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Introduction

BPS black holes in N = 2 supergravity / type II string theory on a
CY threefold Y enjoy simplifying properties:

1 By the attractor phenomenon, the near-horizon solution, hence the
Bekenstein-Hawking entropy, depends only on the conserved
charges;

2 Being extremal, they are not subject to Hawking radiation; Yet their
entropy can be arbitrarily large;

3 Being supersymmetric, they are expected to correspond to exact
eigenstates of the quantum Hamiltonian;

4 The string coupling can be made arbitrary small throughout the
geometry;

This has allowed a clear microscopic derivation of the
macroscopic entropy, by counting open-string/membrane
micro-states in the presence of D-branes/M-branes.

Strominger Vafa; Johnson Khuri Myers; Maldacena Strominger Witten
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AdS3/CFT2 and Black String SCFT

The modern understanding relies on AdS/CFT in the near horizon
geometry AdS3 × X , where X = S3 × K 3 or S2 ×CY3. The gauge
theory on the boundary is a SCFT whose central charge can be
computed geometrically; the density of highly excited states
follows via the Ramanujan-Hardy (Cardy) formula.
This relies on the possibility to lift the 4D black hole to a 5D black
string. In general (for [D6] 6= 0,±1), the 5D geometry is singular.
Moreover, the 5-th direction can be made arbitrarily small.
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AdS2/SCFT1 and Black Hole SCQM

We expect that the entropy of 4D BPS black holes should be
computed in the near-horizon geometry AdS2 × X ′, in terms of
superconformal quantum mechanics living on its boundary.

t

τ

τ

σ

Unfortunately, little is known about holography in AdS2, partly due
to the existence of two boundaries, and of a concrete SCFT1.
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AdS2/SCFT1 and channel duality

A possible strategy is to try and get at the spectrum of the SQM by
channel duality, as in usual open/closed string duality:

Tre−πtHopen = 〈B|e−
π
t Hclosed |B〉

Here, Hclosed is the Hamiltonian for string theory in AdS2 in radial
quantization. The real interest is in Hopen.
This is hardly doable in practice, except if one truncates to
spherically symmetric SUGRA modes, and restrict to the BPS
sector. It is far from clear whether this truncation is justifiable.
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Topological amplitude and black hole wave function I

Recently, OVV suggested that the OSV conjecture

Ω(pI ,qI) ∼
∫

dφI |Ψtop(pI + iφI)|2 eφIqI

could be interpreted in just this way (with Hclosed = Hopen = 0):

Ω(p,q) = 〈Ψ+
p,q|Ψ−p,q〉

where
Ψ±p,q(φ) = e±

1
2 qIφ

I
Ψtop(pI ∓ iφI)

Here Ψtop(χ) = 〈Ψtop|χ〉 is the topological amplitude in the real
polarization, which guarantees that the result is invariant under
changes of the electric-magnetic duality frame.
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Topological amplitude and black hole wave function II

OVV gave heuristic arguments that Ψtop could be interpreted as a
wave function for the radial quantization of spherically symmetric
BPS geometries. If correct, this would answer a long-standing
question: “What is the physical system whose “preferred”
wavefunction is the topological amplitude ? ”

One of the goals of this talk will be to perform a rigorous treatment
of radial quantization, and evaluate OVV’s claim.

Another motivation is to produce a framework for constructing an
automorphic partition function, whose Fourier coefficients will
count black hole micro-states.
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Preliminary comments

The idea of mini-superspace radial quantization of black holes
was in fact much studied by the gr-qc community, yielding as yet
little insight on the nature of black hole micro-states.

Cavaglia de Alfaro Filippov; Kuchar; Thiemann Kastrup; Breitenlohner Hellmann

One novelty here is that one works in a SUSY context, for which
the “mini-superspace” truncation to spherically symmetric
geometries, and omission of D-term interactions, has some
chance of being exact.
Further interest possibly arises from the relation between black
hole attractor equations and SUSY vacua in flux compactifications.
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Stationary solutions and KK∗ reduction I

Stationary solutions in 4D can be parameterized in the form

ds2
4 = −e2U(dt + ω)2 + e−2Uds2

3 , AI
4 = ζ Idt + AI

3

where ds3,U, ω,AI
3, ζ

I and the 4D scalars z i ∈M4 are
independent of time. The D=3+1 theory reduces to a field theory
in three Euclidean dimensions.

In contrast to the usual KK ansatz,

ds2
4 = e2U(dy + ω)2 + e−2Uds2

2,1 , AI
4 = ζ Idy + AI

3

where the fields are independent of y , we reduce along a time-like
direction.

B. Pioline ( LPTHE and LPTENS, Paris ) Quantum Attractor Flows Newe Shalom, April 10, 2007 12 / 37



Stationary solutions and KK∗ reduction II

For the usual KK reduction to 2+1D, the one-forms (AI
3, ω) can be

dualized into pseudo-scalars (ζ̃I , σ), where σ is the twist (or NUT)
potential. The 4D Einstein-Maxwell equations reduce to 3D gravity
+ scalars living in a Riemannian space

M3 = R+|U ×M4 × |z i R2nv+3|ζ I ,ζ̃I ,σ

with positive-definite metric

ds2 = 2(dU)2 + gijdz idz j +
1
2

e−4U
(

dσ + ζ Id ζ̃I − ζ̃Idζ I
)2

+−e−2U
[
tIJdζ IdζJ + t IJ

(
d ζ̃I + θIK dζK

) (
d ζ̃J + θJLdζL

)]
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Stationary solutions and KK∗ reduction III

The KK∗ reduction is simply related to the KK reduction by letting
(ζ I , ζ̃I) → i(ζ I , ζ̃I). As a result, the scalar fields live in a
pseudo–Riemannian space M∗

3, with non-positive definite
signature.

Breitenlohner Gibbons Maison; Hull Julia

M∗
3 always has 2nV + 4 isometries corresponding to the shifts of

ζ ,ζ̃I , σ,U, satisfying the graded Heisenberg algebra

[pI ,qJ ] = 2δI
J k[

m,pI
]

= pI , [m,qI ] = qI , [m, k ] = 2k

The notation anticipates the identification of the corresponding
conserved charges with the electric and magnetic charges qI and
pI , NUT charge k and ADM mass m.
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Spherically symmetric BH and geodesics I

Now, restrict to spherically symmetric solutions, with spatial slices

ds2
3 = N2(ρ)dρ2 + r2(ρ)dΩ2

2

The sigma-model action becomes, up to a total derivative (Gab is
the metric on M∗

3):

S =

∫
dρ

[
N
2

+
1

2N

(
ṙ2 − r2Gabφ̇

aφ̇b
)]

This is the Lagrangian for the geodesic motion of a fiducial particle
with unit mass on the (hyperbolic) cone R+ ×M∗

3. The einbein√
N enforces invariance under reparameterizations of ρ.
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Spherically symmetric BH and geodesics II

The equation of motion of N imposes the Hamiltonian constraint,
or Wheeler-De Witt equation

HWDW = (pr )
2 − 1

r2 Gabpapb − 1 ≡ 0

The gauge choice N = r2 allows to separate the problem into
radial motion along r , and geodesic motion on M∗

3:

Gabpapb = C2 , (pr )
2 − C2

r2 − 1 ≡ 0 ⇒ r =
C

sinh Cρ
,

Thus, the problem reduces to affinely parameterized geodesic
motion on the three-dimensional moduli space M∗

3.
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Spherically symmetric BH and geodesics III

It turns out that C = 2THSBH is the extremality parameter:
extremal (in particular BPS) black holes correspond to light-like
geodesics on M∗

3. Since r = 1/ρ, the 3D spatial slices are flat.

Other gauges are also possible: e.g. N = eU identifies ρ with the
radial geodesic distance to the horizon.

For the purpose of defining observables such as the horizon area,
AH = 4πe−2U r2|U→−∞ and ADM mass MADM = r(e2U − 1)|U→0, it
may convenient to leave the gauge unfixed.
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Isometries and conserved charges

The isometries of M3 imply conserved Noether charges, whose
Poisson bracket reflect the Lie algebra of the isometries:

[pI ,qJ ] = 2δI
J k[

m,pI
]

= pI , [m,qI ] = qI , [m, k ] = 2k

If k 6= 0, the off-diagonal term in the 4D metric

ds2
4 = −e2U(dt + k cos θdφ)2 + e−2U [dr2 + r2(dθ2 + sin2 θdφ2)]

implies the existence of closed time-like curves around φ direction,
near θ = 0.
Bona fide 4D black holes arise in the “classical limit” k → 0.
Keeping k 6= 0 will allow us to greatly extend the symmetry.
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Conserved charges and black hole potential

Setting k = 0 for simplicity, one arrives at the Hamiltonian,

H =
1
2

[
p2

U + pig ijpj − e2UVBH

]
≡ C2

where VBH is the “black hole potential”,

VBH(z i ,pI ,qI) =
1
2
(qI −NIJpJ)t IK (qK − N̄KLpL) +

1
2

pI tIJpJ

The potential V = −e2UVBH is unbounded from below.
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Quantizing geodesic motion I

The classical phase space is the cotangent bundle T ∗(M∗
3),

specifying the initial position and velocity: non compact.
Quantization proceeds by replacing functions on phase space by
operators acting on wave functions in L2(M∗

3), subject to

∆3Ψ(U, z i , ζ I , ζ̃I , σ) = C2Ψ

where ∆3 is the Laplace-Beltrami operator on M∗
3.

The electric, magnetic and NUT charges may be diagonalized as

Ψ(U, z i , ζ I , ζ̃I , σ) = Ψp,q(U, z) ei(qIζ
I+pI ζ̃I)

[
−∂2

U −∆4 − e2UVBH − C2
]
Ψp,q(U, z) = 0

B. Pioline ( LPTHE and LPTENS, Paris ) Quantum Attractor Flows Newe Shalom, April 10, 2007 20 / 37



Quantizing geodesic motion II

The black hole wave function Ψp,q(U, z) describes quantum
fluctuations of the 4D moduli as one reaches the horizon at
U → −∞. Naively, should be peaked at the attractor point.

Restoring the variable r , one could also describe the quantum
fluctuations of the horizon area 4πr2e−2U , around the classical
value 4SBH .

The natural inner product is the Klein-Gordon inner product at
fixed U, famously NOT positive definite. A standard remedy in
quantum cosmology is “third quantization”, possibly relevant for
black hole fragmentation / multi-centered solutions.
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Attractor flow in N = 2 supergravity

Consider N = 2 SUGRA coupled to nV abelian vector multiplets
[hypers decouple at tree-level]: the vector multiplet scalars z i take
values in a special Kähler manifold M4. For type IIA on X = CY3,
z i parameterize the complexified Kähler structure of X .
After reduction to 3 dimensions, the vector multiplet scalars take
value in a quaternionic-Kähler space M3, known as the c −map
of the special Kähler space M4.
Under T-duality along the 4th direction, this becomes the
hypermultiplet space for type IIB compactified on X at tree-level.
The manifold M∗

3 obtained by analytic continuation is sometimes
called “para-quaternionic-Kahler manifold”; it has split signature
(2nV + 2,2nV + 2)

Cortes Mayer Mohaupt Saueressig
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Attractor flow and semi-classical BPS wave function

The black hole potential splits into two pieces,

VBH(p,q; z i , z̄ i) = |Z |2 + ∂i |Z | g i j̄ ∂̄j |Z |

where Z is the central charge Z = eK/2(qIX I − pIFI).
Supersymmetric solutions are obtained by cancelling each term
separately, leading back to the attractor flow equations,
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Attractor flow and semi-classical BPS wave function

At this stage, one could already quantize the attractor flow
equations and guess the BPS wave function:{

pU = −eU |Z |
pz̄ ī = −2eU ∂̄i |Z |

⇒ Ψ(U, z i , z̄ j̄ ,p,q) ∼ exp
[
2ieU |Z |

]
The phase is stationary at the classical attractor points.
Using twistor techniques, we shall be able to resolve ordering
ambiguities, and compute the BPS wave function exactly.
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Supersymmetric quantum mechanics

More rigorously, the full D = 4,N = 2 SUGRA including fermions,
reduces to D = 1,N = 4 supergravity:

S =

∫
dρ Gabφ̇

aφ̇b + ψA D
Dρ

ψA + (ψAψA)(ψAψA) + . . .

The supersymmetry variations are δψA = V AA′
εA′ , where V AA′

(A = 1, ..2nV + 2,A′ = 1,2) is the quaternionic vielbein afforded by
the restricted holonomy Sp(2)× Sp(2nV + 2).
Thus, SUSY trajectories are characterized by

∃εα / V AA′
µ φ̇µ εA′ = 0 ⇔ V A[A′

V B′]B = 0

This reproduces the attractor flow equations (generalized to k 6= 0)
Gutperle Spalinski
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Improved SUSY mechanics - HKC and twistors I

This SUSY mechanics is rather unusual, insofar as the SUSY
comes from a triplet of non-integrable almost complex structures.
It is possible to remedy this problem by combining the Killing
spinor εA′ ∈ C2 with the coordinates φa ∈ QK , i.e. extend the QK
space into its Hyperkähler cone (HKC), or Swann bundle,

R4 → HKC → QK

By cancelling the Sp(2) holonomy on QK against the SU(2)
holonomy on S3, the three almost complex structures on QK
become genuine complex structures on HKC.
Geodesic motion on HKC is equivalent to geodesic motion on QK
after gauging the SU(2) and dilation symmetries. BPS property
becomes just holomorphy on HKC !
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The twistor space

The relevant information is captured by the twistor space Z , a
two-sphere bundle over QK with a Kähler-Einstein metric. The
sphere coordinate z keeps track of the Killing spinor, z = ε1/ε2.
In the presence of triholomorphic isometries, the geometry of HKC
is controlled by a generalized prepotential G(ηL),

〈K (vL, v̄L,wL + w̄L) + xL(wL + w̄L)〉w+w̄ =

∮
dζ

2πiζ
G[ηL(ζ)]

where ηL is the “projective multiplet”

ηL = vL/ζ + xL − v̄Lζ

Hitchin Lindstrom Rocek; De Wit Rocek Vandoren
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Twistor space for the c-map

When HKC is the Swann bundle of the c-map of a SK manifold,
the generalized prepotential is simply obtained from the
prepotential F ,

G(ηL, ζ) = F (ηI)/η[

Rocek Vafa Vandoren

The inhomogeneous coordinates ξI = v I/v [, ξ̃I = −2iwI ,
α = 4iw[ − ξI ξ̃I are complex coordinates on Z , adapted to the
Heisenberg symmetries, given by the “twistor map”:

ξI = ζ I + i eU+K(X)/2
(

z X̄ I + z−1X I
)

ξ̃I = ζ̃I + i eU+K(X)/2
(

z F̄I + z−1 FI

)
α = σ + ζ I ξ̃I − ζ̃Iξ

I

Conversely, the coordinates on the base M3 are SU(2) invariant
combinations of ξI , ξ̃I , α.

Neitkze BP Vandoren 07
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BPS black holes and holomorphic curves

Upon lifting the geodesic motion to Z , SUSY is preserved iff the
momentum is holomorphic in the canonical complex structure on
Z , at any point along the trajectory: 1st class constraints !
Put differently, the SUSY phase space is the twistor space Z ,
equipped with its Kähler symplectic form. Its dimension is 4nV + 6,
almost half that of the generic phase space T ∗(M∗

3).

BPS solutions correspond to holomorphic curves ξI(ρ), ξ̃I(ρ), α(ρ)

at constant ξ̄I , ¯̃ξI , ᾱ, and are algebraically determined by the
conserved charges: integrable system !
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The Penrose Transform

At fixed values of U, z i , ζ I , ζ̃I , σ, the complex coordinates ξI , ξ̃I , α
on Z are holomorphic functions of the twistor coordinate z: the
fiber over each point is a rational curve in Z .
Starting from a holomorphic function Φ on Z , we can produce a
function Ψ on QK

Ψ(U, z i , z̄ ī , ζ I , ζ̃I , σ) = e2U
∮

dz
2πiz

Φ
[
ξI(z), ξ̃I(z), α(z)

]
satisfying some generalized harmonicity condition:(

εA
′B′∇AA′∇BB′ − RAB

)
Ψ = 0

This is a quaternionic generalization of the usual Penrose
transform between holomorphic functions on CP3 and conformally
harmonic functions on S4.

Salamon; Baston Eastwood

B. Pioline ( LPTHE and LPTENS, Paris ) Quantum Attractor Flows Newe Shalom, April 10, 2007 31 / 37



Outline

1 Introduction

2 Attractor flow and geodesic motion

3 BPS geodesics and twistors

4 Quantizing the attractor flow

B. Pioline ( LPTHE and LPTENS, Paris ) Quantum Attractor Flows Newe Shalom, April 10, 2007 32 / 37



The BPS Hilbert space I

In terms of geodesic motion on the QK base, the classical BPS
conditions V A[αV β]B = 0 become a set of 2nd order differential
operators which have to annihilate the wave function Ψ:(

εA′B′∇AA′∇BB′ − RAB
)

Ψ = 0

In terms of the twistor space, the BPS condition pL̄ = 0 requires
that Ψ should be a holomorphic function on Z . More precisely,
taking the fermions into account, we believe it should be a section
of H1(Z ,O(−2)).

The equivalence between the two approaches is a consequence
of the Penrose transform discussed previously.
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The BPS Black Hole Wave-Function I

Ignore fermionic subtleties, and go back to the simple-minded
twistor transform

Ψ(U, z i , z̄ I , ζ I , ζ̃I ,a) = e2U
∮

dz
2πiz

Φ
[
ξI(z), ξ̃I(z), α(z)

]
Consider a black hole with k = 0: pI and qI can be diagonalized
simultaneously, and completely determine (up to normalization)
the wave function as a coherent state on Z :

Φ = exp
[
i(pI ξ̃I − qIξ

I)
]

= exp
[
i(pI ζ̃I − qIζ

I) + ieU+K (X)/2(zW̄p,q(X̄ ) + z−1Wp,q(X ))
]
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The BPS Black Hole Wave-Function II

The integral over z is of Bessel type, leading to

Ψ = e2U J0

(
2 eU |Zp,q|

)
ei(pI ζ̃I−qIζ

I)

in qualitative agreement with our naive attempt at quantizing

This is peaked around the classical attractor points, with slowly
damped, increasingly faster oscillations away from them. Contrary
perhaps to expectations, the wave flattens out towards the horizon
! This is because of the large fine-tuning needed to produce a
BPS solution.

B. Pioline ( LPTHE and LPTENS, Paris ) Quantum Attractor Flows Newe Shalom, April 10, 2007 35 / 37



Relation to the topological amplitude ?

Before integrating along the fiber, we found that
Ψp,q ∼ exp[ieU+K/2(zW̄ + z−1W )], in “rough” agreement with
OVV’s answer Ψp,q ∼ exp(W ).
It is unlikely that Ψtop can be identified as a black hole wave
function: it naturally depends on nV + 1 variables, while ΨBH
depends on 2nV + 3 variables.
Instead, the “super-BPS” Hilbert space of tri-holomorphic
functions on HKC is the natural habitat of a one-parameter
generalization of the topological string amplitude...

Gunaydin Neiztke BP

B. Pioline ( LPTHE and LPTENS, Paris ) Quantum Attractor Flows Newe Shalom, April 10, 2007 36 / 37



Outlook

Higher derivative corrections remain to be incorporated: higher
derivative scalar interactions on QK space.
Multi-centered configurations can be described by certain
harmonic maps from R3 to QK : does that correspond to “second
quantization”, i.e. including vertices ?
For N ≥ 4, this suggests that the 3D U-duality group controls the
BH spectrum: can one obtain the exact degeneracies as Fourier
coefs of some “BPS automorphic forms” ? Improve on DVV.
The equivalence between BH attractor flow and geodesic flow on
QK is a reflection of mirror symmetry. Can this be used to
compute instanton corrections on hypermultiplet moduli space ?
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