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Strings vs. membranes

• In the Polyakov formulation and after going to the
conformal gauge, string theory is Gaussian on the
worldsheet:

S =
1

l2s

∫
d2σ
√
γ γαβ∂αX

i∂βX
j Gij

+ i εαβ ∂αX
i∂βX

j Bij

• By contrast, membranes are interacting on their
world volume, including cubic interactions:

S =
1

l3p

∫
d3σ
√
γ
(
γαβ∂αX

i∂βX
j Gij − 1

)

+ i εαβγ ∂αX
i∂βX

j∂γX
k Cijk

Bergshoe� Sezgin Townsend

There is neither a conformal gauge nor a genus
expansion.

• Yet supermembranes (or their M(atrix) regulariza-
tion) are the only candidates to date to describe
the microscopic degrees of freedom of M-theory.
In particular κ symmetry implies 11D SUGRA eom.

Q: Can we tame the membrane non-linearities ?
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BPS strings and Gaussian theta series
• For speci�c �BPS saturated� amplitudes, supersym-
metry guarantees the cancellation between bosonic
and fermionic �uctuations, leaving the contribution
of bosonic zero-modes.

• E.g, the Riemann4 amplitude in type IIA/B com-
pacti�ed on a torus T n reads at one-loop

f1−loop
R4 =

∫

U(1)\Sl(2)/Sl(2,Z)

d2τ

τ2
2

Zn(τ ; g,B)

Kiritsis BP

where Zn is the partition function

Zn = Vn
∑

mi,ni∈Z
exp

(
−π |m

i + niτ |2
τ2

+ 2πimiBijn
j

)

for the constant winding con�gurations

Xi = miσ1 + niσ2 , γαβ =
1

τ2

(
1 τ1

τ1 |τ |2
)

• Zn is manifestly invariant under the modular group
Sl(2, Z), and also (manifestly after Poisson resum-
mation) under the T-duality group SO(n, n, Z).

• In fact, Zn is a standard symplectic theta series
Zn(g,B; τ) = θSp(T ) :=

∑

m∈Z2n

exp
(
2πi mITIJm

J
)

restricted to Sl(2, Z)× SO(d, d, Z) ⊂ Sp(2n,Z).
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BPS membranes and non-Gauss. theta series

• Similarly, the insertion of four graviton vertices on
the membrane with topology T 3 just saturates the
fermionic zero-modes, and leaves the partition func-
tion of the constant winding modes,

Xi = niασ
α, γ = cste ∈ Gl(3)/SO(3)

• Invariance under the modular group Sl(3, Z) and
the target-space U-duality group

En+1(Z) ⊃ SO(n, n, Z) ./ Sl(n+ 1, Z)

Hull Townsend

should �x the summation measure, related to the
index of 2 + 1 dimensional U(N) SYM for N =
det(niα) coinciding membranes.

• One should construct a theta series invariant under
a larger group containing R+ × Sl(3)× En+1:

M/T 3 : [Sl(3)× Sl(2)]× [R× Sl(3)] ⊂ E6

M/T 6 : E6 × Sl(3) ⊂ E8

BP Nicolai Plefka Waldron
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BPS membranes and exact amplitudes

• Integrating over the worldvolume moduli, i.e. the
fundamental domain of Gl(3)/SO(3), one should
reproduce the full non-perturbative R4 amplitude,
including toroidal membrane instantons:

∫

SO(3)\Sl(3)/Sl(3,Z)×R+

dγ Zd(γ;G,C, . . . )

? = EisEd(Z)
string;s=3/2(G,C, . . . )

Green Gutperle Vanhove
Kiritsis Obers BP

• A naive attempt based on the Polyakov action for
the membrane and assuming unit summation mea-
sure reproduces the correct instanton saddle points
and mass spectrum, but the summation measure
/ degeneracy is o�: (unfortunately) math has to
rescue string theory, not reverse.

BP Nicolai Plefka Waldron

• En≥6 is not contained in a symplectic group. In
addition one expects a cubic action due to coupling
to C3: we need non-Gaussian theta series.

5



Non-Gauss. Poisson resum. : a toy model
• The invariance of the standard theta series under
τ → −1/τ relies on Poisson resummation formula,

∑

n∈Z
f(n) =

∑

m∈Z
f̃(m) , f̃ = Fourier(f)

and the fact that the Gaussian is preserved under
Fourier transform:∫

dx exp(ix2/~+ ipx) =
√
~ exp(−i~ p2)

In other words, for a Gaussian the semi-classical
(saddle) approximation is exact. Perturbative QFT
is arises from generalizing to ∞ x's.

• Interestingly, there exists a generalization of this to
cubic characters:∫

dx0123(1/x0) exp

(
i
x1x2x3

~ x0
+ pix

i

)
= (~/p0) exp

(
−i~p1p2p3

p0

)

Again, the saddle point approximation is exact. Such
cubic forms are classi�ed by (A)DE:

Dn : I3 = x1(x2x3 + x4x5 + . . . )
E6 : I3 = det(3× 3)
E7 : I3 = Pf(6 ∧ 6)
E8 : I3 = 273|1

Etingof Kazhdan Polischuk

• This observation is at the heart of the construction
of theta series for simply laced groups.Kazhdan Savin
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Theta series under the hood
The standard theta series can be deconstructed as

θ(τ) =
∑

m∈Z
exp(iπτm2) = 〈δZ, ρ(gτ)f〉 , gτ =

(
1 τ1

0 τ2

)
/
√
τ2

• ρ(g) is a unitary representation of g ∈ Sl(2) on func-
tions of one variable:

E+ = iπ x2 , H =
1

2
(x∂x + ∂xx) , E− =

i

4π
∂2
x ,

satisfying the Sl(2, R) algebra,
[H,E±] = ±2E± , H = [E+, E−] ,

• f(x) = e−x2/2 is a spherical vector, i.e. a func-
tion φ (quasi) annihilated by the compact generator
K = E+ +E−; in particular invariant under the Weyl
generator exp(iπK) = Fourier.

• δZ is a distribution invariant under Sl(2, Z),

δZ(x) =
∑

m∈Z
δ(x−m) =∗∗∗

∏

p prime
fp(x) ,

where each fp is invariant under Fourier transform
over the p-adic �eld.

All these parts can be engineered for any simply-laced
G
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Min. rep. and conformal quantum mechanics

• The representation space is constructed as the Hilbert
space of a conformal quantum mechanical system
whose phase space is the minimal nilpotent orbit of
G.

de Alfaro Fubini Furlan

• Classically, the Lagrangian is manifestly invariant
under G0,

L = ẋ0ẏ + 2x0

√
I3(ẋi) +

d

dt

(
x0I3(xi)

y

)

the Hamiltonian is invariant under G1 ⊃ G0 mixing
positions and momenta,

H = p2 + y2 +
1

y2
I4(xI, pI)

and the conformal transformations, t→ (at+b)/(ct+
d) extend the symmetry group to G ⊃ G1 ⊃ G0.

BP Waldron; Gunaydin Koepsell Nicolai

• The quantization of this system produces the min-
imal representation of G as di�erential operators
acting on wave functions.
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Quantization and spherical vector

• Quantization is carried out by replacing pi → id/dxi
and adding normal ordering terms so that the gen-
erators still close. More abstractly, it proceeds by a
sequence of induced representations.

Kazhdan Savin; Brylinsky Kostant

• The Weyl generators

(Sf)(y, x0, . . . , xN−1) =

∫ ∏N−1
i=0 dpi

(2πy)N/2
f(y, p0, . . . , pN−1) e

i

y

∑N−1

i=0
pixi

(Af)(y, x0, x1, . . . , xN−1) = exp

(
− iI3

x0y

)
f(−x0, y, x1, . . . , xN−1)

satisfy the correct relation (AS)3 = (SA)3 thanks to
the invariance of the cubic character under Fourier
transform.

• The spherical vector is the ground state wave func-
tion of this quantum mechanical system, invariant
under the maximal compact subgroup K of G. It
can be found by solving PDEs Eα + E−α = 0.

Kazhdan BP Waldron CMP 2001

• The summation measure δZ is obtained by solving
the same problem (with di�erent methods) over the
p-adic �eld Zp.

Kazhdan Polischuk, to appear
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Minimal Nilpotent Orbit

Sl(n) ⊃ Sl(2)× Sl(n− 2)×R+

adj = (3,1,0)⊕ [(2, n− 2,1)⊕ (2, n− 2,−1)]⊕ (1, adj,0)
= 1⊕ 2(n− 2)⊕ [1⊕ adj]⊕ 2(n− 2)⊕ 1

SO(2n) ⊃ Sl(2)× Sl(2)× SO(2n− 4)
adj = (3,1,1)⊕ (2,2,2n− 4)⊕ (1,3,1)⊕ (1,1, adj)

= 1⊕ (2,2n− 4)⊕ [1⊕ adj]⊕ (2,2n− 4)⊕ 1

E6 ⊃ Sl(2)× Sl(6)
78 = (3,1)⊕ (2,20)⊕ (1,35)

= 1⊕ 20⊕ [1⊕ 35]⊕ 20⊕ 1

E7 ⊃ Sl(2)× SO(6,6)
133 = (3,1)⊕ (2,32)⊕ (1,66)

= 1⊕ 32⊕ [1⊕ 66]⊕ 32⊕ 1

E8 ⊃ Sl(2)× E7

248 = (3,1)⊕ (2,56)⊕ (1,133)
= 1⊕ 56⊕ [1⊕ 133]⊕ 56⊕ 1

G dim H0 G∗1 I3

Sl(n) n− 1 Sl(n− 3) [n− 3] 0
SO(n, n) 2n− 3 SO(n− 3, n− 3) 1⊕ [2n− 6] x1(

∑
x2ix2i+1)

E6 11 Sl(3)× Sl(3) (3,3) det
E7 17 Sl(6) 15 Pf
E8 29 E6 27 27⊗s3|1
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Example: D4 = SO(4,4)

g g g
1
α1

2
β0

4
α3

g3 α2 βi = β0 + αi , γi = β0 + αj + αk ,

γ0 = β0 + α1 + α2 + α3 , ω = β0 + γ0

I3 = x1x2x3

Eβ0
= y∂0 Eγ0 = ix0

Eβ1
= y∂1 Eγ1 = ix1

Eβ2
= y∂2 Eγ2 = ix2

Eβ3
= y∂3 Eγ3 = ix3

Eω = iy .

Eα1 = −x0∂1 − ix2x3

y
, E−α1 = x1∂0 + iy∂2∂3

Eα2 = −x0∂2 − ix3x1

y
, E−α2 = x2∂0 + iy∂3∂1

Eα3 = −x0∂3 − ix1x2

y
, E−α3 = x3∂0 + iy∂1∂2 .

E−β0
= −x0∂ +

ix1x2x3

y2

E−β1
= x1∂ +

x1

y
(1 + x2∂2 + x3∂3)− ix0∂2∂3

E−γ0 = 3i∂0 + iy∂∂0 − y∂1∂2∂3 + i(x0∂0 + x1∂1 + x2∂2 + x3∂3) ∂0

E−γ1 = iy∂1∂ + i(2 + x0∂0 + x1∂1) ∂1 − x2x3

y
∂0

E−ω = 3i∂ + iy∂2 +
i

y
+ ix0∂0∂ +

x1x2x3

y2
∂0 +

+
i

y
(x1x2∂1∂2 + x3x1∂3∂1 + x2x3∂2∂3)

+ i(x1∂1 + x2∂2 + x3∂3) (∂ +
1

y
) + x0∂1∂2∂3 ,
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Example: D4 = SO(4,4) (continued)

Hβ0
= −y∂ + x0∂0

Hα1 = −1− x0∂0 + x1∂1 − x2∂2 − x3∂3

Hα2 = −1− x0∂0 − x1∂1 + x2∂2 − x3∂3

Hα3 = −1− x0∂0 − x1∂1 − x2∂2 + x3∂3 ,

• Spherical vector: solve PDE (Eα − E−α)f = 0:

fD4
=

4π

|z| K0

(√
(|z|2 + x2

1)(|z|2 + x2
2)(|z|2 + x2

3)

|z|2

)
e−i

x0x1x2x3
y|z|2

where z = y+ix0. This is manifestly invariant under
SO(4,4) triality, permuting x1, x2, x3.

• Rk: this minimal representation is equivalent to the
one arising from the string worldsheet instantons
on T 4: by Fourier transforming on x3 and renaming
variables, we can rewrite f as

f =
e−2π
√

(mij)2

√
(mij)2

, εijklmijmkl = 0

This implies that the one-loop BPS amplitude of
Het/T 4 is invariant under SO(4,4) triality, as pre-
dicted from Heterotic-Type II duality.

Kiritsis Obers BP
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E6 theta series and Membrane/T3

• For E6 the minimal nilpotent orbit is parameterized
by 11 positions (y, x0,M i

α) transforming as 1 + 1 +
(3,3) under the linearly represented subgroup G0 =
Sl(3) × Sl(3): there are two unexpected quantum
numbers (y, x0). The cubic form is simply I3 =
det(M).

• The spherical vector invariant under the maximal
compact SU(8) can be obtained by integrating the
PDE (Eα − E−α)f = 0:

fE6
=
e−(S1+iS2)

|z|2S1
, z = y + ix0

S1 =

√
det(MM t + |z|2I3)

|z|2 , S2 =
x0 det(M)

y|z|2

• The variables M can be identi�ed with the winding
numbers of the membrane Xi = Mi

ασ
α. z looks

like a complex scalar on the worldvolume, or rather
an Sl(2) doublet of 3-form �eld strengths: no dof,
cosmological constant on the worldvolume.

• The representation satis�es identically
∆Sl(3)1

= ∆Sl(3)2
= ∆Sl(3)3

which agrees with the result expected for fR4 after
integrating over wv Sl(3).
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Summary - prospects

• We have obtained explicit formulae for theta se-
ries for Dn and for exceptional groups E6,7,8. Can
one understand degenerate contributions ? Can one
�nd a simple combinatoric formula for this summa-
tion measure ?

• This construction is based on the quantization of
the phase space of an exotic conformal quantum
mechanical model. Any deeper meaning or applica-
tion to motion on black hole moduli space ?

• It relies on the invariance of the cubic character
exp(iI3(xi)/x0) under Fourier transform: a class of
non-Gaussian yet free cubic models. Can models be
found with ∞ degrees of freedom ? the topological
open membrane ?

• Applied to the membrane, it predicts new quantum
numbers (y, x0) besides the expected windings niα.
What is their interpretation ? Can S be generalized
to include �uctuations while preserving duality ?
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