Asymptotic Analysis of Random Matrices and Orthogonal Polynomials

Arno Kuijlaars

University of Leuven, Belgium
Les Houches, 5-9 March 2012

- Given weight functions w_{1}, \ldots, w_{r} on the real line and $\vec{n}=\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{N}^{r}$. Notation $|\vec{n}|=n_{1}+\cdots+n_{r}$
- The type II multiple orthogonal polynomial (MOP) is a monic polynomial $P_{\vec{n}}$ of degree $|\vec{n}|$ such that

$$
\left\{\begin{array}{cc}
\int P_{\vec{n}}(x) x^{k} w_{1}(x) d x=0, & k=0,1, \ldots, n_{1}-1 \\
\int P_{\vec{n}}(x) x^{k} w_{2}(x) d x=0, & k=0,1, \ldots, n_{2}-1 \\
\vdots & \vdots \\
\int P_{\vec{n}}(x) x^{k} w_{r}(x) d x=0, & k=0,1, \ldots, n_{r}-1
\end{array}\right.
$$

- These are $|\vec{n}|$ conditions for the $|\vec{n}|$ free coefficients of $P_{\vec{n}}$. In typical cases there is existence and uniqueness, but not always.

Type I multiple orthogonality

- Type I multiple orthogonal polynomials are r polynomials $A_{n}^{(1)}, A_{n}^{(2)}, \cdots A_{n}^{(r)}$, of degrees

$$
\operatorname{deg} A_{n}^{(j)} \leq n_{j}-1, \quad j=1, \ldots, r
$$

- They are such that the linear form

$$
Q_{\vec{n}}(x)=A_{\vec{n}}^{(1)}(x) w_{1}(x)+\cdots+A_{\vec{n}}^{(r)}(x) w_{r}(x)
$$

satisfies

$$
\begin{cases}\int x^{k} Q_{\vec{n}}(x) d x=0, & k=0,1, \ldots,|\vec{n}|-2 \\ \int x^{k} Q_{\vec{n}}(x) d x=1, & k=|\vec{n}|-1\end{cases}
$$

- Moments $\mu_{j}^{(i)}=\int x^{j} w_{i}(x) d x$
- $n \times m$ Hankel matrix for ith weight

$$
H_{n, m}^{(i)}=\left(\mu_{j+k-2}^{(i)}\right)_{j=1, \ldots, n, k=1, \ldots, m}
$$

- Block Hankel matrix

$$
H_{\vec{n}}=\left[\begin{array}{lll}
H_{n, n_{1}}^{(1)} & \cdots & H_{n, n_{r}}^{(r)}
\end{array}\right], \quad n=|\vec{n}|
$$

- Conditions for type I MOPs give linear system with matrix H_{n}.
- Conditions for type II MOP give linear system with matrix $H_{\vec{n}}^{T}$.
- Both type of MOPs exist if and only if $\operatorname{det} H_{\vec{n}} \neq 0$.

Riemann-Hilbert problem (case $r=2$)

In the $\mathbf{R H}$ problem we look for a 3×3 matrix valued function $Y(z)$ satisfying

RH-Y1 $Y: \mathbb{C} \backslash \mathbb{R} \rightarrow \mathbb{C}^{3 \times 3}$ is analytic.
RH-Y2 Y has boundary values for $x \in \mathbb{R}$, denoted by $Y_{ \pm}(x)$, and

$$
Y_{+}(x)=Y_{-}(x)\left(\begin{array}{ccc}
1 & w_{1}(x) & w_{2}(x) \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \text { for } x \in \mathbb{R}
$$

RH-Y3 As $z \rightarrow \infty$,

$$
Y(z)=\left(I+\mathcal{O}\left(\frac{1}{z}\right)\right)\left(\begin{array}{ccc}
z^{n_{1}+n_{2}} & 0 & 0 \\
0 & z^{-n_{1}} & 0 \\
0 & 0 & z^{-n_{2}}
\end{array}\right)
$$

Solution in terms of type II MOPs

Theorem (Van Assche, Geronimo, K (2001))
RH problem has a unique solution if and only if the type II MOP $P_{\vec{n}}$ uniquely exists.
In that case the first row of Y is given by

$$
\left(\begin{array}{ccc}
P_{\vec{n}}(z) & \frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{P_{\vec{n}}(s) w_{1}(s)}{s-z} d s & \frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{P_{\vec{n}}(s) w_{2}(s)}{s-z} d s \\
* & * & * \\
* & * & *
\end{array}\right)
$$

- Other rows are filled using $P_{\vec{n}-\vec{e}_{1}}$ and $P_{\vec{n}-\vec{e}_{2}}$ (if they exist).
- The type I MOPs are in the inverse of Y.

$$
Y^{-1}(z)=\left(\begin{array}{ccc}
-\int_{-\infty}^{\infty} \frac{Q_{\vec{n}}(s)}{s-z} d s & * & * \\
2 \pi i A_{\vec{n}}^{(1)}(z) & * & * \\
2 \pi i A_{\vec{n}}^{(2)}(z) & * & *
\end{array}\right)
$$

where $Q_{\vec{n}}=A_{\vec{n}}^{(1)} w_{1}+A_{\vec{n}}^{(2)} w_{2}$

- Other columns contain type I MOPs with multi-indices $\vec{n}+\vec{e}_{1}$ and $\vec{n}+\vec{e}_{2}$.

Biorthogonal ensembles

- Probability density function on \mathbb{R}^{n} of the form

$$
\frac{1}{Z_{n}} \operatorname{det}\left[f_{i}\left(x_{j}\right)\right]_{i, j=1}^{n} \cdot \operatorname{det}\left[g_{i}\left(x_{j}\right)\right]_{i, j=1}^{n},
$$

- Normalization constant

$$
Z_{n}=\int_{\mathbb{R}^{n}} \operatorname{det}\left[f_{i}\left(x_{j}\right)\right]_{i, j=1}^{n} \cdot \operatorname{det}\left[g_{i}\left(x_{j}\right)\right]_{i, j=1}^{n} d x_{1} \cdots d x_{n} \neq 0
$$

- By Andréief (1883) identity

$$
Z_{n}=n!\operatorname{det} M_{n}, \quad M_{n}=\left[\int_{-\infty}^{\infty} f_{i}(x) g_{j}(x) d x\right]_{i, j=1}^{n}
$$

- Corollary: $\operatorname{det} M_{n} \neq 0$

Correlation kernel

- Biorthogonal ensemble is a determinantal point process with correlation kernel

$$
K_{n}(x, y)=\sum_{i=1}^{n} \sum_{j=1}^{n}\left(M_{n}^{-1}\right)_{j i} f_{i}(x) g_{j}(y) .
$$

- Representation as determinant

$$
K_{n}(x, y)=-\frac{1}{\operatorname{det} M_{n}} \operatorname{det}\left[\begin{array}{cc}
M_{n} & f_{1}(x) \\
\vdots \\
g_{1}(y) & \cdots \\
g_{n}(y) & 0
\end{array}\right]
$$

- Perform elementary row and column transformations to transform M_{n} to the identity matrix I_{n}

Correlation kernel (cont.)

- After transformation $M_{n} \mapsto I_{n}$

$$
K_{n}(x, y)=-\operatorname{det}\left[\begin{array}{cccc}
& & & \phi_{1}(x) \\
& & \vdots \\
\psi_{1}(y) & \cdots & \psi_{n}(y) & 0
\end{array}\right]
$$

with functions ϕ_{j} and ψ_{j} satisfying

$$
\int_{-\infty}^{\infty} \phi_{i}(x) \psi_{j}(x) d x=\delta_{i, j} \quad \text { (biorthogonality) }
$$

- Also single sum $K_{n}(x, y)=\sum_{j=1}^{n} \phi_{j}(x) \psi_{j}(y)$

Correlation kernel (cont.)

- Characterization:
K_{n} is the kernel of the projection operator onto the linear span of f_{1}, \ldots, f_{n}, whose kernel is the orthogonal complement of the linear span of g_{1}, \ldots, g_{n}.
- Operator

$$
K_{n}: h \mapsto K_{n} h, \quad K_{n} h(x)=\int K_{n}(x, y) h(y) d y
$$

- Characterization

$$
\begin{array}{ll}
K_{n} h=h & \text { if } h=\alpha_{1} f_{1}+\alpha_{2} f_{2}+\cdots+\alpha_{n} f_{n} \\
K_{n} h=0 & \text { if } \int h(x) g_{j}(x) d x=0 \text { for } j=1, \ldots, n
\end{array}
$$

Definition

A multiple orthogonal polynomial (MOP) ensemble is a biorthogonal ensemble with functions

$$
\begin{array}{rlrl}
f_{i}(x) & =x^{i-1}, & & \text { for } i=1, \ldots, n, \\
g_{i}(y) & =y^{i-1} w_{1}(y), & & \text { for } i=1, \ldots, n_{1}, \\
g_{n_{1}+i}(y) & =y^{i-1} w_{2}(y), & & \text { for } i=1, \ldots, n_{2}, \\
\vdots & & \\
g_{n_{1}+\cdots+n_{r-1}+i}(y) & =y^{i-1} w_{r}(y), & \text { for } i=1, \ldots, n_{r} .
\end{array}
$$

Here w_{1}, \ldots, w_{r} are given functions, and n_{1}, \ldots, n_{r} are non-negative integers such that

$$
n=n_{1}+\cdots+n_{r} .
$$

- In a MOP ensemble the matrix M_{n} is the block Hankel matrix

$$
M_{n}=H_{\vec{n}}=\left[\begin{array}{lll}
H_{n, n_{1}}^{(1)} & \cdots & H_{n, n_{r}}^{(r)}
\end{array}\right], \quad n=|\vec{n}|
$$

- $\operatorname{det} H_{\vec{n}} \neq 0$ and so the MOPs exist.
- The RH problem has a unique solution.

Christoffel Darboux formula

Theorem (Bleher-K (2004) for $r=2$, Daems-K (2004))
The correlation kernel K_{n} for the MOP ensemble is given by

$$
K_{n}(x, y)=\frac{1}{2 \pi i(x-y)} \times
$$

$$
\left(\begin{array}{llll}
0 & w_{1}(y) & \cdots & \left.w_{r}(y)\right) Y_{+}^{-1}(y) Y_{+}(x)
\end{array}\right.
$$

- Assume $r=2$. Let $L_{n}(x, y)$ be the right-hand side

$$
L_{n}(x, y)=\frac{1}{2 \pi i(x-y)}\left(\begin{array}{lll}
0 & w_{1}(y) & \left.w_{2}(y)\right) Y_{+}^{-1}(y) Y_{+}(x)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), ~
\end{array}\right.
$$

We show
(a) $L_{n} h=h$ if h is a polynomial of degree $\leq n-1$,
(b) $L_{n} h=0$ if $\int h(y) y^{j-1} w_{i}(y) d y=0$ for $j=1, \ldots, n_{i}$, and $i=1,2$.

- Let h be a polynomial of degree $\leq n-1$.

$$
\begin{aligned}
L_{n}(x, y) h(y) & =\frac{h(y)}{2 \pi i(x-y)}\left(\begin{array}{lll}
0 & w_{1}(y) & \left.w_{2}(y)\right) Y_{+}^{-1}(y) Y_{+}(x)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
& =\frac{h(y)-h(x)}{2 \pi i(x-y)}\left(\begin{array}{lll}
0 & w_{1}(y) & \left.w_{2}(y)\right) Y_{+}^{-1}(y) Y_{+}(x)
\end{array}\right. \\
& +\frac{h(x)}{2 \pi i(x-y)}\left(\begin{array}{lll}
1 \\
0 \\
0
\end{array}\right) \\
w_{1}(y) & \left.w_{2}(y)\right) Y_{+}^{-1}(y) Y_{+}(x)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
\end{array}\right)
\end{aligned}
$$

- $\int L_{n}(x, y) h(y) d y$ splits into two integrals.

Proof of (a), first integral

- First integral has

$$
\begin{aligned}
& \underbrace{\frac{h(y)-h(x)}{2 \pi i(x-y)}}_{\text {olynomial in } \mathbf{y}} \\
& \text { of degree } \leq n-2
\end{aligned}
$$

$$
\underbrace{\left(\begin{array}{lll}
0 \quad w_{1}(y) & \left.w_{2}(y)\right) Y_{+}^{-1}(y)
\end{array} Y_{+}(x)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right.}_{\begin{array}{c}
\text { vector with linear forms } \\
\text { of type I MOPs }
\end{array}}
$$

- Integral with respect to y is 0 for every x because of type I multiple orthogonality.

Proof of (a), second integral

- Second integral is

$$
\frac{h(x)}{2 \pi i} \int_{-\infty}^{\infty}\left(0 \quad w_{1}(y) \quad w_{2}(y)\right) Y_{+}^{-1}(y) Y_{+}(x)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \frac{d y}{x-y}
$$

- From jump condition in RH problem

$$
\left(\begin{array}{lll}
0 & w_{1}(y) & w_{2}(y)
\end{array}\right) Y_{+}^{-1}(y)=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)\left(Y_{-}^{-1}(y)-Y_{+}^{-1}(y)\right)
$$

- It remains to prove

$$
\frac{1}{2 \pi i} \int_{-\infty}^{\infty}\left[\frac{Y_{-}^{-1}(y)-Y_{+}^{-1}(y)}{x-y} Y_{+}(x)\right]_{1,1} d y=1 .
$$

$$
\frac{1}{2 \pi i} \int_{-\infty}^{\infty}\left[\frac{Y_{-}^{-1}(y)-Y_{+}^{-1}(y)}{x-y} Y_{+}(x)\right]_{1,1} d y=1
$$

- Replace $x \in \mathbb{R}$ by z with $\operatorname{Im} z>0$.
- $y \mapsto\left[\frac{Y^{-1}(y)}{z-y} Y(z)\right]_{1,1}$ is analytic in lower half plane and is $O\left(y^{-n-1}\right)$ as $y \rightarrow \infty$. By Cauchy's theorem

$$
\frac{1}{2 \pi i} \int_{-\infty}^{\infty}\left[\frac{Y_{-}^{-1}(y)}{z-y} Y(z)\right]_{1,1} d y=0
$$

- $y \mapsto\left[\frac{Y^{-1}(y)}{z-y} Y(z)\right]_{1,1}$ has pole in upper half plane and same behavior at infinity. By residue calculation

$$
\frac{1}{2 \pi i} \int_{-\infty}^{\infty}\left[\frac{Y_{+}^{-1}(y)}{z-y} Y(z)\right]_{1,1} d y=-1
$$

- Subtract the two results and then let $z \rightarrow x \in \mathbb{R}$.

Proof of (b)

- Assume $\int h(y) y^{j-1} w_{i}(y) d y=0$ for $j=1, \ldots, n_{j}$, $i=1,2$. We have to prove $L_{n} h(x)=0$
- We have that $L_{n} h(x)=$

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{-\infty}^{\infty} h(y)\left(\begin{array}{lll}
0 & w_{1}(y) & \left.w_{2}(y)\right)
\end{array}\right) \frac{Y_{+}^{-1}(y)-Y_{+}^{-1}(x)}{x-y} Y_{+}(x)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) d y \\
& \quad+\frac{1}{2 \pi i} \int_{-\infty}^{\infty} h(y)\left(\begin{array}{lll}
0 & w_{1}(y) & \left.w_{2}(y)\right) \frac{Y_{+}^{-1}(x)}{x-y} Y_{+}(x)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) d y
\end{array} .\right.
\end{aligned}
$$

- Second integral is obviously zero.
- In first integral we can take out $Y_{+}(x)\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.
- We are left to evaluate

$$
\frac{1}{2 \pi i} \int_{-\infty}^{\infty} h(y)\left(0 \quad w_{1}(y) \quad w_{2}(y)\right) \frac{Y_{+}^{-1}(y)-Y_{+}^{-1}(x)}{x-y} d y
$$

- Second row of Y^{-1} has polynomials of degree $\leq n_{1}$
- Third row of Y^{-1} has polynomials of degree $\leq n_{2}$
- Hence for every x, the entries of

$$
\left(0 \quad w_{1}(y) \quad w_{2}(y)\right) \frac{Y_{+}^{-1}(y)-Y_{+}^{-1}(x)}{x-y}
$$

take the form
$w_{1}(y)\left(\right.$ poly of deg $\left.\leq n_{1}-1\right)+w_{2}(y)\left(\right.$ poly of deg $\left.\leq n_{2}-1\right)$

- This is in the linear span of g_{1}, \ldots, g_{n} and the integral is zero.

Examples of MOP ensembles

- Non-intersecting Brownian motions
- Non-intersecting squared Bessel paths
- Random matrix model with external source
- Two matrix model
- Brownian motion transition probability density

$$
p_{t}(x, y)=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{(y-x)^{2}}{2 t}}
$$

- Biorthogonal ensemble of non-intersecting Brownian motions

$$
\frac{1}{Z_{n}} \operatorname{det}\left[p_{t}\left(a_{i}, x_{j}\right)\right]_{i, j=1}^{n} \cdot \operatorname{det}\left[p_{T-t}\left(x_{i}, b_{j}\right)\right]_{i, j=1}^{n}
$$

with Z_{n} depending on a_{1}, \ldots, a_{n} and $b_{1}, \ldots b_{n}$.

- In confluent limit where all $a_{j} \rightarrow a$ both Z_{n} and the first determinant tend to 0 .
- Take limit using L'Hôpital's rule. First determinant becomes

$$
\operatorname{det}\left[\frac{\partial^{i-1}}{\partial a^{i-1}} p_{t}\left(a, x_{j}\right)\right]_{i, j=1}^{n}
$$

- From $p_{t}(a, x)=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{(x-a)^{2}}{2 t}}$ we get

$$
\frac{\partial^{i-1}}{\partial a^{i-1}} p_{t}(a, x)=\binom{\text { polynomial in } x}{\text { of degree } i-1} e^{-\frac{1}{2 t}\left(x^{2}-2 a x\right)}
$$

- Apply appropriate row operations to the determinant and take out common factors from each column
$\operatorname{det}\left[\frac{\partial^{i-1}}{\partial a^{i-1}} p_{t}\left(a, x_{j}\right)\right]_{i, j=1}^{n} \propto \operatorname{det}\left[x_{j}^{i-1}\right]_{i, j=1}^{n} \cdot \prod_{j=1}^{n} e^{-\frac{1}{2 t}\left(x_{j}^{2}-2 a x_{j}\right)}$
- Similarly when all $b_{j} \rightarrow b$ we get a second factor

$$
\propto \operatorname{det}\left[x_{j}^{i-1}\right]_{i, j=1}^{n} \cdot \prod_{j=1}^{n} e^{-\frac{1}{2(T-t)}\left(x_{j}^{2}-2 b x_{j}\right)}
$$

Non-intersecting Brownian motions

- In fully confluent limit all $a_{j} \rightarrow a$, all $b_{j} \rightarrow b$, we find an OP ensemble with quadratic potential (=GUE)
$\frac{1}{Z_{n}}\left(\operatorname{det}\left[x_{j}^{i-1}\right]_{i, j=1}^{n} \prod_{j=1}^{n} e^{-\frac{1}{2 t}\left(x_{j}^{2}-2 a x_{j}\right)}\right)\left(\operatorname{det}\left[x_{j}^{i-1}\right]_{i, j=1}^{n} \prod_{j=1}^{n} e^{-\frac{1}{2(T-t)}\left(x_{j}^{2}-2 b x_{j}\right)}\right)$

$$
=\frac{1}{Z_{n}} \Delta(x)^{2} \prod_{j=1}^{n} e^{-V\left(x_{j}\right)}, \quad V(x)=\frac{T}{t(T-t)}\left(\frac{x^{2}}{2}-\left(\left(1-\frac{t}{T}\right) a+\frac{t}{T} b\right) x\right)
$$

- If n_{1} of the b_{j} 's tend to b_{1} and the remaining n_{2} tend to b_{2}, then we have to treat the first n_{1} rows separately from the last n_{2} rows in taking the confluent limit.
- The second determinant now becomes

$$
\operatorname{det}\left[g_{i}\left(x_{j}\right)\right]_{i, j=1}^{n}
$$

with functions

$$
\begin{aligned}
g_{i}(x) & =x^{i-1} e^{-\frac{1}{2(T-t)}\left(x^{2}-2 b_{1} x\right)}, & & i=1, \ldots, n_{1} \\
g_{n_{1}+i}(x) & =x^{i-1} e^{-\frac{1}{2(T-t)}\left(x^{2}-2 b_{2} x\right)}, & & i=1, \ldots, n_{2}
\end{aligned}
$$

- Together with $\Delta(x) \prod_{j=1}^{n} e^{-\frac{1}{2 t}\left(x_{j}^{2}-2 a x_{j}\right)}$ we now find a MOP ensemble with two weights and $\vec{n}=\left(n_{1}, n_{2}\right)$.

Non-intersecting Brownian motions

- Two Gaussian weights

$$
w_{i}(x)=e^{-V_{i}(x)}, \quad V_{i}(x)=\frac{T}{t(T-t)}\left(\frac{x^{2}}{2}-c_{i} x\right)
$$

where $c_{i}=\left(1-\frac{t}{T}\right) a+\frac{t}{T} b_{i}$ for $i=1,2$.

- Associated MOPs are multiple Hermite polynomials

- Squared Bessel processes is diffusion process on $[0, \infty)$ with transition probability density

$$
p_{t}(x, y)=\left.\frac{1}{2 t}\left(\frac{y}{x}\right)^{\alpha / 2} e^{-\frac{1}{2 t}(x+y)}\right|_{\alpha}\left(\frac{\sqrt{x y}}{t}\right), \quad x, y>0
$$

- I_{α} is the modified Bessel function of order $\alpha>-1$.
- In confluent limit all $a_{j} \rightarrow a$, all $b_{j} \rightarrow 0$, this leads to a MOP ensemble with two weights

$$
\begin{aligned}
& w_{1}(x)=x^{\alpha / 2} e^{-\frac{T_{x}}{2 t(T-t)}} l_{\alpha}\left(\frac{\sqrt{a x}}{t}\right) \\
& w_{2}(x)=x^{(\alpha+1) / 2} e^{-\frac{T_{x}}{2 t(T-t)}} I_{\alpha+1}\left(\frac{\sqrt{a x}}{t}\right)
\end{aligned}
$$

and $n_{1}=\lceil n / 2\rceil, n_{2}=\lfloor n / 2\rfloor$

Non-intersecting squared Bessel paths

- For $a \rightarrow 0$ this further reduces to a Laguerre unitary ensemble (LUE)
- Hermitian matrix model with external source

$$
\frac{1}{Z_{n}} e^{-\operatorname{Tr}(V(M)-A M)} d M
$$

- External source A is a given Hermitian $n \times n$ matrix
- Joint p.d.f. for eigenvalues

$$
P\left(x_{1}, \ldots, x_{n}\right) \propto \Delta(x)^{2} \prod_{j=1}^{n} e^{-V\left(x_{j}\right)} \int_{U(n)} e^{\operatorname{Tr} A U X U^{-1}} d U
$$

where $A=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right), X=\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right)$.

- The integral over the unitary group can be done by the Harish-Chandra / Itzykson-Zuber formula.
- If all a_{i} and all x_{j} are distinct then

$$
\int_{U(n)} e^{\operatorname{Tr} A U X U^{-1}} d U \propto \frac{\operatorname{det}\left[e^{a_{i} x_{j}}\right]_{i, j=1}^{n}}{\Delta(a) \Delta(x)}
$$

- P.d.f. for eigenvalues

$$
\propto \Delta(x) \prod_{j=1}^{n} e^{-V\left(x_{j}\right)} \frac{\operatorname{det}\left[e^{a_{i} x_{j}}\right]_{i, j=1}^{n}}{\Delta(a)}
$$

- If some a_{i} 's coincide, we take the confluent limit.
- If n_{1} of the a_{j} 's tend to c_{1} and $n_{2}=n-n_{1}$ to c_{2}, then we find MOP ensemble with two weights

$$
w_{1}(x)=e^{-\left(V(x)-c_{1} x\right)}, \quad w_{2}(x)=e^{-\left(V(x)-c_{2} x\right)} .
$$

- MOP ensemble with weights

$$
w_{1}(x)=e^{-\left(V(x)-c_{1} x\right)}, \quad w_{2}(x)=e^{-\left(V(x)-c_{2} x\right)}
$$

and $\vec{n}=\left(n_{1}, n_{2}\right)$.

- In Gaussian case $V(x)=\frac{1}{2} x^{2}$, the eigenvalues in the external source model have the same joint distribution has the positions of non-intersecting Brownian motions with one starting position and two ending positions.
- If V is non-Gaussian then we have something else.
- The Hermitian two matrix model

$$
\frac{1}{Z_{n}} e^{-\operatorname{Tr}\left(V\left(M_{1}\right)+W\left(M_{2}\right)-\tau M_{1} M_{2}\right)} d M_{1} d M_{2}
$$

is a probability measure on pairs $\left(M_{1}, M_{2}\right)$ of $n \times n$ Hermitian matrices.

- V and W are polynomial potentials
- $\tau \neq 0$ is a coupling constant

Determinantal point process

- Explicit formula for joint p.d.f. of the eigenvalues of M_{1} and M_{2}

$$
\frac{1}{(n!)^{2}} \operatorname{det}\left(\begin{array}{ll}
K_{11}\left(x_{i}, x_{j}\right) & K_{12}\left(x_{i}, y_{j}\right) \\
K_{21}\left(y_{i}, x_{j}\right) & K_{22}\left(y_{i}, y_{j}\right)
\end{array}\right)
$$

with 4 kernels that are expressed in terms of biorthogonal polynomials

- Two sequences $\left(p_{j}\right)_{j}$ and $\left(q_{k}\right)_{k}$ of monic polynomials that satisfy if $j \neq k$,

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p_{j}(x) q_{k}(y) e^{-(V(x)+w(y)-\tau x y)} d x d y=h_{k}^{2} \delta_{j, k} .
$$

Mehta-Shukla (1994), Eynard-Mehta (1998)
Ercolani-McLaughlin (2001) Bertola-Eynard-Harnad (2002-04)

- The kernels are expressed in terms of these biorthogonal polynomials and transformed functions

$$
\begin{aligned}
Q_{j}(x) & =\int_{-\infty}^{\infty} q_{j}(y) e^{-(V(x)+W(y)-\tau x y)} d y \\
P_{k}(y) & =\int_{-\infty}^{\infty} p_{k}(x) e^{-(V(x)+W(y)-\tau x y)} d x
\end{aligned}
$$

as follows:

$$
\begin{array}{rlrl}
K_{11}\left(x_{1}, x_{2}\right) & =\sum_{k=0}^{n-1} \frac{1}{h_{k}^{2}} p_{k}\left(x_{1}\right) Q_{k}\left(x_{2}\right), \quad K_{12}(x, y) & =\sum_{k=0}^{n-1} \frac{1}{h_{k}^{2}} p_{k}(x) q_{k}(y), \\
K_{21}(y, x) & =\sum_{k=0}^{n-1} \frac{1}{h_{k}^{2}} P_{k}(y) Q_{k}(x) \quad K_{22}\left(y_{1}, y_{2}\right)=\sum_{k=0}^{n-1} \frac{1}{h_{k}^{2}} P_{k}\left(y_{1}\right) q_{k}\left(y_{2}\right) \\
& -e^{-(V(x)+W(y)-\tau x y)},
\end{array}
$$

Biorthogonality

- Biorthogonality condition for p_{n}

$$
\int_{-\infty}^{\infty} p_{n}(x) Q_{k}(x) d x=0 \quad \text { for } k=0,1, \ldots, n-1
$$

where $Q_{k}(x)=e^{-V(x)} \int_{-\infty}^{\infty} q_{k}(y) e^{-(W(y)-\tau x y)} d y$.

- Equivalently, we may replace $q_{k}(y)$ by y^{k-1}

$$
w_{k}(x)=e^{-V(x)} \int_{-\infty}^{\infty} y^{k-1} e^{-(W(y)-\tau x y)} d y
$$

and $\quad \int_{-\infty}^{\infty} p_{n}(x) w_{k}(x) d x=0 \quad$ for $k=1, \ldots, n$.

- We integrate by parts if $k \geq \operatorname{deg} W$.

Biorthogonality

- Calculation for $W(y)=\frac{1}{4} y^{4}, k \geq 4$.

$$
\begin{aligned}
w_{k}(x) & =e^{-V(x)} \int_{-\infty}^{\infty} y^{k-1} e^{-\left(\frac{1}{4} y^{4}-\tau x y\right)} d y \\
& =-e^{-V(x)} \int_{-\infty}^{\infty} y^{k-4} e^{\tau x y} d\left(e^{-\frac{1}{4} y^{4}}\right) \\
& =e^{-V(x)} \int_{-\infty}^{\infty}\left((k-4) y^{k-5}+\tau x y^{k-4}\right) e^{-\left(\frac{1}{4} y^{4}-\tau x y\right)} d y \\
& =(k-4) w_{k-4}(x)+\tau x w_{k-3}(x)
\end{aligned}
$$

- This leads to multiple orthogonality

Multiple orthogonality

Proposition (K-McLaughlin (2005))

Suppose $\operatorname{deg} W=r+1$. Then the biorthogonal polynomial p_{n} is a multiple orthogonal polynomial with r weights w_{1}, \ldots, w_{r}, and near-diagonal multi-index $\left(n_{1}, \ldots, n_{r}\right)$.
If n is a multiple of r then $n_{j}=\frac{n}{r}$ for every j.

- The eigenvalues of M_{1}, when averaged over M_{2}, are a MOP ensemble with r weights.
- There is a RH problem of size $(r+1) \times(r+1)$.
- Asymptotic analysis of this RH problem was done for $W(y)=\frac{1}{4} y^{4}$ by Duits-K (2009) and for $W(y)=\frac{1}{4} y^{4}+\frac{\alpha}{2} y^{2}$ by Duits-K-Mo (2012)

