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Multiple orthogonal polynomials

Given weight functions w1, . . . ,wr on the real line
and ~n = (n1, . . . , nr ) ∈ N

r . Notation |~n| = n1 + · · ·+ nr

The type II multiple orthogonal polynomial (MOP)
is a monic polynomial P~n of degree |~n| such that







∫

P~n(x)x
kw1(x) dx = 0, k = 0, 1, . . . , n1 − 1,

∫

P~n(x)x
kw2(x) dx = 0, k = 0, 1, . . . , n2 − 1,

...
...,

∫

P~n(x)x
kwr (x) dx = 0, k = 0, 1, . . . , nr − 1,

These are |~n| conditions for the |~n| free coefficients
of P~n. In typical cases there is existence and
uniqueness, but not always.



Type I multiple orthogonality

Type I multiple orthogonal polynomials are r

polynomials A
(1)
~n , A

(2)
~n , · · ·A(r)

~n , of degrees

degA
(j)
~n ≤ nj − 1, j = 1, . . . , r

They are such that the linear form

Q~n(x) = A
(1)
~n (x)w1(x) + · · ·+ A

(r)
~n (x)wr (x)

satisfies






∫

xkQ~n(x) dx = 0, k = 0, 1, . . . , |~n| − 2,
∫

xkQ~n(x) dx = 1, k = |~n| − 1.



Block Hankel matrix

Moments µ
(i)
j =

∫
x jwi(x)dx

n ×m Hankel matrix for ith weight

H (i)
n,m =

(

µ
(i)
j+k−2

)

j=1,...,n,k=1,...,m

Block Hankel matrix

H~n =
[

H
(1)
n,n1 · · · H

(r)
n,nr

]

, n = |~n|

Conditions for type I MOPs give linear system with
matrix H~n.

Conditions for type II MOP give linear system with
matrix HT

~n .

Both type of MOPs exist if and only if

detH~n 6= 0.



Riemann-Hilbert problem (case r = 2)

In the RH problem we look for a 3× 3 matrix valued
function Y (z) satisfying

RH-Y1 Y : C \ R → C
3×3 is analytic.

RH-Y2 Y has boundary values for x ∈ R, denoted
by Y±(x), and

Y+(x) = Y−(x)





1 w1(x) w2(x)
0 1 0
0 0 1



 , for x ∈ R.

RH-Y3 As z → ∞,

Y (z) =

(

I +O
(
1

z

))




zn1+n2 0 0
0 z−n1 0
0 0 z−n2







Solution in terms of type II MOPs

Theorem ( Van Assche, Geronimo, K (2001))

RH problem has a unique solution if and only if the
type II MOP P~n uniquely exists.
In that case the first row of Y is given by








P~n(z)
1

2πi

∫
∞

−∞

P~n(s)w1(s)

s − z
ds

1

2πi

∫
∞

−∞

P~n(s)w2(s)

s − z
ds

∗ ∗ ∗
∗ ∗ ∗








Other rows are filled using P~n−~e1 and P~n−~e2 (if they
exist).



Inverse of Y

The type I MOPs are in the inverse of Y .

Y −1(z) =









−
∫

∞

−∞

Q~n(s)

s − z
ds ∗ ∗

2πiA
(1)
~n (z) ∗ ∗

2πiA
(2)
~n (z) ∗ ∗









where Q~n = A
(1)
~n w1 + A

(2)
~n w2

Other columns contain type I MOPs with
multi-indices ~n + ~e1 and ~n + ~e2.



Biorthogonal ensembles

Probability density function on R
n of the form

1

Zn

det [fi(xj)]
n

i ,j=1 · det [gi(xj)]
n

i ,j=1 ,

Normalization constant

Zn =

∫

Rn

det [fi(xj)]
n

i ,j=1 · det [gi(xj)]
n

i ,j=1 dx1 · · · dxn 6= 0

By Andréief (1883) identity

Zn = n! detMn, Mn =

[∫
∞

−∞

fi(x)gj(x) dx

]n

i ,j=1

Corollary: detMn 6= 0



Correlation kernel

Biorthogonal ensemble is a determinantal point
process with correlation kernel

Kn(x , y) =
n∑

i=1

n∑

j=1

(
M−1

n

)

ji
fi(x)gj(y).

Representation as determinant

Kn(x , y) = − 1

detMn

det






Mn

f1(x)

...
fn(x)

g1(y) ··· gn(y) 0






Perform elementary row and column
transformations to transform Mn to the identity
matrix In



Correlation kernel (cont.)

After transformation Mn 7→ In

Kn(x , y) = − det






In

φ1(x)

...
φn(x)

ψ1(y) ··· ψn(y) 0






with functions φj and ψj satisfying

∫
∞

−∞

φi(x)ψj(x) dx = δi ,j (biorthogonality)

Also single sum Kn(x , y) =
n∑

j=1

φj(x)ψj(y)



Correlation kernel (cont.)

Characterization:
Kn is the kernel of the projection operator onto the
linear span of f1, . . . , fn, whose kernel is the
orthogonal complement of the linear span of
g1, . . . , gn.

Operator

Kn : h 7→ Knh, Knh(x) =

∫

Kn(x , y)h(y) dy

Characterization

Knh = h if h = α1f1 + α2f2 + · · ·+ αnfn,

Knh = 0 if

∫

h(x)gj(x)dx = 0 for j = 1, . . . , n.



MOP ensembles

Definition

A multiple orthogonal polynomial (MOP) ensemble is a
biorthogonal ensemble with functions

fi(x) = x i−1, for i = 1, . . . , n,

gi(y) = y i−1w1(y), for i = 1, . . . , n1,

gn1+i(y) = y i−1w2(y), for i = 1, . . . , n2,

...

gn1+···+nr−1+i(y) = y i−1wr (y), for i = 1, . . . , nr .

Here w1, . . . ,wr are given functions, and n1, . . . , nr are
non-negative integers such that

n = n1 + · · ·+ nr .



Block Hankel matrix

In a MOP ensemble the matrix Mn is the block
Hankel matrix

Mn = H~n =
[

H
(1)
n,n1 · · · H

(r)
n,nr

]

, n = |~n|

detH~n 6= 0 and so the MOPs exist.

The RH problem has a unique solution.



Christoffel Darboux formula

Theorem (Bleher-K (2004) for r = 2, Daems-K (2004))

The correlation kernel Kn for the MOP ensemble is
given by

Kn(x , y) =
1

2πi(x − y)
×

(
0 w1(y) · · · wr (y)

)
Y −1
+ (y)Y+(x)








1
0
...
0










Proof for case r = 2

Assume r = 2. Let Ln(x , y) be the right-hand side

Ln(x , y) =
1

2πi(x − y)

(
0 w1(y) w2(y)

)
Y −1
+ (y)Y+(x)





1
0
0





We show

(a) Lnh = h if h is a polynomial of degree ≤ n − 1,

(b) Lnh = 0 if
∫
h(y)y j−1wi(y) dy = 0 for j = 1, . . . , ni , and

i = 1, 2.



Proof of (a)

Let h be a polynomial of degree ≤ n − 1.

Ln(x , y)h(y) =
h(y)

2πi(x − y)

(
0 w1(y) w2(y)

)
Y −1
+ (y)Y+(x)





1
0
0





=
h(y)− h(x)

2πi(x − y)

(
0 w1(y) w2(y)

)
Y −1
+ (y)Y+(x)





1
0
0





+
h(x)

2πi(x − y)

(
0 w1(y) w2(y)

)
Y −1
+ (y)Y+(x)





1
0
0





∫
Ln(x , y)h(y)dy splits into two integrals.



Proof of (a), first integral

First integral has

h(y)− h(x)

2πi(x − y)
︸ ︷︷ ︸

polynomial in y
of degree ≤ n − 2

(
0 w1(y) w2(y)

)
Y −1
+ (y)

︸ ︷︷ ︸

vector with linear forms
of type I MOPs

Y+(x)





1
0
0





Integral with respect to y is 0 for every x because
of type I multiple orthogonality.



Proof of (a), second integral

Second integral is

h(x)

2πi

∫
∞

−∞

(
0 w1(y) w2(y)

)
Y −1
+ (y)Y+(x)





1
0
0




dy

x − y

From jump condition in RH problem

(
0 w1(y) w2(y)

)
Y −1
+ (y) =

(
1 0 0

) (
Y −1
−

(y)− Y −1
+ (y)

)

It remains to prove

1

2πi

∫
∞

−∞

[
Y −1
− (y)− Y −1

+ (y)

x − y
Y+(x)

]

1,1

dy = 1.



Proof of (a), second integral (cont.)

1

2πi

∫
∞

−∞

[
Y −1
− (y)− Y −1

+ (y)

x − y
Y+(x)

]

1,1

dy = 1.

Replace x ∈ R by z with Im z > 0.

y 7→
[
Y−1(y)
z−y

Y (z)
]

1,1
is analytic in lower half plane

and is O(y−n−1) as y → ∞. By Cauchy’s theorem

1

2πi

∫
∞

−∞

[
Y −1
− (y)

z − y
Y (z)

]

1,1

dy = 0

y 7→
[
Y−1(y)
z−y

Y (z)
]

1,1
has pole in upper half plane and

same behavior at infinity. By residue calculation

1

2πi

∫
∞

−∞

[
Y −1
+ (y)

z − y
Y (z)

]

1,1

dy = −1

Subtract the two results and then let z → x ∈ R.



Proof of (b)

Assume
∫
h(y)y j−1wi(y)dy = 0 for j = 1, . . . , nj ,

i = 1, 2. We have to prove Lnh(x) = 0

We have that Lnh(x) =

1

2πi

∫
∞

−∞

h(y)
(
0 w1(y) w2(y)

) Y −1
+ (y)− Y −1

+ (x)

x − y
Y+(x)





1
0
0



 dy

+
1

2πi

∫
∞

−∞

h(y)
(
0 w1(y) w2(y)

) Y −1
+ (x)

x − y
Y+(x)





1
0
0



 dy .

Second integral is obviously zero.

In first integral we can take out Y+(x)





1
0
0



.



Proof of (b), (cont.)

We are left to evaluate

1

2πi

∫
∞

−∞

h(y)
(
0 w1(y) w2(y)

) Y −1
+ (y)− Y −1

+ (x)

x − y
dy

Second row of Y −1 has polynomials of degree ≤ n1

Third row of Y −1 has polynomials of degree ≤ n2

Hence for every x , the entries of

(
0 w1(y) w2(y)

) Y −1
+ (y)− Y −1

+ (x)

x − y

take the form

w1(y)(poly of deg ≤ n1−1)+w2(y)(poly of deg ≤ n2−1)

This is in the linear span of g1, . . . , gn and the
integral is zero.



Examples of MOP ensembles

Non-intersecting Brownian motions

Non-intersecting squared Bessel paths

Random matrix model with external source

Two matrix model



Non-intersecting Brownian motions

Brownian motion transition probability density

pt(x , y) =
1√
2πt

e−
(y−x)2

2t

Biorthogonal ensemble of non-intersecting
Brownian motions

1

Zn

det [pt(ai , xj)]
n

i ,j=1 · det [pT−t(xi , bj)]
n

i ,j=1

with Zn depending on a1, . . . , an and b1, . . . .bn.

In confluent limit where all aj → a both Zn and the
first determinant tend to 0.

Take limit using L’Hôpital’s rule. First determinant
becomes

det

[
∂ i−1

∂ai−1
pt(a, xj)

]n

i ,j=1

.



Non-intersecting Brownian motions

From pt(a, x) =
1√
2πt

e−
(x−a)2

2t we get

∂ i−1

∂ai−1
pt(a, x) =

(
polynomial in x

of degree i − 1

)

e−
1
2t
(x2−2ax)

Apply appropriate row operations to the
determinant and take out common factors from
each column

det

[
∂ i−1

∂ai−1
pt(a, xj)

]n

i ,j=1

∝ det
[
x i−1
j

]n

i ,j=1
·

n∏

j=1

e−
1
2t
(x2

j
−2axj )

Similarly when all bj → b we get a second factor

∝ det
[
x i−1
j

]n

i ,j=1
·

n∏

j=1

e
−

1
2(T−t)

(x2
j
−2bxj )



Non-intersecting Brownian motions

In fully confluent limit all aj → a, all bj → b, we find
an OP ensemble with quadratic potential (= GUE)

1

Zn

(

det
[
x i−1
j

]n

i ,j=1

n∏

j=1

e−
1
2t
(x2

j
−2axj )

)(

det
[
x i−1
j

]n

i ,j=1

n∏

j=1

e
−

1
2(T−t)

(x2
j
−2bxj )

)

=
1

Zn

∆(x)2
n∏

j=1

e−V (xj ), V (x) = T
t(T−t)

(
x2

2
− ((1− t

T
)a + t

T
b)x
)

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5
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0.5

1

1.5
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Non-intersecting Brownian motions

If n1 of the bj ’s tend to b1 and the remaining n2
tend to b2, then we have to treat the first n1 rows
separately from the last n2 rows in taking the
confluent limit.

The second determinant now becomes

det [gi(xj)]
n

i ,j=1

with functions

gi(x) = x i−1e
−

1
2(T−t)

(x2−2b1x), i = 1, . . . , n1,

gn1+i(x) = x i−1e
−

1
2(T−t)

(x2−2b2x), i = 1, . . . , n2.

Together with ∆(x)
n∏

j=1

e−
1
2t
(x2

j
−2axj ) we now find a

MOP ensemble with two weights and ~n = (n1, n2).



Non-intersecting Brownian motions

Two Gaussian weights

wi(x) = e−Vi (x), Vi(x) =
T

t(T−t)

(
x2

2
− cix

)

,

where ci = (1− t
T
)a + t

T
bi for i = 1, 2.

Associated MOPs are multiple Hermite polynomials
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−1.5

−1

−0.5
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Non-intersecting squared Bessel paths

Squared Bessel processes is diffusion process on
[0,∞) with transition probability density

pt(x , y) =
1

2t

(y

x

)α/2

e−
1
2t
(x+y)Iα

(√
xy

t

)

, x , y > 0,

Iα is the modified Bessel function of order α > −1.

In confluent limit all aj → a, all bj → 0, this leads to
a MOP ensemble with two weights

w1(x) = xα/2e
−

Tx
2t(T−t) Iα

(√
ax

t

)

w2(x) = x (α+1)/2e
−

Tx
2t(T−t) Iα+1

(√
ax

t

)

and n1 = ⌈n/2⌉, n2 = ⌊n/2⌋



Non-intersecting squared Bessel paths

0 0.2 0.4 0.6 0.8 1
0
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1
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t

x

For a → 0 this further reduces to a Laguerre unitary
ensemble (LUE)



Random matrix model with external source

Hermitian matrix model with external source

1

Zn

e−Tr(V (M)−AM) dM

External source A is a given Hermitian n × n matrix

Joint p.d.f. for eigenvalues

P(x1, . . . , xn) ∝ ∆(x)2
n∏

j=1

e−V (xj )

∫

U(n)

eTrAUXU
−1

dU

where A = diag(a1, . . . , an), X = diag(x1, . . . , xn).

The integral over the unitary group can be done by
the Harish-Chandra / Itzykson-Zuber formula.



Random matrix model with external source

If all ai and all xj are distinct then

∫

U(n)

eTrAUXU
−1

dU ∝
det [eaixj ]ni ,j=1

∆(a)∆(x)

P.d.f. for eigenvalues

∝ ∆(x)
n∏

j=1

e−V (xj )
det [eaixj ]ni ,j=1

∆(a)

If some ai ’s coincide, we take the confluent limit.

If n1 of the aj ’s tend to c1 and n2 = n − n1 to c2,
then we find MOP ensemble with two weights

w1(x) = e−(V (x)−c1x), w2(x) = e−(V (x)−c2x).



Random matrix model with external source

MOP ensemble with weights

w1(x) = e−(V (x)−c1x), w2(x) = e−(V (x)−c2x)

and ~n = (n1, n2).

In Gaussian case V (x) = 1
2
x2, the eigenvalues in the

external source model have the same joint
distribution has the positions of non-intersecting
Brownian motions with one starting position and
two ending positions.

If V is non-Gaussian then we have something else.



Two matrix model

The Hermitian two matrix model

1

Zn

e−Tr(V (M1)+W (M2)−τM1M2) dM1dM2

is a probability measure on pairs (M1,M2) of n × n

Hermitian matrices.

V and W are polynomial potentials

τ 6= 0 is a coupling constant



Determinantal point process

Explicit formula for joint p.d.f. of the eigenvalues of
M1 and M2

1

(n!)2
det

(
K11(xi , xj) K12(xi , yj)
K21(yi , xj) K22(yi , yj)

)

with 4 kernels that are expressed in terms of
biorthogonal polynomials

Two sequences (pj)j and (qk)k of monic polynomials
that satisfy if j 6= k,
∫

∞

−∞

∫
∞

−∞

pj(x)qk(y)e
−(V (x)+W (y)−τxy)dxdy = h2kδj ,k .

Mehta-Shukla (1994), Eynard-Mehta (1998)

Ercolani-McLaughlin (2001)

Bertola-Eynard-Harnad (2002-04)



Kernels

The kernels are expressed in terms of these
biorthogonal polynomials and transformed functions

Qj(x) =

∫
∞

−∞

qj(y)e
−(V (x)+W (y)−τxy)dy ,

Pk(y) =

∫
∞

−∞

pk(x)e
−(V (x)+W (y)−τxy)dx ,

as follows:

K11(x1, x2) =
n−1∑

k=0

1

h2k
pk(x1)Qk(x2), K12(x , y) =

n−1∑

k=0

1

h2k
pk(x)qk(y),

K21(y , x) =
n−1∑

k=0

1

h2k
Pk(y)Qk(x) K22(y1, y2) =

n−1∑

k=0

1

h2k
Pk(y1)qk(y2)

− e−(V (x)+W (y)−τxy),



Biorthogonality

Biorthogonality condition for pn
∫

∞

−∞

pn(x)Qk(x)dx = 0 for k = 0, 1, . . . , n − 1

where Qk(x) = e−V (x)

∫
∞

−∞

qk(y)e
−(W (y)−τxy)dy .

Equivalently, we may replace qk(y) by y k−1

wk(x) = e−V (x)

∫
∞

−∞

y k−1e−(W (y)−τxy)dy ,

and

∫
∞

−∞

pn(x)wk(x)dx = 0 for k = 1, . . . , n.

We integrate by parts if k ≥ degW .



Biorthogonality

Calculation for W (y) = 1
4
y 4, k ≥ 4.

wk(x) = e−V (x)

∫
∞

−∞

y k−1e−(
1
4
y4−τxy)dy

= −e−V (x)

∫
∞

−∞

y k−4eτxyd
(

e−
1
4
y4
)

= e−V (x)

∫
∞

−∞

(
(k − 4)y k−5 + τxy k−4

)
e−(

1
4
y4−τxy)dy

= (k − 4)wk−4(x) + τxwk−3(x).

This leads to multiple orthogonality



Multiple orthogonality

Proposition (K-McLaughlin (2005))

Suppose degW = r + 1. Then the biorthogonal
polynomial pn is a multiple orthogonal polynomial with
r weights w1, . . . , wr , and near-diagonal multi-index
(n1, . . . , nr ).
If n is a multiple of r then nj =

n
r
for every j .

The eigenvalues of M1, when averaged over M2, are
a MOP ensemble with r weights.

There is a RH problem of size (r + 1)× (r + 1).

Asymptotic analysis of this RH problem was done
for W (y) = 1

4
y 4 by Duits-K (2009) and for

W (y) = 1
4
y 4 + α

2
y 2 by Duits-K-Mo (2012)


