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Introduction

@ As shown by Strominger, Vafa and many others, string theory
provides a good microscopic understanding of the
Bekenstein-Hawking entropy of a large class of extremal and
near-extremal black holes in D=4 and D=5 supergravity.

@ More recently, much progress has been made in extending this
agreement beyond the thermodynamical (large charge) limit,
where higher-derivative corrections in the low energy effective
action and subleading corrections to Cardy’s formula become
important.

@ In some cases, exact formulae for the degeneracies of black hole
micro-states have been proposed, and tested with some success:
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Exact black hole degeneracies

@ For 1/4 BPS dyonic black holes in N' = 4, D = 4 supergravity, DVV
have conjectured

e/(quJFQanUJFZQe'qu)

Q(ge, gm) = (_1)qe~qm?{ dpdo dv

¢10(p7 g, V)

where ®4q is a Siegel cusp form of weight 10.

@ For 1/2 BPS- black holes in /' = 2, D = 4 supergravity, OSV have
proposed

QP! q) ~ / dg! (Wigp(p' + ig))|? '@

where Wo,(p') is the topological string amplitude in the real
polarization.
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Automorphic Black Hole Partition Functions |

@ Both of these proposals have been “proven” several times over.
Yet they still raise questions: Why should ©(qe, gm) depend on
G2, 9%, Qe - Gm Only ? What is the physical origin of the Sp(4, Z)
symmetry ? How to incorporate multi-centered configurations and
lines of marginal stability in OSV formula ? etc.

@ The goal of this talk will be to propose a general framework for
constructing black hole partition functions, inspired by both of
these proposals, which can potentially resolve these difficulties.
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Automorphic Black Hole Partition Functions |

@ In particular, the three-dimensional duality group Gz(Z) is
proposed to play the réle of a spectrum generating symmetry for
black holes in 4 dimensions. This is closely related to the fact that
black holes in D=4 correspond to instantons in D=3.

@ More specifically, we propose that the partition function of black
hole micro-states is an automorphic form of G3(Z), “attached” to a
particular representation of Gz(R) obtained by performing the
radial quantization of stationary, spherically symmetric BH: hence
we’ll study quantum attractors.

@ For ' =4 SUGRA, this suggests that the Siegel modular form
should be replaced by an automorphic form of SO(8,24,7). For
N = 2 SUGRA, this suggests the existence of a one-parameter
generalization of the topological string amplitude, and an
automorphic form attached to any Calabi-Yau 3-fold.
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9 Classical Attractor Flows
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Stationary solutions and KK* reduction |

@ Stationary solutions in D = 3 4 1 gravity can be parameterized as
dsi = —e?Y(dt +w)? + e 2Vdss , A} =(ldt+ A}

where ds;, U,w, A}, ¢! and the 4D scalars z' € M, are
independent of time. The D = 3 + 1 theory reduces to a field
theory in three Euclidean dimensions.

@ In contrast to the usual KK ansatz,
dsj = e?Y(dy +w)? + e ?Vdss, , Ay =('dy + A

we reduce along a time-like direction.
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Stationary solutions and KK* reduction Il

@ For the usual KK reduction to D = 2 + 1, the one-forms (A}, w)
can be dualized into pseudo-scalars (¢, o), where o is the twist (or
NUT) potential. The 4D Einstein-Maxwell equations reduce to 3D
gravity + scalars living in a Riemannian space

Mz = Rty x Mg x [iR2F3)

,C1o

with positive-definite metric

. - - 2
ds? = 2(dU)? + gydz'dz + %e“‘“ (da +cldé - g,dg’)
g2V [t,Jdg’ng + (df, + Oedck ) (d@ + eJLdgL)}
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Stationary solutions and KK* reduction IlI

@ The KK* reduction is simply related to the KK reduction by letting
(¢!, ¢) — (¢!, ). As aresult, the scalar fields live in a
pseudo—Riemannian space M3}, with non-positive definite
signature.

@ Mj always has 2ny + 4 isometries corresponding to the shifts of
¢(), 0, U, satisfying the graded Heisenberg algebra

] = 25,k
|:m7 pli| = pl ’ [ma q/] q/ ) [m’ k] =2k

@ The notation anticipates the identification of the corresponding
conserved charges with the electric and magnetic charges g, and
p;, NUT charge k and ADM mass m.

B. Pioline ( LPTHE and LPTENS, Paris ) Quantum Attractor Flows Toronto, Nov 22, 2007 11/40



Gs as a solution generating symmetry |

@ Some times, M3 has more isometries or structure:

4D Sigma model in 3D

Pure Einstein-Gravity SI(2)/U(1)
Einstein-Maxwell SU(2,1)/SI(2) x U(1)

N=2 Supergravity Quaternionic-Kahler manifold
N=4 supergravity SO(8,n, +2)/SO(8) x SO(n, + 2)
N=8 supergravity Eg/SO*(16)

Ehlers; Kinnersley; Mazur; Breitenlohner Gibbons Maison
@ When M} = G3/Kj is a symmetric space, the group Gz is a
solution generating symmetry for stationary solutions in 4D !

@ 5D Black holes with U(1) isometry can also be described that way.
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Spherically symmetric BH and geodesics |

@ Now, restrict to spherically symmetric solutions, with spatial slices

dsg = N2(p)dp? + r?(p)dQ3

@ The sigma-model action becomes, up to a total derivative (G, is
the metric on M3):

S= [ do|5 + gy (7 - Pewi®i®)]

@ This is the Lagrangian for the geodesic motion of a fiducial particle
with unit mass on the (hyperbolic) cone R x M3. The einbein
V'N enforces invariance under reparameterizations of p.
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Spherically symmetric BH and geodesics |l

@ The equation of motion of N imposes the Hamiltonian constraint,
or Wheeler-De Witt equation

’
Hwow = (pr)? — ﬁGabpan -1=0

@ The gauge choice N = r? allows to separate the problem into
radial motion along r, and geodesic motion on M3:

Gabpapb = 02 s (pr)2 - T -1=0 =

Thus, the problem reduces to affinely parameterized geodesic
motion on the three-dimensional moduli space M3.
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Spherically symmetric BH and geodesics |l

@ It turns out that C = 2T, Sgy is the extremality parameter:
extremal (in particular BPS) black holes correspond to light-like
geodesics on M3. Since r = 1/p, the 3D spatial slices are flat.

@ Other gauges are also possible: e.g. N = eV identifies p with the
radial geodesic distance to the horizon.

@ For the purpose of defining observables such as the horizon area,
Ay = 4re2Yr?|,___ and ADM mass Mapy = r(€?Y — 1)|y—o, it
may convenient to leave the gauge unfixed.
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Isometries and conserved charges

@ The isometries of M3 imply conserved Noether charges, whose
Poisson bracket reflect the Lie algebra of the isometries:

[p',q) = 25k
|:ma pl] = pl7 [mv QI] = qr, [ma k] =2k

@ If k # 0, the off-diagonal term in the 4D metric
ds? = —e?V(dt + kcos 0d¢)? + e 2Y[dr? + r?(d6? + sin? 0d¢?)]

implies the existence of closed time-like curves around ¢ direction,
near 6 = 0.

@ Bona fide 4D black holes arise in the “classical limit” k — 0.
Keeping k # 0 will allow us to greatly extend the symmetry.
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Conserved charges and black hole potential

@ Setting k = 0 for simplicity, one arrives at the Hamiltonian,

1 )
H=3 [pﬁ +pig'p; — Y VBH} =C*?

where Vpy is the “black hole potential”,

. 1 _ 1
Veu(Z',p', qi) = E(QI — Nup)) "™ (ak — Niwpt) + EPIT/JPJ

@ The potential V = —e?Y Vg is unbounded from below.
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Quantizing geodesic motion |

@ The classical phase space is the cotangent bundle T*(M3),
specifying the initial position and velocity.

@ Quantization proceeds by replacing functions on phase space by
operators acting on wave functions in Ly(M3), subject to

AsW(U, 2 ¢! o) = CPw

where Aj is the Laplace-Beltrami operator on M3.
@ The electric, magnetic and NUT charges may be diagonalized as

WU,z ¢! o) = V,4(U, 2) gl (ac'+p'C)

[—86 — Ay — GZUVBH — C2 \Vp7q(U, Z) =0
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Quantizing geodesic motion Il

@ The black hole wave function V,, 4(U, z) describes quantum
fluctuations of the 4D moduli as one reaches the horizon at
U — —oo. Naively, it should be peaked at the attractor point.

@ Restoring the variable r, one could also describe the quantum
fluctuations of the horizon area 4xr?e=2Y, around the classical
value 4Sgy.

@ The natural inner product is the Klein-Gordon inner product at
fixed U, famously NOT positive definite. A standard remedy in
quantum cosmology is “third quantization”, possibly relevant for
black hole fragmentation / multi-centered solutions.
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Attractor flow in N = 2 supergravity

@ Consider N = 2 SUGRA coupled to ny abelian vector multiplets
[hypers decouple at tree-level]: the vector multiplet scalars z' take
values in a special K&hler manifold My. For type lIA on X = CYs3,
Z' parameterize the complexified Kahler structure of X.

@ After reduction to 3 dimensions, the vector multiplet scalars take
value in a quaternionic-Kahler space M3, known as the ¢ — map
of the special Kahler space Mj.

@ Under T-duality along the 4th direction, this becomes the
hypermultiplet space for type [IB compactified on X at tree-level.

@ The manifold M3 obtained by analytic continuation is sometimes
called “para-quaternionic-Kahler manifold”; it has split signature
(2I7V +2,2ny + 2)

Cortes Mayer Mohaupt Saueressig
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Attractor flow and semi-classical BPS wave function

@ The black hole potential splits into two pieces,
1 - =
H =5 |pb+pigTo - & (12 + 912 o7 32|

where Z is the central charge Z = eX/2(q,; X! — p'F)).

@ Supersymmetric solutions are obtained by cancelling each term
separately, leading back to the attractor flow equations,

du

2 _ u

a ~° 2]

dz!

o = 26797912
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Attractor flow and semi-classical BPS wave function

@ At this stage, one could already quantize the attractor flow
equations and guess the BPS wave function:

U -

pu = -—e’lZ| i U
{p? — _eVpz| = Vpq(U,Z',Z) ~ exp [2/e \Z|}
The effective Planck constant i = e~ Y blows up towards the
horizon at U — —oo. The phase is stationary at the classical
attractor points in the opposite limit U — +oc.

@ Using twistor techniques, we shall be able to resolve ordering
ambiguities, and compute the BPS wave function exactly.
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Supersymmetric quantum mechanics

@ More rigorously, the full D = 4, N = 2 SUGRA including fermions,
reduces to D = 1, N = 4 supergravity:

.. D
S= [ dp Gapd?P + WA ——ba + (W a) (W a) + ...
Dp

@ The supersymmetry variations are 6y” = VA4 ¢4, where VA4
(A=1,..2ny + 2,A' =1,2) is the quaternionic vielbein afforded by
the restricted holonomy Sp(2) x Sp(2ny + 2).

@ Thus, SUSY trajectories are characterized by
e | VA e =0 & VARYVEIE _g

This reproduces the attractor flow equations (generalized to k # 0)

Gutperle Spalinski
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e A Geometric Interlude: Black Hole and Twistors
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Improved SUSY mechanics - HKC and twistors |

@ This SUSY mechanics is rather unusual, insofar as the SUSY
comes from a triplet of non-integrable almost complex structures.

@ It is possible to remedy this problem by combining the Killing
spinor €4 € C? with the coordinates ¢2 € QK, i.e. extend the QK
space into its Hyperkahler cone (HKC), or Swann bundle,

R* — HKC — QK

By cancelling the Sp(2) holonomy on QK against the SU(2)
holonomy on S8, the three almost complex structures on QK
become genuine (integrable) complex structures on HKC.

@ Geodesic motion on HKC is equivalent to geodesic motion on QK
after gauging the SU(2) and dilation symmetries.
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The twistor space

@ For many purposes it is sufficient to work with the twistor space Z,
a two-sphere bundle over QK with a K&hler-Einstein metric. The
sphere coordinate z keeps track of the Killing spinor, z = ¢4 /es.

@ In the presence of triholomorphic isometries, the geometry of HKC
is given by the “Legendre transform construction” G(n*),

(KA 7w )+ XL+ ) e = i 2 GI(0).

where 7t is the projective “O(2) multiplet”
0t = v+ Xt -7

and G[n!] is a holomorphic function of n*, homogeneous of
degree 1, known as the generalized prepotential.

Hitchin Lindstrom Rocek; De Wit Rocek Vandoren
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Twistor space for the c-map

@ When HKC is the Swann bundle of the c-map of a SK manifold,
the generalized prepotential G is related to the prepotential F via

G(n".¢) = F(n')/n
Berkovits; Rocek Vafa Vandoren

@ The inhomogeneous coordinates ¢/ = Vv € = —2iw,
o = 4iw, — £/¢; are complex coordinates on Z, adapted to the
Heisenberg symmetries, given by the twistor lines:

e = 4 eUHK(X)/2 (z X'+ z‘1X’)
& = G+ieVthX2 (Z Fiez! F/)
a = o+§-{¢

@ Conversely, the coordinates on the base Mj are SU(2) invariant
combinations of ¢/, &}, .

Neitkze BP Vandoren 07
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BPS black holes and holomorphic curves

@ Upon lifting the geodesic motion to Z, SUSY is preserved iff the
momentum is holomorphic in the canonical complex structure on
Z, at any point along the trajectory: 1st class constraints !

@ BPS solutions correspond to holomorphic curves (), €1(p), olp)

at constant £/, ;, @, and are algebraically determined by the
conserved charges: integrable system !

@ The SUSY phase space is the twistor space Z, equipped with its
Kéhler symplectic form. Its dimension is 4ny + 6, almost half that
of the generic phase space T*(M3).
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The Penrose Transform

@ At fixed values of U, z/, ¢!, {;, o, the complex coordinates ¢/, &),
on Z are holomorphic functions of the twistor coordinate z: the
fiber over each point is a rational curve in Z.

@ Starting from a holomorphic function ¢ on Z (more precisely a
class in H'(Z, O(—2))), we can produce a function ¥ on QK

W(U,2,7,¢ 8 o) = e 2“740'2

2miz
which then satisfies some generalized harmonicity condition:

@ [€(2).8(2),0(2)]

(6A,BIVAA/VBB/ — RAB) v =0

@ This generalizes the usual Penrose transform between
holomorphic functions on CP2 and conformally harmonic
functions on S* to the quaternionic setting.

Salamon; Baston Eastwood
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0 Quantum Attractor Flows
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The BPS Hilbert space |

@ In terms of geodesic motion on the QK base, the classical BPS
conditions VAA VBB — 0 become a set of 2nd order differential
operators which have to annihilate the wave function V:

( 6A,BIVAA'VBB' _ RAB) v=0

@ In terms of the twistor space, the BPS condition p; = 0 requires
that W should be a holomorphic function on Z. More precisely,
depending on the fermionic state, it should be a class in the sheaf
cohomology group H'(Z, O(—¢)). Take ¢ = 2 for simplicity.

@ The equivalence between the two approaches is a consequence
of the Penrose transform discussed previously.
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The BPS Black Hole Wave-Function |

@ Thus, the BPS black hole wave function on M3 is given by

az
2riz

WU, 2,2, ¢ ¢ o) = e2U7§ @ [€(2),'(2), a(2)]

where V is entirely determined (up to normalization) by the black
hole charges. For zero NUT charge k,

¢ = exp [i(p’él - qlﬁ’)}
= exp [i(Plfl — qi¢’) + i@V 2 (2 W 4(X) + 27 Wp,q(X))]

- v=g (2 eV |zp’q‘> ei(P'C—aic!)
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The BPS Black Hole Wave-Function |

@ The exact result is in qualitative agreement with our naive guess
exp(2ieV |Z, 4|). This is peaked around the classical attractor
points in the “far horizon” limit U — oo, but quantum fluctuations
become infinite near the horizon.

@ This is probably due to the large fine-tuning needed to produce a
BPS solution. Can this be taken as support for the “fuzzball
proposal” ?

@ Ooguri, Vafa and Verlinde had proposed to interpret the
topological string amplitude, which lives in a Hilbert space of
dimension n, + 1, as a wave function for the (near horizon) radial
quantization of BPS black holes. Instead, the BPS radial
quantization produces a much bigger Hilbert space H(Z, O(—/)),
of functional dimension 2n, + 3.
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Generalized topological amplitude

@ On the other hand, the holomorphic quantization of the HKC leads
to a Hilbert space of dimension (4n, + 8)/4 = n, + 2, morally the
space of “triholomorphic functions” on HKC.

@ In the symmetric cases, this still carries a unitary rep of Gs known
as the minimal representation. Upon fixing the value of k, this
yields the Schodinger-Weil representation of Gy, the usual habitat
of the topological string amplitude !

@ This suggests a one-parameter generalization of the topological
string amplitude, controlling higher-derivative corrections on
hypermultiplet spaces.
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e Automorphic Attractor Flows
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Black Hole Partition Functions

® The moduli space Mg = R*|y x My x |, R®™*3|, = appears to
provide all the desirable parameters for a partition function for
black hole micro-states: the inverse temperature 5 = €2V,
asymptotic moduli z/, chemical potentials ¢/, ().

@ Upon compactification to D=3, the effective action will receive
instanton contributions from black holes winding the Euclidean
time direction, and will have to be invariant under G3(Z).

@ This suggests that the exact degeneracies of black hole
micro-states should be given by Fourier coefficients of an
automorphic form of Gs(Z).

B. Pioline ( LPTHE and LPTENS, Paris ) Quantum Attractor Flows Toronto, Nov 22, 2007 36/40



Which automorphic form ?

@ Automorphic forms of G generally require three ingredients: (i) a
unitary representation p of G, (ii) a K-invariant (or spherical
vector) fx, and (i) a G(Z)-invariant vector fz:

V(g) = (fzlp(9)Ifk)

For example the Jacobi theta series is obtained from the
metaplectic representation of S/(2,Z), using fx = e~ and
fZ = ZmeZ dx—m-

@ The radial quantization of spherically symmetric black holes
provides a unitary representation of Gs. In particular, the BPS
Hilbert space H(Z, O(—¢)) furnishes a family of quaternionic
discrete| (QD) of Gs.
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Abelian and non-Abelian Fourier coefficients

@ Upon Fourier expanding in ¢!, {;, o, one gets Abelian (k = 0) and
non-Abelian (k # 0) Fourier coefficients:

v =37 0(p, qVpq(U, 7, 2) @D 4§ §°

P.q k rlez/kz

Q(k, ) 3 U, 2,2 ¢+ kp') exp [itkp! + )G + k(o = ¢'E)]
o!
When W is in the quaternionic discrete series, Vp (U, Z', Z') is the
black hole wave function that we have computed !
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Black hole degeneracies as Fourier coefficients

@ We propose that Q(p, q) are the exact black hole degeneracies, for
a suitable choice of ¢ and V. To see that we may be on the right
track, note Wallach’s theorem: Q(p, q) = 0 unless l4(p,q) > 0.

@ For 1/4-BPS BH in // = 4 SUGRA, this suggests that the
DVV-type formula, based on a Siegel modular form, should be
subsumed into an automorphic form of SO(8, n, + 2,Z) in the QD
series.

@ For 1/8-BPS BH in /' = 8 SUGRA, we expect an automorphic
form of Egg) in the QD series, of Kirillov dimension 57. For 1/2
BPS, in the minimal representation, of Kirillov dimension 29.

@ In order to reproduce the growth Q(p, q) ~ exp[r+/l4(p, q)], we
need to allow for singularities worse than the poles appearing in
DVV’s formula. No concrete candidate yet.
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@ Multi-centered configurations can be described by certain
harmonic maps from R3 to QK does that correspond to “second
quantization”, i.e. including vertices ?

@ Could one compute the radial wave function for extremal non-BPS
black holes ? need to implement the fine-tuning of the boundary
conditions at infinity.

@ Can one construct automorphic forms of G in the quaternionic
discrete series, with suitable exponential growth of Fourier
coefficients ? Eg. via theta-lifts, or residues of Eisenstein series.

@ Can one make progress on understanding instanton corrections to
hypermultiplets using these techniques ?
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