M, — |,

Ka(x,y) = —det hn

Pi(y) = valy) 0

with functions ¢; and v); satisfying

/00 i(x)j(x) dx = 6, (biorthogonality)

@ Also single sum  K,(x,y) = i ¢i(x)¥;(y)
j=1



Correlation kernel (cont.)

o Characterization:
K, is the kernel of the projection operator onto the

linear span of f,...,f,, whose kernel is the
orthogonal complement of the linear span of
gl &n-

@ Operator

K, : h— K,h, Koh(x) = /K,,(x,y)h(y) dy

o Characterization
Koh=h if h=a1fi+axh+ -+ a,f,,
Koh=0 if /h(x)gj(x)dx =0for;j=1,...,n



MOP ensembles

A multiple orthogonal polynomial (MOP) ensemble is a
biorthogonal ensemble with functions

1

fi(x) = x'1, fori=1,...,n,
gi(}’):yi_lwl()/)a for izlv"w”lv
gn1+i(y) = .yi_1W2(.y)7 for i = 17 ceey Ny

gn1+---+n,,1+i()/) = yiilwr(y)a fori=1...n.

Here wq, ..., w, are given functions, and ny,...,n, are
non-negative integers such that

n=ny+---+n,.



Block Hankel matrix

@ In a MOP ensemble the matrix M, is the block
Hankel matrix

M, = Hz = |:Hr(1}131 T Hr(1,rr)1,:| ) n= |ﬁ’

o det Hz # 0 and so the MOPs exist.
@ The RH problem has a unique solution.



Christoffel Darboux formula

Theorem (Bleher-K (2004) for r = 2, Daems-K (2004))

The correlation kernel K, for the MOP ensemble is
given by
Ko(x, ) L

n\X,Y) = s
4 27i(x — y)

1

-1 0

0 wily) - wl(y)) Y )Ye(x) | .

0




Proof for case r = 2

@ Assume r = 2. Let L,(x,y) be the right-hand side

1

Lo(x,y) = i =)

1
(0 wiy) wa(y)) Y7Hy)Yal(x) | O
0
We show
(a) L,h = hif his a polynomial of degree < n— 1,

(b) L,h=0if [h(y)y *wi(y)dy =0forj=1,...,n; and
i=1,2.



Proof of (a)

o Let h be a polynomial of degree < n— 1.

LGoy) = —1 (0 w(y) wa(y) Yﬁ(y)n(x)(

O O

~ _—~ O O R
\/v

 h(y) — h(x) "
= it y) O W) W) Y)Yl

2mi(x —y) (0 wi(y) W2(Y)) Y:L(y) Y. (x)

o O~/

o [L,(x,y)h(y)dy splits into two integrals.



Proof of (a), first integral

o First integral has

1
M (0 wily) waly)) Yi'(y) Yi(x) |0
27i(x — y) N ~ g 0
—

vector with linear forms

polynomial in y of type | MOPs

of degree < n—2

o Integral with respect to y is 0 for every x because
of type | multiple orthogonality.



Proof of (a), second integral

o Second integral is

h(x)

27

. AN
|0 wlb) w() Y)Yl (o) )
—00 o) XY

@ From jump condition in RH problem

(0 wmy) w() Y () =1 0 0) (Y= (y) = Yi'(y)

o It remains to prove

1 [ [Y_l(y)— Yi(y)

2w J_

[e.9]



Proof of (a), second integral (cont.)

% > {Y_‘l(yz:;ﬁl(y) Y+(x)] ! b1

@ Replace x € R by z with Imz > 0.

—0o0

oy [%(yy) Y(z)]1 . is analytic in lower half plane
and is O(y~"') as y — co. By Cauchy’s theorem
1 (> [y?

— { (y)Y(z)] dy =0

2T z—y 11

oy [Y:(Y) Y(z )]1 has pole in upper half plane and
same behavior at mflnlty By residue calculation
00 -1
1 / {ﬂ_(y) y(Z)} dy = 1
2mi J_o | z—Yy 11

@ Subtract the two results and then let z — x € R.



Proof of (b)

o Assume [ h(y)y’wi(y)dy =0for j=1,... n,
i =1,2. We have to prove L,h(x) =0
@ We have that [,h(x) =

0 “1(,) _ y—1(x 1

[T k) (0 () waly)) LYy (o) dy
T ) X—y 0
[e'e} —1 ].

i a0 m) w) Eyi (o] @
T J_o X=y 0

@ Second integral is obviously zero.

1
@ In first integral we can take out Y, (x) (0) .
0



Proof of (b), (cont.)

o We are left to evaluate

L Th0) 0 mly) wy) WY,

2mi J_ X—y

@ Second row of Y ! has polynomials of degree < n;
@ Third row of Y~! has polynomials of degree < n,
@ Hence for every x, the entries of

) Yy ()2:;@ (x)

(0 wi(y) waly
take the form

wi(y)(poly of deg < n;—1)+ws(y)(poly of deg < n,—1)

@ This is in the linear span of g1,..., g, and the
integral is zero.



Examples of MOP ensembles

@ Non-intersecting Brownian motions

@ Non-intersecting squared Bessel paths

@ Random matrix model with external source
@ Two matrix model



Non-intersecting Brownian motions

@ Brownian motion transition probability density

pt(X’y) = \/ﬁ

o Biorthogonal ensemble of non-intersecting
Brownian motions

1 n n
A det [p;(a;, Xj)];,jzl - det [pr—+(xi, bj)]f,jzl

n
with Z, depending on a;,...,a, and by, ....b,.

@ In confluent limit where all a; — a both Z, and the
first determinant tend to 0.

o Take limit using L’Hopital’s rule. First determinant
becomes

i—1 n

det {@Pt(%xj)}

ij=1



Non-intersecting Brownian motions

1 2?
e 2 we get
V2t

o1 polynomial in x \ 12 5.
ﬁpt(a’ x) = ( of degree / — 1 €

@ From p;(a,x) =

o Apply appropriate row operations to the
determinant and take out common factors from
each column

ot " i—17n - L (2 —2ax)
det {mpt(a, XJ):| o det [XJ :|i,j:1 . H e 2 j

ij=1 j=1

o Similarly when all b; — b we get a second factor

x det He 275 (5 ~2%)
Ilj 1



Non-intersecting Brownian motions

@ In fully confluent limit all a; — a, all b; — b, we find
an OP ensemble with quadratic potential (= GUE)

\
1 x
A (det i | |e 2 2‘”/) (det i | |e 2= (5 ~2b%)

/
%)? H eV, V(x) = iy (§ —(1-t)a+ %b)x)
j=1




Non-intersecting Brownian motions

o If n; of the b;’s tend to b; and the remaining n,
tend to b,, then we have to treat the first n; rows
separately from the last n, rows in taking the
confluent limit.

@ The second determinant now becomes

n

det [gi(Xj)]i,jzl

with functions

i1 —=L1 _(x2—2b .
gi(X) =x 16 2(T7t)(x 1X)7 = 17"'7”17
. 1 2
—1 —5=—=(x*—2bpx .
gn1+i(X) =x""e Z(Tit)( ’ )7 = 17"'7’72'

J
MOP ensemble with two weights and 1 = (n, np).

o Together with A(x) e %07229) e now find a
=1
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Non-intersecting squared Bessel paths

@ Squared Bessel processes is diffusion process on
[0,00) with transition probability density

1y JXT

2t t

@ |/, is the modified Bessel function of order o« > —1.

@ In confluent limit all a; — a, all b; — 0, this leads to
a MOP ensemble with two weights

wi(x) = XO‘/2e_ﬁlCY (ﬁ)

t

wo(x) = x@D2e mF (_V:X >

and n; = [n/2], n, = |n/2|
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@ For a — 0 this further reduces to a Laguerre unitary

ensemble (LUE)



Random matrix model with external source

o Hermitian matrix model with external source

L qvmy—am)
ST dM
7z

o External source A is a given Hermitian n x n matrix

@ Joint p.d.f. for eigenvalues
P(x, ..., xn) o A(x)2He—V(Xj)/ STPAUXU g
j=1 U(n)

where A = diag(ay, ..., a,), X =diag(xy, ..., x,).
@ The integral over the unitary group can be done by
the Harish-Chandra / Itzykson-Zuber formula.



Random matrix model with external source

o If all a; and all x; are distinct then
/ e TPAUXUTL 1 det [e™9]7_,
U(n) A(a)A(x)
o P.d.f. for eigenvalues

" det [e*]]._
V() "t diy=1
x A(x) | | e A02)

Jj=1

o If some a;’s coincide, we take the confluent limit.

o If n; of the a;'s tend to ¢; and n, = n— n; to o,
then we find MOP ensemble with two weights

wi(x) = e~ (V)=ex), wy(x) = e~ (V(x)—cx)



Random matrix model with external source

@ MOP ensemble with weights

wy(x) = e~ (Vx)—ax) wo(x) = e~ (V)=o)
and 7= (n]_, nz).

@ In Gaussian case V(x) = 1x?, the eigenvalues in the
external source model have the same joint
distribution has the positions of non-intersecting
Brownian motions with one starting position and

two ending positions.

o If V is non-Gaussian then we have something else.



Two matrix model

@ The Hermitian two matrix model

ie* Tr(V(M)+W (M) =7MiM2) g M,

Z,
is a probability measure on pairs (M, M,) of n x n
Hermitian matrices.
@ V and W are polynomial potentials
o 7 # 0 is a coupling constant



Determinantal point process

o Explicit formula for joint p.d.f. of the eigenvalues of
M; and M,

1 <K11(x,-, X;) K12(X,‘,_yj))

—— det
Ka(yi, %) Ka(yiy;)

(n1)?

with 4 kernels that are expressed in terms of
biorthogonal polynomials

@ Two sequences (p;); and (gx)x of monic polynomials
that satisfy if j # k,

/ / pi(x)a(y)e VW= dxdy = i .

Mehta-Shukla (1994), Eynard-Mehta (1998)
Ercolani-McLaughlin (2001)
Bertola-Eynard-Harnad (2002-04)



Kernels

@ The kernels are expressed in terms of these
biorthogonal polynomials and transformed functions

Q)= [ ale

(V(x)+W(y)—7xy) dy,

Puly) = / pr(x) e~ VeI WO gy
as follows:
n—1 1 n—1 1
Kii(xi, %) = Z ﬁpk(xl)Qk()Q), Kia(x,y) = kZ—O h—iPk(X)Qk()’%
n—1 1
Kai(y, x Z e P(y)Qk(x)  Kaaly1,y2) = kzo h—iPk(Jﬁ)Qk()@)

e (Ve W) =2



Biorthogonality

o Biorthogonality condition for p,

/ () Qu(x)dx =0 for k=0,1,....n—1

—00

where  Q(x) = %) [ gi(y)e (O ~gy,

o Equivalently, we may replace q,(y) by y*!

Wk(X) — e—V(x)/ yk 1 —(W y)—7xy) dy,

oo

and / pr(x)wi(x)dx =0 for k=1,...,n

[e.e]

@ We integrate by parts if k > deg W.



Biorthogonality

o Calculation for W(y) = 1y*, k > 4.
Wk(x) = eV(x)/ ykfle—(%y“—ﬂ(y)dy

= _eV(X)/ yk74e7'xyd <ef%y4)

o0

= (k — 8)wi_4(x) + TxWi_3(X).

@ This leads to multiple orthogonality



Multiple orthogonality

Proposition (K-McLaughlin (2005))

Suppose deg W = r + 1. Then the biorthogonal
polynomial p, is a multiple orthogonal polynomial with
r weights wy, ..., w,, and near-diagonal multi-index

(ny,...,n.).
If nis a multiple of r then n; = 2 for every j.

@ The eigenvalues of M;, when averaged over M,, are
a MOP ensemble with r weights.

@ There is a RH problem of size (r + 1) x (r +1).

o Asymptotic analysis of this RH problem was done
for W(y) = ;y* by Duits-K (2009) and for
W(y) = 1y*+ 2y? by Duits-K-Mo (2012)
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