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Introduction
Despite obvious physical relevance, time dependent backgrounds in string theory have
remained a mostly uncharted territory:

• String perturbation technology is well developed for S-matrix computations around an
asymptotically flat coherent background, with a unique stable vacuum.
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Introduction
Despite obvious physical relevance, time dependent backgrounds in string theory have
remained a mostly uncharted territory:

• String perturbation technology is well developed for S-matrix computations around an
asymptotically flat coherent background, with a unique stable vacuum.

• Time dependent backgrounds have in general no canonical vacuum state, but a variety of
in and out states related by by Bogolioubov transformation, ie condensation of squeezed
states.Of two evils choose (n)one: string field theory or non-local worldsheet.

Aharony Berkooz Silverstein

• Target space supersymmetry is presumably incompatible with time dependence.

• First quantized string theory requires an Euclidean worldsheet, hence Euclidean target
space. The analytic continuation may be ambiguous or ill-defined, Lorentzian observables
may be very different from their Euclidean counterparts.

• Worse, String theory is not content on a finite time interval, and one is frequently forced
into Big Bang / Big Crunch singularities, CTC in the process of maximally extending the
geometry.
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• Cosmological singularities occur for generic initial data in classical Einstein’s gravity. Can
the no-bounce theorem be avoided in string theory ?
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String theory and spacelike singularities

• Cosmological singularities occur for generic initial data in classical Einstein’s gravity. Can
the no-bounce theorem be avoided in string theory ?

Gasperini Veneziano;Khoury Steinhart Turok Seiberg

• Scattering amplitudes in gravity typically diverge due to large graviton exchange at high
blue-shift, can the improved UV behavior of string theory tame these divergences ?

Liu Moore Seiberg; Berkooz Craps Kutasov Rajesh; Horowitz Polchinski

• String theory has a variety of extended objects that may become light at a space-like
singularity, could their exchange (or condensation ?) dominate the dynamics and lead to
finite amplitudes ?

• Assuming that the singularity persists, do spatially separated points still decouple near
T = 0 ? What remains of the classical chaotic billiard motion under string and quantum
corrections ? What boundary conditions should one impose at T = 0 and how ?

Damour Henneaux
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• The singularity may be resolved by combining the boost with a translation on an extra
spatial direction: the CTC are now shielded by a cosmological horizon, and may possibly
be excised by orientifold planes.

Cornalba Costa



NEVE SHALOM - OCT 28, 2003 4

Toy-models for cosmological singularities (cont.)

• The gauged WZW model Sl(2) × Sl(2)/U(1) × U(1) describes
a bouncing 4-dimensional Universe, locally isometric to the
Lorentzian orbifold at the singularities. Singularities may be
resolved by switching on an electric field.

Nappi Witten; Elitzur Giveon Kutasov Rabinovici
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• The Milne singularity is a very non-generic case of Kasner singularities. Can more general
singularities be studied ? Are whiskers generic ? What is the fate of the cosmological
singularity and CTC under string corrections ?

• We will be focusing on the dynamics of the twisted strings, wrapping the Milne circle and/or
the CTCs.
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Open strings in time dependent backgrounds

• In order to disentangle gravitational instabilities from time-dependence, it may be simpler
to consider time-dependent open string configurations: moving D-branes or electric fields.
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• Backreaction in the closed string sector may be neglected as gs → 0. Yet general issues
such as choice of vacua and production of open strings are retained.

• In particular, the head-on collision of two D-branes has a strong analogy with the
Lorentzian closed string orbifold:

E −E

0 1

v −v
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XX +−

Stretched open strings behave analogously to winding closed strings. The issue of
cosmological singularities is replaced by that of bound state formation.

• The T-dual version, charged open strings in a constant electric field, has even simpler
dynamics: the charged pairs emitted from the vacuum by Schwinger production move off
to infinity, and cause the electric field to decay to zero.

• As we shall see, the analogy is quite precise, under identifying wβ ∼ ArcTan (E): can
some analogue of the Schwinger effect cause the boost parameter to go to zero ?
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Outline of the talk

1. Introduction

2. First quantization: first pass

Bachas Porrati; Nekrasov

3. First quantization: second pass

Berkooz BP

4. Second quantization: zeroth pass

Berkooz BP Rozali

5. Conclusions, speculations
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Open strings in constant electromag. field vs orbifolds

• Open strings couple to an electromagnetic field through their boundary only. The
embedding coordinates are free bosons on the Minkowskian strip 0 < σ < π, τ ∈ R,
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(τ + σ) + g

µ
(τ − σ)
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• Twisted closed strings in orbifolds satisfy

X
µ
(σ + 2π, τ) = R

µ
ν X

ν
(σ, τ) ⇒ e

−2πiωn = R
µ
ν

• Twisted closed strings and charged open strings have the same eigenfrequencies when
R = (1 + F )/(1− F ). For R = e±β, this is wβ = ArctanhE.
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The dispersion relation again:

e
−2πiωn =

1 + F0

1− F0

·
1− F1

1 + F1

• Magnetic field: F = b

(
0 1

−1 0

)
→ {ib,−ib} hence |T | = 1 and frequencies are real:

ωn = n± ν , πν = ArcTan b1 − ArcTan b0

where ν is the stringy Larmor frequency. The string c.o.m. follows stable Landau orbits.

• Electric field: F = e

(
0 1

1 0

)
→ {e,−e} hence |T | 6= 1 and frequencies have an

imaginary part:
ωn = n± iν , πν = ArcTanh e1 − ArcTanh e0

This instability is due to Schwinger production of charged pairs.
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Open string mode expansion

• The light-cone embedding coordinates may be expanded in orthonormal modes,
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±

= x
±
0 + i

+∞∑
n=−∞

(−)
n
(n± iν)

−1
a
±
ne

−i(n±iν)τ
cos[(n± iν)σ ∓ i arcth(πe0)]

with reality conditions (a±n )∗ = a±−n
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• A natural quantization scheme is to assume the existence of a vacuum annihilated by all
strictly positive frequency modes a+

n>0, a
−
n>0 and, say, by a+

0 .

• The world-sheet Hamiltonian, normal ordered with respect to this vacuum, takes the form

L
l.c.
0 = −

∞∑
m=0

a
+
−ma

−
m −

∞∑
m=1

a
−
−ma

+
m +

iν

2
(1− iν)−

1

12
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One-loop amplitude and Schwinger pair production

• Using this quantization scheme, the one-loop (Euclidean worldsheet, Minkowskian target)
vacuum free energy reads

Abos =
iπV26(e0 + e1)

2

∫ ∞

0

dt

(4π2t)13

e−πν
2t/2

η21(it/2) θ1(tν/2; it/2)

where θ1 is the Jacobi theta function,

θ1(v; ρ) = 2q
1/8

sinπv
∞∏
n=1

(1− e
2πiv

q
n
)(1− q

n
)(1− e

−2πiv
q
n
) , q = e

2πiρ
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• In particular, the contribution of the zero-modes is

1

2i sinπtν/2
= e

−πtν/2
(1 + e

−πtν
+ e

−2πtν
+ . . . )

consistent with the quantization scheme a+
0 |0〉 = 0
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−πtν/2
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• Each of the poles at t = 2k/ν contributes to the imaginary part, yielding the rate for
charged string pair production,

Bachas Porrati

W =
1

2(2π)25

(e0 + e1)

ν

∞∑
k=1

(−)
k+1

(|ν|
k

)13 ∞∑
N=−1

cb(N) exp

(
−2πk

N

|ν|
− 2πk|ν|

)
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Closed string mode expansion

• Eigenmodes of closed strings in the twisted sector of order w are free fields satisfying

X
±
(σ + 2π, τ) = e

±ν
X
±
(σ, τ) , ν = wβ
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Closed string mode expansion

• Eigenmodes of closed strings in the twisted sector of order w are free fields satisfying

X
±
(σ + 2π, τ) = e

±ν
X
±
(σ, τ) , ν = wβ

hence the normal mode expansion:

X
±
R(τ − σ) =

i

2

∞∑
n=−∞

(n± iν)
−1
α
±
ne

−i(n±iν)(τ−σ)

X
±
L (τ + σ) =

i

2

∞∑
n=−∞

(n∓ iν)
−1
α̃
±
ne

−i(n∓iν)(τ+σ)

with canonical commutation relations

[α
+
m, α

−
n ] = −(m+ iν)δm+n , [α̃

+
m, α̃

−
n ] = −(m− iν)δm+n

(α
±
m)

∗
= α

±
−m , (α̃

±
m)

∗
= α̃

±
−m

• In particular, zero-modes are isomorphic to the open string case:

[α
+
0 , α

−
0 ] = −iν , [α̃

+
0 , α̃

−
0 ] = iν
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Vacuum energy and physical states (absence thereof)

• Representing these oscillators on a Fock space with vacuum |0〉 annihilated by all α±n>0

and by α−0 , the normal ordered worldsheet Hamiltonian reads

L
l.c.
0 = −

∞∑
n=0

(α
+
n )

∗
α
−
n −

∞∑
n=1

(α
−
n )

∗
α

+
n +

1

2
iν(1− iν)− 1 + Lint

with a similar answer for L̃0.
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• Much as in the case of the thermal BTZ black hole, the integrand has poles in the bulk of
the moduli space.

Ooguri Maldacena
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• For σ = 0, this is just the trajectory of a charged particle in an electric field,

L =
1

2
m
(
−2∂τX

+
∂τX

−
+ (∂τX

i
)
2
)

+
e
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X
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∂τX

− −X
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∂τX

+
)

The canonical momenta
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± ∓
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±

= ∓
e

2
x
±
0 +
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2
a
±
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±eτ/m
, π

i
= m ∂τX

i
= p

i

satisfy the usual equal-time commutation rules

[π
+
, x

−
] = [π

−
, x

+
] = i , [π

i
, x

j
] = iδij
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• At τ = 0, one can thus express

a
±
0 = π

± ±
ν

2
x
±
, x

±
0 = ∓

1

ν

(
π
± ∓

ν

2
x
±
)

hence recovering the canonical commutation relations of the open string zero-mode:

[a
+
0 , a

−
0 ] = −iν , [x

+
0 , x

−
0 ] = −

i

ν
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• Quantum mechanically, one may represent π± = i∂/∂x∓ so that a±0 become covariant
derivatives in the electric field ν.

• The zero-mode piece of L0, including the evil iν2 ,

L
(0)
0 = −a+

0 a
−
0 +

iν

2
= −

1

2
(a

+
0 a

−
0 + a

−
0 a

+
0 )

is just the Klein-Gordon operator of a particle of 2D mass M2 = −2L
(0)
0 and charge ν.
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Klein-Gordon and the inverted harmonic oscillator

• Defining α±0 = (P ±Q)/
√

2 and same with tildas, the Klein-Gordon operator just
becomes an inverted harmonic oscillator:

M
2
= α

+
0 α

−
0 + α

−
0 α

+
0 = −

1

2
(P

2 −Q
2
)
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• The latter admits a respectable delta-normalizable spectrum
of scattering states, in terms of parabolic cylinder functions,
e.g:

φ
+
in = D

−1
2+iM

2
2ν

(e
−3iπ

4 u)e
−ip̃t

e
iνxt/2

V

ep
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• These correspond to non-compact trajectories of charged particles in the electric field.
Tunnelling is just (stimulated) Schwinger pair creation,

e
− → (1 + η) e

−
+ η e

+
, η ∼ e

−πM2/ν

Brezin Itzykson; Brout Massar Parentani Spindel
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to a magnetic field in R2. At the same time, one should Wick rotate the worldsheet time.
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normalizable (Landau) states of the (stable) harmonic oscillator.

• Instead, the continuous scattering states of the inverted harmonic oscillator come by
analytic continuation from non-normalizable states of the stable harmonic oscillator.

• The contribution of the zero-modes to the one-loop amplitude can be interpreted either
way,

1

2i sin(νt/2)
=

∞∑
n=1

e
−i(n+1

2)νt
=

∫
dM

2
ρ(M

2
)e
−M2t/2

where the density of states is obtained from the reflection phase shift,

ρ(M
2
) =

1

ν
log Λ−

1

2πi

d

dM2
log

Γ
(

1
2 + iM

2

2ν

)
Γ
(

1
2 − iM

2

2ν

)
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• The physical spectrum can be explicitely worked out at low levels, and is free of ghosts: a
tachyon at level 0, a transverse gauge boson at level 1, . . .
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Physical spectrum at low level

• The ground state tachyon
|T 〉 = φ(x

+
, x

−
)|0ex, k〉

should satisfy the Virasoro constraint

L0|T 〉 =

[
−

1

2

(
α

+
0 α

−
0 + α

−
0 α

+
0

)
+

1

2
ν

2 − 1 +
1

2
k

2
i

]
|T 〉

which is the two-dimensional KG equation.
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• Level 1 states consist of
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α
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α
i
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)
|0ex, k〉

with the mass shell conditions

[M
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2
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]f
i
= 0 , [M

2 − k
2
i − ν

2 ∓ 2iν]f
±

= 0

The L1 Virasoro constraint eliminates one polarization



NEVE SHALOM - OCT 28, 2003 17

Physical spectrum at low level

• The ground state tachyon
|T 〉 = φ(x

+
, x

−
)|0ex, k〉

should satisfy the Virasoro constraint

L0|T 〉 =

[
−

1

2

(
α

+
0 α

−
0 + α

−
0 α

+
0

)
+

1

2
ν

2 − 1 +
1

2
k

2
i

]
|T 〉

which is the two-dimensional KG equation.

• Level 1 states consist of

|A〉 =
(
−f+

α
−
−1 − f

−
α

+
−1 + f

i
α
i
−1

)
|0ex, k〉

with the mass shell conditions

[M
2 − k

2
i − ν

2
]f
i
= 0 , [M

2 − k
2
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2 ∓ 2iν]f
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The L1 Virasoro constraint eliminates one polarization

• Despite the non-vanishing two-dimensional mass k2
i − ν2, the spurious state L−1φ|0〉 is

still physical, eliminating an extra polarization. One thus has D − 2 transverse degrees of
freedom, ie a massless gauge boson in D dimensions.
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• For applications to the Milne universe, one should diagonalize the boost momentum J , ie
consider an accelerated observer.

Gabriel Spindel; Mottola Cooper
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y

V

y

V

y

V

• In the Rindler patch R, letting f(r, η) =

e−iJηfJ(r) and r = ey, one gets a Schrodinger
equation for a particle in a potential

V (y) = M
2
e

2y − (J +
1

2
ν e

2y
)
2
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• If j < 0, the electron and positron branches
are in the same Rindler quadrant. Tunelling
corresponds to Schwinger particle production.

• If 0 < j < M2/(2ν), the two electron branches
are in the same Rindler quadrant. Tunelling
corresponds to Hawking radiation.

• If j > M2/(2ν), the electron branches extend
in the Milne regions. There is no tunelling, but
partial reflection amounts to a combination of
Schwinger and Hawking emission.
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Rindler modes

• Solutions are expressable in terms of parabolic cylinder functions:
Incoming modes from Rindler infinity I−R read

Vjin,R = e
−ijη

r
−1
M

−i(j2−
m2
2ν ),−ij2

(iνr
2
/2)

Incoming modes from the Rindler horizon H−
R read

U jin,R = e
−ijη

r
−1
W

i(
j
2−

m2
2ν ),

ij
2

(−iνr2
/2)

+−1−1 +1

q2 q1 q4+− q3+−−q3q4

1+−

q1+−2−q+−
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• The reflection coefficients can be computed:

q1 = e
−πj

cosh
[
πM

2

2ν

]
cosh

[
π
(
j − M2

2ν

)] , q3 = e
π

(
j−M

2

2ν

)
cosh

[
πM

2

2ν

]
| sinhπj|

and q2 = 1− q1, q4 = q3 − 1, by charge conservation.
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Global Charged Unruh Modes

• Global Unruh modes may be defined by patching together Rindler modes, ie by analytic
continuation across the horizons:

Ω
j
in,+ = Vjin,P = W

−i(j2−
m2
2ν ),

ij
2

(−iνX+
X
−
)[X

+
/X

−
]
−ij/2

Ω
j
in,− = U jin,P = M

i(
j
2−

m2
2ν ),

ij
2

(iνX
+
X
−
)[X

+
/X

−
]
−ij/2
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• There are two types of modes, involving 2 or 4 tunelling events:

1

q

q q −q q2 2 43

1

1

−q q

q

q q 2 4

1

2 3
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Closed string zero-modes

• Let us analyze the classical solutions for the closed string zero modes

X
±
(τ, σ) = ±

1

2ν
α
±
0 e

±ν(τ−σ) ∓
1

2ν
α̃
±
0 e

∓ν(τ+σ)
, α

±
0 , α̃

±
0 ∈ R
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• The Milne time or Rindler radius are independent of σ:

4ν
2
X

+
X
−

= α
+
0 α̃

−
0 e

2ντ
+ α

−
0 α̃

+
0 e

−2ντ − α
+
0 α

−
0 − α̃

+
0 α̃

−
0

We may thus follow the motion of a single point σ = σ0 and obtain the rest of the
worldsheet by acting with the boost.
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• Up to a shift of τ and σ, the physical state conditions impose

α
+
0 = α

−
0 = ε

M
√

2
, α̃

+
0 = α̃

−
0 = ε̃

M̃
√

2
, M

2 − M̃
2
= 2νj = 0
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We may thus follow the motion of a single point σ = σ0 and obtain the rest of the
worldsheet by acting with the boost.

• Up to a shift of τ and σ, the physical state conditions impose

α
+
0 = α

−
0 = ε

M
√

2
, α̃

+
0 = α̃

−
0 = ε̃

M̃
√

2
, M

2 − M̃
2
= 2νj = 0

• The behavior at early/late proper time now depends on εε̃: For εε̃ = 1, the string
begin/ends in the Milne regions. For εε̃ = −1, the string begin/ends in the Rindler regions.
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Short and long strings ( j = 0)

• ε = 1, ε̃ = 1:

X
±
(σ, τ) =

M

ν
√

2
sinh(ντ)e

±νσ
, T =

M

ν
sinh(ντ) , θ = νσ

is a short string winding around the Milne circle from T = −∞ to T = +∞.
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cosh(ντ)e
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, r =
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is a long string stretched in the right Rindler patch, from r = ∞ to r = M/ν and back to
r = ∞; σ is now the proper time direction in the induced metric.
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• For |j| > 0, the short string in the Milne region attaches to a short string in the Rindler
region stretching from r = 0 to r0 = |j|/(M + M̃) and back. The induced worldsheet
metric is of Misner type at the light-cone:

−2dX
+
dX

−
= −νjdτdσ + ν|j|(τ − τ0)dσ

2 −
1

2
(M

2
+ M̃

2
)dτ

2

much like long strings or supertubes in Gödel Universe.

Drukker Fiol Simon; Israel
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Short and long strings (static modes)
Just as in the open string case, we may now quantize the left and right-moving zero-modes
separately as particles in inverted harmonic oscillator:

RL

• ε = ε̃ = 1: φ = φe,inφ̃p,in may be
considered as creating a short string from
the vacuum
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Short and long strings (static modes)
Just as in the open string case, we may now quantize the left and right-moving zero-modes
separately as particles in inverted harmonic oscillator:

RL

• ε = ε̃ = 1: φ = φe,inφ̃p,in may be
considered as creating a short string from
the vacuum

• ε = ε̃ = −1: φ = φp,inφ̃e,in may be
considered as annihilating a short string
into the vacuum

• ε = −ε̃ = 1: φ = φe,inφ̃e,in may
not easily be interpreted as a particle/anti-
particle. Rather, it is a string-anti-string
state, in the right whisker.

• ε = −ε̃ = 1: φ = φp,inφ̃p,in is a string-
anti-string state, in the left whisker, but its
seems awkward to take it as conjugate to
the previous one...
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Short and long strings, Unruh modes

• Instead of following the motion of a point at fixed σ, one may consider instead fixed σ + τ :
these are the trajectories of the open string zero-mode, in Rindler coordinates.

1

q

q q −q q2 2 43

1

1

−q q

q

q q 2 4

1

2 3

q1 = e
−πj

cosh
[
πM

2

2ν

]
cosh

[
π
(
j − M2

2ν

)] ,
hence q1 = 0 if j = 0.
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Short and long strings, Unruh modes

• Instead of following the motion of a point at fixed σ, one may consider instead fixed σ + τ :
these are the trajectories of the open string zero-mode, in Rindler coordinates.

1

q

q q −q q2 2 43

1

1

−q q

q

q q 2 4

1

2 3

q1 = e
−πj

cosh
[
πM

2

2ν

]
cosh

[
π
(
j − M2

2ν

)] ,
hence q1 = 0 if j = 0.

• The probability amplitude of winding strings at T = +∞, assuming that there are no
stretched pairs in the whiskers, is q1 times the incoming amplitude at T = −∞.
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The one-loop amplitude again

• Recall the (Euclidean ws, Minkowskian target) one-loop amplitude:

Abos =

∫
F

∞∑
l,w=0

dρdρ̄

(2π2ρ2)13

e−2πβ2w2ρ2

|η21(ρ) θ1(iβ(l + wρ); ρ)|2
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• As in the open string case, the zero mode contribution 1/ sinh2(πβ(l + wρ)) may be
interpreted either as a sum over (Euclidean) discrete states, or a continuous integral over
the continuous (Lorentzian) modes: there are physical states at each level.
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• In addition, there are poles in the bulk of the moduli space, for
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leading to logarithmic divergences,
∫
dρdρ̄/|ρ− ρ0|2 ∼ logε.
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• As in the open string case, the zero mode contribution 1/ sinh2(πβ(l + wρ)) may be
interpreted either as a sum over (Euclidean) discrete states, or a continuous integral over
the continuous (Lorentzian) modes: there are physical states at each level.

• In addition, there are poles in the bulk of the moduli space, for

iβ(l + wρ) = m+ nρ , (l, w,m, n) ∈ Z

leading to logarithmic divergences,
∫
dρdρ̄/|ρ− ρ0|2 ∼ logε.

• These can be traced to the existence of infinite families of periodic orbits, where all but one
4-uple (α+

±n, ã±n+) (or its X− counterpart) vanishes:

X
+

=
i

2
(n+ iν)

−1
α

+
ne

−i(n+iν)(τ−σ)
+
i

2
(n− iν)

−1
α̃
±
ne

−i(n−iν)(τ+σ)

is periodic under (σ, τ) → (σ + ρ1, τ + iρ2). These states are localized on the light-cone
(currently under investigation)
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Conclusions - speculations

• Winding states in the Milne Universe behave in close analogy with open strings in an
electric field. Using intuition from open strings, we have found that physical states do exist
in the twisted sector of the Lorentzian orbifold, and can be pair produced.
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• In particular, since winding strings get spontaneously produced near the singularity, they
contribute an energy proportional to the radius, hence akin to a two-dimensional positive
cosmological constant: it seems reasonable that the resulting transcient inflation may
smooth out the singularity.
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in the twisted sector of the Lorentzian orbifold, and can be pair produced.

• In view of this analogy, it is natural to ask if the same mechanism (Schwinger production)
which leads in the open string case to the decay of the electric field could “relax the boost
parameter”.

Cooper, Eisenberg, Kluger, Mottola and Svetitsky

• In particular, since winding strings get spontaneously produced near the singularity, they
contribute an energy proportional to the radius, hence akin to a two-dimensional positive
cosmological constant: it seems reasonable that the resulting transcient inflation may
smooth out the singularity.

• The “dynamics” of the long strings living in the whiskers is still unclear: what is the proper
way of quantizing them ? Could they perhaps provide a dual holographic dynamics to the
bulk ? Or do CTC make them unredeemable ?

• Twisted sector states are produced in correlated pairs, i.e. squeezed states, whose
condensation should involve non-local deformations of the worldsheet.

Aharony Berkooz Silverstein
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Conclusions - speculations

• As a less ambitious goal, can one compute scattering amplitudes of twisted states, and
check if they are better behaved than untwisted states. For this, the relation with negative
level Sl(2)/U(1) and double analytic continuation of the Nappi-Witten plane wave may be
useful.

D’Appollonio, Kiritsis; B. Craps, BP
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• As a less ambitious goal, can one compute scattering amplitudes of twisted states, and
check if they are better behaved than untwisted states. For this, the relation with negative
level Sl(2)/U(1) and double analytic continuation of the Nappi-Witten plane wave may be
useful.

D’Appollonio, Kiritsis; B. Craps, BP

• The closed string orbifold we have discussed are highly non-generic trajectories on the
cosmological billiard: Do whiskers feature also for more general Kasner-like singularities ?
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