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Point processes

@ A configuration X is a subset of R with
#(X N a, b]) < +oo for every bounded interval
[a,b] C R.

@ A (locally finite) point process on R is a probability
measure on the space of all configurations.

@ A point process P is an n-point process if

P(#X =n) = 1.

o If P(x1,...,x,) is a probability density function on
R" which is invariant under permutation of
coordinates,

P(Xg(l), e ,Xg(n)) = P(Xl7 e 7X,,)

then P defines an n-point process.



Correlation functions

@ The 1-point correlation function p;(x) of X satisfies

/A pr(x)dx = E#(X 1 A)]

p1(x) is the particle density.

@ The 2-point correlation function py(x,y) is such
that

o for disjoint sets A and B

//pz(x,y)dxdy:m#(x,y)exz\XeA,yeB},
AJB

o for any set A

//pz(x,y)dxdyzE [#(xy) X2 | x €A y €A x<y]
AJA



Higher order correlation functions

@ The k-point correlation function p, (if it exists) has
o for disjoint sets A;

/ / Pk X1yewoy X )Xm -ka
A1 Ak

:E[#(xl,...,xk)exkyxjeAj],

o for a single set A

/ /Pk X1y ooy X Xm -ka

(xl,..., ) € (XNAK | x < - <xk].



Marginal densities

@ For an invariant pdf P(x,...,x,) on R” the n-point
process has correlation functions

n!
pk(Xla-“?Xk)ZM/'“/P(Xla'--vxn)kaJrl“'an
L —

n — k times



Determinantal point process

@ A point process with correlation functions p, is
determinantal (fermionic) if there exists a kernel
K(x, y) such that

pr(X1, ..., xx) = det [K(X,-,xj)]f.‘d.:1

for every k and every x, ..., x.
o K is called the correlation kernel.



Biorthogonal ensembles

@ An n-point process is a biorthogonal ensemble if
there exist two sequences of functions f,,...,f, and

81,---,8n
1 n n
P(x1,%2, ., Xa) = Z det[fi(xj)]i,jzl : det[gi(xj)]iJ:r

@ This is a determinantal point process with
correlation kernel

Kalxoy) =D 3 fi(¥)gily) [M7;

i=1 j=1

where M is the matrix

M= (M), M= [ (e



Biorthogonal functions

o We may find ¢; € span{fy,...,f},
Yy € span{gi,..., &}, such that

/_: i (x) i (x)dx = 6.

@ Then ;
Kalx,y) = D és(x)¥5(y)

and 1
P(x1,...,xp) = ] det[K,(x;, x;)]7

ij=1-

o An OP ensemble has  f(x) = gj(x) = /w(x) ¥}
@ Other examples come from non-intersecting paths.



The Karlin-McGregor theorem (1959)

o Let p:(a; x) be the transition probability density of a
one-dimensional strong Markov process with
continuous sample paths.

o Consider n independent copies Xi(t),..., X,(t)
conditioned so that

Xi(0) = g
where a; < a, < .- < a, are given values. Let £,
..., E, be Borel sets so that sup E; < inf E;; for
j=1...,n—1.
@ Then

/ . / det [pe(ai, x;)]7 ;—; dxa -+ - dx,
E n

is equal to the probability that X;(t) € E; for
j=1,...,nin such a way that the paths have not
intersected in the time interval [0, ¢]



Proof of the Karlin-McGregor theorem, step 1

o Write

pi(ai, E;) = / pe(ai, x;)dx;
E

so that we have the determinant

det [p:(a;, -)],J -

o Expand the determinant

det [p:(a;, £;)];;_, ng” )HPt(aj,Ea(j))
j=1
:ngn(a)P(A

where for a permutation o, we use A, to denote
the event that Xj(t) € E,( for every j=1,...,n



Proof of the Karlin-McGregor theorem, step 2

@ We decompose
A, =B, UC,

where
o B, is the event that Xj(t) € E,(;) for j=1,...,n and
the paths have not intersected in the time interval
[0, t], and
o G, =As\ B,
o If 0 #id then P(B,) = 0 (because of continuous
sample paths). Hence



Proof of the Karlin-McGregor theorem, step 3

o For a transposition 7 = (i,/"), we use C,, to denote
the event
(1) Xj(t) € E,(j) for every j=1,...,n, and
(2) thereis s € (0, t] so that
© the paths do not intersect in the time interval (0, s),
9 X;(S) = X,'/(S), and
Q if Xi(s) = Xj(s), for some 1 < j < j < n, then i <},
and if /i = j, then // <.
@ We have a disjoint union C, =J_G, . so that

P(C,) =) P(C,.).

@ Crucial observation
P(CU,T) - P(CUOT,T)'

This follows from the strong Markov property.



Proof of the Karlin-McGregor theorem, step 4

@ Now we have

Z sgn(o Z Z sgn(o
= Z Z sgn(0)P(Coor.r)

o Make a “change of variables” o — o o7~

> sgn(0)P(C) =D sgn(c o MP(C,r)
= Z Z sgn(o)P(C,
= — ngn(a)P(C

@ Thus > _sgn(c)P(C,) =0, which completes the
proof.



Consequences

@ In the situation of the Karlin-McGregor theorem, if
we condition on the event that the paths have not
intersected in [0, t], then the positions of the paths

n

at time t have joint pdf  — det[p:(a;, x;)];;_,

Z
o This is NOT a determinangal point process. (We
need two determinants).
o Also condition at a later time T > t.
o Starting positions a; < a» < -+ < a, at time 0
o End positions b; < bp < --- < b, at time T
o Non intersecting paths in full time interval [0, T]
@ Then the positions at time t € (0, T) have joint pdf
n

1 n
7 det [p:(a;, xj)],.JZ1 det [pr_+(x;, bj)]i,jzl

o Biorthogonal ensemble with f;(x) = p;(a;, x),
gJ(X) = pT—t(X7 bJ)



Non-intersecting path ensembles

o Let p:(a; x) be the transition probability density of a
one-dimensional strong Markov process with
continuous sample paths.

o Consider n independent copies Xi(t),..., X,(t)
conditioned so that

o Xij(0)=a;, X{(T)=0b; wherea; <---<a,,
by < --- < b, are given values,
o The paths do not intersect in time interval (0, T).

@ Then the joint p.d.f. for the positions of the paths
at time t € (0, T) is equal to

1 n N
7 det [p;(a;, Xj)],',j:1 - det [pr_+(x;, bi)]szl

n

@ This is a determinantal point process.



Confluent case

o Take Brownian motion in the limit a; — a, b; — b.

@ This leads to same p.d.f. (after centering and
scaling) as for the eigenvalues of GUE.




Two different endpoints

@ This is not an OP ensemble!

@ Still Sine kernel in the bulk and Airy kernel at the
edges

o Pearcey kernels at the cusp point (double scaling
limit) Bleher-Kuijlaars (2007)



Non-intersecting squared Bessel paths

25

@ Squared Bessel paths are always positive.
o Sine kernel in the bulk, Airy kernel at soft edges,
and Bessel kernel at the hard edge

@ New kernel at critical time
Kuijlaars-Martinez Finkelshtein-Wielonsky (2011)



Matrix Riemann-Hilbert problem for OPs

@ Given weight w = e Y on R and n € N, find 2 x 2
matrix valued function Y(z) such that

RH-Y1 Y :C\ R — C?*? is analytic.

RH-Y2 Y has boundary values for x € R, denoted
by Y.(x), and

Y.(x) = Y_(x) <(1) e_:(x)) . xeR

RH-Y3 As z — oo,

(o) (5 )



Fokas, Its, Kitaev RH problem for OP

Theorem (Fokas, Its, Kitaev (1992))
The Riemann-Hilbert problem has the unique solution
Vot Pa(2) o f pul2)le) dis

Y(z) =
( ) _27Ti7n—1pn—1(z) —Vn-1 f%ds
R

@ p, is the orthonormal polynomial w.r.t. e~V dx
@ 7, is the leading coefficient of p,.



OP kernel in terms of the RH problem

o OP kernel is
e—V(x¥)\/e— V)
Kn(x,y) = v 271'1'(x\i y) [Y-S-_l(y) Y+(X)]2,1
e~ V() e V()
_Y 27”_()(*{ S (0 DYV <(1)> .



@ The Airy equation y”(z) = zy(z) has the
special solution

Ai(z) = L / e 3ttty
21l Jc
where C is a contour in the complex t-plane that
starts at infinity at angle argt = —27/3 and ends at
angle argt = 27/3.
@ This solution is characterized by its asymptotics as
z — o0 in the sector —7 < argz < T,

. 1 s
Aiz) = PN (1+0(z7%%),
/ Z1/4 2.3/2
Ai(z) = — e 37 (1+0(z737).

e



o Plot of Ai (red) and its derivative Ai’ (blue).



Other solutions

@ Airy function Ai is recessive in the sector
—r/3 <argz < 7/3.
@ Other special solutions are

Ai(e271'i/3z)7 Ai(ef27ﬂ'/32)

o Ai(e*™/3z) is recessive in —1 < argz < —7/3;
o Ai(e72"/3z) is recessive in 7/3 < argz < 7.

@ The three solutions are related by (we use
w = 2m/3)

Ai(z) + w Ai(wz) + w? Ai(w?z) = 0.



Airy Riemann-Hilbert problem

e >\<&>/ 6
A

RH-A1 A:C\ X — C*>*? is analytic.

RH-A2 A, (z) = A_(2)va(z) for z € £ with jump
matrices v, as in figure.

RH-A3 As z — 0o, we have

1 U4 o\ 1 /1 i\ (e3P o
-0 ()) (0 2 S0 (L




Solution of Airy Riemann-Hilbert problem

@ The unique solution of RH-A1, RH-A2, RH-A3 is
given by
Ai —w? Ai(w? 2
Alz) = Var (—i/;\(if()z) i:)uAi’E(:)uzzz))> . O<agz<
—wAi(wz) —w?Ai(w?z)
iw? AV'( wz) iwAi'(w?z)

(i _
( Ai( w 7)) wAi(wz) ))7 o
(8

2m
3 <argz <m,

N —r<argz < ——
iw Al'( —iw? Ai'(wz & ’

3
w Ai(wz)
—i AV (z —iw? Al (wz)

2w
> —?<argz<0.



Airy kernel

@ The Airy kernel
Ai(x) A (y) — AV'(x) Ai(y)
— /0 Ai(x + s) Ai(y + s)ds

KA (x,y) =

can be expressed in terms of the solution of the
Airy RH problem

KAiry(X,y) _ m (0 1) AI_l(y)A+(X) <(1)) if x,y >0,
KA () = 5t (41 D AT AL (1) ifxy <0

and a mixture of these formulas if x and y have
opposite signs.



Scaling limit

@ In appropriate scaling limit, the OP kernel

\/e*V(X)\/e*V(Y)
2mi(x — y)

Kolxoy) = 0 1YY ()

tends to the Airy kernel

1

K9 = 2t =)

© DA MA (o)

@ This will be the goal of the rest of this lecture.



Recall: steepest descent analysis

@ Random matrix ensemble Zie_”Tr V(M) dM

@ The eigenvalue correlation kernel is

\/e—nV(x) \/e—nV(y)
2mi(x — y)

AR DY ()

where Y is the solution of the RH problem

RH-Y1 Y :C\ R — C?*? is analytic,
RH-Y2 Y has boundary values Y. (x) for x € R and

1 e—nV(x)
Yi(x) = Y_(x) (0 1 ) , xeR

zZ" 0

RH-Y3 Y(z) = (I+ 0 (2)) (0 Jt

> as zZz — OQ.



Equilibrium measure

o Balance between mutual repulsion of eigenvalues
and the confining potential V.

@ To minimize
~ [[10g1x vantraut) + [ vissanto

is a well-studied equilibrium problem in logarithmic
potential theory.
Mhaskar-Saff, Gonchar-Rakhmanov (1980s)
@ There is a unique minimizer 1 = i, which has a
density

dpv(x) = pv(x)dx



Equilibrium condition

@ There is a constant /¢ so that

1
2/log = y‘pv(Y)dy +V(x)=¢ on supp(pv)

and

1
2/Iog P y|pv(y)dy+ V(x) >/ on R\supp(pv)



Example: Semicircle law

o In GUE case V(x)=x?> the equilibrium density
can be explicitly calculated

2
pv(x) = ;M, i
—V2<x<V2

o This is Wigner semi-circle law



Real analytic V Deift-Kriecherbauer-McLaughlin (1997)

o If V is real analytic then the support is a finite
union of intervals

N

supp(pv) = | Jla), b

j=1



Global eigenvalue behavior

@ Global (or macroscopic) eigenvalue behavior is
governed by the minimizer of the equilibrium
problem

1
lim —K,(x, x) = pv(x)

n—oo N
@ This is one of the outcomes of the steepest
descent analysis, although it can be established by
more elementary means as well.



Regular cases

@ py > 0 in the interior of each interval,
@ py vanishes like a square root at each endpoint,

° 2 [log 1pv(y)dy + V(x) > ( outside supp(pv ).

y YV V]



Singular cases

@ Singular case |: py vanishes at an interior point

@ Singular case Il: py vanishes to higher order at an
endpoint.

o Singular case Ill: Equality in
2 [ log |X1—y‘pv(y) + V(x) > (¢ at exterior point.

AA A &

o Different local eigenvalue behavior in singular cases
near critical points.



First transformation

@ We use the equilibrium measure in the first
transformation of the RH problem

RH-Y1 Y :C\ R — C?*? is analytic,

1 ean(x)
RH-Y2 Y, (x) = Y_(x) (O 1 ), for x € R,
RH-Y3 Y(z) = <I +0 G)) (ZO z(_)”)' as

Z — OQ.

@ We use g-function

(2) = [ log(z - s)ov(s)ds



First transformation

o We define

ent/2 0 e~ n(g(2)+¢/2) 0
T(Z)_< 0 ent/2 Y(2) 0 enl(g(2)+¢/2)

@ Then T(z) =1+ 0O(1/z) as z — oc.



@ Jumps can all be expressed nicely in terms of
analytic functions ¢4, k=0,..., N.

20k(x) = =g+ (x) —g- () + V(x) =€, x € (b, k1)

@ ¢, has analytic continuation which is such that

8+(x) — g-(x) = =20+ (x) = 2¢4—(x)
for x € (ak, bk) U (ak+1, bk+1)



Jumps for T in one-interval case
1 ef2n¢o 62n¢1+ 1 1 e,2n¢l
0°) (0 en) ()

3 b
@ ¢1(x) >0 for x > b,
® ¢o(x) >0 for x < a,
@ ¢, = —¢1_ is purely imaginary on (a, b) and

di¢l+(x):mpv(x) with  py(x) >0
X



Correlation kernel in terms of T

@ Recall that

\/e—”V(X)\/e—”V(Y)
27mi(x — y)

D YY) o)

Ko(x,y) =

@ Assume x,y € (a, b).
o Transformation Y — T gives

1 —n¢1 (X)
© e ) TN (7).

Ko(x,y) = 2i(x —y)

o This is based on 2g, — V + /= —2¢, on (a,b).



Second transformation T — S

@ Factorization of jump matrix for T on (a, b),

e+ 1\ _( 1 0y/0 1/ 1 0
0 e2néi- | T \e2nh1- 1)\ -1 0) \e2P+ 1)°

@ Open a lens around each [a, b| and define

1 0 .
S=T (—e2"¢1 1) in upper part of the lens

1 0 .
S=T (e2”¢’1 1) in lower part of the lens.

and S = T outside the lenses.



RH problem for S in one-interval case

1 0
e 1
1 e 2 1 e 2
0 1 /\ 0 1

a b

1 0 0 1
e 1 -1 0

@ We have ¢; > 0 on (b,o0) and ¢y > 0 on (—0, a).

@ From Cauchy-Riemann equations:
Rep; <0 on the lips of the lens

provided that py(x) > 0 on (a, b)



Correlation kernel in terms of §

@ We have for x,y € (a, b),

Kn(x,y) = : ) (0 e‘”¢>1+(y)) T_:l(y) T, (x) (e—”¢g+(X)) |

2mi(x —y
o Transformation T — S gives

1
Kn ) = A A
(x.y) 27i(x — y) 8

) B - e no1+(x)
(—endrsl)  gmnor() 5+1()’)5+(X)(en¢1+()<)



Sine kernel in the bulk

@ The outcome of the steepest descent analysis will
be that for x,y € (a+0,b— ),

SSY)Si(x) =T1+0(x—y)  asy—x

@ Then for x and y close to x* € (a, b),

1 e_n¢1+(x)
~ _ang —n¢
Ka(x,y) ~ 27ilx =) ( e (y) g 1+(Y)) ( 14 ()
@ Replacing x,y by x* + — ( and x* 4 then

npy (X*)
we arrive in the limit n —> oo at the sine kernel

sinm(x — y)
m(x—y)



Global parametrix in one-interval case

@ We keep only the jump matrix on [a, b], and look
for N satisfying
RH-N1 N is analytic in C\ [a, b].

RH-N2 N, = N_ (_01 (1)> on (a, b).

RH-N3 N(z) =1+ O (%) as z — o.



Solution in one-interval case

@ A solution in the one-interval case is
N(z) = ( 3 (B(2) +57Y(2)) %(6(2)—51(2))>
—5 (B(2) = 67Y(2)) 3 (B(2) +57(2))

with  B(z) = (=2)"*
o This can be checked from the property [, =if_
on (a, b).
@ The global parametrix is more complicated in the
multi-interval case.



Local parametrix

@ N is unbounded near endpoints z = a and z = b.

o Since S remains bounded near endpoints, N cannot
be a good approximation to S near z = a and z = b.

@ We need local parametrices P in small
neighborhoods

Us(b) ={zeC||z—b| <6}

Us(a) = {z € C||z—a < &}



RH problem for P

@ Matching condition: Uniformly for z € 0U;(b),

P(z) = (/+ 0 (1)) N(z)  asn— oo

n



Reduction to constant jumps

@ We write P in the form

~ [ eht1 0
P = P ( 0 en¢l>

Then P should satisfy jumps
0P, —P (_01 é) on (a,b)N Us(b) [Use d1s = —é1_]

o P, =P._ G (1)) on the lips of the lens inside Us(b).

0P, —P <(1) 1) on (b, 50) N Us(b)



b+6

@ Jump matrices coincide with jump matrices in Airy
RH problem.

@ We solve the RH problem for P by mapping it to
the Airy RH problem.



Reminder: Airy RH problem

(59 (1 13/3 0

As ( — oo, we have

I\ (¢4 0\ 1 (1 i\ (e 0
o= (o ()" S0 (T ae)



Conformal mapping

o We take P in the form
P(z) = Eq(2)A(n*/*f(z))

where

@ ( = f(z) is a conformal map from U;(b) to a
neighborhood of 0 in the (-plane,

e E,(z) is an analytic prefactor

o Then P satisfies the correct jumps.



@ We use the freedom we have in choosing f and E,
to satisfy the matching condition as well

o We want for z on 0Us(b)

E.(2)A(n**f(2)) = (I+0O(1/n))N(z) (ewz) 0 )

0 en¢>1(z)

@ To match the exponential part we have to take

CHEN

@ This is indeed a conformal map, but only in case
equilibrium measure vanishes as square root at b.



Third transformation S — R

@ Similar construction gives the local parametrix,
which we also call P, in a neighborhood of a.

@ Then define

R(z) = S(z2)N(2) %, for z € C\ (s U Us(a) U Us(b))
R(z) = S(z)P(2)7 !, for z € (Us(a) U Us(b)) \ Zs.

@ R is analytic in C\ (XsU0Us(a) UdUs(b)).

@ Since S and N have the same jump matrix on (a, b),
R has analytic continuation across (a + J, b — 9),

o Similarly, R has analytic continuation across parts
of s inside Us(a) and Us(b).



Jumps in the RH problem for R

1 0\, ,
N(e2n¢>1 l)N

o From matching conditions PN~' =71+ O(1/n)
as n — oo, uniformly on 0Us(a) U dUs(b).

@ The other jump matrices are I + O(e™")



Conclusion

@ We are in a good situation and we can conclude

R(z):I+(’)<m) as n — 0o,

uniformly for z € C\ Xg.



Correlation kernel at the edge

@ For x,y in Us(b), we have

1
27mi(x — y)

—no14(x)
(_en¢1+(}’) e_"¢1+(y)) Szl(y)s—i-(x) (een¢1+(x) )

Ko(x,y) =

o Now e ()
enPrrix 0
5. = REOEL0A (7 ) (70 01
and

Er(y) 'R(y) 'R(X)En(x) = I

as x ~ y and n — oo.



Airy kernel at the edge

@ Hence

1

Ka(x,y) = 2i(x —y)

(-1 ) AR A 0) ()

@ For suitable ¢ > 0 we have

2/3 X 2/3 Y
n’>f <b—i— —(cn)2/3> — X, n’>f (b+ —(cn)2/3) — .

@ Rescaled kernel tends to

L1 )Am A ()

2mi(x — y)

which is the Airy kernel for x,y < 0.



Singular cases

@ The steepest descent analysis does not work in
singular cases.
o Singular case |I: py vanishes at an interior point x
o Singular case Il: py vanishes to higher order at an
endpoint.

AA

@ In singular case | we cannot open the lens near x
and get good decay property of €2"*(?) on the lips
of the lens.

@ In singular case Il the Airy parametrix does not
work at the edge point. We cannot match it with
the global parametrix.

*

*



Singular case |l

o If py vanishes like (b — x)?**1/2 with k > 1, we would
need the solution to the following RH problem for
the construction of the local parametrix

10

11
(o) (0 1)
-1 0 U%\w 01

10
11

@ As ( — oo, we have the asymptotic condition

N 1\ (¢ 0 >1<1 i) eat g
vo=(1+0 () (o ) B0 )T, e




W-kernel as scaling limit

@ RH problem cannot be solved with classical special
functions.

o Existence of solution can be proved with operator
theoretic methods (Fredholm theory) and so-called
vanishing lemma ( Zhou (1989)).

Deift, Kriecherbauer, McLaughlin, Venakides,
Zhou (1999)
@ The scaling limit of the OP kernel near the edge is
now

1 )R ()

2ri(x — y

o To prove this we can just follow the proof for the
Airy kernel in the regular case.

@ What can we say about V ?



Differential equation for W

o V satisfies a differential equation.

@ The jump matrices for ¥V are constant on the four
rays and therefore we find that d%\ll satisfies
the same jumps.

d

o Then <d<\U> V~! s entire function, say it is

A = A(Q): J
—V =Av
d¢

o From asymptotic condition it follows that A is
polynomial in (.

For k = 1 the degrees are

degA11 = 1, degA12 = 2,
deg Ap1 = 3, A = —A1;.

o We do not know coefficients of polynomials Aj;.



Introduce extra parameter

@ Modify the RH problem by introducing parameter s
in the asymptotic condition (written here for case

k=1) v(¢) =
z 1
N (¢4 0\ 1 (1 o (it 0
I+0| = —
o) &0 e
@ Jump conditions remain the same.
10
11
0 1 11
-1 0 St 01




@ Solution also depends on s: W = W((;s)
o Differential equation continues to hold

0
— Vv =AVy
¢ ’
with A = A((; s) polynomial in ( of same degrees as
before but with coefficients depending on s.
@ Since jumps do not depend on s, we also have a
differential equation

0
—V = BV
Os

o The two linear ODEs form a Lax pair.

0 1) for some

@ B is rather simple: B = (C —2u 0

u = u(s).



Compatibility

o The compatibility condition -2 eV = 2y

dCos
gives
0B 0A
AB—-BA= — — —
o Os
@ Using this, we can express all entries of A in terms
of u = u(s) and its derivatives, for example

An = —Az = — oo (4usC + 120 + tsss)

o It also follows that v must satisfy a nonlinear
fourth order ODE
1 1 e 15
a5 Y T 24( 2+ 2uug) +gu +s5=0.
@ This is the second member of the Painlevé |
hierarchy.
o Painlevé | equation v, =6u®>+s itself would

be connected with vanishing of equilibrium measure
with exponent 3/2 (which cannot happen).



Description of W

@ To describe V we first need to characterize the
special solution of the second member of the
Painlevé | hierarchy that is involved

o u is characterized by its asymptotic behavior
u(s) ~ 7 (6|s)Y3+0(s!)  ass— +oo.
o Show that this solution has no poles on the real
line, and in particular not a pole at s = 0.

@ Given u we can set up the differential equation
oV B
¢

in particular for s = 0, since v has no pole at s = 0.

o Characterize the solution ¥ by its asymptotic
behavior as { — oo.

AV

Claeys-Vanlessen (2007)



Other singular cases

@ Singular case |: py vanishes at an interior point

@ Singular case Il: py vanishes to higher order at an
endpoint.

o Singular case lll: equality at exterior point.

AdA A &

@ V functions for Painlevé Il 4 hierarchy
Bleher-Its (2003), Claeys-Kuijlaars (2006)
@ V functions for Painlevé | hierarchy
Claeys-Vanlessen (2007)
o Finite size GUE (and generalizations)
Claeys (2008), Mo (2008), Bertola-Lee (2009)



