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Point processes

A configuration X is a subset of R with
#(X ∩ [a, b]) < +∞ for every bounded interval
[a, b] ⊂ R.

A (locally finite) point process on R is a probability
measure on the space of all configurations.

A point process P is an n-point process if

P(#X = n) = 1.

If P(x1, . . . , xn) is a probability density function on
R
n which is invariant under permutation of

coordinates,

P(xσ(1), . . . , xσ(n)) = P(x1, . . . , xn)

then P defines an n-point process.



Correlation functions

The 1-point correlation function ρ1(x) of X satisfies

∫

A

ρ1(x)dx = E[#(X ∩ A)]

ρ1(x) is the particle density.

The 2-point correlation function ρ2(x , y) is such
that

for disjoint sets A and B

∫

A

∫

B

ρ2(x , y)dxdy = E
[
#(x , y) ∈ X 2 | x ∈ A, y ∈ B

]
,

for any set A

∫

A

∫

A

ρ2(x , y)dxdy = E
[
#(x , y) ∈ X 2 | x ∈ A, y ∈ A, x < y

]
.



Higher order correlation functions

The k-point correlation function ρk (if it exists) has

for disjoint sets Aj

∫

A1

· · ·
∫

Ak

ρk(x1, . . . , xk)dx1 · · · dxk

= E

[
#(x1, . . . , xk) ∈ X k | xj ∈ Aj

]
,

for a single set A

∫

A

· · ·
∫

A

ρk(x1, . . . , xk)dx1 · · · dxk

= E

[
#(x1, . . . , xk) ∈ (X ∩ A)k | x1 < · · · < xk

]
.



Marginal densities

For an invariant pdf P(x1, . . . , xn) on R
n the n-point

process has correlation functions

ρk(x1, . . . , xk) =
n!

(n − k)!

∫
· · ·
∫

︸ ︷︷ ︸
n − k times

P(x1, . . . , xn)dxk+1 · · · dxn



Determinantal point process

A point process with correlation functions ρk is
determinantal (fermionic) if there exists a kernel
K (x , y) such that

ρk(x1, . . . , xk) = det [K (xi , xj)]
k

i ,j=1

for every k and every x1, . . . , xk .

K is called the correlation kernel.



Biorthogonal ensembles

An n-point process is a biorthogonal ensemble if
there exist two sequences of functions f1, . . . , fn and
g1, . . . , gn

P(x1, x2, . . . , xn) =
1

Zn

det[fi(xj)]
n
i ,j=1 · det[gi(xj)]ni ,j=1.

This is a determinantal point process with
correlation kernel

Kn(x , y) =
n∑

i=1

n∑

j=1

fi(x)gj(y)
[
M−1

]
j ,i

where M is the matrix

M = (Mi ,j), Mi ,j =

∫
fi(x)gj(x)dx



Biorthogonal functions

We may find φj ∈ span{f1, . . . , fj},
ψk ∈ span{g1, . . . , gk}, such that

∫ ∞

−∞

φj(x)ψk(x)dx = δjk .

Then

Kn(x , y) =
n∑

j=1

φj(x)ψj(y)

and

P(x1, . . . , xn) =
1

n!
det[Kn(xi , xj)]

n
i ,j=1.

An OP ensemble has fj(x) = gj(x) =
√

w(x) x j−1

Other examples come from non-intersecting paths.



The Karlin-McGregor theorem (1959)

Let pt(a; x) be the transition probability density of a
one-dimensional strong Markov process with
continuous sample paths.
Consider n independent copies X1(t), . . . ,Xn(t)
conditioned so that

Xj(0) = aj

where a1 < a2 < · · · < an are given values. Let E1,
. . . , En be Borel sets so that supEj < inf Ej+1 for
j = 1, . . . , n − 1.
Then ∫

E1

· · ·
∫

En

det [pt(ai , xj)]
n

i ,j=1 dx1 · · · dxn

is equal to the probability that Xj(t) ∈ Ej for
j = 1, . . . , n in such a way that the paths have not
intersected in the time interval [0, t]



Proof of the Karlin-McGregor theorem, step 1

Write

pt(ai ,Ej) =

∫

Ej

pt(ai , xj)dxj

so that we have the determinant

det [pt(ai ,Ej)]
n

i ,j=1 .

Expand the determinant

det [pt(ai ,Ej)]
n

i ,j=1 =
∑

σ

sgn(σ)
n∏

j=1

pt(aj ,Eσ(j))

=
∑

σ

sgn(σ)P(Aσ),

where for a permutation σ, we use Aσ to denote
the event that Xj(t) ∈ Eσ(j) for every j = 1, . . . , n.



Proof of the Karlin-McGregor theorem, step 2

We decompose

Aσ = Bσ ∪ Cσ

where

Bσ is the event that Xj(t) ∈ Eσ(j) for j = 1, . . . , n and
the paths have not intersected in the time interval
[0, t], and
Cσ = Aσ \ Bσ.

If σ 6= id then P(Bσ) = 0 (because of continuous
sample paths). Hence

det [pt(ai ,Ej)]
n

i ,j=1 = P(Bid) +
∑

σ

sgn(σ)P(Cσ).

It remains to show that
∑

σ

sgn(σ)P(Cσ) = 0.



Proof of the Karlin-McGregor theorem, step 3

For a transposition τ = (i , i ′), we use Cσ,τ to denote
the event
(1) Xj(t) ∈ Eσ(j) for every j = 1, . . . , n, and
(2) there is s ∈ (0, t] so that

1 the paths do not intersect in the time interval (0, s),
2 Xi (s) = Xi ′(s), and
3 if Xj(s) = Xj ′(s), for some 1 ≤ j < j ′ ≤ n, then i ≤ j ,

and if i = j , then i ′ ≤ j ′.

We have a disjoint union Cσ =
⋃

τ Cσ,τ so that

P(Cσ) =
∑

τ

P(Cσ,τ ).

Crucial observation

P(Cσ,τ ) = P(Cσ◦τ,τ ).

This follows from the strong Markov property.



Proof of the Karlin-McGregor theorem, step 4

Now we have
∑

σ

sgn(σ)P(Cσ) =
∑

σ

∑

τ

sgn(σ)P(Cσ,τ )

=
∑

τ

∑

σ

sgn(σ)P(Cσ◦τ,τ )

Make a “change of variables” σ 7→ σ ◦ τ−1

∑

σ

sgn(σ)P(Cσ) =
∑

τ

∑

σ

sgn(σ ◦ τ−1)P(Cσ,τ )

= −
∑

σ

∑

τ

sgn(σ)P(Cσ,τ )

= −
∑

σ

sgn(σ)P(Cσ)

Thus
∑

σ sgn(σ)P(Cσ) = 0, which completes the
proof.



Consequences

In the situation of the Karlin-McGregor theorem, if
we condition on the event that the paths have not
intersected in [0, t], then the positions of the paths

at time t have joint pdf
1

Zn

det [pt(ai , xj)]
n

i ,j=1

This is NOT a determinantal point process. (We
need two determinants).

Also condition at a later time T > t.
Starting positions a1 < a2 < · · · < an at time 0
End positions b1 < b2 < · · · < bn at time T

Non intersecting paths in full time interval [0,T ]

Then the positions at time t ∈ (0,T ) have joint pdf

1

Zn

det [pt(ai , xj)]
n

i ,j=1 det [pT−t(xi , bj)]
n

i ,j=1

Biorthogonal ensemble with fj(x) = pt(aj , x),
gj(x) = pT−t(x , bj).



Non-intersecting path ensembles

Let pt(a; x) be the transition probability density of a
one-dimensional strong Markov process with
continuous sample paths.

Consider n independent copies X1(t), . . . ,Xn(t)
conditioned so that

Xj(0) = aj , Xj(T ) = bj where a1 < · · · < an,
b1 < · · · < bn are given values,
The paths do not intersect in time interval (0,T ).

Then the joint p.d.f. for the positions of the paths
at time t ∈ (0,T ) is equal to

1

Zn

det [pt(ai , xj)]
n

i ,j=1 · det [pT−t(xj , bi)]
n

i ,j=1

This is a determinantal point process.



Confluent case

Take Brownian motion in the limit aj → a, bj → b.

This leads to same p.d.f. (after centering and
scaling) as for the eigenvalues of GUE.
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Two different endpoints
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This is not an OP ensemble!

Still Sine kernel in the bulk and Airy kernel at the
edges

Pearcey kernels at the cusp point (double scaling
limit) Bleher-Kuijlaars (2007)



Non-intersecting squared Bessel paths
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Squared Bessel paths are always positive.

Sine kernel in the bulk, Airy kernel at soft edges,
and Bessel kernel at the hard edge

New kernel at critical time
Kuijlaars-Mart́ınez Finkelshtein-Wielonsky (2011)



Matrix Riemann-Hilbert problem for OPs

Given weight w = e−V on R and n ∈ N, find 2× 2
matrix valued function Y (z) such that

RH-Y1 Y : C \ R → C
2×2 is analytic.

RH-Y2 Y has boundary values for x ∈ R, denoted
by Y±(x), and

Y+(x) = Y−(x)

(
1 e−V (x)

0 1

)
, x ∈ R.

RH-Y3 As z → ∞,

Y (z) =

(
I +O

(
1

z

))(
zn 0
0 z−n

)



Fokas, Its, Kitaev RH problem for OP

Theorem (Fokas, Its, Kitaev (1992))

The Riemann-Hilbert problem has the unique solution

Y (z) =




γ−1
n pn(z)

1
2πi
γ−1
n

∫
R

pn(s)w(s)
s−z

ds

−2πiγn−1pn−1(z) −γn−1

∫
R

pn−1(s)w(s)
s−z

ds




pn is the orthonormal polynomial w.r.t. e−V (x)dx

γn is the leading coefficient of pn.



OP kernel in terms of the RH problem

OP kernel is

Kn(x , y) =

√
e−V (x)

√
e−V (y)

2πi(x − y)

[
Y −1
+ (y)Y+(x)

]
2,1

=

√
e−V (x)

√
e−V (y)

2πi(x − y)

(
0 1

)
Y −1
+ (y)Y+(x)

(
1
0

)
.



Airy function

The Airy equation y ′′(z) = zy(z) has the
special solution

Ai(z) =
1

2πi

∫

C

e−
1
3
t3+ztdt

where C is a contour in the complex t-plane that
starts at infinity at angle arg t = −2π/3 and ends at
angle arg t = 2π/3.

This solution is characterized by its asymptotics as
z → ∞ in the sector −π < arg z < π,

Ai(z) =
1

2
√
πz1/4

e−
2
3
z3/2
(
1 +O(z−3/2)

)
,

′

Ai(z) = − z1/4

2
√
π
e−

2
3
z3/2
(
1 +O(z−3/2)

)
.
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Plot of Ai (red) and its derivative Ai′ (blue).



Other solutions

Airy function Ai is recessive in the sector
−π/3 < arg z < π/3.

Other special solutions are

Ai(e2πi/3z), Ai(e−2πi/3z)

Ai(e2πi/3z) is recessive in −π < arg z < −π/3;
Ai(e−2πi/3z) is recessive in π/3 < arg z < π.

The three solutions are related by (we use
ω = e2πi/3)

Ai(z) + ω Ai(ωz) + ω2 Ai(ω2z) = 0.



Airy Riemann-Hilbert problem

0
r2π/3

(
1 1
0 1

)

(
1 0
1 1

)

(
0 1
−1 0

)

(
1 0
1 1

)

RH-A1 A : C \ Σ → C
2×2 is analytic.

RH-A2 A+(z) = A−(z)vA(z) for z ∈ Σ with jump
matrices vA as in figure.

RH-A3 As z → ∞, we have

A(z) =

(
I +O

(
1

z

))(
z−1/4 0

0 z1/4

)
1√
2

(
1 i

i 1

)(
e−

2
3
z3/2 0

0 e
2
3
z3/2

)



Solution of Airy Riemann-Hilbert problem

The unique solution of RH-A1, RH-A2, RH-A3 is
given by

A(z) =
√
2π

(
Ai(z) −ω2 Ai(ω2z)

−i Ai′(z) iω Ai′(ω2z)

)
, 0 < arg z <

2π

3
,

A(z) =
√
2π

(
−ω Ai(ωz) −ω2 Ai(ω2z)
iω2 Ai′(ωz) iω Ai′(ω2z)

)
,

2π

3
< arg z < π,

A(z) =
√
2π

(
−ω2 Ai(ω2z) ω Ai(ωz)
iω Ai′(ω2z) −iω2 Ai′(ωz)

)
, − π < arg z < −2π

3
,

A(z) =
√
2π

(
Ai(z) ω Ai(ωz)

−i Ai′(z) −iω2 Ai′(ωz)

)
, − 2π

3
< arg z < 0.



Airy kernel

The Airy kernel

KAiry (x , y) =
Ai(x) Ai′(y)− Ai′(x) Ai(y)

x − y

=

∫ ∞

0

Ai(x + s) Ai(y + s)ds

can be expressed in terms of the solution of the
Airy RH problem

KAiry (x , y) =
1

2πi(x − y)

(
0 1

)
A−1
+ (y)A+(x)

(
1
0

)
if x , y > 0,

KAiry (x , y) =
1

2πi(x − y)

(
−1 1

)
A−1
+ (y)A+(x)

(
1
1

)
if x , y < 0,

and a mixture of these formulas if x and y have
opposite signs.



Scaling limit

In appropriate scaling limit, the OP kernel

Kn(x , y) =

√
e−V (x)

√
e−V (y)

2πi(x − y)

(
0 1

)
Y −1
+ (y)Y+(x)

(
1
0

)

tends to the Airy kernel

KAiry (x , y) =
1

2πi(x − y)

(
0 1

)
A−1
+ (y)A+(x)

(
1
0

)

This will be the goal of the rest of this lecture.



Recall: steepest descent analysis

Random matrix ensemble 1
Z̃n
e−nTrV (M)dM

The eigenvalue correlation kernel is

Kn(x , y) =

√
e−nV (x)

√
e−nV (y)

2πi(x − y)

(
0 1

)
Y−1
+ (y)Y+(x)

(
1
0

)

where Y is the solution of the RH problem

RH-Y1 Y : C \ R → C
2×2 is analytic,

RH-Y2 Y has boundary values Y±(x) for x ∈ R and

Y+(x) = Y−(x)

(
1 e−nV (x)

0 1

)
, x ∈ R

RH-Y3 Y (z) =
(
I +O

(
1
z

))(zn 0
0 z−n

)
as z → ∞.



Equilibrium measure

Balance between mutual repulsion of eigenvalues
and the confining potential V .

To minimize

−
∫∫

log |x − y |dµ(x)dµ(y) +
∫

V (x)dµ(x)

is a well-studied equilibrium problem in logarithmic
potential theory.

Mhaskar-Saff, Gonchar-Rakhmanov (1980s)

There is a unique minimizer µ = µV which has a
density

dµV (x) = ρV (x)dx



Equilibrium condition

There is a constant ℓ so that

2

∫
log

1

|x − y |ρV (y)dy + V (x) = ℓ on supp(ρV )

and

2

∫
log

1

|x − y |ρV (y)dy+V (x) ≥ ℓ on R\supp(ρV )



Example: Semicircle law

In GUE case V (x) = x2 the equilibrium density
can be explicitly calculated

ρV (x) =
2

π

√
2− x2,

−
√
2 ≤ x ≤

√
2

This is Wigner semi-circle law



Real analytic V Deift-Kriecherbauer-McLaughlin (1997)

If V is real analytic then the support is a finite
union of intervals

supp(ρV ) =
N⋃

j=1

[aj , bj ]



Global eigenvalue behavior

Global (or macroscopic) eigenvalue behavior is
governed by the minimizer of the equilibrium
problem

lim
n→∞

1

n
Kn(x , x) = ρV (x)

This is one of the outcomes of the steepest
descent analysis, although it can be established by
more elementary means as well.



Regular cases

ρV > 0 in the interior of each interval,

ρV vanishes like a square root at each endpoint,

2
∫
log 1

|x−y |
ρV (y)dy + V (x) > ℓ outside supp(ρV ).



Singular cases

Singular case I: ρV vanishes at an interior point

Singular case II: ρV vanishes to higher order at an
endpoint.

Singular case III: Equality in
2
∫
log 1

|x−y |
ρV (y) + V (x) ≥ ℓ at exterior point.

Different local eigenvalue behavior in singular cases
near critical points.



First transformation

We use the equilibrium measure in the first
transformation of the RH problem

RH-Y1 Y : C \ R → C
2×2 is analytic,

RH-Y2 Y+(x) = Y−(x)

(
1 e−nV (x)

0 1

)
, for x ∈ R,

RH-Y3 Y (z) =

(
I +O

(
1

z

))(
zn 0
0 z−n

)
, as

z → ∞.

We use g-function

g(z) =

∫
log(z − s)ρV (s)ds



First transformation

We define

T (z) =

(
enℓ/2 0
0 e−nℓ/2

)
Y (z)

(
e−n(g(z)+ℓ/2) 0

0 en(g(z)+ℓ/2)

)

Then T (z) = I +O(1/z) as z → ∞.



φ functions

Jumps can all be expressed nicely in terms of
analytic functions φk , k = 0, . . . ,N.

2φk(x) = −g+(x)−g−(x)+V (x)− ℓ, x ∈ (bk , ak+1)

φk has analytic continuation which is such that

g+(x)− g−(x) = −2φk+(x) = 2φk−(x)

for x ∈ (ak , bk) ∪ (ak+1, bk+1)



Jumps for T in one-interval case

a
s

b
s

(
1 e−2nφ1

0 1

)(
e2nφ1+ 1
0 e2nφ1−

)(
1 e−2nφ0

0 1

)

φ1(x) > 0 for x > b,

φ0(x) > 0 for x < a,

φ1+ = −φ1− is purely imaginary on (a, b) and

d

dx
φ1+(x) = πiρV (x) with ρV (x) > 0



Correlation kernel in terms of T

Recall that

Kn(x , y) =

√
e−nV (x)

√
e−nV (y)

2πi(x − y)

(
0 1

)
Y −1
+ (y)Y+(x)

(
1
0

)

Assume x , y ∈ (a, b).

Transformation Y 7→ T gives

Kn(x , y) =
1

2πi(x − y)

(
0 e−nφ1+(y)

)
T−1

+ (y)T+(x)

(
e−nφ1+(x)

0

)
.

This is based on 2g+ − V + ℓ = −2φ+ on (a, b).



Second transformation T 7→ S

Factorization of jump matrix for T on (a, b),

(
e2nφ1+ 1

0 e2nφ1−

)
=

(
1 0

e2nφ1− 1

)(
0 1
−1 0

)(
1 0

e2nφ1+ 1

)
.

Open a lens around each [a, b] and define

S = T

(
1 0

−e2nφ1 1

)
in upper part of the lens

S = T

(
1 0

e2nφ1 1

)
in lower part of the lens.

and S = T outside the lenses.



RH problem for S in one-interval case

a
s

b
s

(
1 e−2nφ1

0 1

)

(
0 1
−1 0

)

(
1 0

e2nφ1 1

)

(
1 0

e2nφ1 1

)

(
1 e−2nφ0

0 1

)

H
H

H
H

HY

We have φ1 > 0 on (b,∞) and φ0 > 0 on (−∞, a).

From Cauchy-Riemann equations:

Reφ1 < 0 on the lips of the lens

provided that ρV (x) > 0 on (a, b)



Correlation kernel in terms of S

We have for x , y ∈ (a, b),

Kn(x , y) =
1

2πi(x − y)

(
0 e−nφ1+(y)

)
T−1

+ (y)T+(x)

(
e−nφ1+(x)

0

)
.

Transformation T 7→ S gives

Kn(x , y) =
1

2πi(x − y)
×

(
−enφ1+(y) e−nφ1+(y)

)
S−1
+ (y)S+(x)

(
e−nφ1+(x)

enφ1+(x)

)



Sine kernel in the bulk

The outcome of the steepest descent analysis will
be that for x , y ∈ (a + δ, b − δ),

S−1
+ (y)S+(x) = I +O(x − y) as y → x

Then for x and y close to x∗ ∈ (a, b),

Kn(x , y) ≈
1

2πi(x − y)

(
−enφ1+(y) e−nφ1+(y)

)(e−nφ1+(x)

enφ1+(x)

)

Replacing x , y by x∗ + x
nρV (x∗)

and x∗ + y

nρV (x∗)
then

we arrive in the limit n → ∞ at the sine kernel

sin π(x − y)

π(x − y)
.



Global parametrix in one-interval case

We keep only the jump matrix on [a, b], and look
for N satisfying

RH-N1 N is analytic in C \ [a, b].

RH-N2 N+ = N−

(
0 1
−1 0

)
on (a, b).

RH-N3 N(z) = I +O
(
1
z

)
as z → ∞.



Solution in one-interval case

A solution in the one-interval case is

N(z) =

( 1
2
(β(z) + β−1(z)) 1

2i
(β(z)− β−1(z))

− 1
2i
(β(z)− β−1(z)) 1

2
(β(z) + β−1(z))

)

with β(z) =
(
z−b
z−a

)1/4

This can be checked from the property β+ = iβ−
on (a, b).

The global parametrix is more complicated in the
multi-interval case.



Local parametrix

N is unbounded near endpoints z = a and z = b.

Since S remains bounded near endpoints, N cannot
be a good approximation to S near z = a and z = b.

We need local parametrices P in small
neighborhoods

Uδ(b) = {z ∈ C | |z − b| < δ}

Uδ(a) = {z ∈ C | |z − a| < δ}



RH problem for P

b
s ss

b + δb − δ

(
1 e−2nφ1

0 1

)(
0 1
−1 0

)

(
1 0

e2nφ1 1

)

(
1 0

e2nφ1 1

)

H
H
H
H

Hj

Matching condition: Uniformly for z ∈ ∂Uδ(b),

P(z) =

(
I + O

(
1

n

))
N(z) as n → ∞



Reduction to constant jumps

We write P in the form

P = P̃

(
enφ1 0
0 e−nφ1

)

Then P̃ should satisfy jumps

P̃+ = P̃−

(
0 1
−1 0

)
on (a, b)∩Uδ(b) [Use φ1+ = −φ1−]

P̃+ = P̃−

(
1 0
1 1

)
on the lips of the lens inside Uδ(b).

P̃+ = P̃−

(
1 1
0 1

)
on (b,∞) ∩ Uδ(b)



Jumps for P̃

b
s ss

b + δb − δ

(
1 1
0 1

)(
0 1
−1 0

)

(
1 0
1 1

)

(
1 0
1 1

)

H
H
H
H

Hj

Jump matrices coincide with jump matrices in Airy
RH problem.

We solve the RH problem for P̃ by mapping it to
the Airy RH problem.



Reminder: Airy RH problem

0
r2π/3

(
1 1
0 1

)

(
1 0
1 1

)

(
0 1
−1 0

)

(
1 0
1 1

)

As ζ → ∞, we have

A(ζ) =

(
I +O

(
1

ζ

))(
ζ−1/4 0

0 ζ1/4

)
1√
2

(
1 i

i 1

)(
e−

2
3
ζ3/2 0

0 e
2
3
ζ3/2

)



Conformal mapping

We take P̃ in the form

P̃(z) = En(z)A(n
2/3f (z))

where

ζ = f (z) is a conformal map from Uδ(b) to a
neighborhood of 0 in the ζ-plane,

En(z) is an analytic prefactor

Then P̃ satisfies the correct jumps.



Matching

We use the freedom we have in choosing f and En

to satisfy the matching condition as well

We want for z on ∂Uδ(b)

En(z)A(n
2/3f (z)) = (I+O(1/n))N(z)

(
e−nφ1(z) 0

0 enφ1(z)

)

To match the exponential part we have to take

f (z) =

[
3

2
φ1(z)

]2/3

This is indeed a conformal map, but only in case
equilibrium measure vanishes as square root at b.



Third transformation S 7→ R

Similar construction gives the local parametrix,
which we also call P, in a neighborhood of a.

Then define

R(z) = S(z)N(z)−1, for z ∈ C \ (ΣS ∪ Uδ(a) ∪ Uδ(b))

R(z) = S(z)P(z)−1, for z ∈ (Uδ(a) ∪ Uδ(b)) \ ΣS .

R is analytic in C \ (ΣS ∪ ∂Uδ(a) ∪ ∂Uδ(b)).

Since S and N have the same jump matrix on (a, b),
R has analytic continuation across (a + δ, b − δ),

Similarly, R has analytic continuation across parts
of ΣS inside Uδ(a) and Uδ(b).



Jumps in the RH problem for R

a
q

��
��

b
q

��
��N

(
1 e−2nφ1

0 1

)
N−1

N

(
1 0

e2nφ1 1

)
N−1

N

(
1 0

e2nφ1 1

)
N−1

N

(
1 e−2nφ0

0 1

)
N−1

PN−1PN−1

From matching conditions PN−1 = I +O(1/n)
as n → ∞, uniformly on ∂Uδ(a) ∪ ∂Uδ(b).

The other jump matrices are I +O(e−cn)



Conclusion

We are in a good situation and we can conclude

R(z) = I +O
(

1

n(|z |+ 1)

)
as n → ∞,

uniformly for z ∈ C \ ΣR .



Correlation kernel at the edge

For x , y in Uδ(b), we have

Kn(x , y) =
1

2πi(x − y)
(
−enφ1+(y) e−nφ1+(y)

)
S−1
+ (y)S+(x)

(
e−nφ1+(x)

enφ1+(x)

)

Now

S+(x) = R(x)En(x)A+(n
2/3f (x))

(
enφ1+(x) 0

0 e−nφ1+(x)

)

and
En(y)

−1R(y)−1R(x)En(x) ≈ I

as x ≈ y and n → ∞.



Airy kernel at the edge

Hence

Kn(x , y) ≈
1

2πi(x − y)

(
−1 1

)
A+(n

2/3f (y))−1 A+(n
2/3f (x))

(
1
1

)

For suitable c > 0 we have

n2/3f

(
b +

x

(cn)2/3

)
→ x , n2/3f

(
b +

y

(cn)2/3

)
→ y .

Rescaled kernel tends to

1

2πi(x − y)

(
−1 1

)
A+(y)

−1 A+(x)

(
1
1

)

which is the Airy kernel for x , y < 0.



Singular cases

The steepest descent analysis does not work in
singular cases.

Singular case I: ρV vanishes at an interior point x∗

Singular case II: ρV vanishes to higher order at an
endpoint.

In singular case I we cannot open the lens near x∗

and get good decay property of e2nφ(z) on the lips
of the lens.
In singular case II the Airy parametrix does not
work at the edge point. We cannot match it with
the global parametrix.



Singular case II

If ρV vanishes like (b− x)2k+1/2 with k ≥ 1, we would
need the solution to the following RH problem for
the construction of the local parametrix

0
r 4k+2
4k+3

π

(
1 1
0 1

)

(
1 0
1 1

)

(
0 1
−1 0

)

(
1 0
1 1

)

As ζ → ∞, we have the asymptotic condition

Ψ(ζ) =

(
I +O

(
1

ζ

))(
ζ−1/4 0

0 ζ1/4

)
1√
2

(
1 i

i 1

)
e−ckζ

4k+3
2 0

0 eckζ
4k+3
2






Ψ-kernel as scaling limit

RH problem cannot be solved with classical special
functions.

Existence of solution can be proved with operator
theoretic methods (Fredholm theory) and so-called
vanishing lemma ( Zhou (1989)).

Deift, Kriecherbauer, McLaughlin, Venakides,
Zhou (1999)

The scaling limit of the OP kernel near the edge is
now

1

2πi(x − y)

(
−1 1

)
Ψ−1

+ (y)Ψ+(x)

(
1
1

)

To prove this we can just follow the proof for the
Airy kernel in the regular case.

What can we say about Ψ ?



Differential equation for Ψ

Ψ satisfies a differential equation.

The jump matrices for Ψ are constant on the four
rays and therefore we find that d

dζΨ satisfies
the same jumps.

Then

(
d

dζ
Ψ

)
Ψ−1 is entire function, say it is

A = A(ζ):
d

dζ
Ψ = AΨ

From asymptotic condition it follows that A is
polynomial in ζ.
For k = 1 the degrees are

degA11 = 1, degA12 = 2,

degA21 = 3, A22 = −A11.

We do not know coefficients of polynomials Aij .



Introduce extra parameter

Modify the RH problem by introducing parameter s
in the asymptotic condition (written here for case
k = 1) Ψ(ζ) =

(
I +O

(
1

ζ

))(
ζ−1/4 0

0 ζ1/4

)
1√
2

(
1 i

i 1

)

e

−

(

1
105

ζ
7
2+sζ

1
2

)

0

0 e

(

1
105

ζ
7
2+sζ

1
2

)




Jump conditions remain the same.

0
r 67π

(
1 1
0 1

)

(
1 0
1 1

)

(
0 1
−1 0

)

(
1 0
1 1

)



Lax pair

Solution also depends on s: Ψ = Ψ(ζ; s)

Differential equation continues to hold

∂

∂ζ
Ψ = AΨ,

with A = A(ζ; s) polynomial in ζ of same degrees as
before but with coefficients depending on s.

Since jumps do not depend on s, we also have a
differential equation

∂

∂s
Ψ = BΨ

The two linear ODEs form a Lax pair.

B is rather simple: B =

(
0 1

ζ − 2u 0

)
for some

u = u(s).



Compatibility

The compatibility condition ∂2

∂s∂ζ
Ψ = ∂2

∂ζ∂s
Ψ

gives

AB − BA =
∂B

∂ζ
− ∂A

∂s

Using this, we can express all entries of A in terms
of u = u(s) and its derivatives, for example

A11 = −A22 = − 1

240
(4usζ + 12uus + usss)

It also follows that u must satisfy a nonlinear
fourth order ODE

1

240
ussss +

1

24

(
u2
s + 2uuss

)
+

1

6
u3 + s = 0.

This is the second member of the Painlevé I
hierarchy.

Painlevé I equation uss = 6u2 + s itself would
be connected with vanishing of equilibrium measure
with exponent 3/2 (which cannot happen).



Description of Ψ

To describe Ψ we first need to characterize the
special solution of the second member of the
Painlevé I hierarchy that is involved

u is characterized by its asymptotic behavior

u(s) ∼ ∓ (6|s|)1/3 +O(s−1) as s → ±∞.

Show that this solution has no poles on the real
line, and in particular not a pole at s = 0.

Given u we can set up the differential equation

∂Ψ

∂ζ
= AΨ

in particular for s = 0, since u has no pole at s = 0.
Characterize the solution Ψ by its asymptotic
behavior as ζ → ∞.

Claeys-Vanlessen (2007)



Other singular cases

Singular case I: ρV vanishes at an interior point

Singular case II: ρV vanishes to higher order at an
endpoint.

Singular case III: equality at exterior point.

Ψ functions for Painlevé II + hierarchy
Bleher-Its (2003), Claeys-Kuijlaars (2006)

Ψ functions for Painlevé I hierarchy
Claeys-Vanlessen (2007)

Finite size GUE (and generalizations)
Claeys (2008), Mo (2008), Bertola-Lee (2009)


