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Introduction

String theory successfully accounts for the leading order
Bekenstein-Hawking entropy of BPS black holes in many cases:

1 5D black holes in Type II / T 4 × S1 or K 3× S1, using D1-D5-P
system, possibly rotating;

2 4D black holes in Type II / T 6 or K 3× T 2, using D2-D6-NS5 or
D1-D5-P-KKM system;

3 4D black holes with zero D6-brane charge in Type II / CY3, using
M5-branes in M / CY3 × S1 (including first subleading correction)

Strominger Vafa; Johnson Khuri Myers; Maldacena Strominger Witten

The modern understanding relies on AdS/CFT in the near horizon
geometry AdS3 × S3 ×CY2, or AdS3 × S2 ×CY3. The dual gauge
theory is a “black string SCFT”, states can be counted via the
Ramanujan-Hardy-Cardy formula.
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AdS2/CFT1 and channel duality

In general however, the near-horizon geometry of a BPS black
hole is AdS2 ×M, whose holographic description has remained
obscure: some superconformal quantum mechanics at one or two
boundaries of AdS2.
A possible strategy is to try and get at the spectrum of the SQM by
channel duality, as in usual open/closed string duality:

Tre−πtHopen = 〈B|e−
π
t Hclosed |B〉

Here, Hclosed is the Hamiltonian for string theory in AdS2 in radial
quantization. The real interest is in Hopen.
This is hardly doable in practice, except if one truncates to
spherically symmetric SUGRA modes, and restrict to the BPS
sector. It is far from clear whether this truncation is justifiable.
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Topological amplitude and black hole wave function I

Recently, OVV suggested that the OSV conjecture

Ω(pI ,qI) ∼
∫

dφI |Ψtop(pI + iφI)|2 eφIqI

can be interpreted just in this way (with Hclosed = Hopen = 0):

Ω(p,q) = 〈Ψp,q|Ψp,q〉

where

|Ψp,q〉 = e(qIΞ
I+pI Ξ̃I)|Ψtop〉 = e

1
2 qIφ

I
Ψtop(pI + iφI)

Here Ψp,q(χ) = 〈Ψtop|χ〉 is the topological amplitude in the real
polarization, and [ΞI , Ξ̃J ] = 2iδI

J is the Heisenberg algebra acting
on the Hilbert space of the topological string amplitude.
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Topological amplitude and black hole wave function II

If correct, this proposal would answer a long standing question:
“What is the physical system whose “preferred” wavefunction is
the topological amplitude ? ”.

I will not review OVV’s heuristic arguments here: one of the goals
of this talk will be to provide a rigorous treatment of radial
quantization.
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Topological amplitude and black hole wave function I

Suffice it so say that, in terms of “large phase space variables”,
OVV gave some evidence that the black hole wave function, in
Kähler polarization, is given by

Ψp,q(X I) = e−
iπ
2 Wp,q(X) , Wp,q = qIX I − pIFI(X )

With this “natural” normalization, its squared norm∫
dX IdX̄ I exp

[
−π

4
(
K (X , X̄ ) + 2iWp,q(X )− 2iW̄p,q(X̄ )

)]
agrees with Ω(p,q) in the saddle point approximation.
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Preliminary comments

The idea of mini-superspace radial quantization of black holes
was in fact much studied by the gr-qc community, yielding as yet
little insight on the nature of black hole micro-states.

Cavaglia de Alfaro Filippov; Kuchar; Thiemann Kastrup; Breitenlohner Hellmann

One novelty here is that one works in a SUSY context, for which
the “mini-superspace” truncation to spherically symmetric
geometries, and omission of D-term interactions, has some
chance of being exact.
Further interest possibly arises from the relation between black
hole attractor equations and SUSY vacua in flux compactifications.
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Stationary solutions and KK∗ reduction I

Stationary solutions in 4D can be parameterized in the form

ds2
4 = −e2U(dt + ω)2 + e−2Uds2

3 , AI
4 = ζ Idt + AI

3

where ds3,U, ω,AI
3, ζ

I and the 4D scalars z i ∈M4 are
independent of time. The D=3+1 theory reduces to a field theory
in three Euclidean dimensions.

In contrast to the usual KK ansatz,

ds2
4 = e2U(dy + ω)2 + e−2Uds2

2,1 , AI
4 = ζ Idy + AI

3

where the fields are independent of y , we reduce along a time-like
direction.
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Stationary solutions and KK∗ reduction II

For the usual KK reduction to 2+1D, the one-forms (AI
3, ω) can be

dualized into pseudo-scalars (ζ̃I ,a), where a is the twist (or NUT)
potential. The 4D Einstein-Maxwell equations reduce to 3D gravity
+ scalars living in a Riemannian space

M3 =
Sl(2)

U(1)
|U,a ×M4 × R2nv+2|ζ I ,ζ̃I

The KK∗ reduction is simply related to the KK reduction by letting
(ζ I , ζ̃I) → i(ζ I , ζ̃I). As a result, the scalar fields live in a
pseudo–Riemannian space M∗

3, with non-positive definite
signature.

Breitenlohner Gibbons Maison; Hull Julia
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Stationary solutions and KK∗ reduction III

M∗
3 always has 2nV + 4 isometries corresponding to the shifts of

ζ ,ζ̃I ,a,U, satisfying the graded Heisenberg algebra

[pI ,qJ ] = 2δI
J k[

m,pI
]

= pI , [m,qI ] = qI , [m, k ] = 2k

The notation anticipates the identification of the corresponding
conserved charges with the electric and magnetic charges qI and
pI , NUT charge k and ADM mass m.
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Spherically symmetric BH and geodesics I

Now, restrict to spherically symmetric solutions, with spatial slices

ds2
3 = N2(ρ)dρ2 + r2(ρ)dΩ2

2

The sigma-model action becomes, up to a total derivative (gij is
the metric on M∗

3):

S =

∫
dρ

[
N
2

+
1

2N

(
ṙ2 − r2gij φ̇

i φ̇j
)]

This is the Lagrangian for the geodesic motion of a fiducial particle
with unit mass on the (hyperbolic) cone R+ ×M∗

3. Invariance
under reparameterizations of ρ is achieved thanks to the ein-bein
N.
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Spherically symmetric BH and geodesics II

The equation of motion of N imposes the Hamiltonian
constraint,or Wheeler-DeWitt equation

HWDW = (pr )
2 − 1

r2 g ijpipj − 1 ≡ 0

The gauge choice N = r2 allows to separate the problem into
radial motion along r , and geodesic motion on M∗

3:

g ijpipj = C2 , (pr )
2 − C2

r2 − 1 ≡ 0 ⇒ r =
C

sinh Cρ
,

Thus, the problem reduces to affinely parameterized geodesic
motion on the three-dimensional moduli space M∗

3.
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Spherically symmetric BH and geodesics III

It turns out that C = 2THSBH is the extremality parameter:
extremal (in particular BPS) black holes correspond to light-like
geodesics on M∗

3. Since r = 1/ρ, the 3D spatial slices are flat.

Other gauges are also possible: e.g. N = eU , where ρ becomes
the radial geodesic distance to the horizon.

For the purpose of defining observables such as the horizon area,
AH = 4πe−2U r2|U→−∞ and ADM mass MADM = r(e2U − 1)|U→0, it
may convenient to leave the gauge unfixed.
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Isometries and conserved charges

The isometries of M3 imply conserved Noether charges, whose
Poisson bracket reflect the Lie algebra of the isometries:

[pI ,qJ ] = 2δI
J k[

m,pI
]

= pI , [m,qI ] = qI , [m, k ] = 2k

If k 6= 0, the off-diagonal term in the 4D metric

ds2
4 = −e2U(dt + k cos θdφ)2 + e−2U [dr2 + r2(dθ2 + sin2 θdφ2)]

implies the existence of closed time-like curves around φ direction,
near θ = 0.
Bona fide 4D black holes arise in the “classical limit” k → 0.
Keeping k 6= 0 will allow us to greatly extend the symmetry.
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Attractor flow in N = 2 supergravity

Consider N = 2 SUGRA coupled to nV abelian vector multiplets
[hypers go along for the ride]: the vector multiplet scalars z i take
values in a special Kähler manifold M4. For type IIA on X = CY3,
z i parameterize the complexified Kähler structure of X .
After reduction to 3 dimensions, the vector multiplet scalars take
value in a quaternionic-Kähler space M3, known as the c −map
of the special Kähler space M4.
Under T-duality along the 4th direction, this becomes the
hypermultiplet space for type IIB compactified on X at tree-level.
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c-map and c∗-map

The explicit metric reads

ds2 = 2(dU)2 + gi j̄(z, z̄)dz idz j̄ +
1
2

e−4U
(

da + ζ Id ζ̃I − ζ̃Idζ I
)2

−e−2U
[
(ImN )IJdζ IdζJ + (ImN−1)IJ

(
d ζ̃I + (ReN )IK dζK

) (
d ζ̃J + (ReN )JLdζL

)]
Ferrara Sabharwal; de Wit Van Proyen Vanderseypen

The manifold M∗
3 obtained by analytic continuation

(ζ I , ζ̃I) → i(ζ I , ζ̃I) is sometimes called “para-quaternionic-Kahler
manifold”; it has indefinite signature (2nV + 2,2nV + 2)

Cortes Mayer Mohaupt Saueressig
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Conserved charges and black hole potential

The Heisenberg isometries

ζ I → ζ I + εI , ζ̃I → ζ̃I + ε̃I , a → a− εI ζ̃I + ε̃Iζ
I

yield conserved charges pI ,qI , k .
Setting k = 0 for simplicity, one arrives at the Hamiltonian,

H =
1
2

[
U̇2 +

1
4

ż igi j̄ ż
j̄ − e2UVBH

]
≡ C2

where VBH is the “black hole potential”,

VBH = −1
2
(qI −NIJpJ)[1/Im(N )]IK (qK − N̄KLpL)− 1

2
pI [Im(N )]IJpJ
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Conserved charges and black hole potential I

In terms of the central charge Z = eK/2(qIX I − pIFI), this is
rewritten as

VBH = |Z |2 + |DiZ |2 = |Z |2 + ∂i |Z | g i j̄ ∂̄j |Z |

Supersymmetric solutions are obtained by cancelling each term
separately, leading to the celebrated attractor flow equations:

dU
dρ

= −eU |Z | , dz i

dρ
= −2eUgi j̄ ∂̄j |Z | ⇒ dz i

dU
= −g i j̄ ∂̄j log |Z |2

The 4D moduli are attracted towards the horizon to the value z∗p,q
minimizing mBPS = |Z |mP at fixed values of the charges. If
|Z∗| 6= 0, this is an AdS2 × S2 throat, with SBH = π|Z∗|2.
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Gradient flow vs. potential flow

The actual potential −e2UVBH has in fact a local maximum at z∗p,q.
BPS trajectories are fine-tuned to reach the top of the potential
with 0 velocity.

∂i ∂̄jVBH |zp,q = 2gi j̄VBH
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Attractor flow and SUSY geodesic motion I

The above Bogomolny-type argument does not fix the phase in
the second attractor equation, and does not guarantee that the
solution is supersymmetric.
The correct procedure is to reduce the full D = 4 SUGRA
including fermions, and look at BPS solutions of the resulting
SUSY mechanics. A short cut is to restrict the D = 3 + 1
sigma-model on a quaternionic-Kähler space to D = 0 + 1.
In order to express the fermionic variation, recall that a
quaternionic-Kähler space has restricted holonomy
Sp(2)× Sp(2nV + 2); it admits a covariantly constant quaternionic
vielbein V αA (α = 1,2, A = 1, ..2nV + 2), which provides the
metric together with three almost complex structures (a = 1..3):

ds2 = εαβρABV αA ⊗ V βB , ωa = εαγσ
a|γ
β ρABV αA ∧ V βB

Boris Pioline ( LPTHE and LPTENS, Paris ) Quantizing BPS Black Holes
Utrecht, Oct 5, 2006 Trieste, Oct 10, 2006 23

/ 45



Attractor flow and SUSY geodesic motion II

The fermionic variation reads

δψA = V αA
i φ̇iεα + O(ψ2)

BPS geodesics are obtained when the quaternionic viel-bein
obtains a null eigenvector:

V αAεα =


u v
ei E i

−Ē ī ēī

−v̄ ū

 ·
(
ε1
ε2

)
= 0
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Attractor flow and SUSY geodesic motion III
Expressing the components of V in terms of pI ,qI , k ,

u = − i
2

eK/2+UX I
[
qI − 2k ζ̃I −NIJ(pJ + 2kζJ)

]
v = −dU +

i
2

e2Uk

eA = eA
i dz i

EA = − i
2

eUeAig i j̄ f̄ I
j̄

[
qI − 2k ζ̃I −NIJ(pJ + 2kζJ)

]
we recover the attractor flow equations, generalized to non-zero
NUT charge k :

−dU
dρ

+
i
2

e2Uk = − i
2

eiθeUZ ,
dz i

dρ
= −ieiθ |Z |

Z
eUg i j̄ ∂̄j |Z |

where the phase ε2/ε1 = eiθ is chosen to maintain the reality of U.
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Improved SUSY mechanics - HKC and twistors I

This SUSY mechanics is rather unusual, insofar as the SUSY
comes from a triplet of non-integrable complex structures.
It is possible to remedy this problem by adding 4 real scalar
degrees of freedom, extending the QK manifold to a real cone
over an S3 bundle over the QK space:

R+ × S3 → HKC → QK

This is equivalent to the original model after gauging the SU(2)
and dilation symmetries. By cancelling the Sp(2) holonomy on QK
with the SU(2) holonomy on S3, one obtains the Hyperkähler
cone (HKC), with three integrable complex structures.
This construction is very natural in the framework of conformal
supergravity.

De Wit Rocek Vandoren
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The twistor space

The relevant information is captured by an intermediate space, the
twistor space Z , a Kähler quotient of HKC by U(1) ⊂ SU(2):

S2 → Z → QK

which admits one canonical complex structure; in contrast to HKC,
the action of SU(2) is no longer isometric.
Explicitly, the Kähler-Einstein metric on Z reads

ds2
Z = ds2

QK +
1

(1 + zz̄)2 |dz − A+ + iA3z − A−z2|2

where z, z̄ are the stereographic coordinates on S2, and
A± = (A1 ± iA2)/2,A3 is the SU(2) connection on the base. Its
complex structure is

J =
z + z̄
1 + zz̄

J1 +
i(z − z̄)

1 + zz̄
J2 +

1− zz̄
1 + zz̄

J3 + i (z ⊗ ∂z − z̄ ⊗ ∂̄z)
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Twistor space and HKC for the c-map

In general, the metric on the HKC, and consequently on Z, is
controlled by the Hyperkähler potentiel χ.
In the presence of triholomorphic isometries, it may be obtained
by Legendre transform

〈χ(vL, v̄L,wL + w̄L) + xL(wL + w̄L)〉 = L(vL, v̄L, xL)

from a tensor potential L satisfying some 2nd order PDE’s.
In favorable cases, the solution is given by a contour integral

L(vL, v̄L, xL) =

∮
dζ

2πiζ
G(ηL(ζ), ζ) , ηL =

vL

ζ
+ xL − v̄Lζ

The potentiel G controlling the c-map is a function of nV + 2
variables, proportional to the prepotential F (X I) on the Special
Kähler base:

G(ηL) =
F (ηI)

η]
=

CABCη
AηBηC

η0η]
+ . . .

Rocek Vafa Vandoren
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The twistor transform

For later purposes, it will be useful to express the complex
coordinates ξI , ξ̃I , α on Z in terms of the coordinates
U, z i , z̄ I , ζ I , ζ̃I ,a on the base, and z, z̄ on the fiber:

ξI = ζ I + i eU+K(X)/2
(

zX̄ I + z−1X I
)

ξ̃I = ζ̃I − i eU+K(X)/2
(

z F̄I + z−1 FI

)
α = a + ζ I ξ̃I − ζ̃Iξ

I

A key feature is that (ξI , ξ̃I , α) are holomorphic functions of the
fiber coordinate z: the fiber is a rational curve. Starting from a
holomorphic function Φ on Z , we can produce a conformally
harmonic function Ψ on QK:

Ψ(U, z i , z̄ I , ζ I , ζ̃I ,a) = e2U
∮

dz
2πiz

Φ
[
ξI(z), ξ̃I(z), α(z)

]
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Attractor flow and twistor variables I

The requirement of SUSY on Z is that the momentum be
holomorphic in the canonical complex structure on Z , or in one of
the the complex structures on HKC.
BPS geodesics, or BPS black holes, correspond to holomorphic
curves ξI(ρ), ξ̃I(ρ), α(ρ) at constant ξ̄I , ¯̃ξI , ᾱ (and with vanishing
SU(2) momenta) ⇒ completely integrable.
The twistor variable z (now in the Poincaré disk, zz̄ < 0) encodes
the projectivized Killing spinor z = ε2/ε1:

dz − A+ + i A3z − A−z2 = 0 ⇒ dα+ Q + ke2U = 0

where α is the phase of z. In fact, the 4 real variables of the HKC
can be interpreted as the unprojectivized Killing spinor (ε1, ε2).
A degenerate possibility is that the momentum be tri-holomorphic
on HKC: “super BPS trajectories”. . .
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From geodesic motion to wave functions

We have seen that generic spherically symmetric black holes are
in one-to-one correspondence with parameterized geodesics on
the (Wick rotated) three-dimensional moduli space M∗

3.
There is a standard prescription to quantize geodesic motion:
replace the classical trajectories by wave functions in L2(M∗

3),
satisfying the Klein-Gordon equation

∆Ψ(U, z i , z̄ ī , ζ I , ζ̃I ,a) = C2Ψ

where ∆ is the Laplace-Beltrami operator on M∗
3.

Equivalently, we may consider the space of R+ × SU(2) invariant
functions on HKC, or SU(2)-invariant functions on Z .
Before discussing any of the subtleties associated with SUSY, let
us make some general comments about the physical meaning of
the wave function.
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Physical interpretation of the wave function

As in quantum cosmology, the wave function is independent of the
“time” variable ρ, and some other variable should be chosen as a
“clock”. A natural choice is U, which goes from −∞ at the horizon
to 0 at spatial infinity.
Observables are defined at a fixed value of U. One might
–wrongly– expect the wave function to become more and more
peaked around the attractor values of the moduli as U → −∞. . .
The natural inner product is obtained by using the Klein-Gordon
inner product (or Wronskian) at fixed values of U. Unfortunately, it
is famously known NOT to be positive definite.
A possible way out is “third quantization”, where the wave function
Ψ becomes itself an operator... this may describe the possible
black hole fragmentation near the horizon...
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The BPS Hilbert space (first pass) I

Now we restrict to the BPS Hilbert space. In the framework of
geodesic motion on the QK base, SUSY requires

∃ε/


u v
ei E i

−Ē ī ēī

−v̄ ū

 ·
(
ε1
ε2

)
= 0 ⇔

 uū + vv̄ = 0
uE i − eiv = 0
ū̄ej̄ + Ē j̄v = 0



Quantum mechanically, these conditions become 2nd order
differential operators which have to annihilate the wave function Ψ.
In particular, the conformal Laplacian(

∆QK −
1

2(4nV + 2)
R

)
Ψ = 0
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The BPS Hilbert space (first pass) II

In the framework of geodesic motion on the twistor space, BPS
geodesics have purely holomorphic momenta:

pL̄ = 0 ⇒ i
∂

∂ξ̄L̄
Ψ = 0

Thus, the BPS Hilbert space corresponds to holomorphic
functions on the twistor space, modulo the action of SU(2).
The equivalence between the two approaches is the consequence
of the Penrose transform (a quaternionic generalization of the
usual Penrose-Ward transform on S4)

Ψ(U, z i , z̄ I , ζ I , ζ̃I ,a) = e2U
∮

dz
2πiz

Φ
[
ξI(z), ξ̃I(z), α(z)

]
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The BPS Hilbert space (second pass)

More correctly, one needs to take into account the fermionic
degrees of freedom. In the usual SQM, the fermions ψµ become
Dirac matrices. The wave function satisfies iγµ∇µ + m = 0.
Equivalently, one can treat ψµ as a differential dxµ, and γµ∂µ as
an exterior derivative. The Hilbert space at m = 0 is the de Rham
complex, while the BPS Hilbert space is the de Rham
cohomology.
For SQM on a Kähler manifold, ψµ splits into ψi and ψ ī . The
Hilbert space becomes the Dolbeault complex (with its Lefschetz
SU(2) action)
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Quaternionic cohomology)

For SQM on a quaternionic-Kähler manifold, ψµ splits as
ψAα ∈ E ⊗ H, where E ∼ R2n ,H ∼ R2. The relevant complex is:

0 → triv . R
=⇒ Λ2(E∗) → Λ3(E∗)× H∗ → . . .

→ Λm(E∗)× Σm−2(H∗) → ... → 0

with arrows

Q = ψAεα∇Aα , R = εαβψAψB
[
∇Aα∇Bβ +

4
4(n + 2)

RAα;Bβ

]
Here ψA = εαψ

Aα, and εα keeps track of the H index, as if it was
the HKC fiber...

Baston; Baston Eastwood
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The true BPS Hilbert space

The twistor transform identifies the cohomology of this complex
with the sheaf cohomology H1(Z ,O(−2)) on Z . We conjecture
that this is the correct Hilbert space for BPS black holes.

Gunaydin Neitzke BP Rocek Vandoren Waldron, in progress

This is analogous to the usual Penrose-Ward transform

Harm(R4) = H1(CP3,O(−2))

Versions for other O(−k) yield other higher-spin fields.
On general grounds, because the SQM can be lifted to 1 + 5
dimensions, there should exist a SO(5) Lefschetz-type action...
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The BPS Black Hole Wave-Function I

Ignore fermionic subtleties, and go back to the simple-minded
twistor transform

Ψ(U, z i , z̄ I , ζ I , ζ̃I ,a) = e2U
∮

dz
2πiz

Φ
[
ξI(z), ξ̃I(z), α(z)

]
Consider a black hole with k = 0: pI and qI can be diagonalized
simultaneously, and completely determine (up to normalization)
the wave function as a coherent state on Z :

Φ = exp
[
i(pI ξ̃I − qIξ

I)
]

= exp
[
i(pI ζ̃I − qIζ

I) + ieU+K (X)/2(zW̄p,q(X̄ ) + z−1Wp,q(X ))
]
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The BPS Black Hole Wave-Function II

The integral over z is of Bessel type, leading to

Ψ = J0

(
2eU |Zp,q|

)
ei(pI ζ̃I−qIζ

I)

This is peaked around the classical attractor points, with slowly
damped, increasingly faster oscillations away from them.

We could have reached this result 36 mins ago, by naively
quantizing the attractor flow:{

pU = −eU |Z |
pz̄ ī = −2eU ∂̄i |Z |

}
⇒ Ψ ∼ exp

[
2ieU |Z |

]
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Black-hology vs. cosmology

Contrary perhaps to expectations, the wave flattens out towards
the horizon ! This is because of the large fine-tuning needed to
produce a BPS solution.
Continuing to quantum cosmology, the wave function becomes
exponentially peaked at late times, which is gratifying.
So far, we haven’t checked that 〈Ψ|Ψ〉 ∼ exp(SBH). The
normalization can always be adjusted so this is true.
Our formalism allows to define quantum mechanical observables,
compute rms fluctuations, etc.
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Where is the topological string ?

Before integrating along the fiber, we found that
Ψp,q ∼ exp[ieU+K/2(zW̄ + z−1W )], in “rough” agreement with
OVV’s answer Ψp,q ∼ exp(W ). The precise relation to the “large
phase space variables” is unclear at present.
In order to compare to the more familiar real-polarized topological
amplitude Ψtop ∼ eF , one should find real Darboux coordinates on
Z .
We find it unlikely that Ψtop can be identified as a black hole wave
function: it naturally depends on nV + 1 variables, while ΨBH
depends on 2nV + 3 variables.
In fact, consideration of the holomorphic anomaly eqs in
symmetric theories hints at one-parameter generalization of the
topological string, best viewed as a tri-holomorphic function on
HKC . . .

Gunaydin Neiztke BP
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Summary

Stationary black holes in 4D are in 1-1 correspondence with
geodesics on the 3D moduli space. In extended SUGRA, BPS
black holes correspond to geodesics with momenta in a
non-generic orbit, e.g. holomorphic geodesics for N = 2.
While the phase space of generic geodesics is T ∗(QK ), of
dimension 8n + 8, the phase space of BPS geodesics is the
twistor space Z (QK ), of dimension 4n + 6, with its canonical
symplectic form.
The BPS Hilbert space is the Kähler quantization of Z , roughly the
space of holomorphic functions on Z : 2n + 3 variables,
considerably smaller than the dimension 4n + 4 of H = L2(QK ).
HBPS is embedded inside H via the twistor transform.
For given electric and magnetic charges (k = 0), there is a unique
state in HBPS, up to normalization. Its wave function is peaked at
the attractor values, but flattens out near the horizon. No evidence
yet that it is related to Ψtop.
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Outlook

Higher derivative corrections remain to be incorporated: higher
derivative scalar interactions on QK space.
Multi-centered configurations can be described by certain
harmonic maps from R3 to QK : does that correspond to “second
quantization”, i.e. including vertices ?
For N ≥ 4, this suggests that the 3D U-duality group controls the
BH spectrum: can one obtain the exact degeneracies as Fourier
coefs of some “BPS automorphic forms” ? Improve on DVV.
The equivalence between BH attractor flow and geodesic flow on
QK is a reflection of mirror symmetry. Can this be used to
compute instanton corrections on hypermultiplet moduli space ?
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