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Introduction

@ BPS black holes in N = 2 supergravity / type Il string theory on a
CY threefold Y enjoy simplifying properties:

@ By the attractor phenomenon, the near-horizon solution, hence the
Bekenstein-Hawking entropy, depends only on the conserved
charges;

@ Being extremal, they are not subject to Hawking radiation; Yet their
entropy can be arbitrarily large;

© Being supersymmetric, they are expected to correspond to exact
eigenstates of the quantum Hamiltonian;

© The string coupling can be made arbitrary small throughout the
geometry;

@ This has allowed a clear microscopic derivation of the
macroscopic entropy, by counting open-string/membrane
micro-states in the presence of D-branes/M-branes.

Strominger Vafa; Johnson Khuri Myers; Maldacena Strominger Witten
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AdSz/CFT, and Black String SCFT

@ The modern understanding relies on AdS/CFT in the near horizon
geometry AdSs x X, where X = S® x K3 or S? x CY3. The gauge
theory on the boundary is a SCFT whose central charge can be
computed geometrically; the density of highly excited states
follows via the Ramanujan-Hardy (Cardy) formula.

@ This relies on the possibility to lift the 4D black hole to a 5D black
string. In general (for [D6] # 0, +1), the 5D geometry is singular.
Moreover, the 5-th direction can be made arbitrarily small.
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AdS;/SCFT; and Black Hole SCQM

@ We expect that the entropy of 4D BPS black holes should be
computed in the near-horizon geometry AdS, x X', in terms of
superconformal quantum mechanics living on its boundary.

@ Unfortunately, little is known about holography in AdS,, partly due
to the existence of two boundaries, and of a concrete SCFT;.
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AdS,/SCFTy and channel duality

@ A possible strategy is to try and get at the spectrum of the SQM by
channel duality, as in usual open/closed string duality:

Tre—ﬂ'tHopen — <B’e—% closed‘B>

Here, H,jpseq is the Hamiltonian for string theory in AdS; in radial
quantization. The real interest is in Hopen.
@ This is hardly doable in practice, except if one truncates to

spherically symmetric SUGRA modes, and restrict to the BPS
sector. It is far from clear whether this truncation is justifiable.
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Topological amplitude and black hole wave function |

@ Recently, OVV suggested that the OSV conjecture
2p'.q) ~ [ o Vol + i0h)? &
could be interpreted in just this way (with Hejoseqd = Hopen = 0):

Q(pa CI) = <\U2)_,q|w;,q>

where .
wiq((f)) = e%29% \Utop(pl + i¢l)

@ Here Wp(x) = (Wiop|x) is the topological amplitude in the real
polarization, which guarantees that the result is invariant under
changes of the electric-magnetic duality frame.
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Topological amplitude and black hole wave function |

@ OVV gave heuristic arguments that Wy, could be interpreted as a
wave function for the radial quantization of spherically symmetric
BPS geometries. If correct, this would answer a long-standing
question: “What is the physical system whose “preferred”
wavefunction is the topological amplitude ? ”

@ One of the goals of this talk will be to perform a rigorous treatment
of radial quantization, and evaluate OVV’s claim.

@ Another motivation is to produce a framework for constructing an
automorphic partition function, whose Fourier coefficients will
count black hole micro-states.
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Preliminary comments

@ The idea of mini-superspace radial quantization of black holes
was in fact much studied by the gr-qc community, yielding as yet
little insight on the nature of black hole micro-states.

Cavaglia de Alfaro Filippov; Kuchar; Thiemann Kastrup; Breitenlohner Hellmann

@ One novelty here is that one works in a SUSY context, for which
the “mini-superspace” truncation to spherically symmetric
geometries, and omission of D-term interactions, has some
chance of being exact.

@ Further interest possibly arises from the relation between black
hole attractor equations and SUSY vacua in flux compactifications.
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o Introduction
e Attractor flow and geodesic motion
e BPS geodesics and twistors

@ Quantizing the attractor flow
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e Attractor flow and geodesic motion
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Stationary solutions and KK* reduction |

@ Stationary solutions in 4D can be parameterized in the form
ds? = —e?Y(dt + w)® + e 2Yds2 , A, =(ldt + A}

where ds;, U,w, A}, ¢! and the 4D scalars z' € M, are
independent of time. The D=3+1 theory reduces to a field theory
in three Euclidean dimensions.

@ In contrast to the usual KK ansatz,
dsj = e?Y(dy +w)? + e Vdss, , Ay =('dy + A

where the fields are independent of y, we reduce along a time-like
direction.
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Stationary solutions and KK* reduction Il

@ For the usual KK reduction to 2+1D, the one-forms (A}, w) can be

dualized into pseudo-scalars (¢, o), where o is the twist (or NUT)
potential. The 4D Einstein-Maxwell equations reduce to 3D gravity
+ scalars living in a Riemannian space

Mz = R¥|y x My x |7RZMH3|

,C1o

with positive-definite metric

. ~ - 2
ds? = 2(dU)? + gydz'dz) + %e“‘“ (da +cldé - g,dg’)
g2V [t,Jdg’ng + (df, + Oedck ) (d@ + eJLdgL)}
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Stationary solutions and KK* reduction IlI

@ The KK* reduction is simply related to the KK reduction by letting
(¢!, ¢) — (¢!, ). As aresult, the scalar fields live in a
pseudo—Riemannian space M3, with non-positive definite
signature.

Breitenlohner Gibbons Maison; Hull Julia

@ M3 always has 2ny + 4 isometries corresponding to the shifts of
¢:(), 0, U, satisfying the graded Heisenberg algebra
[, q) = 255k
mp'|=p', Imal = a. ImK =2k
@ The notation anticipates the identification of the corresponding

conserved charges with the electric and magnetic charges g, and
p;, NUT charge k and ADM mass m.
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Spherically symmetric BH and geodesics |

@ Now, restrict to spherically symmetric solutions, with spatial slices

dsg = N2(p)dp? + r?(p)dQ3

@ The sigma-model action becomes, up to a total derivative (G, is
the metric on M3):

S= [ do|5 + gy (7 - Pewi®i®)]

@ This is the Lagrangian for the geodesic motion of a fiducial particle
with unit mass on the (hyperbolic) cone R x M3. The einbein
V'N enforces invariance under reparameterizations of p.
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Spherically symmetric BH and geodesics |l

@ The equation of motion of N imposes the Hamiltonian constraint,
or Wheeler-De Witt equation

’
Hwow = (pr)? — ﬁGabpan -1=0

@ The gauge choice N = r? allows to separate the problem into
radial motion along r, and geodesic motion on M3:

Gabpapb = 02 s (pr)2 - T -1=0 =

Thus, the problem reduces to affinely parameterized geodesic
motion on the three-dimensional moduli space M3.
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Spherically symmetric BH and geodesics |l

@ It turns out that C = 2T, Sgy is the extremality parameter:
extremal (in particular BPS) black holes correspond to light-like
geodesics on M3. Since r = 1/p, the 3D spatial slices are flat.

@ Other gauges are also possible: e.g. N = eV identifies p with the
radial geodesic distance to the horizon.

@ For the purpose of defining observables such as the horizon area,
Ay = 4re2Yr?|,___ and ADM mass Mapy = r(€?Y — 1)|y—o, it
may convenient to leave the gauge unfixed.
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Isometries and conserved charges

@ The isometries of M3 imply conserved Noether charges, whose
Poisson bracket reflect the Lie algebra of the isometries:

[p',q) = 25k
|:ma pl] = pl7 [mv QI] = qr, [ma k] =2k

@ If k # 0, the off-diagonal term in the 4D metric
ds? = —e?V(dt + kcos 0d¢)? + e 2Y[dr? + r?(d6? + sin? 0d¢?)]

implies the existence of closed time-like curves around ¢ direction,
near 6 = 0.

@ Bona fide 4D black holes arise in the “classical limit” k — 0.
Keeping k # 0 will allow us to greatly extend the symmetry.
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Conserved charges and black hole potential

@ Setting k = 0 for simplicity, one arrives at the Hamiltonian,

1 )
H=3 [pﬁ +pig'p; — Y VBH} =C*?

where Vpy is the “black hole potential”,

. 1 _ 1
Veu(Z',p', qi) = E(QI — Nup)) "™ (ak — Niwpt) + EPIT/JPJ

@ The potential V = —e?Y Vg is unbounded from below.
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Quantizing geodesic motion |

@ The classical phase space is the cotangent bundle T*(M3),
specifying the initial position and velocity: non compact.

@ Quantization proceeds by replacing functions on phase space by
operators acting on wave functions in Ly(M3), subject to

AsW(U, 2 ¢! o) = CPw

where Aj is the Laplace-Beltrami operator on M3.
@ The electric, magnetic and NUT charges may be diagonalized as

WU,z ¢! o) = V,4(U, 2) gl (ac'+p'C)

[—86 — Ay — GZUVBH — C2 \Vp7q(U, Z) =0
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Quantizing geodesic motion Il

@ The black hole wave function V,, 4(U, z) describes quantum
fluctuations of the 4D moduli as one reaches the horizon at
U — —oo. Naively, should be peaked at the attractor point.

@ Restoring the variable r, one could also describe the quantum
fluctuations of the horizon area 4xr?e=2Y, around the classical
value 4Sgy.

@ The natural inner product is the Klein-Gordon inner product at
fixed U, famously NOT positive definite. A standard remedy in
quantum cosmology is “third quantization”, possibly relevant for
black hole fragmentation / multi-centered solutions.
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Attractor flow in N = 2 supergravity

@ Consider N = 2 SUGRA coupled to ny abelian vector multiplets
[hypers decouple at tree-level]: the vector multiplet scalars z' take
values in a special K&hler manifold My. For type lIA on X = CYs3,
Z' parameterize the complexified Kahler structure of X.

@ After reduction to 3 dimensions, the vector multiplet scalars take
value in a quaternionic-Kahler space M3, known as the ¢ — map
of the special Kahler space Mj.

@ Under T-duality along the 4th direction, this becomes the
hypermultiplet space for type [IB compactified on X at tree-level.

@ The manifold M3 obtained by analytic continuation is sometimes
called “para-quaternionic-Kahler manifold”; it has split signature
(2I7V +2,2ny + 2)

Cortes Mayer Mohaupt Saueressig
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Attractor flow and semi-classical BPS wave function

@ The black hole potential splits into two pieces,
Ven(p. q: 2. 2') = |22 + 9)|12| ¢ 92|

where Z is the central charge Z = eX/2(q, X' — p'F)).

@ Supersymmetric solutions are obtained by cancelling each term
separately, leading back to the attractor flow equations,

au
2 _ QU
r o e |Z|
dz'
ey = 295012
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Attractor flow and semi-classical BPS wave function

@ At this stage, one could already quantize the attractor flow
equations and guess the BPS wave function:

pu = -eYZ . »
{pg = —2eY9 2| = V(U,Z',Z,p,q) ~ exp [219 IZI}

The phase is stationary at the classical attractor points.

@ Using twistor techniques, we shall be able to resolve ordering
ambiguities, and compute the BPS wave function exacily.
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Supersymmetric quantum mechanics

@ More rigorously, the full D = 4, N = 2 SUGRA including fermions,
reduces to D = 1, N = 4 supergravity:

.. D
S= [ dp Gapd?P + WA ——ba + (W a) (W a) + ...
Dp

@ The supersymmetry variations are 6y” = VA4 ¢4, where VA4
(A=1,..2ny + 2,A' =1,2) is the quaternionic vielbein afforded by
the restricted holonomy Sp(2) x Sp(2ny + 2).

@ Thus, SUSY trajectories are characterized by
e | VA e =0 & VARYVEIE _g

This reproduces the attractor flow equations (generalized to k # 0)

Gutperle Spalinski
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e BPS geodesics and twistors
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Improved SUSY mechanics - HKC and twistors |

@ This SUSY mechanics is rather unusual, insofar as the SUSY
comes from a triplet of non-integrable almost complex structures.

@ |t is possible to remedy this problem by combining the Killing
spinor e4 € C? with the coordinates ¢2 € QK, i.e. extend the QK
space into its Hyperkahler cone (HKC), or Swann bundle,

R* — HKC — QK

By cancelling the Sp(2) holonomy on QK against the SU(2)
holonomy on S8, the three almost complex structures on QK
become genuine complex structures on HKC.

@ Geodesic motion on HKC is equivalent to geodesic motion on QK
after gauging the SU(2) and dilation symmetries. BPS property
becomes just holomorphy on HKC !
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The twistor space

@ The relevant information is captured by the twistor space Z, a
two-sphere bundle over QK with a Kahler-Einstein metric. The
sphere coordinate z keeps track of the Killing spinor, z = ¢ /ez.

@ In the presence of triholomorphic isometries, the geometry of HKC
is controlled by a generalized prepotential G(nt),

_ _ _ d
(KA T+ ) X+ W) = o GO
where 7t is the “projective multiplet”

0t = v+ Xt =i

Hitchin Lindstrom Rocek; De Wit Rocek Vandoren

B. Pioline ( LPTHE and LPTENS, Paris ) Quantum Attractor Flows Newe Shalom, April 10, 2007 28/37



Twistor space for the c-map

@ When HKC is the Swann bundle of the c-map of a SK manifold,
the generalized prepotential is simply obtained from the
prepotential F,

G(n".¢) = F(n) /1

@ The inhomogeneous coordinates ¢/ = viive & = —2iw,
o = 4iw, — £/¢; are complex coordinates on Z, adapted to the
Heisenberg symmetries, given by the “twistor map”:

Rocek Vafa Vandoren

5/ _ CI 4 j eUtK(X)/2 (z X'+ z‘1X’)

& = 5/+i6U+K(X)/2 (zl_-'/+z*1 F/)
a = o+¢'§-¢

@ Conversely, the coordinates on the base Ms are SU(2) invariant
combinations of ¢/, ¢/, a.

Neitkze BP Vandoren 07
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BPS black holes and holomorphic curves

@ Upon lifting the geodesic motion to Z, SUSY is preserved iff the
momentum is holomorphic in the canonical complex structure on
Z, at any point along the trajectory: 1st class constraints !

@ Put differently, the SUSY phase space is the twistor space Z,
equipped with its Kéhler symplectic form. Its dimension is 4ny + 6,
almost half that of the generic phase space T*(M3).

@ BPS solutions correspond to holomorphic curves (), &1(p), alp)
at constant £/, ¢, &, and are algebraically determined by the
conserved charges: integrable system !
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The Penrose Transform

@ At fixed values of U, z/, ¢!, {;, o, the complex coordinates ¢/, &),
on Z are holomorphic functions of the twistor coordinate z: the
fiber over each point is a rational curve in Z.

@ Starting from a holomorphic function ¢ on Z, we can produce a
function ¥ on QK

dz ~

W22 ¢ o) = eV § % 0 [€12).8(2).a(2)]

satisfying some generalized harmonicity condition:
(EA,B/VAA’VBB’ - RAB) V=0

@ This is a quaternionic generalization of the usual Penrose
transform between holomorphic functions on CP® and conformally
harmonic functions on S*.

Salamon; Baston Eastwood
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@ Quantizing the attractor flow
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The BPS Hilbert space |

@ In terms of geodesic motion on the QK base, the classical BPS
conditions VAl* VBB — 0 become a set of 2nd order differential
operators which have to annihilate the wave function V:

( 6A,BIVAA'VBB' _ RAB) v=0

@ In terms of the twistor space, the BPS condition p; = 0 requires
that W should be a holomorphic function on Z. More precisely,
taking the fermions into account, we believe it should be a section
of H'(Z, 0(-2)).

@ The equivalence between the two approaches is a consequence
of the Penrose transform discussed previously.
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The BPS Black Hole Wave-Function |

@ Ignore fermionic subtleties, and go back to the simple-minded
twistor transform

az

v i sl A~ F _ 2U%
(U,Z,Z,{,C/,a) e oriz

@ |€(2),8(2), a(2)

@ Consider a black hole with k = 0: p/ and g can be diagonalized
simultaneously, and completely determine (up to normalization)
the wave function as a coherent state on Z:

o = exp|i(p'é - q)
= exp [i(Plfl — qi¢’) + iV (2 W, o(X) + 27 Wp,q(X))]
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The BPS Black Hole Wave-Function Il

@ The integral over z is of Bessel type, leading to
v = ey, (2 Y |qu,> l(P'Ci—aic’)

in qualitative agreement with our naive attempt at quantizing

@ This is peaked around the classical attractor points, with slowly
damped, increasingly faster oscillations away from them. Contrary
perhaps to expectations, the wave flattens out towards the horizon
I This is because of the large fine-tuning needed to produce a
BPS solution.
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Relation to the topological amplitude ?

@ Before integrating along the fiber, we found that
W, g ~ explieVtK/2(zW + z="W)], in “rough” agreement with
OVV’s answer V;, 5 ~ exp(W).

@ ltis unlikely that W, can be identified as a black hole wave
function: it naturally depends on ny + 1 variables, while ¥y
depends on 2ny + 3 variables.

@ Instead, the “super-BPS” Hilbert space of tri-holomorphic
functions on HKC is the natural habitat of a one-parameter
generalization of the topological string amplitude...

Gunaydin Neiztke BP
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@ Higher derivative corrections remain to be incorporated: higher
derivative scalar interactions on QK space.

@ Multi-centered configurations can be described by certain
harmonic maps from R® to QK does that correspond to “second
quantization”, i.e. including vertices ?

@ For N > 4, this suggests that the 3D U-duality group controls the
BH spectrum: can one obtain the exact degeneracies as Fourier
coefs of some “BPS automorphic forms” ? Improve on DVV.

@ The equivalence between BH attractor flow and geodesic flow on
QK is a reflection of mirror symmetry. Can this be used to
compute instanton corrections on hypermultiplet moduli space ?
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