# Open strings in electric fields and time dependent backgrounds 

Boris Pioline<br>LPTHE, Paris<br>Rome<br>May 26, 2003<br>w/ B. Durin, hep-th/0302159 w/ M. Berkooz, to appear

transparencies available from
http://www.lpthe.jussieu.fr $\check{\mathrm{p}}$ ioline/seminars.html

## Introduction

- Much effort in string theory has been directed into searching for compactifications to flat Minkowski space which reproduce the Standard Model at Iow energies. Alas, $t_{L H C}>2008$, and chances to observe strings directly are moderate.
- In contrast, observational cosmology is undergoing a fast revolution, from an order-of-magnitude Regime to a high-precision Era, posing a new challenge to string theory:

$$
\omega_{\Lambda}=71.0 \%, \quad \omega_{\text {baryon }}=4.7 \%, \quad \omega_{\text {dark }}=24.3 \%
$$

- While string-inspired cosmological scenarios have been much discussed in effective field theory, string theory in time-dependent backgrounds remains a mostly uncharted territory.


## Strings in time-dependent backgrounds

Perturbative string theory is well-suited for S-matrix computations in asymptotically flat space.

Many questions arise in trying to generalize to (smooth) time-dependent backgrounds:

- No (unitary) analytic continuation to Euclidean signature, neither in target space nor on the worldsheet: amplitudes are superficially divergent, modular group acts ergodically...
- Many different choices of vacuum are possible, how can one implement Bogolioubov transformations from one to another ? Is worldsheet locality sacred ?
- Observables are unclear, especially in the case of closed universes, or with pathological asymptotic regions like such as the Cheshire's Cat Universe and its whiskers.

String Field Theory seems a crying need in order to address these issues.

## Strings at cosmological singularities

More questions arise in relation with spacelike singularities, which a purported theory of quantum gravity had better address:

- Can perturbative string theory still hold, despite the infinite blueshift towards the singularity ?
- Can extra degrees of freedom of string theory resolve spacelike singularities, or rather prevent their appearance ? How can one evade the no-bounce theorem ?
- If instead spacelike singularies signify the End or Beginning of time, how can one specify boundary conditions there ?
- As different bits of the string fall outside of causal contact at the spacelike singularity, does the string reduce to a Matrix model ?


## Cosmological Singularities: a Toy Story

Various toy models have been proposed recently to study time-dependence and cosmological singularities in string theory:

- The Lorentzian orbifold, quotient of $R^{1,1}$ by a boost $J$ : this gives a free-field realization of the Milne Universe

$$
d s^{2}=-d t^{2}+t^{2} d x^{2}, \quad x \equiv x+2 \pi
$$

together with two whiskers with CTC,

$$
d s^{2}=-r^{2} d t^{2}+d r^{2}, \quad t \equiv t+2 \pi
$$

Horowitz Steif; Seiberg; Nekrasov

- The Parabolic orbifold, quotient of $R^{1,2}$ by the product of a boost $J_{01}$ and a rotation $R_{12}$,

$$
d s^{2}=-2 d y^{+} d y^{-}+\left(y^{+}\right)^{2} d y^{2}, \quad y \equiv y+2 \pi
$$

which is better thought of as a singular gravitational wave.

## Simon; Liu Moore Seiberg

- Flux branes and null branes, where the boost is combined with a translation on an extra coordinate, hence lifting any fixed point; WZW models such as the Nappi Witten cosmology, which reduces to the Lorentzian orbifold at the singularity.

Cornalba Costa; LMS; Craps Kutasov Rajesh Elitzur Giveon Kutasov Rabinovici

## Toys are broken

- These models all seem to be plagued with perturbative divergences, related to a large backreaction at the singularity. Divergences may be avoided by fine-tuning initial conditions.

Liu Moore Seiberg
Berkooz Craps Kutasov Rajesh

- In addition, due to high blue-shift, the images of the particles on the covering space may non-perturbatively form a large black hole, that eats up the space. Combining with a translation does not cure this instability except in high dimension.

Horowitz Polchinski

- These models are also highly non-generic trajectories on the BKL cosmological billiard: can one study more general Kasner singularities ? does the oscillatory behaviour persist ?

Damour Henneaux

More toys: open strings in electric fields
For the purpose of studying time-dependence in string theory, it may be simpler to consider time-dependent D-brane configurations, or equivalently open strings in electric fields:

- Backreaction in the closed string sector may be neglected as $g_{s} \rightarrow 0$. Yet production of open strings is retained. Backreaction in the open string sector is analogous to D-brane recoil.
- Powerful techniques are available: boundary states, string field theory ... Classical configurations can often be found explicitly due to the fact that the worldsheet theory is free in the bulk.
- Analogues of spacelike singularities are D-brane headon collisions, or (in the simplest case) a constant electric field. Analogues of null singularities are null scissor configurations, or a constant null field.


## Bachas Hull

- The analogy is very precise: charged open strings in an electric field have (half) the same mode structure as twisted closed strings in a Lorentzian orbifold. Physical states can be discussed along the same lines. Vertex operators are twist fields on the boundary.


## Outline

## 1. Introduction

2. Open strings in constant electromagnetic field
3. Open strings in electromagnetic waves
4. Open strings in a constant electric field, revisited
5. Remarks on Milne universe

## Open strings in a constant electromag field

- Open strings couple to an electromagnetic field through their boundary only. The embedding coordinates are therefore free bosons in the bulk of the Minkowskian strip $0<\sigma<\pi, \quad \tau \in R$,

$$
X^{\mu}(\tau, \sigma)=f^{\mu}(\tau+\sigma)+g^{\mu}(\tau-\sigma)
$$

- The electric field may be different on each of the two D-branes. The boundary conditions at $\sigma=\sigma_{a} \in$ $\{0, \pi\}$

$$
\partial_{\sigma} X^{\mu}+\left(2 \pi \alpha^{\prime}\right) F_{\nu ; a}^{\mu}(X) \partial_{\tau} X^{\nu}=0
$$

- For a constant $F$, this is a linear system of non-local ODEs,

$$
\begin{aligned}
\dot{f}^{\mu}-\dot{g}^{\mu}+\left(2 \pi \alpha^{\prime}\right) F_{\nu ; 0}^{\mu}\left(\dot{f}^{\nu}+\dot{g}^{\nu}\right) & =0 \\
T \dot{f}^{\mu}-T^{-1} \dot{g}^{\mu}+\left(2 \pi \alpha^{\prime}\right) F^{\mu}{ }_{\nu ; 1}\left(T \dot{f}^{\nu}+T^{-1} \dot{g}^{\nu}\right) & =0
\end{aligned}
$$

$$
\text { where } \cdot=d / d \tau \text { and } T f(\tau)=f(\tau+\pi) .
$$

- This can be solved in Fourier space, $T=e^{-i \pi \omega}, \partial / \partial \tau=$ $-i \omega$. Eigenmodes satisfy, assuming $\left[F_{0}, F_{1}\right]=0$,

$$
e^{-2 \pi i \omega_{n}}=\frac{1+F_{0}}{1-F_{0}} \cdot \frac{1-F_{1}}{1+F_{1}}
$$

## Open strings in a constant electromag field

The dispersion relation again:

$$
T^{2}=e^{-2 \pi i \omega_{n}}=\frac{1+F_{0}}{1-F_{0}} \cdot \frac{1-F_{1}}{1+F_{1}}
$$

- Magnetic field: $F=b\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \rightarrow\{i b,-i b\}$ hence $|T|=1$ and frequencies are real:

$$
\omega_{n}=n \pm \nu, \quad \pi \nu=\operatorname{ArcTan} b_{1}-\operatorname{ArcTan} b_{0}
$$

The string is stable and follows Landau orbits.

- Electric field: $F=e\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \rightarrow\{e,-e\}$ hence $|T| \neq 1$ and frequencies have an imaginary part:

$$
\omega_{n}=n \pm i \nu, \quad \pi \nu=\operatorname{ArcTanh} e_{1}-\operatorname{ArcTanh} e_{0}
$$

This instability is due to Schwinger pair production:

$$
\begin{aligned}
A & =\left(e_{0}+e_{1}\right) \int_{0}^{\infty} \frac{d t}{t^{13}} e^{-\pi \nu^{2} t} \frac{1}{\eta^{21}(i t) \theta_{1}(\nu t \mid i t)} \\
\Im(A) & \sim \sum_{k=1}^{\infty} a(k) \exp \left(-\frac{\pi k}{\nu}\right)
\end{aligned}
$$

## Born-Infeld critical electric field

- At the critical electric field $e_{a}=1 / \alpha^{\prime}$, the electric force pulling the two ends of the string apart overwhelms the string tension, leading to the production of stretched macroscopic strings, that discharge the condensator at infinity.
- By scaling $e_{a} \alpha^{\prime} \rightarrow 1$ and $\alpha^{\prime} \rightarrow 0$ while keeping the effective tension of charged strings fixed, one obtains NCOS, a theory of interacting non-commutative open strings, decoupled from closed strings, propagating in a fixed open string metric.


## Gopakumar Maldacena Minwalla Strominger Seiberg Sussking Toumbas

- This classical instability occurs already for neutral dipoles. In contrast, the non-perturbative Schwinger pair production requires charged particles.


## Open strings in a null electric field

- A generic $F_{\mu \nu}$ can always be brought to the electric or magnetic form depending on sgn $F_{\mu \nu} F^{\mu \nu}$. However there is a non-generic possibility,

$$
F=\Phi d x \wedge d x^{+}, \quad x^{ \pm}=\left(x^{0} \pm x^{1}\right) / \sqrt{2}, x=x^{2}
$$

which satisfies $F_{\mu \nu} F^{\mu \nu}=0$. In 4D, it amounts to a configuration with crossed fields $\vec{E} \perp \vec{B}$ of equal magnitude $|\vec{E}|=|\vec{B}|$.

- The matrix $F_{\nu}^{\mu}$ now has a non-trivial Jordan form, (the only non-trivial from for $S O(1, d-1)$ )

$$
F=\Phi\left(\begin{array}{lll}
0 & 1 & \\
& 0 & 1 \\
& & 0
\end{array}\right) \rightarrow\{0,0,0\}
$$

hence the spectrum is unaffected, $\omega_{n}=n \in Z$. Precise eigenmodes do depend on $\Phi$ however.

- This agrees with the fact that there is no polarization in a configuration with null electric field. In fact, this configuration preserves half SUSY, namely the generators such that $\Gamma^{+} \epsilon=0$.
- After T-duality on $x$, this describes a null scissor configuration, i.e. two intersecting straight Dbranes whose intersection point moves with the speed of light.


## Relativistic string in a pulse

- More generally, one may allow an arbitrary dependence in the light-cone time $x^{+}$:

$$
A=\Phi\left(x^{+}\right) x d x^{+}, \quad F=\Phi^{\prime}\left(x^{+}\right) d x \wedge d x^{+}
$$

All contractions of $F_{x+}$ and $\partial_{+}$vanish, hence this is an exact supersymmetric solution of the open strings eom to all orders in $\alpha^{\prime}$ : an infinite dimensional moduli space of solutions.

- In light-cone gauge $X^{+}=x_{0}^{+}+p^{+} \tau$, the boundary conditions receive a time-dependent source term,

$$
\partial_{\sigma} X+\left(2 \pi \alpha^{\prime}\right) p^{+} \Phi_{a}^{\prime}\left(X^{+}\right)=0, \quad \sigma=\sigma^{a} \in\{0, \pi\}
$$

while $X$ is still free in the bulk, $\left(\partial_{\tau}^{2}-\partial_{\sigma}^{2}\right) X=0$. Classical solutions can be computed by linear response.

- Assuming that the electric field vanishes at $x^{+}=$ $\pm \infty$, it is now straightforward to compute the quantum mechanical transition amplitudes. An incoming string in its ground state will in general emerge in an excited state, depending on the profile $\Phi\left(x^{+}\right)$.
- After T-duality along $x$, the bc becomes

$$
X(\tau)=-\left(2 \pi \alpha^{\prime}\right) \phi^{(a)}\left(X^{+}(\tau)\right)+b^{(a)}
$$

It describes open strings stretched between two Dbranes with a null intersection: null scissors

Bachas

## Colliding plane waves

- A string probe with $p^{+} \neq 0$ can be thought as a perturbation colliding with the background wave. Its state after the collision can be extracted simply from the Bogolioubov transformation in light-cone gauge.
- Quantum mechanically, part of the string will be scattered off the background wave, hence alter or back-react on the background wave through emission of $p^{+}=0$ states.
- This should induce an infinitesimal motion on the infinite moduli space of plane waves. Can this be described by a flow on the space of time-dependent boundary states ?

Hikida Takayanagi ${ }^{2}$

- A similar issue in the context of gravitational waves arises. For this one needs to go beyond the lightcone gauge.
(D'Appolonio Kiritsis)²; Gutperle P.


## Exact travelling waves

- As a matter of fact, the class of electromagnetic waves which are exact solutions of open string theory is much larger:

$$
A=\Phi\left(x^{+}, x^{i}\right) d x^{+}, \quad F=\partial_{i} \Phi\left(x^{+}, x^{i}\right) d x^{i} \wedge d x^{+}
$$

Maxwell's equations require that $\Phi$ be an harmonic function in transverse space.

- The corresponding open string metric is a gravitational wave in Brinkmann coordinates:
$d s^{2}=2 d x^{+} d x^{-}+G_{i j} d x^{i} d x^{j}+\left(2 \pi \alpha^{\prime}\right)^{2}\left|\partial_{i} \Phi\left(x^{+}, x^{i}\right)\right|^{2}\left(d x^{+}\right)^{2}$
- In light-cone gauge $X^{+}=x_{0}^{+}+p^{+} \tau$, the boundary conditions read

$$
\partial_{\sigma} X^{i}+\left(2 \pi \alpha^{\prime}\right) p^{+} \partial_{i} \Phi(X)=0
$$

Just like closed strings in pp-waves, conformal invariance is broken in the light-cone gauge, but only through boundary effects.

Durin P.

- A constant magnetic field $B_{i j}$ can be added, at the cost of using the open string metric in the harmonicity equation.

Solvable travelling waves and tachyons

- The simplest harmonic solution is a linear potential $\Phi\left(x^{+}, x^{i}\right)=\phi_{i}\left(x^{+}\right) x^{i}$, leading to the uniform null field already discussed.
- The next simplest case is a quadratic potential

$$
\Phi\left(x^{+}, x^{i}\right)=h_{i j}\left(x^{+}\right) x^{i} x^{j} / 2
$$

leading to a massive linear boundary condition:

$$
\partial_{\sigma} X^{i}+p^{+}\left(h_{a}\right)_{i j}\left(x^{+}\right) X^{j}, \quad \sigma=\sigma^{a}
$$

- This is very reminiscent of studies of open string tachyon condensation in BSFT. However,
(i) due to the tracelessness of $h$, the boundary deformation $p^{+} \oint \Phi\left(x^{+}, x^{i}\right) d X^{+}$is unbounded from below or above.
(ii) the worldsheet is a Lorentzian strip, instead of an Euclidean cylinder or annulus. Can tachyon dynamics be derived from Born-Infeld ?

Witten, Shatashvili; Kutasov Marino Moore Arutyunov Pankiewicz Stefanski, Bardakci Konechny

- As for gravitational waves, supersymmetric nonconformal boundary deformations, in particular integrable, can be used to construct on-shell exact backgrounds.


## A word on T-duality

- In terms of the T-dual coordinate

$$
\tilde{X}^{i}=f^{i}(\tau+\sigma)-g^{i}(\tau-\sigma)
$$

the bc become, after differentiating once,

$$
\partial_{\tau}^{2} \tilde{X}^{i}+p^{+}\left(h_{a}\right)_{i j} \partial_{\sigma} \tilde{X}^{j}=0,
$$

This is an open string with two beads of mass $h_{a}^{-1} / p^{+}$at its ends.

- This corresponds to a boundary deformation $\left(h^{-1}\right)_{i j}$ $\oint X^{i} \partial_{\tau}^{2} X^{j} / p^{+}$by an excited state. Deformations by more general excited states $X \partial^{n} X$ are also solvable.
- When $h=0$, this is a Dirichlet bc. However, at finite coupling, DO-branes have finite mass $1 / g_{s}$, hence $h \sim g_{s}$ : D-brane recoil can be taken into account by going off-conformality.
- We will momentarily predict an instability of the Tdual system, at a critical line $m_{0}-m_{1}=\alpha^{\prime} p^{+}$: fast elastic rotator ?
- A T-dual-like but inequivalent bc would be to take

$$
\partial_{\tau} X^{i}+p^{+} \partial_{i} \Phi(X)=0
$$

The ends of the open string follow the gradient lines of $\Phi$ : we are back to null scissors of arbitrary shape.

## Point particles in electromagnetic waves

- The action for a charged particle is

$$
S=\int\left[\frac{1}{2 e}\left(\partial_{\tau} X^{\mu}\right)^{2}-e m^{2}\right] d \tau+A_{\mu} d X^{\mu}
$$

- After choosing the gauge $e=1$, the eom read

1. $\left(d^{2} / d \tau^{2}\right) X^{+}=0$
2. $\left(d^{2} / d \tau^{2}\right) X^{i}+\partial_{i} \Phi \partial_{\tau} X^{+}+B_{i j} \partial_{\tau} X^{j}=0$
3. $\left(d^{2} / d \tau^{2}\right) X^{-}-\partial_{i} \Phi \partial_{\tau} X^{i}=0$

- 1. can be integrated to $X^{+}(\tau)=x_{0}^{+}+p^{+} \tau$. 2. and 3. imply that

$$
H=\frac{1}{2}\left(p_{i}\right)^{2}+p^{+} p^{-}+p^{+} \Phi\left(X^{+}, X^{i}\right)+m^{2}
$$

is a constant, where $p_{i}=\partial_{\tau} X^{i}-B_{i j} X^{j}$ and $p^{-}=$ $d X^{-} / d \tau-\Phi$ are the canonical momenta conjugate to $X^{i}$ and to $X^{+}$.

- The motion in transverse coordinates is therefore that of a non-relativistic particle in an electrostatic potential $V=\Phi\left(X^{+}, X^{i}\right)$.
- Similarly, a relativistic string in an electromag wave behaves as a non-relativistic elastic dipole (possibly with overall charge)


## Non-relativistic dipole and critical gradient

- We have seen that on the light-cone, a relativistic string behaves like a non-relativistic dipole. This implies that its tensive energy is proportional to the square of its length:

$$
V_{t}=\frac{1}{\alpha^{\prime} p^{+}}\left(x_{L}-x_{R}\right)^{2}
$$

- For a quadrupolar wave, the electrostatic energy scales also like the square of the distance,

$$
V_{e}=p^{+}\left(h_{i j}^{0} x_{L}^{i} x_{L}^{j}-h_{i j}^{1} x_{R}^{i} x_{R}^{j}\right)
$$

At the line of critical electric gradients
$h_{1}-h_{0}-\pi\left(p^{+}\right)^{2} \alpha^{\prime} h_{0} h_{1}=0$
the two forces balance against each other, leading to stretched macroscopic

- strings:


A non-relativistic analogue of the Born-Infeld critical field. What is the analogue of the open string metric ?

- Does there exist a decoupled theory of non-relativistic interacting open strings at that point, analogue to NCOS ? This theory would have to exhibit light-like non-commutativity.


## First quantization

- Since the bulk theory is still free, one may separate $X$ into left and right movers,

$$
X^{i}=f^{i}(\tau+\sigma)+g^{i}(\tau-\sigma)
$$

which satisfy boundary conditions:

$$
\begin{aligned}
\dot{f}(\tau)-\dot{g}(\tau) & +p^{+} h_{0}(f(\tau)+g(\tau)) \\
T^{2} \dot{f}(\tau)-\dot{g}(\tau) & +p^{+} h_{1}\left(T^{2} f(\tau)+g(\tau)\right)=0
\end{aligned}
$$

- Again, we can work in Fourier space, and find the dispersion relation ( $e_{i}=\pi p^{+} h_{i}$ )

$$
\tan (\pi \omega)=\frac{\left(e_{1}-e_{0}\right) \pi \omega}{(\pi \omega)^{2}+e_{0} e_{1}}
$$

Indeed, a pair of real roots disappear at the critical line $e_{0}-e_{1}-e_{0} e_{1}=0$ :



- The partition function for open strings in a quadrupolar field is then simply

$$
Z_{o p}\left(t, e_{0}, e_{1}\right)=q^{E_{X}} \prod_{n=1}^{\infty}\left(1-q^{\omega_{n}}\right)^{-1} \times \begin{cases}\left(1-q^{\omega_{0}}\right)^{-1} & \text { if } D>0 \\ \left(1-q^{i k_{0}}\right)^{-1} & \text { if } D<0\end{cases}
$$

with $E_{X}=\sum_{n=0}^{\infty} \omega_{n}$ the zero-point energy.

## Dynamical instability

For a quadratic potential depending on a single direction, the motion is stable in the shaded region, extending slightly outside the domain of stability of a dipole with vanishing ten-

- sion:

- For a traceless quadratic potential $h_{i j}$, the motion is always unstable, due to the convexity of the stability domain. However, this is a kinematical instability of the string probes, not of the background itself: much like the divergence of geodesics in purely gravitational plane waves,

$$
d s^{2}=2 d x^{+} d x^{-}+d x^{2}+d y^{2}-\mu^{2}\left(x^{2}-y^{2}\right)\left(d x^{+}\right)^{2}
$$

## Marolf Zayas; Brecher Gregory Saffin

- (Former) atomic physicists know how to deal with these instabilities...


## Strings in quadrupolar ion traps

Several ways to make a stable electromagnetic trap:
a. The Penning trap: use a static magnetic field to confine charged particles in the transverse unstable plane:

$$
V(x)=-\frac{e}{2}\left(x^{2}+y^{2}-2 z^{2}\right), \quad B=b d x \wedge d y
$$

is stable if $b^{2}>e$ and $e>0$.
b.

The RF or Paul trap: no magnetic field, but modulate the electric field at a frequency such that the particle experiences a restoring force on average: parametric resonance

$$
V=\left(\omega^{2}+\alpha^{2} \cos t\right)\left(x^{2}-y^{2}\right)
$$


c. The quadrupolar trap: a static quadrupolar potential confines neutral particles with a negative polarizability, by drawing them to regions of low electric field strength: $W=-\alpha E^{2}$. Degenerate excited states usually have negative polarizability

Mechanisms a. and b. carry over to the string case straightforwardly.

Closed string channel and boundary state

- In the closed string channel the boundary states satisfies

$$
\partial_{\tau} X+\frac{\hat{e}}{\pi} X|B(\widehat{e})\rangle=0
$$

This is solved by the usual coherent state techniques,
$|B(\hat{e})\rangle=\mathcal{N}(\widehat{e}) e^{\frac{i \tau_{0}^{2}}{2 \overparen{e}}} \exp \left(\sum_{n=1}^{\infty}-\frac{1}{n} \frac{i \pi n+\hat{e}}{i \pi n-\widehat{e}} \alpha_{-n} \tilde{\alpha}_{-n}\right)|0, \widetilde{0}\rangle$

- The partition function is therefore given by the overlap of the two boundary states,

$$
\begin{gathered}
Z_{c l}\left(\hat{t}, \hat{e}_{0}, \widehat{e}_{1}\right)=\mathcal{N}\left(\widehat{e}_{0}\right) \mathcal{N}\left(\hat{e}_{1}\right) \sqrt{\frac{2}{\hat{t}+i\left(\frac{1}{\hat{e}_{1}}-\frac{1}{\hat{e}_{0}}\right)}} e^{\pi \hat{t} / 12} \\
\prod_{n=1}^{\infty}\left(1-\frac{i \pi n+\hat{e}_{0}}{i \pi n-\widehat{e}_{0}} \frac{i \pi n-\widehat{e}_{1}}{\left.\frac{i \pi n}{i \pi n+\widehat{e}_{1}} e^{-2 \pi n \hat{t}}\right)^{-1}}\right.
\end{gathered}
$$

Arutyunov Pankiewicz Stefanski, Bardakci Konechny

## Open-closed duality

- Equality with the open string channel can be formally seen by representing the sum by a residue integral

$$
\log Z_{o p}=\frac{1}{2 \pi} \int_{C}\left(\log \Phi_{c l}\right) \frac{d \log \Phi_{o p}}{d z} d z
$$

with
$\Phi_{o p}(z)=1-e^{-2 \pi i z} \frac{i \pi z+e_{0}}{i \pi z-e_{0}} \frac{i \pi z-e_{1}}{i \pi z+e_{1}}, \quad \Phi_{c l}(z)=1-e^{-2 \pi t z}$
Integrating by parts shows that

$$
Z_{o p}\left(t, e_{0}, e_{1}\right)=Z_{c l}\left(\hat{t}^{2}, \hat{e}_{0}, \hat{e}_{1}\right)
$$

where the deformation parameters are related by

$$
\hat{t}=1 / t, \quad \hat{e}_{a}=e_{a} t
$$

in full agreement with open/closed duality of the one-loop amplitude (after compactifying the lightcone).

- A careful proof takes much more effort, but can be made along the lines of a similar computation in the context of D-branes in gravitational waves.


## Bergman Gaberdiel Green

Strings in time-dependent quadrupolar fields

- We now take $h_{a}\left(x^{+}\right)$with finite support in $x^{+}$. At $\tau \rightarrow \pm \infty$ we have free field mode expansions,

$$
X=x_{0}+p_{0} \tau+i \sum_{n \neq 0} \frac{2}{n} a_{n} \cos (n \sigma) e^{-i n \tau}
$$

and a similar expansion with primes at $\tau \rightarrow \infty$.

- The two sets of modes are related by a symplectic matrix, the Bogolioubov transformation:

$$
\left(\begin{array}{c}
x_{0}^{\prime} \\
p_{0}^{\prime} \\
a_{m}^{m}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha & \beta & A_{n} \\
\gamma & \delta & B_{n} \\
\tilde{A}_{m} & \widetilde{B}_{m} & B_{m n}
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
p_{0} \\
a_{n}
\end{array}\right)
$$

- In the Born approximation ( $h \ll 1$ ), the incoming state is a source for the outcoming perturbation, and one finds easily e.g.

$$
B_{m n}=\delta_{m n}+\frac{i}{\pi^{2} n} \int_{-\infty}^{\infty}\left(e_{0}-\left(T e_{1}\right)\right)\left(p^{+} \tau\right) e^{-i(n-m) \tau} d \tau
$$

- The final excitation number of the mode $n$ is

$$
\left\langle 0_{i n}\right| a_{-m}^{\prime} a_{m}\left|0_{i n}\right\rangle=\sum_{n \neq 0}\left|B_{m,-n}\right|^{2}+\ldots
$$

hence the total energy diverges if $h_{a}\left(x^{+}\right)$has a delta function singularity.

## Half a degree of freedom

- In fact, the open string zero-mode has an ambiguity which corresponds to the splitting between left- and right-movers:

$$
x_{0}=f_{0}+g_{0}, \quad a=f_{0}-g_{0}
$$

$a$ is the position of the T-dual D-brane, hence the value of the worldvolume $U(1)$ gauge field $A_{x}$ on the original D-brane.

- In flat space, $a$ can be changed by a gauge transformation hence has no physical meaning.
- In a time-dependent situation, this is no more the case: the difference $a\left(x^{+}=+\infty\right)-a\left(x^{+}=-\infty\right)$ is the electric field $F_{+x}$. In the Born approximation,

$$
\delta f_{0}-\delta g_{0}=-\frac{1}{\pi} \int_{-\infty}^{\infty} e_{0}\left(p^{+} \tau\right) X(\sigma=0, \tau) d \tau
$$

This is possibly the simplest computation of the backreaction of an open string on an electric background.

- Similar computations can be made in the adiabatic approximation, but keeping $h^{a}( \pm \infty)$ finite, as the limit $h \rightarrow 0$ is non adiabatic.


## Electric field and Lorentzian orbifold

- Closed strings in the $w$-th twisted sector of the Lorentzian orbifold satisfy

$$
X^{ \pm}(\sigma+2 \pi, \tau)=e^{ \pm \nu} X^{ \pm}(\sigma, \tau), \quad \nu=w \beta
$$

Expanding in left and right movers, we have the normal mode expansion:

$$
\begin{aligned}
& X_{R}^{ \pm}(\tau-\sigma)=\frac{i}{2} \sum_{n=-\infty}^{\infty}(n \pm i \nu)^{-1 / 2} \alpha_{n}^{ \pm} e^{-i(n \pm i \nu)(\tau-\sigma)} \\
& X_{L}^{ \pm}(\tau+\sigma)=-\frac{i}{2} \sum_{n=-\infty}^{\infty}(-n \mp i \nu)^{-1 / 2} \tilde{\alpha}_{n}^{ \pm} e^{-i(-n \mp i \nu)(\tau+\sigma)}
\end{aligned}
$$

- Upon identifying the oscillators

$$
\alpha_{n}^{ \pm}=a_{n}^{ \pm}, \quad \tilde{\alpha}_{-n}^{ \pm}=\left(a_{n}^{ \pm}\right)^{*}
$$

adding a zero mode and setting

$$
X_{\text {open }}^{ \pm}=x^{ \pm}+X_{R}^{ \pm}(\tau-\sigma)+X_{L}^{ \pm}(-\tau-\sigma),
$$

this reduces to the open string mode expansion

$$
X^{ \pm}=x^{ \pm}+i a_{0}^{ \pm} \phi_{0}^{ \pm}(\sigma, \tau)+i \sum_{n=1}^{\infty}\left[a_{n}^{ \pm} \phi_{n}^{ \pm}(\sigma, \tau)-h . c .\right]
$$

where $\phi_{n}^{ \pm}(\sigma, \tau)=(n \pm i \nu)^{-\frac{1}{2}} e^{-i(n \pm i \nu) \tau} \cos [(n \pm i \nu) \sigma]$

- Canonical commutation relations are
$\left[\alpha_{n}^{+},\left(\alpha_{n}^{-}\right)^{*}\right]=\left[\alpha_{n}^{-},\left(\alpha_{n}^{+}\right)^{*}\right]=\left[\widetilde{\alpha}_{n}^{-},\left(\alpha_{n}^{+}\right)^{*}\right]=\left[\tilde{\alpha}_{n}^{-},\left(\tilde{\alpha}_{n}^{+}\right)^{*}\right]=-1$


## Are there physical states ?

- The worldsheet Hamiltonian for open strings reads, after normal ordering ( $a^{ \pm}:=a_{0}^{ \pm}$)

$$
\begin{aligned}
L_{0}= & -\sum_{n=1}^{\infty}(n-i \nu)\left(a_{n}^{+}\right)^{*} a_{n}^{-}-\sum_{n=0}^{\infty}(n+i \nu)\left(a_{n}^{-}\right)^{*} a_{n}^{+} \\
& +\frac{1}{2} i \nu(1-i \nu)-1+L_{i n t}
\end{aligned}
$$

- Representing in a Fock space with vacuum annihilated by all $a_{n>0}^{-}$and $a_{n>0}^{+}$, eigenstates have imaginary energy. This does not contradict hermiticity, since they also have zero norm! Hence the physical state condition $L_{0}=0$ has no solutions.
- For Milne Universe it is the same story with tildas. The no-physical state statement is warranted by modular invariance of the one-loop amplitude.

Nekrasov

## Scattering states and tunnelling

- Alas, this vacuum is the one obtained by analytic continuation from Euclidean, i.e. for strings in a magnetic field (disregarding time direction). There physical states are Landau states, corresponding to discrete normalizable eigenmodes of an harmonic oscillator (times a continuous degeneracy label):

$$
m^{2}=a a^{\dagger}+a^{\dagger} a=P^{2}+Q^{2}
$$

- In the Minkowskian (electric) case, the harmonic oscillator becomes inverted, and the continued Landau states now have imaginary energy. However there is now a continuum of delta-normalizable physical scattering states with real energy:

$$
m^{2}=a^{+} a^{-}+a^{-} a^{+}=P^{2}-Q^{2}
$$



Das Jevicki; Moore; Alexandrov Kazakov Kostov

- Physically, these represent electrons and positrons being deflected by the electric field. Tunneling through the barrier is just induced Schwinger emission, $e^{-} \rightarrow \mu e^{-}+(1+\mu) e^{+}$.


## Vertex operators and scattering

- String vertex operators can be represented at the massless level by eigenmodes of the inverted harmonic oscillator:

$$
\begin{aligned}
& \psi^{+}=e^{-i u^{2} / 4}{ }_{1} F_{1}\left(\frac{1}{4}+i \frac{m^{2}}{8 \nu}, \frac{1}{2} ; i u^{2} / 2\right) \\
& \psi^{-}=u e^{-i u^{2} / 4}{ }_{1} F_{1}\left(\frac{3}{4}+i \frac{m^{2}}{8 \nu}, \frac{3}{2} ; i u^{2} / 2\right)
\end{aligned}
$$

where $u=(p+\nu x) \sqrt{2 / \nu}$.

- They admit a free-boson representation in terms of excited twist fields, much as in the magnetic case.
- Scattering amplitudes may be computed in the Euclidean (magnetic) theory, after expanding the scattering states on the basis of (analytically continued) "Landau states" - and proper regularization.
. . . Electric field and Milne Universe. . .
- A constant electric field $F=e d x^{+} \wedge d x^{-}$preserves symmetries under boost. One may consider states of fixed boost momentum $J$, and use adapted Rindler coordinates $x^{ \pm}= \pm e^{y \pm \eta}$ in the R region. Radial motion is now controlled by

$$
(d y / d \eta)^{2}+4 m^{2} e^{2 y}-\left(J+\nu e^{2 y}\right)^{2}=0
$$

For $\nu=0$ this is a Liouville wall. For $\nu \neq 0$ tunelling is possible, and describes Schwinger production across the horizon.

## Narozhny Mur Fedotov

- Winding closed strings in the Lorentzian orbifold behave exactly as massive charged particles in Rindler space, with boost momentum fixed by the matching condition $w J=N_{L}-N_{R}$. For $J=0$ they are all going across the singularity, or stay in the whiskers.
- The effect of particle production in strong electric fields has been often studied semiclassically or using transport equations: the electric field is slowly screened, leading possibly to plasma oscillations.

Ambjorn Wolfram; Mottola Cooper; Tomaras Tsamis Woodard. .

- Winding strings will be pair-produced and should backreact on the geometry so as to "discharge the condensator": is there enough time for the cosmological singularity to take place ?


## Electric fields hold many promises for the study of Time and String

 Theory...