Quantum Attractor Flows and Black Hole Partition Functions

Boris Pioline

LPTHE and LPTENS, Paris
Toronto, Nov 22, 2007

References

- Summary: Gunaydin, Neitzke, BP and Waldron [hep-th/0512296]
- Preview: Lecture notes, BP [hep-th/0607227]
- Geometry: Neitzke, BP and Vandoren [hep-th/0701214]
- Physics: Gunaydin, Neitzke, BP and Waldron [arXiv:0707.0267]
- Repres. Theory: Gunaydin, Neitzke, BP [arXiv:0707.1669]

Introduction

- As shown by Strominger, Vafa and many others, string theory provides a good microscopic understanding of the Bekenstein-Hawking entropy of a large class of extremal and near-extremal black holes in $\mathrm{D}=4$ and $\mathrm{D}=5$ supergravity.
- More recently, much progress has been made in extending this agreement beyond the thermodynamical (large charge) limit, where higher-derivative corrections in the low energy effective action and subleading corrections to Cardy's formula become important.
- In some cases, exact formulae for the degeneracies of black hole micro-states have been proposed, and tested with some success:

Exact black hole degeneracies

- For $1 / 4$ BPS dyonic black holes in $\mathcal{N}=4, D=4$ supergravity, DVV have conjectured

$$
\Omega\left(q_{e}, q_{m}\right)=(-1)^{q_{e} \cdot q_{m}} \oint \frac{e^{i\left(q_{e}^{2} \rho+q_{m}^{2} \sigma+2 q_{e} \cdot q_{m} \nu\right)}}{\Phi_{10}(\rho, \sigma, \nu)} d \rho d \sigma d \nu
$$

where Φ_{10} is a Siegel cusp form of weight 10.

- For $1 / 2$ BPS- black holes in $\mathcal{N}=2, D=4$ supergravity, OSV have proposed

$$
\Omega\left(p^{\prime}, q_{l}\right) \sim \int d \phi^{\prime}\left|\Psi_{\text {top }}\left(p^{\prime}+i \phi^{\prime}\right)\right|^{2} e^{\phi^{\prime} q_{l}}
$$

where $\Psi_{\text {top }}\left(p^{\prime}\right)$ is the topological string amplitude in the real polarization.

Automorphic Black Hole Partition Functions I

- Both of these proposals have been "proven" several times over. Yet they still raise questions: Why should $\Omega\left(q_{e}, q_{m}\right)$ depend on $q_{e}^{2}, q_{m}^{2}, q_{e} \cdot q_{m}$ only? What is the physical origin of the $\operatorname{Sp}(4, \mathbb{Z})$ symmetry? How to incorporate multi-centered configurations and lines of marginal stability in OSV formula? etc.
- The goal of this talk will be to propose a general framework for constructing black hole partition functions, inspired by both of these proposals, which can potentially resolve these difficulties.

Automorphic Black Hole Partition Functions I

- In particular, the three-dimensional duality group $G_{3}(\mathbb{Z})$ is proposed to play the rôle of a spectrum generating symmetry for black holes in 4 dimensions. This is closely related to the fact that black holes in $D=4$ correspond to instantons in $D=3$.
- More specifically, we propose that the partition function of black hole micro-states is an automorphic form of $G_{3}(\mathbb{Z})$, "attached" to a particular representation of $G_{3}(\mathbb{R})$ obtained by performing the radial quantization of stationary, spherically symmetric BH : hence we'll study quantum attractors.
- For $\mathcal{N}=4$ SUGRA, this suggests that the Siegel modular form should be replaced by an automorphic form of $S O(8,24, \mathbb{Z})$. For $\mathcal{N}=2$ SUGRA, this suggests the existence of a one-parameter generalization of the topological string amplitude, and an automorphic form attached to any Calabi-Yau 3-fold.

Outline

(1) Introduction
(2) Classical Attractor Flows
(3) A Geometric Interlude: Black Hole and Twistors
(4) Quantum Attractor Flows
(5) Automorphic Attractor Flows

Outline

(1) Introduction

(2) Classical Attractor Flows

3 A Geometric Interlude: Black Hole and Twistors

(4) Quantum Attractor Flows

(5) Automorphic Attractor Flows

Stationary solutions and KK* reduction I

- Stationary solutions in $D=3+1$ gravity can be parameterized as

$$
d s_{4}^{2}=-e^{2 U}(d t+\omega)^{2}+e^{-2 U} d s_{3}^{2}, \quad A_{4}^{\prime}=\zeta^{\prime} d t+A_{3}^{\prime}
$$

where $d s_{3}, U, \omega, A_{3}^{l}, \zeta^{l}$ and the 4D scalars $z^{i} \in \mathcal{M}_{4}$ are independent of time. The $D=3+1$ theory reduces to a field theory in three Euclidean dimensions.

- In contrast to the usual KK ansatz,

$$
d s_{4}^{2}=e^{2 U}(d y+\omega)^{2}+e^{-2 U} d s_{2,1}^{2}, \quad A_{4}^{\prime}=\zeta^{\prime} d y+A_{3}^{\prime}
$$

we reduce along a time-like direction.

Stationary solutions and KK^{*} reduction II

- For the usual KK reduction to $D=2+1$, the one-forms $\left(A_{3}^{\prime}, \omega\right)$ can be dualized into pseudo-scalars ($\tilde{\zeta}, \sigma$), where σ is the twist (or NUT) potential. The 4D Einstein-Maxwell equations reduce to 3D gravity + scalars living in a Riemannian space

$$
\mathcal{M}_{3}=\left.R^{+}\right|_{U} \times \mathcal{M}_{4} \times\left.\left.\right|_{z^{\prime}} \mathbb{R}^{2 n_{v}+3}\right|_{\zeta^{\prime}, \tilde{\zeta}, \sigma}
$$

with positive-definite metric

$$
\begin{aligned}
& d s^{2}=2(d U)^{2}+g_{i j} d z^{i} d z^{j}+\frac{1}{2} e^{-4 U}\left(d \sigma+\zeta^{\prime} d \tilde{\zeta}_{I}-\tilde{\zeta}_{I} d \zeta^{\prime}\right)^{2} \\
& +-e^{-2 U}\left[t_{/ J} d \zeta^{\prime} d \zeta^{J}+t^{\prime J}\left(d \tilde{\zeta}_{I}+\theta_{I K} d \zeta^{K}\right)\left(d \tilde{\zeta}_{J}+\theta_{J L} d \zeta^{L}\right)\right]
\end{aligned}
$$

Stationary solutions and KK^{*} reduction III

- The KK* reduction is simply related to the KK reduction by letting $\left(\zeta^{\prime}, \tilde{\zeta}_{I}\right) \rightarrow i\left(\zeta^{\prime}, \tilde{\zeta}_{I}\right)$. As a result, the scalar fields live in a pseudo-Riemannian space \mathcal{M}_{3}^{*}, with non-positive definite signature.
- \mathcal{M}_{3}^{*} always has $2 n_{V}+4$ isometries corresponding to the shifts of $\zeta^{,} \tilde{\zeta}_{l}, \sigma, U$, satisfying the graded Heisenberg algebra

$$
\begin{aligned}
{\left[p^{\prime}, q_{J}\right] } & =2 \delta_{J}^{\prime} k \\
{\left[m, p^{\prime}\right]=p^{\prime}, \quad\left[m, q_{l}\right] } & =q_{l}, \quad[m, k]=2 k
\end{aligned}
$$

- The notation anticipates the identification of the corresponding conserved charges with the electric and magnetic charges q_{l} and p_{l}, NUT charge k and ADM mass m.

G_{3} as a solution generating symmetry I

- Some times, \mathcal{M}_{3}^{*} has more isometries or structure:

4D	Sigma model in 3D
Pure Einstein-Gravity	$S I(2) / U(1)$
Einstein-Maxwell	$S U(2,1) / S I(2) \times U(1)$
$\mathrm{N}=2$ Supergravity	Quaternionic-Kähler manifold
$\mathrm{N}=4$ supergravity	$S O\left(8, n_{v}+2\right) / S O(8) \times S O\left(n_{v}+2\right)$
$\mathrm{N}=8$ supergravity	$E_{8} / S O^{*}(16)$

Ehlers; Kinnersley; Mazur; Breitenlohner Gibbons Maison

- When $\mathcal{M}_{3}^{*}=G_{3} / K_{3}$ is a symmetric space, the group G_{3} is a solution generating symmetry for stationary solutions in 4D!
- 5D Black holes with $U(1)$ isometry can also be described that way.

Spherically symmetric BH and geodesics I

- Now, restrict to spherically symmetric solutions, with spatial slices

$$
d s_{3}^{2}=N^{2}(\rho) d \rho^{2}+r^{2}(\rho) d \Omega_{2}^{2}
$$

- The sigma-model action becomes, up to a total derivative ($G_{a b}$ is the metric on \mathcal{M}_{3}^{*}):

$$
S=\int d \rho\left[\frac{N}{2}+\frac{1}{2 N}\left(\dot{r}^{2}-r^{2} G_{a b} \dot{\phi}^{a} \dot{\phi}^{b}\right)\right]
$$

- This is the Lagrangian for the geodesic motion of a fiducial particle with unit mass on the (hyperbolic) cone $\mathbb{R}^{+} \times \mathcal{M}_{3}^{*}$. The einbein \sqrt{N} enforces invariance under reparameterizations of ρ.

Spherically symmetric BH and geodesics II

- The equation of motion of N imposes the Hamiltonian constraint, or Wheeler-De Witt equation

$$
H_{W D W}=\left(p_{r}\right)^{2}-\frac{1}{r^{2}} G^{a b} p_{a} p_{b}-1 \equiv 0
$$

- The gauge choice $N=r^{2}$ allows to separate the problem into radial motion along r, and geodesic motion on \mathcal{M}_{3}^{*} :

$$
G^{a b} p_{a} p_{b}=C^{2}, \quad\left(p_{r}\right)^{2}-\frac{C^{2}}{r^{2}}-1 \equiv 0 \Rightarrow r=\frac{C}{\sinh C \rho}
$$

Thus, the problem reduces to affinely parameterized geodesic motion on the three-dimensional moduli space \mathcal{M}_{3}^{*}.

Spherically symmetric BH and geodesics III

- It turns out that $C=2 T_{H} S_{B H}$ is the extremality parameter: extremal (in particular BPS) black holes correspond to light-like geodesics on \mathcal{M}_{3}^{*}. Since $r=1 / \rho$, the 3D spatial slices are flat.
- Other gauges are also possible: e.g. $N=e^{U}$ identifies ρ with the radial geodesic distance to the horizon.
- For the purpose of defining observables such as the horizon area, $A_{H}=\left.4 \pi e^{-2 U} r^{2}\right|_{U \rightarrow-\infty}$ and ADM mass $M_{A D M}=\left.r\left(e^{2 U}-1\right)\right|_{U \rightarrow 0}$, it may convenient to leave the gauge unfixed.

Isometries and conserved charges

- The isometries of \mathcal{M}_{3} imply conserved Noether charges, whose Poisson bracket reflect the Lie algebra of the isometries:

$$
\begin{aligned}
{\left[p^{\prime}, q_{J}\right] } & =2 \delta_{J}^{\prime} k \\
{\left[m, p^{\prime}\right]=p^{\prime}, \quad\left[m, q_{l}\right] } & =q_{l}, \quad[m, k]=2 k
\end{aligned}
$$

- If $k \neq 0$, the off-diagonal term in the 4D metric

$$
d s_{4}^{2}=-e^{2 U}(d t+k \cos \theta d \phi)^{2}+e^{-2 U}\left[d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]
$$

implies the existence of closed time-like curves around ϕ direction, near $\theta=0$.

- Bona fide 4D black holes arise in the "classical limit" $k \rightarrow 0$. Keeping $k \neq 0$ will allow us to greatly extend the symmetry.

Conserved charges and black hole potential

- Setting $k=0$ for simplicity, one arrives at the Hamiltonian,

$$
H=\frac{1}{2}\left[p_{U}^{2}+p_{i} g^{i j} p_{j}-e^{2 U} V_{B H}\right] \equiv C^{2}
$$

where $V_{B H}$ is the "black hole potential",

$$
V_{B H}\left(z^{i}, p^{\prime}, q_{I}\right)=\frac{1}{2}\left(q_{l}-\mathcal{N}_{I J} p^{J}\right) t^{I K}\left(q_{K}-\overline{\mathcal{N}}_{K L} p^{L}\right)+\frac{1}{2} p^{\prime} t_{I J} p^{J}
$$

- The potential $V=-e^{2 U} V_{B H}$ is unbounded from below.

Quantizing geodesic motion I

- The classical phase space is the cotangent bundle $T^{*}\left(\mathcal{M}_{3}^{*}\right)$, specifying the initial position and velocity.
- Quantization proceeds by replacing functions on phase space by operators acting on wave functions in $L_{2}\left(\mathcal{M}_{3}^{*}\right)$, subject to

$$
\Delta_{3} \psi\left(U, z^{i}, \zeta^{\prime}, \tilde{\zeta}_{I}, \sigma\right)=C^{2} \psi
$$

where Δ_{3} is the Laplace-Beltrami operator on \mathcal{M}_{3}^{*}.

- The electric, magnetic and NUT charges may be diagonalized as

$$
\begin{gathered}
\Psi\left(U, z^{i}, \zeta^{\prime}, \tilde{\zeta}_{l}, \sigma\right)=\Psi_{p, q}(U, z) e^{i\left(q_{1} \zeta^{\prime}+p^{\prime} \tilde{\zeta}_{1}\right)} \\
{\left[-\partial_{U}^{2}-\Delta_{4}-e^{2 U} V_{B H}-C^{2}\right] \Psi_{p, q}(U, z)=0}
\end{gathered}
$$

Quantizing geodesic motion II

- The black hole wave function $\Psi_{p, q}(U, z)$ describes quantum fluctuations of the 4D moduli as one reaches the horizon at $U \rightarrow-\infty$. Naively, it should be peaked at the attractor point.
- Restoring the variable r, one could also describe the quantum fluctuations of the horizon area $4 \pi r^{2} e^{-2 U}$, around the classical value $4 S_{B H}$.
- The natural inner product is the Klein-Gordon inner product at fixed U, famously NOT positive definite. A standard remedy in quantum cosmology is "third quantization", possibly relevant for black hole fragmentation / multi-centered solutions.

Attractor flow in $N=2$ supergravity

- Consider $N=2$ SUGRA coupled to n_{V} abelian vector multiplets [hypers decouple at tree-leveI]: the vector multiplet scalars z^{i} take values in a special Kähler manifold \mathcal{M}_{4}. For type IIA on $X=C Y_{3}$, z^{i} parameterize the complexified Kähler structure of X.
- After reduction to 3 dimensions, the vector multiplet scalars take value in a quaternionic-Kähler space \mathcal{M}_{3}, known as the c - map of the special Kähler space \mathcal{M}_{4}.
- Under T-duality along the 4th direction, this becomes the hypermultiplet space for type IIB compactified on X at tree-level.
- The manifold \mathcal{M}_{3}^{*} obtained by analytic continuation is sometimes called "para-quaternionic-Kahler manifold"; it has split signature $\left(2 n_{V}+2,2 n_{V}+2\right)$

Attractor flow and semi-classical BPS wave function

- The black hole potential splits into two pieces,

$$
H=\frac{1}{2}\left[p_{U}^{2}+p_{i} g^{i \bar{j}} p_{\bar{j}}-e^{2 U}\left(|Z|^{2}+\partial_{i}|Z| g^{i \bar{j}} \partial_{\bar{j}}|Z|\right)\right]
$$

where Z is the central charge $Z=e^{K / 2}\left(q_{l} X^{\prime}-p^{\prime} F_{l}\right)$.

- Supersymmetric solutions are obtained by cancelling each term separately, leading back to the attractor flow equations,

$$
\begin{aligned}
r^{2} \frac{d U}{d r} & =e^{U}|Z| \\
r^{2} \frac{d z^{i}}{d r} & =2 e^{U} g_{i \bar{j}} \partial_{\bar{j}}|Z|
\end{aligned}
$$

Attractor flow and semi-classical BPS wave function

- At this stage, one could already quantize the attractor flow equations and guess the BPS wave function:

$$
\left\{\begin{array}{l}
p_{U}=-e^{U}|Z| \\
p_{\overline{z^{i}}}=-e^{U} \partial_{\bar{i}}|Z|
\end{array} \quad \Rightarrow \Psi_{p, q}\left(U, z^{i}, \bar{z}^{\bar{j}}\right) \sim \exp \left[2 i e^{U}|Z|\right]\right.
$$

The effective Planck constant $\hbar=e^{-U}$ blows up towards the horizon at $U \rightarrow-\infty$. The phase is stationary at the classical attractor points in the opposite limit $U \rightarrow+\infty$.

- Using twistor techniques, we shall be able to resolve ordering ambiguities, and compute the BPS wave function exactly.

Supersymmetric quantum mechanics

- More rigorously, the full $D=4, N=2$ SUGRA including fermions, reduces to $D=1, N=4$ supergravity:

$$
S=\int d \rho G_{a b} \dot{\phi}^{a} \dot{\phi}^{b}+\psi^{A} \frac{D}{D \rho} \psi_{A}+\left(\psi^{A} \psi_{A}\right)\left(\psi^{A} \psi_{A}\right)+\ldots
$$

- The supersymmetry variations are $\delta \psi^{A}=V^{A A^{\prime}} \epsilon_{A^{\prime}}$, where $V^{A A^{\prime}}$ ($A=1, . .2 n_{V}+2, A^{\prime}=1,2$) is the quaternionic vielbein afforded by the restricted holonomy $S p(2) \times S p\left(2 n_{V}+2\right)$.
- Thus, SUSY trajectories are characterized by

$$
\exists \epsilon_{\alpha} / V_{\mu}^{A A^{\prime}} \dot{\phi}^{\mu} \epsilon_{A^{\prime}}=0 \quad \Leftrightarrow \quad V^{A\left[A^{\prime}\right.} V^{\left.B^{\prime}\right] B}=0
$$

This reproduces the attractor flow equations (generalized to $k \neq 0$)

Outline

(1) Introduction

(2) Classical Attractor Flows

(3) A Geometric Interlude: Black Hole and Twistors

(4) Quantum Attractor Flows

(5) Automorphic Attractor Flows

Improved SUSY mechanics - HKC and twistors I

- This SUSY mechanics is rather unusual, insofar as the SUSY comes from a triplet of non-integrable almost complex structures.
- It is possible to remedy this problem by combining the Killing spinor $\epsilon_{A^{\prime}} \in \mathbb{C}^{2}$ with the coordinates $\phi^{a} \in Q K$, i.e. extend the QK space into its Hyperkähler cone (HKC), or Swann bundle,

$$
\mathbb{R}^{4} \rightarrow H K C \rightarrow Q K
$$

By cancelling the $S p(2)$ holonomy on QK against the $S U(2)$ holonomy on S^{3}, the three almost complex structures on QK become genuine (integrable) complex structures on HKC.

- Geodesic motion on HKC is equivalent to geodesic motion on QK after gauging the $S U(2)$ and dilation symmetries.

The twistor space

- For many purposes it is sufficient to work with the twistor space Z, a two-sphere bundle over QK with a Kähler-Einstein metric. The sphere coordinate z keeps track of the Killing spinor, $z=\epsilon_{1} / \epsilon_{2}$.
- In the presence of triholomorphic isometries, the geometry of HKC is given by the "Legendre transform construction" $G\left(\eta^{L}\right)$,

$$
\left\langle K\left(v^{L}, \bar{v}^{L}, w_{L}+\bar{w}_{L}\right)+x^{L}\left(w_{L}+\bar{w}_{L}\right)\right\rangle_{w+\bar{w}}=\operatorname{Im} \oint \frac{d \zeta}{2 \pi i \zeta} G\left[\eta^{L}(\zeta), \zeta\right]
$$

where η^{L} is the projective " $\mathrm{O}(2)$ multiplet"

$$
\eta^{L}=v^{L} / \zeta+x^{L}-\bar{v}^{L} \zeta
$$

and $G\left[\eta^{L}\right]$ is a holomorphic function of η^{L}, homogeneous of degree 1 , known as the generalized prepotential.

Twistor space for the c-map

- When HKC is the Swann bundle of the c-map of a SK manifold, the generalized prepotential G is related to the prepotential F via

$$
\boldsymbol{G}\left(\eta^{L}, \zeta\right)=F\left(\eta^{\prime}\right) / \eta^{b}
$$

Berkovits; Rocek Vafa Vandoren

- The inhomogeneous coordinates $\xi^{l}=v^{l} / v^{b}, \tilde{\xi}_{l}=-2 i w_{l}$, $\alpha=4 i w_{b}-\xi^{\prime} \tilde{\xi}_{l}$ are complex coordinates on Z, adapted to the Heisenberg symmetries, given by the twistor lines:

$$
\begin{aligned}
\xi^{\prime} & =\zeta^{\prime}+i e^{U+\mathcal{K}(X) / 2}\left(z \bar{X}^{\prime}+z^{-1} X^{\prime}\right) \\
\tilde{\xi}_{I} & =\tilde{\zeta}_{I}+i e^{U+\mathcal{K}(X) / 2}\left(z \bar{F}_{I}+z^{-1} F_{I}\right) \\
\alpha & =\sigma+\zeta^{\prime} \tilde{\xi}_{I}-\tilde{\zeta}_{I} \xi^{\prime}
\end{aligned}
$$

- Conversely, the coordinates on the base \mathcal{M}_{3} are $\operatorname{SU}(2)$ invariant combinations of $\xi^{\prime}, \tilde{\xi}_{\xi}, \alpha$.

BPS black holes and holomorphic curves

- Upon lifting the geodesic motion to Z, SUSY is preserved iff the momentum is holomorphic in the canonical complex structure on Z, at any point along the trajectory: 1st class constraints!
- BPS solutions correspond to holomorphic curves $\xi^{\prime}(\rho), \tilde{\xi}_{l}(\rho), \alpha(\rho)$ at constant $\bar{\xi}^{\prime}, \overline{\tilde{\xi}}_{l}, \bar{\alpha}$, and are algebraically determined by the conserved charges: integrable system !
- The SUSY phase space is the twistor space Z, equipped with its Kähler symplectic form. Its dimension is $4 n_{V}+6$, almost half that of the generic phase space $T^{*}\left(\mathcal{M}_{3}^{*}\right)$.

The Penrose Transform

- At fixed values of $U, z^{i}, \zeta^{l}, \tilde{\zeta}_{l}, \sigma$, the complex coordinates $\xi^{1}, \tilde{\xi}_{I}, \alpha$ on Z are holomorphic functions of the twistor coordinate z : the fiber over each point is a rational curve in Z.
- Starting from a holomorphic function Φ on Z (more precisely a class in $H^{1}(Z, O(-2))$), we can produce a function Ψ on QK

$$
\Psi\left(U, z^{i}, \bar{z}^{\bar{i}}, \zeta^{\prime}, \tilde{\zeta}_{l}, \sigma\right)=e^{2 U} \oint \frac{d z}{2 \pi i z} \Phi\left[\xi^{\prime}(z), \tilde{\xi}^{\prime}(z), \alpha(z)\right]
$$

which then satisfies some generalized harmonicity condition:

$$
\left(\epsilon^{A^{\prime} B^{\prime}} \nabla_{A A^{\prime}} \nabla_{B B^{\prime}}-R_{A B}\right) \psi=0
$$

- This generalizes the usual Penrose transform between holomorphic functions on $C P^{3}$ and conformally harmonic functions on S^{4} to the quaternionic setting.

Outline

(1) Introduction

(2) Classical Attractor Flows

(3) A Geometric Interlude: Black Hole and Twistors
(4) Quantum Attractor Flows
(5) Automorphic Attractor Flows

The BPS Hilbert space I

- In terms of geodesic motion on the QK base, the classical BPS conditions $V^{A\left[A^{\prime}\right.} V^{\left.B^{\prime}\right] B}=0$ become a set of 2nd order differential operators which have to annihilate the wave function Ψ :

$$
\left(\epsilon_{A^{\prime} B^{\prime}} \nabla^{A A^{\prime}} \nabla^{B B^{\prime}}-R^{A B}\right) \Psi=0
$$

- In terms of the twistor space, the BPS condition $p_{\bar{L}}=0$ requires that ψ should be a holomorphic function on Z. More precisely, depending on the fermionic state, it should be a class in the sheaf cohomology group $H^{1}(Z, \mathcal{O}(-\ell))$. Take $\ell=2$ for simplicity.
- The equivalence between the two approaches is a consequence of the Penrose transform discussed previously.

The BPS Black Hole Wave-Function I

- Thus, the BPS black hole wave function on \mathcal{M}_{3} is given by

$$
\Psi\left(U, z^{i}, \bar{z}^{\prime}, \zeta^{\prime}, \tilde{\zeta}_{I}, \sigma\right)=e^{2 U} \oint \frac{d z}{2 \pi i z} \Phi\left[\xi^{\prime}(z), \tilde{\xi}^{\prime}(z), \alpha(z)\right]
$$

where ψ is entirely determined (up to normalization) by the black hole charges. For zero NUT charge k,

$$
\begin{aligned}
& \Phi=\exp \left[i\left(p^{\prime} \tilde{\xi}_{I}-q_{l} \zeta^{\prime}\right)\right] \\
&=\exp \left[i\left(p^{\prime} \tilde{\zeta}_{I}-q_{l} \zeta^{\prime}\right)+i e^{U+K(X) / 2}\left(z \bar{W}_{p, q}(\bar{X})+z^{-1} W_{p, q}(X)\right)\right] \\
& \Rightarrow \quad \Psi=e^{2 U} J_{0}\left(2 e^{U}\left|Z_{p, q}\right|\right) e^{i\left(p^{\prime} \tilde{\zeta}_{l}-q_{l} \zeta^{\prime}\right)}
\end{aligned}
$$

The BPS Black Hole Wave-Function I

- The exact result is in qualitative agreement with our naive guess $\exp \left(2 i e^{U}\left|Z_{p, q}\right|\right)$. This is peaked around the classical attractor points in the "far horizon" limit $U \rightarrow \infty$, but quantum fluctuations become infinite near the horizon.
- This is probably due to the large fine-tuning needed to produce a BPS solution. Can this be taken as support for the "fuzzball proposal" ?
- Ooguri, Vafa and Verlinde had proposed to interpret the topological string amplitude, which lives in a Hilbert space of dimension $n_{v}+1$, as a wave function for the (near horizon) radial quantization of BPS black holes. Instead, the BPS radial quantization produces a much bigger Hilbert space $H_{l}(Z, O(-I))$, of functional dimension $2 n_{v}+3$.

Generalized topological amplitude

- On the other hand, the holomorphic quantization of the HKC leads to a Hilbert space of dimension $\left(4 n_{v}+8\right) / 4=n_{v}+2$, morally the space of "triholomorphic functions" on HKC.
- In the symmetric cases, this still carries a unitary rep of G_{3} known as the minimal representation. Upon fixing the value of k, this yields the Schödinger-Weil representation of G_{4}, the usual habitat of the topological string amplitude!
- This suggests a one-parameter generalization of the topological string amplitude, controlling higher-derivative corrections on hypermultiplet spaces.

Outline

(1) Introduction

(2) Classical Attractor Flows

(3) A Geometric Interlude: Black Hole and Twistors
(4) Quantum Attractor Flows
(5) Automorphic Attractor Flows

Black Hole Partition Functions

- The moduli space $\mathcal{M}_{3}=\left.R^{+}\right|_{u} \times \mathcal{M}_{4} \times\left.\left.\right|_{z^{i}} \mathbb{R}^{2 n_{v}+3}\right|_{\zeta^{\prime}, \tilde{\zeta}_{I}, \sigma}$ appears to provide all the desirable parameters for a partition function for black hole micro-states: the inverse temperature $\beta=e^{2 U}$, asymptotic moduli z^{i}, chemical potentials $\zeta^{\prime}, \tilde{\zeta}_{l}$.
- Upon compactification to $D=3$, the effective action will receive instanton contributions from black holes winding the Euclidean time direction, and will have to be invariant under $G_{3}(\mathbb{Z})$.
- This suggests that the exact degeneracies of black hole micro-states should be given by Fourier coefficients of an automorphic form of $G_{3}(\mathbb{Z})$.

Which automorphic form?

- Automorphic forms of G generally require three ingredients: (i) a unitary representation ρ of G, (ii) a K-invariant (or spherical vector) f_{K}, and (iii) a $G(\mathbb{Z})$-invariant vector $f_{\mathbb{Z}}$:

$$
\Psi(g)=\left\langle f_{\mathbb{Z}}\right| \rho(g)\left|f_{K}\right\rangle
$$

For example the Jacobi theta series is obtained from the metaplectic representation of $S I(2, \mathbb{Z})$, using $f_{K}=e^{-x^{2}}$ and $f_{\mathbb{Z}}=\sum_{m \in \mathbb{Z}} \delta_{x-m}$.

- The radial quantization of spherically symmetric black holes provides a unitary representation of G_{3}. In particular, the BPS Hilbert space $H_{1}(Z, O(-\ell))$ furnishes a family of quaternionic discrete| (QD) of G_{3}.

Abelian and non-Abelian Fourier coefficients

- Upon Fourier expanding in $\zeta^{\prime}, \tilde{\zeta}_{I}, \sigma$, one gets Abelian $(k=0)$ and non-Abelian $(k \neq 0)$ Fourier coefficients:

$$
\begin{gathered}
\Psi=\sum_{p, q} \Omega(p, q) \Psi_{p, q}\left(U, z^{i}, \bar{z}^{i}\right) e^{i\left(q / \zeta^{\prime}-p^{\prime} \tilde{\zeta}_{I}\right)}+\sum_{k} \sum_{r^{\prime} \in \mathbb{Z} / k \mathbb{Z}} \\
\Omega\left(k, r^{\prime}\right) \sum_{p^{\prime}} f_{k}\left(U, z^{i}, \bar{z}^{i} ; \zeta^{\prime}+k p^{\prime}\right) \exp \left[i\left(k p^{\prime}+r^{\prime}\right) \tilde{\zeta}_{I}+i k\left(\sigma-\zeta^{\prime} \tilde{\zeta}_{l}\right)\right]
\end{gathered}
$$

When Ψ is in the quaternionic discrete series, $\Psi_{p, q}\left(U, z^{i}, \bar{z}^{i}\right)$ is the black hole wave function that we have computed!

Black hole degeneracies as Fourier coefficients

- We propose that $\Omega(p, q)$ are the exact black hole degeneracies, for a suitable choice of ℓ and Ψ. To see that we may be on the right track, note Wallach's theorem: $\Omega(p, q)=0$ unless $I_{4}(p, q) \geq 0$.
- For $1 / 4-$ BPS $B H$ in $\mathcal{N}=4$ SUGRA, this suggests that the DVV-type formula, based on a Siegel modular form, should be subsumed into an automorphic form of $S O\left(8, n_{v}+2, \mathbb{Z}\right)$ in the QD series.
- For $1 / 8$-BPS BH in $\mathcal{N}=8$ SUGRA, we expect an automorphic form of $E_{8(8)}$ in the QD series, of Kirillov dimension 57. For $1 / 2$ BPS, in the minimal representation, of Kirillov dimension 29.
- In order to reproduce the growth $\Omega(p, q) \sim \exp \left[\pi \sqrt{I_{4}(p, q)}\right]$, we need to allow for singularities worse than the poles appearing in DVV's formula. No concrete candidate yet.

Outlook

- Multi-centered configurations can be described by certain harmonic maps from \mathbb{R}^{3} to QK: does that correspond to "second quantization", i.e. including vertices ?
- Could one compute the radial wave function for extremal non-BPS black holes ? need to implement the fine-tuning of the boundary conditions at infinity.
- Can one construct automorphic forms of G in the quaternionic discrete series, with suitable exponential growth of Fourier coefficients ? Eg. via theta-lifts, or residues of Eisenstein series.
- Can one make progress on understanding instanton corrections to hypermultiplets using these techniques?

