Non-Gaussian Theta series and the supermembrane

Boris Pioline

LPTHE, Paris

TH 2002

Paris, July 22, 2002
w/ H. Nicolai, J. Plefka, A. Waldron, hep-th/0102123 w/ D. Kazhdan, A. Waldron, CMP, hep-th/0107222
transparencies available from
http://www.lpthe.jussieu.fr/pioline/academic.html

Strings vs. membranes

- In the Polyakov formulation and after going to the conformal gauge, string theory is Gaussian on the worldsheet:

$$
\begin{aligned}
S= & \frac{1}{l_{s}^{2}} \int d^{2} \sigma \sqrt{\gamma} \gamma^{\alpha \beta} \partial_{\alpha} X^{i} \partial_{\beta} X^{j} G_{i j} \\
& +i \epsilon^{\alpha \beta} \partial_{\alpha} X^{i} \partial_{\beta} X^{j} B_{i j}
\end{aligned}
$$

- By contrast, membranes are interacting on their world volume, including cubic interactions:

$$
\begin{aligned}
S= & \frac{1}{l_{p}^{3}} \int d^{3} \sigma \sqrt{\gamma}\left(\gamma^{\alpha \beta} \partial_{\alpha} X^{i} \partial_{\beta} X^{j} G_{i j}-1\right) \\
& +i \epsilon^{\alpha \beta \gamma} \partial_{\alpha} X^{i} \partial_{\beta} X^{j} \partial_{\gamma} X^{k} C_{i j k}
\end{aligned}
$$

Bergshoeff Sezgin Townsend

There is neither a conformal gauge nor a genus expansion.

- Yet supermembranes (or their M(atrix) regularization) are the only candidates to date to describe the microscopic degrees of freedom of M-theory. In particular κ symmetry implies 11D SUGRA eom.

Q: Can we tame the membrane non-linearities ?

BPS strings and Gaussian theta series

- For specific "BPS saturated" amplitudes, supersymmetry guarantees the cancellation between bosonic and fermionic fluctuations, leaving the contribution of bosonic zero-modes.
- E.g, the Riemann ${ }^{4}$ amplitude in type IIA/B compactified on a torus T^{n} reads at one-loop

$$
f_{R^{4}}^{1-l o o p}=\int_{U(1) \backslash S l(2) / S l(2, Z)} \frac{d^{2} \tau}{\tau_{2}^{2}} Z_{n}(\tau ; g, B)
$$

Kiritsis BP
where Z_{n} is the partition function

$$
Z_{n}=V_{n} \sum_{m^{i}, n^{i} \in Z} \exp \left(-\pi \frac{\left|m^{i}+n^{i} \tau\right|^{2}}{\tau_{2}}+2 \pi i m^{i} B_{i j} n^{j}\right)
$$

for the constant winding configurations

$$
X^{i}=m^{i} \sigma_{1}+n^{i} \sigma_{2}, \quad \gamma_{\alpha \beta}=\frac{1}{\tau_{2}}\left(\begin{array}{cc}
1 & \tau_{1} \\
\tau_{1} & |\tau|^{2}
\end{array}\right)
$$

- Z_{n} is manifestly invariant under the modular group $S l(2, Z)$, and also (manifestly after Poisson resummation) under the T-duality group $S O(n, n, Z)$.
- In fact, Z_{n} is a standard symplectic theta series

$$
Z_{n}(g, B ; \tau)=\theta_{S p}(T):=\sum_{m \in Z^{2 n}} \exp \left(2 \pi i m^{I} T_{I J} m^{J}\right)
$$

restricted to $S l(2, Z) \times S O(d, d, Z) \subset S p(2 n, Z)$.

BPS membranes and non-Gauss. theta series

- Similarly, the insertion of four graviton vertices on the membrane with topology T^{3} just saturates the fermionic zero-modes, and leaves the partition function of the constant winding modes,

$$
X^{i}=n_{\alpha}^{i} \sigma^{\alpha}, \quad \gamma=\text { cste } \in G l(3) / S O(3)
$$

- Invariance under the modular group $\operatorname{Sl}(3, Z)$ and the target-space U-duality group

$$
E_{n+1}(Z) \supset S O(n, n, Z) \bowtie S l(n+1, Z)
$$

Hull Townsend
should fix the summation measure, related to the index of $2+1$ dimensional $U(N)$ SYM for $N=$ $\operatorname{det}\left(n_{\alpha}^{i}\right)$ coinciding membranes.

- One should construct a theta series invariant under a larger group containing $R^{+} \times S l(3) \times E_{n+1}$:

$$
\begin{array}{ll}
M / T^{3}: & {[S l(3) \times S l(2)] \times[R \times S l(3)] \subset E_{6}} \\
M / T^{6}: & E_{6} \times S l(3) \subset E_{8}
\end{array}
$$

BP Nicolai Plefka Waldron

BPS membranes and exact amplitudes

- Integrating over the worldvolume moduli, i.e. the fundamental domain of $G l(3) / S O(3)$, one should reproduce the full non-perturbative R^{4} amplitude, including toroidal membrane instantons:

$$
\begin{gathered}
\int_{S O(3) \backslash S l(3) / S l(3, Z) \times R^{+}} d \gamma Z_{d}(\gamma ; G, C, \ldots) \\
?=\operatorname{Eis}_{\text {string;s=3/2 }}^{E_{d}(Z)}(G, C, \ldots)
\end{gathered}
$$

Green Gutperle Vanhove
Kiritsis Obers BP

- A naive attempt based on the Polyakov action for the membrane and assuming unit summation measure reproduces the correct instanton saddle points and mass spectrum, but the summation measure / degeneracy is off: (unfortunately) math has to rescue string theory, not reverse.

BP Nicolai Plefka Waldron

- $E_{n \geq 6}$ is not contained in a symplectic group. In addition one expects a cubic action due to coupling to C_{3} : we need non-Gaussian theta series.

Non-Gauss. Poisson resum. : a toy model

- The invariance of the standard theta series under $\tau \rightarrow-1 / \tau$ relies on Poisson resummation formula,

$$
\sum_{n \in Z} f(n)=\sum_{m \in Z} \tilde{f}(m), \quad \tilde{f}=\text { Fourier }(f)
$$

and the fact that the Gaussian is preserved under Fourier transform:

$$
\int d x \exp \left(i x^{2} / \hbar+i p x\right)=\sqrt{\hbar} \exp \left(-i \hbar p^{2}\right)
$$

In other words, for a Gaussian the semi-classical (saddle) approximation is exact. Perturbative QFT is arises from generalizing to ∞x 's.

- Interestingly, there exists a generalization of this to cubic characters:

$$
\int d x^{0123}\left(1 / x_{0}\right) \exp \left(i \frac{x_{1} x_{2} x_{3}}{\hbar x_{0}}+p_{i} x^{i}\right)=\left(\hbar / p_{0}\right) \exp \left(-i \hbar \frac{p_{1} p_{2} p_{3}}{p_{0}}\right)
$$

Again, the saddle point approximation is exact. Such cubic forms are classified by (A)DE:

$$
\begin{aligned}
& D_{n}: I_{3}=x_{1}\left(x_{2} x_{3}+x_{4} x_{5}+\ldots\right) \\
& E_{6}: \quad I_{3}=\operatorname{det}(3 \times 3) \\
& E_{7}: I_{3}=\operatorname{Pf}(6 \wedge 6) \\
& E_{8}: I_{3}=\left.27^{3}\right|_{1}
\end{aligned}
$$

Etingof Kazhdan Polischuk

- This observation is at the heart of the construction of theta series for simply laced groups.
azhdan Savin

Theta series under the hood

The standard theta series can be deconstructed as

$$
\theta(\tau)=\sum_{m \in Z} \exp \left(i \pi \tau m^{2}\right)=\left\langle\delta_{Z}, \rho\left(g_{\tau}\right) f\right\rangle, \quad g_{\tau}=\left(\begin{array}{ll}
1 & \tau_{1} \\
0 & \tau_{2}
\end{array}\right) / \sqrt{\tau_{2}}
$$

- $\rho(g)$ is a unitary representation of $g \in S l(2)$ on functions of one variable:

$$
E_{+}=i \pi x^{2}, \quad H=\frac{1}{2}\left(x \partial_{x}+\partial_{x} x\right), \quad E_{-}=\frac{i}{4 \pi} \partial_{x}^{2},
$$

satisfying the $\operatorname{Sl}(2, R)$ algebra,

$$
\left[H, E_{ \pm}\right]= \pm 2 E_{ \pm}, \quad H=\left[E_{+}, E_{-}\right],
$$

- $f(x)=e^{-x^{2} / 2}$ is a spherical vector, i.e. a function ϕ (quasi) annihilated by the compact generator $K=E_{+}+E_{-}$; in particular invariant under the Weyl generator $\exp (i \pi K)=$ Fourier .
- δ_{Z} is a distribution invariant under $S l(2, Z)$,

$$
\delta_{Z}(x)=\sum_{m \in Z} \delta(x-m)=^{* * *} \prod_{p \text { prime }} f_{p}(x),
$$

where each f_{p} is invariant under Fourier transform over the p-adic field.

All these parts can be engineered for any simply-laced G

Min. rep. and conformal quantum mechanics

- The representation space is constructed as the Hilbert space of a conformal quantum mechanical system whose phase space is the minimal nilpotent orbit of G.

de Alfaro Fubini Furlan

- Classically, the Lagrangian is manifestly invariant under G_{0},

$$
\mathcal{L}=\dot{x}_{0} \dot{y}+2 x_{0} \sqrt{I_{3}\left(\dot{x}_{i}\right)}+\frac{d}{d t}\left(\frac{x_{0} I_{3}\left(x_{i}\right)}{y}\right)
$$

the Hamiltonian is invariant under $G_{1} \supset G_{0}$ mixing positions and momenta,

$$
\mathcal{H}=p^{2}+y^{2}+\frac{1}{y^{2}} I_{4}\left(x_{I}, p_{I}\right)
$$

and the conformal transformations, $t \rightarrow(a t+b) /(c t+$ d) extend the symmetry group to $G \supset G_{1} \supset G_{0}$.

BP Waldron; Gunaydin Koepsell Nicolai

- The quantization of this system produces the minimal representation of G as differential operators acting on wave functions.

Quantization and spherical vector

- Quantization is carried out by replacing $p_{i} \rightarrow i d / d x_{i}$ and adding normal ordering terms so that the generators still close. More abstractly, it proceeds by a sequence of induced representations.

Kazhdan Savin; Brylinsky Kostant

- The Weyl generators
$(S f)\left(y, x_{0}, \ldots, x_{N-1}\right)=\int \frac{\prod_{i=0}^{N-1} d p_{i}}{(2 \pi y)^{N / 2}} f\left(y, p_{0}, \ldots, p_{N-1}\right) e^{\frac{i}{y} \sum_{i=0}^{N-1} p_{i} x_{i}}$
$(A f)\left(y, x_{0}, x_{1}, \ldots, x_{N-1}\right)=\exp \left(-\frac{i I_{3}}{x_{0} y}\right) f\left(-x_{0}, y, x_{1}, \ldots, x_{N-1}\right)$
satisfy the correct relation $(A S)^{3}=(S A)^{3}$ thanks to the invariance of the cubic character under Fourier transform.
- The spherical vector is the ground state wave function of this quantum mechanical system, invariant under the maximal compact subgroup K of G. It can be found by solving PDEs $E_{\alpha}+E_{-\alpha}=0$.

Kazhdan BP Waldron CMP 2001

- The summation measure δ_{Z} is obtained by solving the same problem (with different methods) over the p-adic field Z_{p}.

Kazhdan Polischuk, to appear

Minimal Nilpotent Orbit

$S l(n)$	\supset	$S l(2) \times S l(n-2) \times R^{+}$
$a d j$	$=$	$(3,1,0) \oplus[(2, n-2,1) \oplus(2, n-2,-1)] \oplus(1, a d j, 0)$
	$=$	$1 \oplus 2(n-2) \oplus[1 \oplus a d j] \oplus 2(n-2) \oplus 1$
$S O(2 n)$	\supset	$S l(2) \times S l(2) \times S O(2 n-4)$
$a d j$	$=$	$(3,1,1) \oplus(2,2,2 n-4) \oplus(1,3,1) \oplus(1,1, a d j)$
	$=$	$1 \oplus(2,2 n-4) \oplus[1 \oplus a d j \oplus(2,2 n-4) \oplus 1$
E_{6}	\supset	$S l(2) \times S l(6)$
78	$=$	$(3,1) \oplus(2,20) \oplus(1,35)$
	$=$	$1 \oplus 20 \oplus[1 \oplus 35] \oplus 20 \oplus 1$
E_{7}	\supset	$S l(2) \times S O(6,6)$
133	$=$	$(3,1) \oplus(2,32) \oplus(1,66)$
	$=$	$1 \oplus 32 \oplus[1 \oplus 66] \oplus 32 \oplus 1$
E_{8}	\supset	$S l(2) \times E_{7}$
248	$=$	$(3,1) \oplus(2,56) \oplus(1,133)$
	$=$	$1 \oplus 56 \oplus[1 \oplus 133] \oplus 56 \oplus 1$

G	dim	H_{0}	G_{1}^{*}	I_{3}
$S l(n)$	$n-1$	$S l(n-3)$	$[n-3]$	0
$S O(n, n)$	$2 n-3$	$S O(n-3, n-3)$	$1 \oplus[2 n-6]$	$x_{1}\left(\sum x_{2 i} x_{2 i+1}\right)$
E_{6}	11	$S l(3) \times \operatorname{Sl}(3)$	$(3,3)$	det
E_{7}	17	$S l(6)$	15	$P \mathrm{Pf}$
E_{8}	29	E_{6}	27	$\left.27^{\otimes_{3} 3}\right\|_{1}$

Example: $D_{4}=S O(4,4)$

$$
\begin{aligned}
& \begin{array}{ccc}
\hline 30 \alpha_{2} & \beta_{i}=\beta_{0}+\alpha_{i}, \quad \gamma_{i}=\beta_{0}+\alpha_{j}+\alpha_{k}, \\
0-1 & \gamma_{0}=\beta_{0}+\alpha_{1}+\alpha_{2}+\alpha_{3}, \quad \omega=\beta_{0}+\gamma_{0} \\
1 & I_{3}=x_{1} x_{2} x_{3} \\
\alpha_{1} & \beta_{0} & \alpha_{3}
\end{array} \\
& \begin{array}{cc}
E_{\beta_{0}}=y \partial_{0} & E_{\gamma_{0}}=i x_{0} \\
E_{\beta_{1}}=y \partial_{1} & E_{\gamma_{1}}=i x_{1} \\
E_{\beta_{2}}=y \partial_{2} & E_{\gamma_{2}}=i x_{2} \\
E_{\beta_{3}}=y \partial_{3} & E_{\gamma_{3}}=i x_{3} \\
E_{\omega}=i y .
\end{array} \\
& E_{\alpha_{1}}=-x_{0} \partial_{1}-\frac{i x_{2} x_{3}}{y}, \quad E_{-\alpha_{1}}=x_{1} \partial_{0}+i y \partial_{2} \partial_{3} \\
& E_{\alpha_{2}}=-x_{0} \partial_{2}-\frac{i x_{3} x_{1}}{y}, \quad E_{-\alpha_{2}}=x_{2} \partial_{0}+i y \partial_{3} \partial_{1} \\
& E_{\alpha_{3}}=-x_{0} \partial_{3}-\frac{i x_{1}^{y} x_{2}}{y}, \quad E_{-\alpha_{3}}=x_{3} \partial_{0}+i y \partial_{1} \partial_{2} . \\
& E_{-\beta_{0}}=-x_{0} \partial+\frac{i x_{1} x_{2} x_{3}}{y^{2}} \\
& E_{-\beta_{1}}=x_{1} \partial+\frac{x_{1}}{y}\left(1+x_{2} \partial_{2}+x_{3} \partial_{3}\right)-i x_{0} \partial_{2} \partial_{3} \\
& E_{-\gamma_{0}}=3 i \partial_{0}+i y \partial \partial_{0}-y \partial_{1} \partial_{2} \partial_{3}+i\left(x_{0} \partial_{0}+x_{1} \partial_{1}+x_{2} \partial_{2}+x_{3} \partial_{3}\right) \partial_{ธ} \\
& E_{-\gamma_{1}}=i y \partial_{1} \partial+i\left(2+x_{0} \partial_{0}+x_{1} \partial_{1}\right) \partial_{1}-\frac{x_{2} x_{3}}{y} \partial_{0} \\
& E_{-\omega}=3 i \partial+i y \partial^{2}+\frac{i}{y}+i x_{0} \partial_{0} \partial+\frac{x_{1} x_{2} x_{3}}{y^{2}} \partial_{0}+ \\
& +\frac{i}{y}\left(x_{1} x_{2} \partial_{1} \partial_{2}+x_{3} x_{1} \partial_{3} \partial_{1}+x_{2} x_{3} \partial_{2} \partial_{3}\right) \\
& +i\left(x_{1} \partial_{1}+x_{2} \partial_{2}+x_{3} \partial_{3}\right)\left(\partial+\frac{1}{y}\right)+x_{0} \partial_{1} \partial_{2} \partial_{3},
\end{aligned}
$$

Example: $D 4=S O(4,4)$ (continued)

$$
\begin{aligned}
H_{\beta_{0}} & =-y \partial+x_{0} \partial_{0} \\
H_{\alpha_{1}} & =-1-x_{0} \partial_{0}+x_{1} \partial_{1}-x_{2} \partial_{2}-x_{3} \partial_{3} \\
H_{\alpha_{2}} & =-1-x_{0} \partial_{0}-x_{1} \partial_{1}+x_{2} \partial_{2}-x_{3} \partial_{3} \\
H_{\alpha_{3}} & =-1-x_{0} \partial_{0}-x_{1} \partial_{1}-x_{2} \partial_{2}+x_{3} \partial_{3}
\end{aligned}
$$

- Spherical vector: solve $\operatorname{PDE}\left(E_{\alpha}-E_{-\alpha}\right) f=0$:

$$
f_{D_{4}}=\frac{4 \pi}{|z|} K_{0}\left(\frac{\sqrt{\left(|z|^{2}+x_{1}^{2}\right)\left(|z|^{2}+x_{2}^{2}\right)\left(|z|^{2}+x_{3}^{2}\right)}}{|z|^{2}}\right) e^{-i \frac{x_{0} x_{1} x_{2} z_{3}}{\|\left||l|_{2}\right.}}
$$

where $z=y+i x_{0}$. This is manifestly invariant under $S O(4,4)$ triality, permuting x_{1}, x_{2}, x_{3}.

- Rk: this minimal representation is equivalent to the one arising from the string worldsheet instantons on T^{4} : by Fourier transforming on x_{3} and renaming variables, we can rewrite f as

$$
f=\frac{e^{-2 \pi \sqrt{\left(m^{i j}\right)^{2}}}}{\sqrt{\left(m^{i j}\right)^{2}}}, \quad \epsilon^{i j k l} m_{i j} m_{k l}=0
$$

This implies that the one-loop BPS amplitude of Het $/ T^{4}$ is invariant under $S O(4,4)$ triality, as predicted from Heterotic-Type II duality.

Kiritsis Obers BP

E_{6} theta series and Membrane $/ T^{3}$

- For E_{6} the minimal nilpotent orbit is parameterized by 11 positions (y, x_{0}, M_{α}^{i}) transforming as $1+1+$ $(3,3)$ under the linearly represented subgroup $G_{0}=$ $S l(3) \times S l(3)$: there are two unexpected quantum numbers $\left(y, x_{0}\right)$. The cubic form is simply $I_{3}=$ $\operatorname{det}(M)$.
- The spherical vector invariant under the maximal compact $S U(8)$ can be obtained by integrating the $\operatorname{PDE}\left(E_{\alpha}-E_{-\alpha}\right) f=0$:

$$
f_{E_{6}}=\frac{e^{-\left(S_{1}+i S_{2}\right)}}{|z|^{2} S_{1}}, \quad z=y+i x_{0}
$$

$$
S_{1}=\frac{\sqrt{\operatorname{det}\left(M M^{t}+|z|^{2} \mathbb{I}_{3}\right)}}{|z|^{2}}, \quad S_{2}=\frac{x_{0} \operatorname{det}(M)}{y|z|^{2}}
$$

- The variables M can be identified with the winding numbers of the membrane $X^{i}=\mathcal{M}_{\alpha}^{i} \sigma^{\alpha}$. z looks like a complex scalar on the worldvolume, or rather an $S l(2)$ doublet of 3-form field strengths: no dof, cosmological constant on the worldvolume.
- The representation satisfies identically

$$
\Delta_{S l(3)_{1}}=\Delta_{S l(3)_{2}}=\Delta_{S l(3)_{3}}
$$

which agrees with the result expected for $f_{R^{4}}$ after integrating over wv SI(3).

Summary - prospects

- We have obtained explicit formulae for theta series for D_{n} and for exceptional groups $E_{6,7,8}$. Can one understand degenerate contributions ? Can one find a simple combinatoric formula for this summation measure ?
- This construction is based on the quantization of the phase space of an exotic conformal quantum mechanical model. Any deeper meaning or application to motion on black hole moduli space ?
- It relies on the invariance of the cubic character $\exp \left(i I_{3}\left(x_{i}\right) / x_{0}\right)$ under Fourier transform: a class of non-Gaussian yet free cubic models. Can models be found with ∞ degrees of freedom ? the topological open membrane ?
- Applied to the membrane, it predicts new quantum numbers (y, x_{0}) besides the expected windings n_{α}^{i}. What is their interpretation ? Can S be generalized to include fluctuations while preserving duality ?

