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Introduction

As shown by Strominger, Vafa and many others, string theory
provides a good microscopic understanding of the
Bekenstein-Hawking entropy of a large class of extremal and
near-extremal black holes in D=4 and D=5 supergravity.
More recently, much progress has been made in extending this
agreement beyond the thermodynamical (large charge) limit,
where higher-derivative corrections in the low energy effective
action and subleading corrections to Cardy’s formula become
important.
In some cases, exact formulae for the degeneracies of black hole
micro-states have been proposed, and tested with some success:
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Exact black hole degeneracies

For 1/4 BPS dyonic black holes in N = 4,D = 4 supergravity, DVV
have conjectured

Ω(qe,qm) = (−1)qe·qm

∮
ei(q2

eρ+q2
mσ+2qe·qmν)

Φ10(ρ, σ, ν)
dρdσ dν

where Φ10 is a Siegel cusp form of weight 10.
For 1/2 BPS- black holes in N = 2,D = 4 supergravity, OSV have
proposed

Ω(pI ,qI) ∼
∫

dφI |Ψtop(pI + iφI)|2 eφIqI

where Ψtop(pI) is the topological string amplitude in the real
polarization.
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Automorphic Black Hole Partition Functions I

Both of these proposals have been “proven” several times over.
Yet they still raise questions: Why should Ω(qe,qm) depend on
q2

e ,q2
m,qe · qm only ? What is the physical origin of the Sp(4,Z)

symmetry ? How to incorporate multi-centered configurations and
lines of marginal stability in OSV formula ? etc.

The goal of this talk will be to propose a general framework for
constructing black hole partition functions, inspired by both of
these proposals, which can potentially resolve these difficulties.
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Automorphic Black Hole Partition Functions I

In particular, the three-dimensional duality group G3(Z) is
proposed to play the rôle of a spectrum generating symmetry for
black holes in 4 dimensions. This is closely related to the fact that
black holes in D=4 correspond to instantons in D=3.
More specifically, we propose that the partition function of black
hole micro-states is an automorphic form of G3(Z), “attached” to a
particular representation of G3(R) obtained by performing the
radial quantization of stationary, spherically symmetric BH: hence
we’ll study quantum attractors.
For N = 4 SUGRA, this suggests that the Siegel modular form
should be replaced by an automorphic form of SO(8,24,Z). For
N = 2 SUGRA, this suggests the existence of a one-parameter
generalization of the topological string amplitude, and an
automorphic form attached to any Calabi-Yau 3-fold.
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Stationary solutions and KK∗ reduction I

Stationary solutions in D = 3 + 1 gravity can be parameterized as

ds2
4 = −e2U(dt + ω)2 + e−2Uds2

3 , AI
4 = ζ Idt + AI

3

where ds3,U, ω,AI
3, ζ

I and the 4D scalars z i ∈M4 are
independent of time. The D = 3 + 1 theory reduces to a field
theory in three Euclidean dimensions.

In contrast to the usual KK ansatz,

ds2
4 = e2U(dy + ω)2 + e−2Uds2

2,1 , AI
4 = ζ Idy + AI

3

we reduce along a time-like direction.
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Stationary solutions and KK∗ reduction II

For the usual KK reduction to D = 2 + 1, the one-forms (AI
3, ω)

can be dualized into pseudo-scalars (ζ̃I , σ), where σ is the twist (or
NUT) potential. The 4D Einstein-Maxwell equations reduce to 3D
gravity + scalars living in a Riemannian space

M3 = R+|U ×M4 × |z i R2nv+3|ζ I ,ζ̃I ,σ

with positive-definite metric

ds2 = 2(dU)2 + gijdz idz j +
1
2

e−4U
(

dσ + ζ Id ζ̃I − ζ̃Idζ I
)2

+−e−2U
[
tIJdζ IdζJ + t IJ

(
d ζ̃I + θIK dζK

) (
d ζ̃J + θJLdζL

)]
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Stationary solutions and KK∗ reduction III

The KK∗ reduction is simply related to the KK reduction by letting
(ζ I , ζ̃I) → i(ζ I , ζ̃I). As a result, the scalar fields live in a
pseudo–Riemannian space M∗

3, with non-positive definite
signature.
M∗

3 always has 2nV + 4 isometries corresponding to the shifts of
ζ ,ζ̃I , σ,U, satisfying the graded Heisenberg algebra

[pI ,qJ ] = 2δI
J k[

m,pI
]

= pI , [m,qI ] = qI , [m, k ] = 2k

The notation anticipates the identification of the corresponding
conserved charges with the electric and magnetic charges qI and
pI , NUT charge k and ADM mass m.
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G3 as a solution generating symmetry I

Some times, M∗
3 has more isometries or structure:

4D Sigma model in 3D
Pure Einstein-Gravity Sl(2)/U(1)
Einstein-Maxwell SU(2,1)/Sl(2)× U(1)
N=2 Supergravity Quaternionic-Kähler manifold
N=4 supergravity SO(8,nv + 2)/SO(8)× SO(nv + 2)
N=8 supergravity E8/SO∗(16)

Ehlers; Kinnersley; Mazur; Breitenlohner Gibbons Maison

When M∗
3 = G3/K3 is a symmetric space, the group G3 is a

solution generating symmetry for stationary solutions in 4D !
5D Black holes with U(1) isometry can also be described that way.
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Spherically symmetric BH and geodesics I

Now, restrict to spherically symmetric solutions, with spatial slices

ds2
3 = N2(ρ)dρ2 + r2(ρ)dΩ2

2

The sigma-model action becomes, up to a total derivative (Gab is
the metric on M∗

3):

S =

∫
dρ

[
N
2

+
1

2N

(
ṙ2 − r2Gabφ̇

aφ̇b
)]

This is the Lagrangian for the geodesic motion of a fiducial particle
with unit mass on the (hyperbolic) cone R+ ×M∗

3. The einbein√
N enforces invariance under reparameterizations of ρ.
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Spherically symmetric BH and geodesics II

The equation of motion of N imposes the Hamiltonian constraint,
or Wheeler-De Witt equation

HWDW = (pr )
2 − 1

r2 Gabpapb − 1 ≡ 0

The gauge choice N = r2 allows to separate the problem into
radial motion along r , and geodesic motion on M∗

3:

Gabpapb = C2 , (pr )
2 − C2

r2 − 1 ≡ 0 ⇒ r =
C

sinh Cρ
,

Thus, the problem reduces to affinely parameterized geodesic
motion on the three-dimensional moduli space M∗

3.
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Spherically symmetric BH and geodesics III

It turns out that C = 2THSBH is the extremality parameter:
extremal (in particular BPS) black holes correspond to light-like
geodesics on M∗

3. Since r = 1/ρ, the 3D spatial slices are flat.

Other gauges are also possible: e.g. N = eU identifies ρ with the
radial geodesic distance to the horizon.

For the purpose of defining observables such as the horizon area,
AH = 4πe−2U r2|U→−∞ and ADM mass MADM = r(e2U − 1)|U→0, it
may convenient to leave the gauge unfixed.
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Isometries and conserved charges

The isometries of M3 imply conserved Noether charges, whose
Poisson bracket reflect the Lie algebra of the isometries:

[pI ,qJ ] = 2δI
J k[

m,pI
]

= pI , [m,qI ] = qI , [m, k ] = 2k

If k 6= 0, the off-diagonal term in the 4D metric

ds2
4 = −e2U(dt + k cos θdφ)2 + e−2U [dr2 + r2(dθ2 + sin2 θdφ2)]

implies the existence of closed time-like curves around φ direction,
near θ = 0.
Bona fide 4D black holes arise in the “classical limit” k → 0.
Keeping k 6= 0 will allow us to greatly extend the symmetry.
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Conserved charges and black hole potential

Setting k = 0 for simplicity, one arrives at the Hamiltonian,

H =
1
2

[
p2

U + pig ijpj − e2UVBH

]
≡ C2

where VBH is the “black hole potential”,

VBH(z i ,pI ,qI) =
1
2
(qI −NIJpJ)t IK (qK − N̄KLpL) +

1
2

pI tIJpJ

The potential V = −e2UVBH is unbounded from below.
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Quantizing geodesic motion I

The classical phase space is the cotangent bundle T ∗(M∗
3),

specifying the initial position and velocity.
Quantization proceeds by replacing functions on phase space by
operators acting on wave functions in L2(M∗

3), subject to

∆3Ψ(U, z i , ζ I , ζ̃I , σ) = C2Ψ

where ∆3 is the Laplace-Beltrami operator on M∗
3.

The electric, magnetic and NUT charges may be diagonalized as

Ψ(U, z i , ζ I , ζ̃I , σ) = Ψp,q(U, z) ei(qIζ
I+pI ζ̃I)

[
−∂2

U −∆4 − e2UVBH − C2
]
Ψp,q(U, z) = 0
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Quantizing geodesic motion II

The black hole wave function Ψp,q(U, z) describes quantum
fluctuations of the 4D moduli as one reaches the horizon at
U → −∞. Naively, it should be peaked at the attractor point.

Restoring the variable r , one could also describe the quantum
fluctuations of the horizon area 4πr2e−2U , around the classical
value 4SBH .

The natural inner product is the Klein-Gordon inner product at
fixed U, famously NOT positive definite. A standard remedy in
quantum cosmology is “third quantization”, possibly relevant for
black hole fragmentation / multi-centered solutions.
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Attractor flow in N = 2 supergravity

Consider N = 2 SUGRA coupled to nV abelian vector multiplets
[hypers decouple at tree-level]: the vector multiplet scalars z i take
values in a special Kähler manifold M4. For type IIA on X = CY3,
z i parameterize the complexified Kähler structure of X .
After reduction to 3 dimensions, the vector multiplet scalars take
value in a quaternionic-Kähler space M3, known as the c −map
of the special Kähler space M4.
Under T-duality along the 4th direction, this becomes the
hypermultiplet space for type IIB compactified on X at tree-level.
The manifold M∗

3 obtained by analytic continuation is sometimes
called “para-quaternionic-Kahler manifold”; it has split signature
(2nV + 2,2nV + 2)

Cortes Mayer Mohaupt Saueressig
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Attractor flow and semi-classical BPS wave function

The black hole potential splits into two pieces,

H =
1
2

[
p2

U + pig i j̄pj̄ − e2U
(
|Z |2 + ∂i |Z | g i j̄ ∂̄j |Z |

)]
where Z is the central charge Z = eK/2(qIX I − pIFI).
Supersymmetric solutions are obtained by cancelling each term
separately, leading back to the attractor flow equations,
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r2 dU
dr

= eU |Z |

r2 dz i

dr
= 2eUgi j̄ ∂̄j |Z |
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Attractor flow and semi-classical BPS wave function

At this stage, one could already quantize the attractor flow
equations and guess the BPS wave function:{

pU = −eU |Z |
pz̄ ī = −eU ∂̄i |Z |

⇒ Ψp,q(U, z i , z̄ j̄) ∼ exp
[
2ieU |Z |

]
The effective Planck constant ~ = e−U blows up towards the
horizon at U → −∞. The phase is stationary at the classical
attractor points in the opposite limit U → +∞.
Using twistor techniques, we shall be able to resolve ordering
ambiguities, and compute the BPS wave function exactly.
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Supersymmetric quantum mechanics

More rigorously, the full D = 4,N = 2 SUGRA including fermions,
reduces to D = 1,N = 4 supergravity:

S =

∫
dρ Gabφ̇

aφ̇b + ψA D
Dρ

ψA + (ψAψA)(ψAψA) + . . .

The supersymmetry variations are δψA = V AA′
εA′ , where V AA′

(A = 1, ..2nV + 2,A′ = 1,2) is the quaternionic vielbein afforded by
the restricted holonomy Sp(2)× Sp(2nV + 2).
Thus, SUSY trajectories are characterized by

∃εα / V AA′
µ φ̇µ εA′ = 0 ⇔ V A[A′

V B′]B = 0

This reproduces the attractor flow equations (generalized to k 6= 0)
Gutperle Spalinski

B. Pioline ( LPTHE and LPTENS, Paris ) Quantum Attractor Flows Toronto, Nov 22, 2007 23 / 40



Outline

1 Introduction

2 Classical Attractor Flows

3 A Geometric Interlude: Black Hole and Twistors

4 Quantum Attractor Flows

5 Automorphic Attractor Flows

B. Pioline ( LPTHE and LPTENS, Paris ) Quantum Attractor Flows Toronto, Nov 22, 2007 24 / 40



Improved SUSY mechanics - HKC and twistors I

This SUSY mechanics is rather unusual, insofar as the SUSY
comes from a triplet of non-integrable almost complex structures.
It is possible to remedy this problem by combining the Killing
spinor εA′ ∈ C2 with the coordinates φa ∈ QK , i.e. extend the QK
space into its Hyperkähler cone (HKC), or Swann bundle,

R4 → HKC → QK

By cancelling the Sp(2) holonomy on QK against the SU(2)
holonomy on S3, the three almost complex structures on QK
become genuine (integrable) complex structures on HKC.
Geodesic motion on HKC is equivalent to geodesic motion on QK
after gauging the SU(2) and dilation symmetries.
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The twistor space

For many purposes it is sufficient to work with the twistor space Z ,
a two-sphere bundle over QK with a Kähler-Einstein metric. The
sphere coordinate z keeps track of the Killing spinor, z = ε1/ε2.
In the presence of triholomorphic isometries, the geometry of HKC
is given by the “Legendre transform construction” G(ηL),

〈K (vL, v̄L,wL + w̄L) + xL(wL + w̄L)〉w+w̄ = Im
∮

dζ
2πiζ

G[ηL(ζ), ζ]

where ηL is the projective “O(2) multiplet”

ηL = vL/ζ + xL − v̄Lζ

and G[ηL] is a holomorphic function of ηL, homogeneous of
degree 1, known as the generalized prepotential.

Hitchin Lindstrom Rocek; De Wit Rocek Vandoren
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Twistor space for the c-map

When HKC is the Swann bundle of the c-map of a SK manifold,
the generalized prepotential G is related to the prepotential F via

G(ηL, ζ) = F (ηI)/η[

Berkovits; Rocek Vafa Vandoren

The inhomogeneous coordinates ξI = v I/v [, ξ̃I = −2iwI ,
α = 4iw[ − ξI ξ̃I are complex coordinates on Z , adapted to the
Heisenberg symmetries, given by the twistor lines:

ξI = ζ I + i eU+K(X)/2
(

z X̄ I + z−1X I
)

ξ̃I = ζ̃I + i eU+K(X)/2
(

z F̄I + z−1 FI

)
α = σ + ζ I ξ̃I − ζ̃Iξ

I

Conversely, the coordinates on the base M3 are SU(2) invariant
combinations of ξI , ξ̃I , α.

Neitkze BP Vandoren 07
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BPS black holes and holomorphic curves

Upon lifting the geodesic motion to Z , SUSY is preserved iff the
momentum is holomorphic in the canonical complex structure on
Z , at any point along the trajectory: 1st class constraints !
BPS solutions correspond to holomorphic curves ξI(ρ), ξ̃I(ρ), α(ρ)

at constant ξ̄I , ¯̃ξI , ᾱ, and are algebraically determined by the
conserved charges: integrable system !
The SUSY phase space is the twistor space Z , equipped with its
Kähler symplectic form. Its dimension is 4nV + 6, almost half that
of the generic phase space T ∗(M∗

3).
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The Penrose Transform

At fixed values of U, z i , ζ I , ζ̃I , σ, the complex coordinates ξI , ξ̃I , α
on Z are holomorphic functions of the twistor coordinate z: the
fiber over each point is a rational curve in Z .
Starting from a holomorphic function Φ on Z (more precisely a
class in H1(Z ,O(−2))), we can produce a function Ψ on QK

Ψ(U, z i , z̄ ī , ζ I , ζ̃I , σ) = e2U
∮

dz
2πiz

Φ
[
ξI(z), ξ̃I(z), α(z)

]
which then satisfies some generalized harmonicity condition:(

εA
′B′∇AA′∇BB′ − RAB

)
Ψ = 0

This generalizes the usual Penrose transform between
holomorphic functions on CP3 and conformally harmonic
functions on S4 to the quaternionic setting.

Salamon; Baston Eastwood
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The BPS Hilbert space I

In terms of geodesic motion on the QK base, the classical BPS
conditions V A[A′

V B′]B = 0 become a set of 2nd order differential
operators which have to annihilate the wave function Ψ:(

εA′B′∇AA′∇BB′ − RAB
)

Ψ = 0

In terms of the twistor space, the BPS condition pL̄ = 0 requires
that Ψ should be a holomorphic function on Z . More precisely,
depending on the fermionic state, it should be a class in the sheaf
cohomology group H1(Z ,O(−`)). Take ` = 2 for simplicity.

The equivalence between the two approaches is a consequence
of the Penrose transform discussed previously.
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The BPS Black Hole Wave-Function I

Thus, the BPS black hole wave function on M3 is given by

Ψ(U, z i , z̄ I , ζ I , ζ̃I , σ) = e2U
∮

dz
2πiz

Φ
[
ξI(z), ξ̃I(z), α(z)

]
where Ψ is entirely determined (up to normalization) by the black
hole charges. For zero NUT charge k ,

Φ = exp
[
i(pI ξ̃I − qIξ

I)
]

= exp
[
i(pI ζ̃I − qIζ

I) + ieU+K (X)/2(zW̄p,q(X̄ ) + z−1Wp,q(X ))
]

⇒ Ψ = e2U J0

(
2 eU |Zp,q|

)
ei(pI ζ̃I−qIζ

I)
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The BPS Black Hole Wave-Function I

The exact result is in qualitative agreement with our naive guess
exp(2ieU |Zp,q|). This is peaked around the classical attractor
points in the “far horizon” limit U →∞, but quantum fluctuations
become infinite near the horizon.
This is probably due to the large fine-tuning needed to produce a
BPS solution. Can this be taken as support for the “fuzzball
proposal” ?
Ooguri, Vafa and Verlinde had proposed to interpret the
topological string amplitude, which lives in a Hilbert space of
dimension nv + 1, as a wave function for the (near horizon) radial
quantization of BPS black holes. Instead, the BPS radial
quantization produces a much bigger Hilbert space Hl(Z ,O(−l)),
of functional dimension 2nv + 3.
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Generalized topological amplitude

On the other hand, the holomorphic quantization of the HKC leads
to a Hilbert space of dimension (4nv + 8)/4 = nv + 2, morally the
space of “triholomorphic functions” on HKC.
In the symmetric cases, this still carries a unitary rep of G3 known
as the minimal representation. Upon fixing the value of k , this
yields the Schödinger-Weil representation of G4, the usual habitat
of the topological string amplitude !
This suggests a one-parameter generalization of the topological
string amplitude, controlling higher-derivative corrections on
hypermultiplet spaces.
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Black Hole Partition Functions

The moduli space M3 = R+|U ×M4 × |z i R2nv+3|ζ I ,ζ̃I ,σ
appears to

provide all the desirable parameters for a partition function for
black hole micro-states: the inverse temperature β = e2U ,
asymptotic moduli z i , chemical potentials ζ I , ζ̃I .
Upon compactification to D=3, the effective action will receive
instanton contributions from black holes winding the Euclidean
time direction, and will have to be invariant under G3(Z).
This suggests that the exact degeneracies of black hole
micro-states should be given by Fourier coefficients of an
automorphic form of G3(Z).
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Which automorphic form ?

Automorphic forms of G generally require three ingredients: (i) a
unitary representation ρ of G, (ii) a K -invariant (or spherical
vector) fK , and (iii) a G(Z)-invariant vector fZ:

Ψ(g) = 〈fZ|ρ(g)|fK 〉

For example the Jacobi theta series is obtained from the
metaplectic representation of Sl(2,Z), using fK = e−x2

and
fZ =

∑
m∈Z δx−m.

The radial quantization of spherically symmetric black holes
provides a unitary representation of G3. In particular, the BPS
Hilbert space H1(Z ,O(−`)) furnishes a family of quaternionic
discrete| (QD) of G3.
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Abelian and non-Abelian Fourier coefficients

Upon Fourier expanding in ζ I , ζ̃I , σ, one gets Abelian (k = 0) and
non-Abelian (k 6= 0) Fourier coefficients:

Ψ =
∑
p,q

Ω(p,q)Ψp,q(U, z i , z̄ i) ei(qIζ
I−pI ζ̃I) +

∑
k

∑
r I∈Z/kZ

Ω(k , r I)
∑
pI

fk (U, z i , z̄ i ; ζ I + kpI) exp
[
i(kpI + r I)ζ̃I + ik(σ − ζ I ζ̃I)

]
When Ψ is in the quaternionic discrete series, Ψp,q(U, z i , z̄ i) is the
black hole wave function that we have computed !
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Black hole degeneracies as Fourier coefficients

We propose that Ω(p,q) are the exact black hole degeneracies, for
a suitable choice of ` and Ψ. To see that we may be on the right
track, note Wallach’s theorem: Ω(p,q) = 0 unless I4(p,q) ≥ 0.
For 1/4-BPS BH in N = 4 SUGRA, this suggests that the
DVV-type formula, based on a Siegel modular form, should be
subsumed into an automorphic form of SO(8,nv + 2,Z) in the QD
series.
For 1/8-BPS BH in N = 8 SUGRA, we expect an automorphic
form of E8(8) in the QD series, of Kirillov dimension 57. For 1/2
BPS, in the minimal representation, of Kirillov dimension 29.
In order to reproduce the growth Ω(p,q) ∼ exp[π

√
I4(p,q)], we

need to allow for singularities worse than the poles appearing in
DVV’s formula. No concrete candidate yet.
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Outlook

Multi-centered configurations can be described by certain
harmonic maps from R3 to QK : does that correspond to “second
quantization”, i.e. including vertices ?
Could one compute the radial wave function for extremal non-BPS
black holes ? need to implement the fine-tuning of the boundary
conditions at infinity.
Can one construct automorphic forms of G in the quaternionic
discrete series, with suitable exponential growth of Fourier
coefficients ? Eg. via theta-lifts, or residues of Eisenstein series.
Can one make progress on understanding instanton corrections to
hypermultiplets using these techniques ?
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